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0.1 Preface

This is a proto-preface. A more complete preface will be written after these notes are completed.

These lecture notes are intended to supplement a course in statistical physics at the upper division
undergraduate or beginning graduate level.

I was fortunate to learn this subject from one of the great statistical physicists of our time, John Cardy.

I am grateful to my wife Joyce and to my children Ezra and Lily for putting up with all the outrageous
lies I've told them about getting off the computer ‘in just a few minutes” while working on these notes.

These notes are dedicated to the only two creatures I know who are never angry with me: my father and
my dog.

Figure 1: My father (Louis) and my dog (Henry).
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4 CHAPTER 1. FUNDAMENTALS OF PROBABILITY

1.2 Statistical Properties of Random Walks

1.2.1 One-dimensional random walk

Consider the mechanical system depicted in fig. 1.1, a version of which is often sold in novelty shops. A
ball is released from the top, which cascades consecutively through N levels. The details of each ball’s
motion are governed by Newton’s laws of motion. However, to predict where any given ball will end up
in the bottom row is difficult, because the ball’s trajectory depends sensitively on its initial conditions,
and may even be influenced by random vibrations of the entire apparatus. We therefore abandon all
hope of integrating the equations of motion and treat the system statistically. That is, we assume, at
each level, that the ball moves to the right with probability p and to the left with probability ¢ = 1 — p. If
there is no bias in the system, then p = ¢ = £. The position X, after NV steps may be written

N
X=>o; , (1.1)
j=1

where o;=+1 if the ball moves to the right at level j, and o;=-1 if the ball moves to the left at level
j. At each level, the probability for these two outcomes is given by

p ifo=+1

1.2
g ifo=-1 (1.2)

Pa :p50,+1 +q50,—1 = {

This is a normalized discrete probability distribution of the type discussed in section 1.5 below. The
multivariate distribution for all the steps is then

N
P(oy,...,on) =[] Plo;) (1.3)
j=1

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a
sidewalk taking steps to the right and left at random. After IV steps, the pedestrian’s location is X.

Now let’s compute the average of X:

(X)=() _0;)=N{@e)=N> oP(c)=N@p—-q)=N2p—1) . (1.4)

N
j=1 o==+1

This could be identified as an equation of state for our system, as it relates a measurable quantity X to the
number of steps N and the local bias p. Next, let's compute the average of X?:

(X*) =" (oj0;) = N*(p—q)* +4Npq . (1.5)

Here we have used

. i
(0j00) = 03+ (L= 8;;1) (P — 0)* = {(p —q)? 1fj # j” : o
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Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

Note that (X?) > (X)2, which must be so because
Var(X) = (AX)?) = (X — (X))} = (X% — (X)? . (1.7)

This is called the variance of X. We have Var(X) = 4Npq. The root mean square deviation, AX,,, is the

square root of the variance: AX, . = 1/ Var(X). Note that the mean value of X is linearly proportional
to N (for all cases other than p = g = %), but the RMS fluctuations AX, . are proportional to N'/2. In
the limit N — oo then, the ratio AX,,./(X) vanishes as N /2. This is a consequence of the central limit
theorem (see §1.5.2 below), and we shall meet up with it again on several occasions.

We can do even better. We can find the complete probability distribution for X. It is given by

N
Py x = <N )pNR M, (1.8)
R

where NV, ,, are the numbers of steps taken to the right/left, with N = N, + N, ,and X = N, — N, . There
are many independent ways to take N, steps to the right. For example, our first IV, steps could all be
to the right, and the remaining N, = N — N, steps would then all be to the left. Or our final N, steps
could all be to the right. For each of these independent possibilities, the probability is p™r ¢™r. How
many possibilities are there? Elementary combinatorics tells us this number is

N N!
= 1.9
() = s 19

Note that N = X = 2N, ;, so we can replace Ny, = $(N £ X). Thus,

N! _
Prox = gyt (110
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1.2.2 Thermodynamic limit

Consider the limit N — oo but with x = X/N finite. This is analogous to what is called the thermody-
namic limit in statistical mechanics. Since N is large, x may be considered a continuous variable. We
evaluate In Py y using Stirling’s asymptotic expansion

ImN!~NInN - N +O(nN) . (1.11)
We then have
mPyy~NInN—-N-iN1+2)h [%N(l + x)} + 1IN +2)
~IN(I-2)ln [%N(l - :c)] +IN(A—2)+ AN(1+2) Inp+ IN(1—2) Ing (1.12)
= =N [(52) In (552) + (152) n (452)] + N[ (152) mp + (152) Ing]

Notice that the terms proportional to N In NV have all cancelled, leaving us with a quantity which is
linear in N. We may therefore write In Py y = —N f(z) + O(In N), where

F@) = [(545)n (152) + (555 n (159)] - [(552) mp+ (155) ng] . (1.13)

