Justify all your answers to all problems. Write clearly.

Time dilation; Length contraction: $\Delta t = \gamma \Delta t_0$; $L = L_0 / \gamma$; $c = 3 \times 10^8 m / s$ Lorentz transformation: $x' = \gamma (x - ut)$; y' = y; $t' = \gamma (t - ux / c^2)$

QUIZ 5

Velocity:
$$v'_{x} = \frac{v_{x} - u}{1 - uv_{x} / c^{2}}; v'_{y} = \frac{v_{y}}{\gamma(1 - uv_{x} / c^{2})}; \gamma = \frac{1}{\sqrt{1 - u^{2} / c^{2}}}$$

Inverse transformations: $u \to -u$, primed \Leftrightarrow unprimed; Doppler: $f' = f \sqrt{\frac{1 \pm u/c}{1 \mp u/c}}$ Momentum: $\vec{p} = \gamma m \vec{v}$; Energy: $E = \gamma m c^2$; Kinetic energy: $K = (\gamma - 1)mc^2$ $E = \sqrt{p^2 c^2 + m^2 c^4}$; rest energy: $E_0 = mc^2$

Electron: $m_e = 0.511 Mev / c^2$; Proton: $m_p = 938.26 Mev / c^2$; Neutron: $m_n = 939.55 Mev / c^2$ Atomic unit: $1u = 931.5 MeV / c^2$; electron volt: $1eV = 1.6 \times 10^{-19} J$

Photoelectric effect: $eV_s = K_{max} = hf - \phi = hc / \lambda - \phi$; $\phi = \text{work function}$ Stefan law: $I = \sigma T^4$, $\sigma = 5.67037 \times 10^{-8} W / m^2 \cdot K^4$; Wien's law: $\lambda_m T = 2.8978 \times 10^{-3} m \cdot K$ $I(T) = \int_{-\infty}^{\infty} I(\lambda, T) d\lambda$; I = (c / 4)u; $u(\lambda, T) = N(\lambda) E_{av}(\lambda, T)$; $N(\lambda) = \frac{8\pi}{\lambda^4}$

Boltzmann distribution: $N(E) = Ce^{-E/kT}$; $N = \int_{0}^{\infty} N(E) dE$; $E_{av} = \frac{1}{N} \int_{0}^{\infty} EN(E) dE$

Classical: $E_{av} = kT$; Planck: $E_n = n\varepsilon = nhf$; $N = \sum_{n=0}^{\infty} N(E_n)$; $E_{av} = \frac{1}{N} \sum_{n=0}^{\infty} E_n N(E_n)$ Planck: $E_{av} = \frac{hc / \lambda}{e^{hc/\lambda kT} - 1}$; $hc = 1,240 eV \cdot nm$; $\lambda_m T = hc / 4.96k$; $\sigma = \frac{2\pi^5 k^4}{15c^2 h^3}$

Boltzmann constant: k = (1/11,604)eV/K; $1\text{\AA}=1\text{\AA}=0.1\text{nm}$ Compton scattering: $\lambda' - \lambda = \lambda_c(1 - \cos\theta)$; $\lambda_c = \frac{h}{m_e c} = 0.00243nm$ double-slit interference maxima: $d\sin\theta = n\lambda$; single-slit diffraction minima: $a\sin\theta = n\lambda$ de Broglie: $\lambda = \frac{h}{p}$; $f = \frac{E}{h}$; $\omega = 2\pi f$; $k = \frac{2\pi}{\lambda}$; $E = \hbar\omega$; $p = \hbar k$ $\hbar c = 197.3$ eV nm matter: $E = \frac{p^2}{2m}$ (nonrelativistic) or $E = \sqrt{p^2 c^2 + m^2 c^4}$ (relativistic); photons: E = pcUncertainty: $\Delta x \Delta k \sim 1$ $\Delta t \Delta \omega \sim 1$; $\Delta x \Delta p \sim \hbar$ $\Delta t \Delta E \sim \hbar$; $\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$ group and phase velocity : $v_g = \frac{d\omega}{dk}$; $v_p = \frac{\omega}{k}$; wave packets: $\psi(x,t) = \int a(k) e^{i(kx-\omega(k)t)}$ Schrodinger equation : $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x)\Psi(x,t) = i\hbar \frac{\partial \Psi}{\partial t}$; $\Psi(x,t) = \psi(x)e^{-i\frac{E}{\hbar}t}$ Time – independent Schrodinger equation : $-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + U(x)\psi(x) = E\psi(x)$; $\int_{\infty}^{\infty} dx \ \psi^* \psi = 1$

