
PHYSICS 140B W26 : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε) in d space dimensions.

(b) Determine the critical temperature for Bose-Einstein condensation in d = 3 dimen-
sions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If

not, explain why. If so, compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫

ddk

(2π)d
δ(ε − ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞
∫

0

dε
g(ε)

eε/kBTc − 1
=

1

2π2(~v)3

∞
∫

0

dε
ε2

eε/kBTc − 1
=

ζ(3)

π2

(

k
B
Tc

~v

)3

.

Thus,

k
B
Tc =

(

π2

ζ(3)

)1/3

~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(

k
B
T

~v

)3

.

Thus,
n0

n
= 1−

(

T

Tc(n)

)3

.

(d) In d = 2 we have

n =
1

2π(~v)2

∞
∫

0

dε
ε

eε/kBTc − 1
=

ζ(2)

2π

(

k
B
Tc

~v

)2

1



and hence

k
B
T (d=2)
c = ~v

√

2πn

ζ(2)
.

(2) Using the argument we used in class and in §5.4.3 of the notes, predict the surface
temperatures of the remaining planets in our solar system. In each case, compare your
answers with the results below. In cases where there are discrepancies, try to come up
with a convincing excuse.

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

a (108 km) 0.576 1.08 1.50 2.28 7.78 14.3 28.7 45.0 59.1

T obs
surf (K) 340∗ 735† 288‡ 210 112 84 53 55 44

Table 1: Relevant planetary data. Observed temperatures are averages. ∗mean equatorial
temperature, †mean temperature below cloud cover. I say Pluto is a planet.

Solution :

According to the derivation in the notes, we have

T =

(

R⊙

2a

)1/2

T⊙ ,

where R⊙ = 6.96 × 105 km and T⊙ = 5780K. From this equation and the reported values
for a for each planet, we obtain the following table:

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

a (108 km) 0.576 1.08 1.50 2.28 7.78 14.3 28.7 45.0 59.1

T obs
surf (K) 340∗ 735† 288‡ 210 112 84 53 55 44

T pred
surf (K) 448 327 278 226 122 89.1 63.6 50.8 44.3

Table 2: Comparison of observed and predicted planetary surface temperatures. Ob-
served temperatures are averages. ∗mean equatorial temperature, †mean temperature be-
low cloud cover.

Note that we have included Pluto, because since my childhood Pluto has always been the
ninth planet to me. We see that our simple formula works out quite well except for Mer-
cury and Venus. Mercury, being so close to the sun, has enormous temperature fluctuations
as a function of location. Venus has a whopping greenhouse effect.
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(3) In §5.4.4 of the lecture notes we derived the spectral energy density ρε(ν, T ) for a three-
dimensional blackbody. We found that it was peaked at a frequency ν∗ = s∗k

B
T/h where

s∗ = 2.83144 extremizes the function s3/(es − 1). Consider instead the function ρ̃ε(λ, T )
as a function of wavelength λ and temperature T , where λ = c/ν. To relate ρε(ν, T ) and
ρ̃ε(λ, T ), set the fraction of energy of EM radiation between frequencies ν and ν+ dν equal
to the fraction of energy between wavelengths λ and λ+ dλ. Show that this is maximized
at a wavelength λ∗ = t∗hc/k

B
T , where t∗ is a constant. Find t∗ numerically. Is t∗ = 1/s∗?

Why or why not?

Solution:

We must have

ρ̃ε(λ, T ) = ρε(ν, T )

∣

∣

∣

∣

dν

dλ

∣

∣

∣

∣

=
c

λ2
ρε(ν, T )

=
15

π4

k
B
T

hc

(hc/λk
B
T )5

ehc/λkBT − 1
≡

15

π4

k
B
T

hc

(λT /λ)
5

eλT
/λ − 1

,

where λT ≡ hc/k
B
T is not to be confused with the thermal de Broglie wavelength for a

massive particle. The maximum value occurs for λ∗(T ) = u k
B
T where

d

du

(

u5

eu − 1

)

= 0 ⇒ u =
u

1− e−u
= 5 ⇒ u = 4.9651 .

Thus λ∗ = t∗ch/k
B
T where t∗ = 1/u∗ = 0.2014. Note that λ∗(T ) 6= c/ν∗ = 0.3544hc/k

B
T .

This is because the spectral density ρ̃ε(λ, T ) is given by ρ̃ε(λ, T ) = (c/λ2) ρε(ν = c/λ, T )
and so the stationary point for λ is obtained by extremizing a different function.

(4) A nonrelativistic Bose gas consists of ballistic particles of spin S = 1. Each boson has

mass m and magnetic moment µ0. A gas of these particles is placed in an external field H .

(a) What is the relationship of the Bose condensation temperature Tc(H) to Tc(H = 0)

when µ0H ≫ k
B
T ?

(b) Find the magnetization M for T < Tc when µ0H ≫ k
B
T . Calculate through order

exp(−µ0H/k
B
T ).

Solution :

(a) The number density of bosons is given by

n(T, z) = λ−3
T

{

Li3/2

(

z eµ0
H/k

B
T
)

+ Li3/2

(

z
)

+ Li3/2

(

z e−µ
0
H/k

B
T
)

}

.

The argument of Liz(z) cannot exceed unity, thus Bose condensation occurs for z = exp(−µ0H/k
B
T )

(assuming H > 0). Thus, the condition for Bose condensation is given by

nλ3
Tc

= ζ(3/2) + Li3/2

(

e−µ
0
H/k

B
Tc

)

+ Li3/2

(

e−2µ
0
H/k

B
Tc

)

.
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This is a transcendental equation for T = Tc(n,H). In the limit µ0H ≫ k
B
Tc, the second

two terms become negligible, since

Lis(z) =

∞
∑

j=1

zj

js
.

Thus,

Tc(H → ∞) =
2π~2

m

(

n

ζ(3/2)

)2/3

.

When H = 0, we have Thus,

Tc(H → 0) =
2π~2

m

(

n

3 ζ(3/2)

)2/3

.

Thus,
Tc(H → ∞)

Tc(H → 0)
= 32/3 = 2.08008 . . .

(b) For T < Tc(n,H) we have

nσ = n0
σ + λ−3

T Li3/2

(

e−(σ+1)µ
0
H/k

B
T
)

,

where n0
σ is the density of condensed particles with spin polarization σ. Condensation oc-

curs only in the σ = −1 channel, which contains the single particle ground state |k = 0, σ = −1 〉.
Thus n0

0 = n0
+ = 0 but n0

− ∈ [0, n] in the condensed phase. The magnetization density is

M = −

(

∂Ω

∂H

)

T,V,µ

= µ0

(

n− − n+

)

The total number density is n = n− + n0 + n+ , hence

M = µ0

(

n− n0 − 2n+

)

For T < Tc, we have z = exp(−µ0H/k
B
T ) and therefore

M = µ0 n− µ0λ
−3
T e−µ

0
H/k

B
T +O

(

e−2µ
0
H/k

B
T
)

.
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