We have just shown that in the large IV limit we may write
Py x =Ce NIX/N) (1.14)

where C is a normalization constant'. Since N is by assumption large, the function Py y is dominated
by the minimum (or minima) of f(z), where the probability is maximized. To find the minimum of f(x),
we set f'(z) = 0, where

q 1+
f(z)=1ln (5 g x) . (1.15)
Setting f’(z) = 0, we obtain
LI (1.16)
-2 ¢
We also have 1
f(z) = T (1.17)
so invoking Taylor’s theorem,
fl@)=f@)+if"@@-2°+... . (1.18)
Putting it all together, we have
N(x —z)? (X — X)?
Pyy~Cexp|— ———" | =Cexp|— 22| | 1.19
N, X p [ 8pq ] p [ 8Npq ( )

'The origin of C lies in the O(In N) and O(N?) terms in the asymptotic expansion of In N!. We have ignored
these terms here. Accounting for them carefully reproduces the correct value of C in eqn. 1.20.
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Figure 1.2: Comparison of exact distribution of eqn. 1.10 (red squares) with the Gaussian distribution
of eqn. 1.19 (blue line).

where X = (X) = N(p — q) = NZ. The constant C is determined by the normalization condition,

;PNXN C/dX exp[ e ] V21 NpgC (1.20)

and thus C = 1/v/27Npg. Why don’t we go beyond second order in the Taylor expansion of f(x)? We
will find out in §1.5.2 below.

1.2.3 Entropy and energy

The function f(z) can be written as a sum of two contributions, f(z) = e(z) — s(x), where

> - (59 (%)
1+ z)Inp— (1 —=z)Ing (1.2

The function S(N,z) = Ns(x) is analogous to the statistical entropy of our system, and E(N,z) = Ne(x)
to the energy of the system”. The statistical entropy is the logarithm of the number of ways, at fixed N,
that the system can be configured so as to yield the same value of X. The energy biases the probability
Py x = exp(S—E) so that low energy configurations are more probable than high energy configurations.
For our system, we see that when p < 3 the energy is minimized by taking z as small as possible, i.e.
z = —1. Conversely, when p > 1 the energy is minimized by taking z as large as possible, i.e. z = +1.
The average value of z, as we have computed explicitly, is = p — ¢ = 2p — 1, which falls somewhere in
between these two extremes.

“The functions s(z) and e(x) are the specific entropy and specific energy, respectively.
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In actual thermodynamic systems, entropy and energy are not dimensionless. What we have called §
here is really S/k;, which is the entropy in units of Boltzmann’s constant. And what we have called £
here is really E/k T, which is energy in units of Boltzmann'’s constant times temperature.

1.3 Basic Concepts in Probability Theory

Here we recite the basics of probability theory.

1.3.1 Fundamental definitions

The natural mathematical setting is set theory. Sets are generalized collections of objects. The basics:
w € A is a binary relation which says that the object w is an element of the set A. Another binary relation
is set inclusion. If all members of A are in B, we write A C B. The union of sets A and B is denoted AU B
and the intersection of A and B is denoted A N B. The Cartesian product of A and B, denoted A x B, is the
set of all ordered elements (a,b) where a € Aand b € B.

Some details: If w is not in A, we write w ¢ A. Sets may also be objects, so we may speak of sets of
sets, but typically the sets which will concern us are simple discrete collections of numbers, such as the
possible rolls of a die {1,2,3,4,5,6}, or the real numbers R, or Cartesian products such as RN.IfACB
but A # B, we say that A is a proper subset of B and write A C B. Another binary operation is the set
difference A\ B, which contains all w such thatw € Aand w ¢ B.

In probability theory, each object w is identified as an event. We denote by 2 the set of all events, and ()
denotes the set of no events. There are three basic axioms of probability:

i) To each set A is associated a non-negative real number P(A), which is called the probability of A.
ii) P(Q) =1.

iii) If {A,} is a collection of disjoint sets, i.e. if A, N Aj = () for all 7 # j, then

P<UAZ-> => P (1.22)

From these axioms follow a number of conclusions. Among them, let -4 = Q\ A be the complement of
A, i.e. the set of all events not in A. Then since AU —~A = Q, we have P(—A) = 1 — P(A). Taking A = (,
we conclude P () = 0.

The meaning of P(A) is that if events w are chosen from  at random, then the relative frequency for
w € A approaches P(A) as the number of trials tends to infinity. But what do we mean by "at random?
One meaning we can impart to the notion of randomness is that a process is random if its outcomes
can be accurately modeled using the axioms of probability. This entails the identification of a probability
space €2 as well as a probability measure P. For example, in the microcanonical ensemble of classical
statistical physics, the space (2 is the collection of phase space points ¢ = {q;,...,q,,P;,--.,p,} and the
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probability measure is du = X~ (E) [[_; dg; dp, 6(E — H(q,p)), so that for A €  the probability of A
is P(A) = [du X 4(p), where X 4(¢) = 1if o € Aand X 4(¢) = 0if ¢ ¢ A is the characteristic function of
A. The quantity Y'(F) is determined by normalization: [du = 1.