QUIZ 5

$$P(x_{1} < x < x_{2}) = \int_{x_{1}}^{x_{2}} |\psi(x)|^{2} dx \quad ; \quad < f(x) > = \int_{-\infty}^{\infty} |\psi(x)|^{2} f(x) dx$$

$$\approx \text{ square well: } \psi_{n}(x) = \sqrt{\frac{2}{L}} \sin(\frac{n\pi x}{L}) \quad ; \quad E_{n} = \frac{\pi^{2} \hbar^{2} n^{2}}{2mL^{2}} \quad ; \quad \frac{\hbar^{2}}{2m_{e}} = 0.0381 eVnm^{2} \quad (\text{electron})$$

$$2D \text{ square well: } \Psi_{n_{n_{2}}}(x,y) = \Psi_{1,n_{1}}(x) \Psi_{2,n_{2}}(y) \quad ; \quad E_{n_{n_{2}}} = \frac{\pi^{2} \hbar^{2}}{2m} (\frac{n_{1}^{2}}{L_{1}^{2}} + \frac{n_{2}^{2}}{L_{2}^{2}}) \quad ; \quad \Psi_{i,n}(w) = \sqrt{\frac{2}{L_{i}}} \sin(\frac{n\pi w}{L_{i}})$$

$$\text{Harmonic oscillator: } \Psi_{n}(x) = H_{n}(x) e^{-\frac{m\omega}{2\hbar}x^{2}}; \quad E_{n} = (n + \frac{1}{2})\hbar\omega; \quad E = \frac{p^{2}}{2m} + \frac{1}{2}m\omega^{2}x^{2} = \frac{1}{2}m\omega^{2}A^{2}$$

$$\text{Step potential: reflection coef: } R = \frac{(k_{1} - k_{2})^{2}}{(k_{1} + k_{2})^{2}} \quad , \quad T = 1 - R \quad ; \quad k = \sqrt{\frac{2m}{\hbar^{2}}(E - U)}$$

$$\text{Tunneling: } \psi(x) \sim e^{-\alpha x} \quad ; \quad T = e^{-2\alpha\Delta x} \quad ; \quad T = e^{-2\frac{\gamma}{n}} \quad ; \quad \alpha(x) = \sqrt{\frac{2m[U(x) - E]}{\hbar^{2}}}$$

Rutherford scattering: $U = \frac{2Ze^2}{4\pi\varepsilon_0 r}$; $e^2/(4\pi\varepsilon_0) = 1.44eV \cdot nm$ $b = \frac{Z}{K_{\alpha}} \frac{e^2}{4\pi\varepsilon_0} \cot{\frac{1}{2}\theta}$; $f_{>\theta} = nt\pi b^2$; $N(\theta) = \text{constant} \times (\frac{Z}{K_{\alpha}})^2 \times \frac{1}{\sin^4(\theta/2)}$ Line spectra: $\frac{1}{\lambda} = R(\frac{1}{n_0^2} - \frac{1}{n^2})$; $R = \frac{1}{91.13nm}$; hcR = 13.6eVBohr atom: $F = \frac{ke^2Z}{r^2} = m_e \frac{v^2}{r}$; $U = -\frac{ke^2Z}{r}$; $E = K + U = -\frac{ke^2Z}{2r}$; $a_0 = 0.0529nm$

$$r_n = (a_0 / Z)n^2$$
; $E_n = -E_0 Z^2 / n^2$; $E_0 = \frac{ke^2}{2a_0}$; $a_0 = \frac{\hbar^2}{m_e k e^2}$; $L = m_e v r = n\hbar$; $E_0 = -13.6 eV$

1-dim atom: $U(x) = -ke^2 / x$; ground state wavefunction $\psi(x) = Axe^{-x/a_0}$

Spherically symmetric potential: $\Psi_{n,\ell,m_{\ell}}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell,m_{\ell}}(\theta,\phi)$; $Y_{\ell,m_{\ell}}(\theta,\phi) = P_{\ell}^{m_{\ell}}(\theta)e^{im_{\ell}\phi}$

quantum numbers: n = 1, 2, 3, ...; $0 \le \ell \le n-1$; $-\ell \le m_{\ell} \le \ell$ Angular momentum: $\vec{L} = \vec{r} \times \vec{p}$; $|L^2| = \ell(\ell+1)\hbar^2$; $L_z = m_{\ell}\hbar$ Radial probability density: $P(r) = r^2 |R_{n\ell}(r)|^2$; Energy: $E_n = -\frac{ke^2}{2a_0}\frac{Z^2}{n^2}$