1.3.2 Bayesian statistics

We now introduce two additional probabilities. The joint probability for sets A and B together is written
P(AN B). Thatis, P(AN B) = Probjw € A and w € B|. For example, A might denote the set of all
politicians, B the set of all American citizens, and C the set of all living humans with an IQ greater than
60. Then A N B would be the set of all politicians who are also American citizens, etc. Exercise: estimate
P(AnBNCO).

The conditional probability of B given A is written P(B|A). We can compute the joint probability P(A N
B) = P(BNA) in two ways:

P(ANB)=P(A|B)-P(B)=P(B|A)-P(A) . (1.23)
Thus,
P(A|B) = % , (1.24)

a result known as Bayes” theorem. Now suppose the ‘event space’ is partitioned as {4, }. Then

P(B) =) P(B|A;) P(4;) . (1.25)

We then have P(B|A;) P(4))
P(A,|B) = > P(B[jélj)P(lAj) ; (1.26)

a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary
partition” { A, ~A}, we have

P(B|A) P(A)
(B|A) P(A) + P(B|-A) P(-4)

Note that P(A|B) + P(—A|B) = 1 (which follows from -—A = A).

P(A|B) = 5 (1.27)

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly
contagious disease A which occurs in 0.01% of the general population. Suppose further that there is
a simple test for the disease which is accurate 99.99% of the time. That is, out of every 10,000 tests,
the correct answer is returned 9,999 times, and the incorrect answer is returned only once. Now let us
administer the test to a large group of people from the general population. Those who test positive are
quarantined. Question: what is the probability that someone chosen at random from the quarantine
group actually has the disease? We use Bayes’ theorem with the binary partition {A, —~A}. Let B denote
the event that an individual tests positive. Anyone from the quarantine group has tested positive. Given
this datum, we want to know the probability that that person has the disease. That is, we want P(A|B).
Applying eqn. 1.27 with

P(A) =0.0001 , P(-~A)=0.9999 , P(BJA)=0.9999 , P(B|~A)=0.0001 |,
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we find P(A|B) = 5. That is, there is only a 50% chance that someone who tested positive actually has
the disease, despite the test being 99.99% accurate! The reason is that, given the rarity of the disease in
the general population, the number of false positives is statistically equal to the number of true positives.

In the above example, we had P(B|A) + P(B|—A) = 1, but this is not generally the case. What is true
instead is P(B|A) + P(—B|A) = 1. Epidemiologists define the sensitivity of a binary classification test as
the fraction of actual positives which are correctly identified, and the specificity as the fraction of actual
negatives that are correctly identified. Thus, se = P(B|A) is the sensitivity and sp = P(—B|—A) is the
specificity. We then have P(B|-A) =1 — P(—~B|—A). Therefore,

P(B|A) + P(B|-~A) =1+ P(B|A) — P(~B|-A) =1+se—sp . (1.28)

In our previous example, se = sp = 0.9999, in which case the RHS above gives 1. In general, if P(A) = f
is the fraction of the population which is afflicted, then

P(infected | positive) = ] se . (1.29)

~ feset (1= f)(1-sp)

For continuous distributions, we speak of a probability density. We then have

P(y) = [ do Plyla) (o) (130)
and
Plaly) = P(y|z) P(x) (1.31)
4 [dz" P(y|a') P(2') :

The range of integration may depend on the specific application.

The quantities P(A;) are called the prior distribution. Clearly in order to compute P(B) or P(A,|B)
we must know the priors, and this is usually the weakest link in the Bayesian chain of reasoning. If
our prior distribution is not accurate, Bayes’ theorem will generate incorrect results. One approach to
approximating prior probabilities P(4,) is to derive them from a maximum entropy construction.

1.3.3 Random variables and their averages

Consider an abstract probability space X whose elements (i.e. events) are labeled by =. The average of
any function f(z) is denoted as Ef or (f), and is defined for discrete sets as

Ef=(f)=Y_ f(x)P(z) , (1.32)

TEX

where P(z) is the probability of z. For continuous sets, we have

Ef = (f) = / dx f(z) P(z) . (1.33)
X
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Typically for continuous sets we have X = R or & = R,. Gardiner and other authors introduce an
extra symbol, X, to denote a random variable, with X (z) = x being its value. This is formally useful but
notationally confusing, so we’ll avoid it here and speak loosely of = as a random variable.

When there are two random variables z € X and y € ), we have 2 = X x ) is the product space, and

Ef(x,y) = (f(x,9)) = > > fla,y) Plx,y) (1.34)

zeX yey

with the obvious generalization to continuous sets. This generalizes to higher rank products, i.e. z; € &;
withi € {1,..., N}. The covariance of x; and x, is defined as

Cij = <(ac, - <xl>) (wj - <‘Tj>)> = (w;x;) — (z;)(x;) . (1.35)

If f(x) is a convex function then one has
Ef(z) > f(Ez) . (1.36)

For continuous functions, f(z) is convex if f”(x) > 0 everywhere’. If f(x) is convex on some interval
[a, b] then for z, , € [a,b] we must have

2y + (1= Nag) < Af(@y) + (1= N)f(zg) (1.37)

where A € [0, 1]. This is easily generalized to
F(Dpamn) €D paf (@) (1.38)

where p,, = P(z,,), a result known as Jensen’s theorem.

1.4 Entropy and Probability

1.4.1 Entropy and information theory

It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information®.
Suppose we observe that a particular event occurs with probability p. We associate with this observation
an amount of information I(p). The information I(p) should satisfy certain desiderata:

1 Information is non-negative, i.e. I(p) > 0.

2 If two events occur independently so their joint probability is p, p,, then their information is addi-
tive, i.e. I(pypy) = I(py) + 1(py)-

3A function g(z) is concave if —g(z) is convex.

4See ‘An  Introduction to  Information  Theory @ and  Entropy’ by T.  Carter,
Santa Fe Complex Systems Summer School,  June  2011. Available  online  at
http://astarte.csustan.edu/$\sim$tom/SFI-CSSS/info-theory/info-lec.pdf.
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3 I(p) is a continuous function of p.

4 There is no information content to an event which is always observed, i.e. I(1) = 0.

From these four properties, it is easy to show that the only possible function I(p) is
I(p)=—Alnp , (1.39)

where A is an arbitrary constant that can be absorbed into the base of the logarithm, since log, x =
Inz/Inb. We will take A = 1 and use e as the base, so I(p) = —Inp. Another common choice is to
take the base of the logarithm to be 2, so I(p) = — log, p. In this latter case, the units of information are
known as bits. Note that I(0) = co. This means that the observation of an extremely rare event carries a
great deal of information®.

Now suppose we have a set of events labeled by an integer n which occur with probabilities {p,,}. What
is the expected amount of information in /N observations? Since event n occurs an average of Np,, times,
and the information content in p,, is — In p,,, we have that the average information per observation is

(In)
S:T:—Zn:pnlnpn , (1.40)

which is known as the entropy of the distribution. Thus, maximizing S is equivalent to maximizing the
information content per observation.

Consider, for example, the information content of course grades. As we shall see, if the only constraint
on the probability distribution is that of overall normalization, then S is maximized when all the proba-
bilities p,, are equal. The binary entropy is then S = log, I', since p,, = 1/I". Thus, for pass/fail grading,
the maximum average information per grade is — 10g2(%) = logy2 = 1bit. If only A, B, C, D, and F
grades are assigned, then the maximum average information per grade is log, 5 = 2.32 bits. If we ex-
pand the grade options to include {A+, A, A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average
information per grade is log, 11 = 3.46 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence {n,n,,...,ny}
where each element n; takes one of K possible values. There are then K N such possible sequences, and
to specify one of them requires log,(K™V) = N log, K bits of information. However, if the value n occurs
with probability p,,, then on average it will occur N,, = Np,, times in a sequence of length N, and the
total number of such sequences will be
N!

Ilg;lp%J
In general, this is far less that the total possible number K%V, and the number of bits necessary to specify
one from among these ¢g(N) possibilities is

g(N) (1.41)

K K
logy g(N) = logy(N1) = > Jlogy(N,}) ~ =N > py logspyy (1.42)
n=1 n=1
up to terms of order unity. Here we have invoked Stirling’s approximation. If the distribution is uniform,
then we have p,, = % foralln € {1,...,K}, and log, g(N) = N log, K.

>My colleague John McGreevy refers to I(p) as the surprise of observing an event which occurs with probability
p. Ilike this very much.
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1.4.2 Probability distributions from maximum entropy

We have shown how one can proceed from a probability distribution and compute various averages.
We now seek to go in the other direction, and determine the full probability distribution based on a
knowledge of certain averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an
N-step random walk from knowledge of the average (X) = (2p — 1)N, where p is the probability of
moving to the right at each step (see §1.2 above). The problem seems ridiculously underdetermined,
since there are 2V possible configurations for an N-step random walk: o;==xlforj=1,...,N. Overall
normalization requires

Y Ploy,...,on) =1, (1.43)

but this just imposes one constraint on the 2V probabilities P(cy, ..., o), leaving 2V — 1 overall param-
eters. What principle allows us to reconstruct the full probability distribution

N N
P(Ul, o o 7UN) = H (péa'j,l —|— qéa'j,—l) — Hp(l"ro'j)/z q(l—O'])/2 , (1'44)
i=1 '

corresponding to IV independent steps?