Radial wave function: $R_{nl}(r) = (n-th \text{ degree polynomial in } r) \times e^{-Zr/na_0}$ Ground state of hydrogen-like ions: $\Psi_{1,0,0} = \frac{1}{\pi^{1/2}} (\frac{Z}{a_0})^{3/2} e^{-Zr/a_0}$; $\int_0^\infty dr r^n e^{-\lambda r} = \frac{n!}{\lambda^{n+1}}$ Orbital magnetic moment: $\vec{\mu} = \frac{-e}{2m_e} \vec{L}$; $\mu_z = -\mu_B m_I$; $\mu_B = \frac{e\hbar}{2m_e} = 5.79 \times 10^{-5} eV/T$ Spin 1/2: $s = \frac{1}{2m_e} - |\vec{S}| = \sqrt{s(s+1)\hbar}$; $S = m\hbar$; $m = \pm 1/2$; $\vec{\mu} = \frac{-e}{2m_e} q\vec{S}$; q = 2

Spin 1/2: $s = \frac{1}{2}$, $|\vec{S}| = \sqrt{s(s+1)}\hbar$; $S_z = m_s\hbar$; $m_s = \pm 1/2$; $\vec{\mu}_s = \frac{-e}{2m_e}g\vec{S}$; g = 2

Orbital+spin mag moment: $\vec{\mu} = \frac{-e}{2m_e}(\vec{L} + g\vec{S})$; Energy in mag. field: $U = -\vec{\mu} \cdot \vec{B}$

subshells: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d 2(2 ℓ +1) electrons per subshell. Screened electron: $E_n = (-13.6eV)Z_{eff}^2 / n^2$

Problem 1 (6 points)

The wavefunction for an electron in an excited state of a one-dimensional atom with potential energy $U(x) = -ke^2 / x$ is $\psi(x) = A(x^2 - qx)e^{-x/2a_0}$ where $a_0 = \hbar^2 / m_e ke^2$ is the Bohr radius, and A and q are constants. Find the energy of this electron, in eV. Justify your answer. **Hints:** (i) Use the Schrodinger equation; (ii) Consider the terms that dominate for large x values; (iii) You don't need to know the value of q. **For extra credit**: do find the value of q, in nm. Justify your answer.

Problem 2 (6 points)

An electron is in a state of a hydrogen-like ion with quantum numbers n=4 and $m_{\ell} = 1$.

(a) Find all the possible values for the angle that its angular momentum vector \overline{L} could be making with the z axis. Give your answers in degrees. Justify your answers. (b) Suppose you also have a graph showing the radial wave function of this electron as a function of r. Explain how you could tell by looking at this graph what is the angular momentum quantum number ℓ for this electron.

Problem 3 (6 points)

The radial wave function of an electron in a hydrogen-like ion is $R(r) = Cr^2 e^{-r/a_0}$.

(a) Find the most probable radius r for this electron, in terms of a_0 .

(b) Find the average radius $\langle r \rangle$ for this electron, in terms of a_0 .

(c) If the most probable radius is the same as in the Bohr atom, what is the value of Z?

Problem 4 (6 points)

For an electron in the hydrogen atom (Z=1) in the state with quantum numbers

n = 2, $\ell = 1$, $m_{\ell} = 1$, the magnetic field acting on the electron spin due to its orbital motion around the nucleus (no external magnetic field) has magnitude B=0.39T. (a) What would be the magnetic field if the electron was in this state in a hydrogen-like ion with Z=2 instead? Justify your answer.

(b) What would be the magnetic field for this electron in hydrogen (Z=1) if it was in the state with quantum numbers n = 3, $\ell = 2$, $m_{\ell} = 2$ instead? Justify your answer.

Hints: (i) Use that the magnetic field at the center of a loop of radius r carrying current i is $B = \mu_0 i / (2r)$; (ii) Use Bohr atom relations for the radius, Schrodinger atom relation for the z component of angular momentum. (iii) As you know, the current created by a charge q moving at speed v in a circle of radius r is $i = qv / (2\pi r)$.

Problem 5 (6 points)

The K_{α} line in the X-ray spectrum of iron (Z=26) has wavelength $\lambda = 0.1945 nm$.

(a) What do you expect will be the wavelength of the K_{α} line of nickel (Z=28)?

(b) What do you expect will be the wavelength of the K_{β} line of iron?