The principle of maximum entropy

The entropy of a discrete probability distribution {p,, } is defined as

S=-> p,lnp, . (1.45)

where here we take e as the base of the logarithm. The entropy may therefore be regarded as a function
of the probability distribution: S = S({p,}). One special property of the entropy is the following.
Suppose we have two 1ndependent normalized distributions {p,} and {pP}. The joint probability for
events a and bis then P, | = = p4 p2. The entropy of the joint distribution is then

_ZZPa,blnPa,b ZZPG pE In (p4 pf) Zzpa p2 (Inph + Inpf)
Z—Zpélnpa Zpb Zpg’lnpb 'ZpaZ—ZpaAlnpa—ZpE’lan:SA—i—SB
a b a a b

Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about {p, } was that it was normalized. Then ), p, = 1. This is a constraint on
the values {p,,}. Let us now extremize the entropy S with respect to the distribution {p,, }, but subject
to the normalization constraint. We do this using Lagrange’s method of undetermined multipliers. We

define
S* ({pa}: ) an Inp, — A(an 1) (1.46)
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and we freely extremize S* over all its arguments. Thus, for all n we have
= gj =—(lnp, + 1+ X)
" 1.47)
2 (
= = — 1
0= > En: Pn

0

From the first of these equations, we obtain p,, = e~ (142 "and from the second we obtain

an = (IHY. Z 1=Ie Y (1.48)

n

where I' = ) 1is the total number of possible events. Thus, p, = 1/I", which says that all events are
equally probable.

Now suppose we know one other piece of information, which is the average value X = ) X, p, of
some quantity. We now extremize S subject to two constraints, and so we define

S* (P} Ao M) = =Y pInp, — A0<an - 1) - Al(Zann - X) . (1.49)

We then have
0S5*

Op

which yields the two-parameter distribution

=—(lnp, +1+X+X X,)=0 , (1.50)
p, = e IHho) g=MXn (1.51)

To fully determine the distribution {p,, } we need to invoke the two equations ) °, p, = land ), X, p, =
X, which come from extremizing S* with respect to \; and )\, respectively:

1 — e_(1+>\0) Z e_)‘l‘Xn
(1.52)

n
X = e—(l-i—)xo) ZXn e—)\an
n
General formulation

The generalization to K extra pieces of information (plus normalization) is immediately apparent. We
have

xe =Y Xtp, . (1.53)

and therefore we define

K
S ({pad AAa}) = =D patnp, = DoAY Xap, - X7) (154
n a=0 n
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with X"~ = X(@=0) = 1. Then the optimal distribution which extremizes S subject to the K + 1
constraints is

K
pn:exp{—l—Z)\an}

a=0
:—exp{ Z/\ X“} )

where Z = e!*% is determined by normalization: Y p, = 1. Thisis a (K + 1)-parameter distribution,
with {A\g, A, ..., A\ } determined by the K + 1 constraints in eqn. 1.53.

(1.55)

Example

As an example, consider the random walk problem. We have two pieces of information:

Z ZPal,..., )=1
Z---ZP(O’l,...,O'N)

(1.56)

-

Jj=1

Here the discrete label n from §1.4.2 ranges over 2V possible values, and may be written as an N digit

binary number ry - - -7y, where r; = 1(1+o; ;) is 0 or 1. Extremizing S subject to these constraints, we
obtain
N
P(O’l,...,O'N):CeXp{—/\ZUj}:CHE_AUJ , (1.57)
J g=1
where C = e~(1*%) and A = \,. Normalization then requires
Tr P = ZP(O’I,...,O'N):C(EA—FG_)\)N , (1.58)
{05}

hence C = (cosh A\)~". We then have

N —)\o; N
e J
P(Ulv"'vaN):Hm H(p5g 1+ a0, —1) (1.59)
j=1 j=1
where
_ 1, © (1.60)
P=aie> » 17 T PT e '

We then have X = (2p — 1)N, which determines p = 3(N + X), and we have recovered the Bernoulli
distribution.
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Of course there are no miracles®, and there are an infinite family of distributions for which X = (2p —
1)N that are not Bernoulli. For example, we could have imposed another constraint, such as £ =
Z;V:_ll 0;0,,1- This would result in the distribution

N N-1
1 Z Z
7=1 7=1

with Z (A, \y) determined by normalization: ) _ P(c) = 1. This is the one-dimensional Ising chain
of classical equilibrium statistical physics. Defining the transfer matrix R,,, = e *1(5+5)/2 ¢=2255" with

5,8/ =41,
—A =\ A
e~ M A2 en2
R= ( oo e>\1—>‘2> (1.62)

=e M cosh A\ I+ e 7% —e M2 ginh A\, 77,
where 7% and 77 are Pauli matrices, we have that

Z

ring

=Tr(RY) ., Z

chain

Y
=0 4
1 el (1.64)

=cosh A\ I+ 7% —sinh \; 7°

=Tr (RN19) (1.63)

/ .
where S, , = e~ (+5)/2 e,

The appropriate case here is that of the chain, but in the thermodynamic limit N — oo both chain and
ring yield identical results, so we will examine here the results for the ring, which are somewhat easier
to obtain. Clearly Z,;,, = N 4+ (Y, where (, are the eigenvalues of R:

(4 = e M2 cosh A\, + \/6_2’\2 Si1r1h2)\1 +e2he (1.65)

In the thermodynamic limit, the ¢, eigenvalue dominates, and Z; , ~ ¢ frv . We now have

ring

N .
X:<Zaj>:_81nZ:_ N sinh )\, . (1.66)

j=1 2 \/sinh2/\1 + et

We also have £ = —01In Z/0\,. These two equations determine the Lagrange multipliers A, (X, E, N)
and A\2(X, E, N). In the thermodynamic limit, we have A; = \,(X/N, E/N). Thus, if we fix X/N = 2p—1
alone, there is a continuous one-parameter family of distributions, parametrized ¢ = E//N, which satisfy
the constraint on X.

So what is it about the maximum entropy approach that is so compelling? Maximum entropy gives
us a calculable distribution which is consistent with maximum ignorance given our known constraints.
In that sense, it is as unbiased as possible, from an information theoretic point of view. As a starting
point, a maximum entropy distribution may be improved upon, using Bayesian methods for example
(see §1.6.2 below).

%See §10 of An Enquiry Concerning Human Understanding by David Hume (1748).
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1.4.3 Continuous probability distributions

Suppose we have a continuous probability density P() defined over some set 2. We have observables

- [aux)Plo) (1.67)
Q

where dj: is the appropriate integration measure. We assume dy = HjDzl dip;, where D is the dimension
of 2. Then we extremize the functional

K
S*[P(¢), {\}] = / dp P(p)In P(p Z A, < / dp P(p) X% () — X“) (1.68)
Q a=

with respect to P () and with respect to {)\,}. Again, X°(¢) = X° = 1. This yields the following result:
In P(¢ :—1—2)\ X%p) . (1.69)

The K + 1 Lagrange multipliers {)\,} are then determined from the K + 1 constraint equations in eqn.
1.67.

As an example, consider a distribution P(z) over the real numbers R. We constrain
/daj Px)y=1 |, /daj xP(x)=pn /d:n 22 P(x) = p? + 0% . (1.70)

Extremizing the entropy, we then obtain
P(z) =Ce Mo (1.71)

where C = e~(1*%). We already know the answer:

1 2 2
P(z) = —(@=p)*/20% 1.72
)= Vo € (.72)

In other words, \; = —p/0? and A\, = 1/202, with C = (2102)~ Y2 exp(—pu?/202).

1.5 General Aspects of Probability Distributions

1.5.1 Discrete and continuous distributions

Consider a system whose possible configurations | n ) can be labeled by a discrete variable n € C, where
C is the set of possible configurations. The total number of possible configurations, which is to say the
order of the set C, may be finite or infinite. Next, consider an ensemble of such systems, and let P, denote
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the probability that a given random element from that ensemble is in the state (configuration) |n ). The
collection {P,} forms a discrete probability distribution. We assume that the distribution is normalized,
meaning

S P =1 . (1.73)

neC

Now let A,, be a quantity which takes values depending on n. The average of A is given by
(A)=> P, A, . (1.74)
neC

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an
example, consider the throw of a single six-sided die. Then P, = % foreachn € {1,...,6}. Let A, = 0if
n is even and 1 if n is odd. Then find (A) = 3, i.e. on average half the throws of the die will result in an
even number.

It may be that the system’s configurations are described by several discrete variables {n,n,,ns,...}. We
can combine these into a vector n and then we write P,, for the discrete distribution, with ), P,, = 1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous
variables, o = {¢y,..., ¢, }. We write ¢ € Q, where Q is the phase space (or configuration space) of the
system. Let dy be a measure on this space. In general, we can write

The phase space measure used in classical statistical mechanics gives equal weight W to equal phase
space volumes:

dp=C [ da, dp, (1.76)

o=1

where C is a constant we shall discuss later on below”.

Any continuous probability distribution P(¢) is normalized according to

/du Plp)=1 . (1.77)
Q
The average of a function A(y) on configuration space is then
) = [aupe) A (1.78)
Q
For example, consider the Gaussian distribution
1 2 2
P(z) = e (@Tmm/20% 1.79
D= oot (.79

’Such a measure is invariant with respect to canonical transformations, which are the broad class of trans-
formations among coordinates and momenta which leave Hamilton’s equations of motion invariant, and which
preserve phase space volumes under Hamiltonian evolution. For this reason dy is called an invariant phase space
measure.
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From the result®
[oe)

/dw emor” g=hT \/g e/ ; (1.80)

—00

we see that P(x) is normalized. One can then compute

(1.81)

(z) = p
20'2

(@) — ()
We call i the mean and o the standard deviation of the distribution, eqn. 1.79.
The quantity P(¢) is called the distribution or probability density. One has
P(p) du = probability that configuration lies within volume du centered at ¢

For example, consider the probability density P = 1 normalized on the interval z € [0, 1]. The probabil-
ity that some z chosen at random will be exactly 3, say, is infinitesimal — one would have to specify each
of the infinitely many digits of . However, we can say that 2 € [0.45, 0.55] with probability k.

If x is distributed according to P, (x), then the probability distribution on the product space (x; , z,)
is simply the product of the distributions: P,(zy,z,) = P;(x;) P;(x5). Suppose we have a function
¢(xq,...,xy). How is it distributed? Let P(¢) be the distribution for ¢. We then have

P(¢) = /da:l---/da:NPN(:El,...,:EN)5<¢(:E1,...,:EN)—<;5>
- o (1.82)

:/dml~-~/dwNP1(w1)---P1(wN)5(¢($1=~~awN)_¢> ;

where the second line is appropriate if the {z;} are themselves distributed independently. Note that
Jaoro=1 . (1.83)
so P(¢) is itself normalized.

1.5.2 Central limit theorem

In particular, consider the distribution function of the sum X = Zf\i 1 7;- We will be particularly inter-
ested in the case where NV is large. For general N, though, we have

Py (X) = /dxl---/d;UNPl(;Ul)---Pl(;UN)5(:1:1+a:2—|—...—|—a:N—X) . (1.84)

—00 —00

8Memorize this!
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It is convenient to compute the Fourier transform’ of P(X):

Py (k) = /dXPN(X)e—“fX
I . (1.85)
= /dX dml---/depl(xl)...Pl(xN)5(x1+...+xN—X)e—“fX: G
where -
(k) = /dxpl(:c)e—ikr (1.86)

is the Fourier transform of the single variable distribution P, (x). The distribution Py (X) is a convolution
of the individual P, (z;) distributions. We have therefore proven that the Fourier transform of a convolution
is the product of the Fourier transforms.

OK, now we can write for P, (k)

Py(k) = /de ) (1 —ike — L k222 + Lik3 a3 + ..
1( ) } 1( )( 2 6 ) (1.87)
=1—ik{z) — $k*2%) + g i k3 (z%) + ...
Thus, R
In P (k) = —ipk — 10?k* + Li* kP + ..., (1.88)
where
p=(x)
o? = (z%) — (x)? (1.89)

7’ = (2®) = 3(2?) (z) + 2 (x)°

?Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age
eight, Fourier’s ignoble status rendered him ineligible to receive a commission in the scientific corps of the French
army. A Benedictine minister at the Ecole Royale Militaire of Auxerre remarked, “Fourier, not being noble, could
not enter the artillery, although he were a second Newton.” Fourier prepared for the priesthood but his affinity for
mathematics proved overwhelming, and so he left the abbey and soon thereafter accepted a military lectureship
position. Despite his initial support for revolution in France, in 1794 Fourier ran afoul of a rival sect while on a
trip to Orleans and was arrested and very nearly guillotined. Fortunately the Reign of Terror ended soon after
the death of Robespierre, and Fourier was released. He went on Napoleon Bonaparte’s 1798 expedition to Egypt,
where he was appointed governor of Lower Egypt. His organizational skills impressed Napoleon, and upon
return to France he was appointed to a position of prefect in Grenoble. It was in Grenoble that Fourier performed
his landmark studies of heat, and his famous work on partial differential equations and Fourier series. It seems
that Fourier’s fascination with heat began in Egypt, where he developed an appreciation of desert climate. His
fascination developed into an obsession, and he became convinced that heat could promote a healthy body. He
would cover himself in blankets, like a mummy, in his heated apartment, even during the middle of summer.
On May 4, 1830, Fourier, so arrayed, tripped and fell down a flight of stairs. This aggravated a developing heart
condition, which he refused to treat with anything other than more heat. Two weeks later, he died. Fourier’s is
one of the 72 names of scientists, engineers and other luminaries which are engraved on the Eiffel Tower.
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We can now write
[Pl(k)] N _ e—iNuk e—N02k2/2 eiN—ySkS/ﬁ L (190)

Now for the inverse transform. In computing Py (X), we will expand the term ¢V 7*k*/6 and all subse-

quent terms in the above product as a power series in k. We then have

[e.e]

dk
Py(X) = /% eH(X—Nu) ~No?k?/2 {1 +LiNyE }

—0o0

ARG 1
—(1-IN T )
6 0X? V2nNo?

73 o3 1
(-T2 )
6 o¢ V21 No?

In going from the second line to the third, we have written X = Nu-++/N &, in which case 9y, = N~1/2 O,
and the non-Gaussian terms give a subleading contribution which vanishes in the N — oo limit. We
have just proven the central limit theorem: in the limit N — oo, the distribution of a sum of IV independent
random variables z; is a Gaussian with mean Ny and standard deviation v/N o. Our only assumptions
are that the mean ; and standard deviation o exist for the distribution P, (x). Note that P, (x) itself
need not be a Gaussian — it could be a very peculiar distribution indeed, but so long as its first and

o~ (X=Nu?2/2No? (1.91)

o—8%/20%

second moment exist, where the k" moment is simply (z*), the distribution of the sum X = >N 2, is
a Gaussian.

1.5.3 Moments and cumulants

Consider a general multivariate distribution P(z,,...,z,) and define the multivariate Fourier trans-
form
A oo o0 N
P(ky,... ky) = /dml . '/de P(zy,...,zx) exp (— iijxj> . (1.92)
e e j=1
The inverse relation is
fdk,  [dk Al
— 1 N p .
Play,.oay) = [F2 [F2 Plh.o ky) exp <+ z;ijj> . (1.93)

Acting on P(k), the differential operator i % brings down from the exponential a factor of x, inside the
integral. Thus,

SO\ 09\ . my
ior) U k)| = (@Y (1.94)
k=0
Similarly, we can reconstruct the distribution from its moments, viz.
P(k) = Z Z m! mJJVV! (zp ! ay™) (1.95)

m,=0 m =0
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my

The cumulants (z}" - - - 2 )) are defined by the Taylor expansion of In P(k):

o0 [e.e]

mPk) =S - 3 (_ikl?ml (—z':gv)!mzv (2w (1.96)

m, =0 m =0

There is no general form for the cumulants. It is straightforward to derive the following low order
results:

(@) = ()
<<3325L"y>> = <$z$g> - <33z><33g> (1.97)
<<33233ﬂk>> = (5’3@33g33k> - <x2$3><$k> - <33g33k><33z> - <$k$z><%> + 2<33z><33y><5'3k>

1.5.4 Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

1/2
P(x) = <%> exp(— %3:2 Ajj :L'j> , (1.98)

where A is a positive definite matrix of rank n. A mathematical result which is extremely important
throughout physics is the following:

det 1/2 o
Z(b) = <(2e7r)n> /dxl e /dxn exp(— %xl Azt wl> = exp (% b, Ai_jl bj> . (1.99)

Here, the vector b = (b, ..., b,) is identified as a source. Since Z(0) = 1, we have that the distribution

rn

P(z) is normalized. Now consider averages of the form

0"Z(b)
e . = m, .0 0. . = -
() xj, ) /d z P(x) ;- x; D b |,
)1 Jak 1O (1.100)
= A7L oAt
Z. Jo()Io(2) Jo2k—1)T o (2k)
contractions
The sum in the last term is over all contractions of the indices {j, , ..., jy,}. A contraction is an arrange-

ment of the 2k indices into k pairs. There are C,, = (2k)!/2¥k! possible such contractions. To obtain this
result for C},, we start with the first index and then find a mate among the remaining 2k — 1 indices. Then
we choose the next unpaired index and find a mate among the remaining 2k — 3 indices. Proceeding in
this manner, we have
(2k)!

Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2*k! since
permutation within a given pair results in the same contraction and permutation among the k pairs
results in the same contraction. For example, for £ = 2, we have C, = 3, and

a1 g-1 141 141
(o, 25,25, %5,) = A5 5 Aie T A5 A0 T A5 A, (1.102)
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If we define b, = ik;, we have

A

P(k) = exp<— Lk A k;j) , (1.103)

from which we read off the cumulants (z;z;)) = A7!, with all higher order cumulants vanishing.

ij
1.6 Appendix: Bayesian Statistical Inference

1.6.1 Frequentists and Bayesians

The field of statistical inference is roughly divided into two schools of practice: frequentism and Bayesian-
ism. You can find several articles on the web discussing the differences in these two approaches. In both
cases we would like to model observable data x by a distribution. The distribution in general depends
on one or more parameters 6. The basic worldviews of the two approaches are as follows:

Frequentism: Data x are a random sample drawn from an infinite pool at some frequency.
The underlying parameters 8, which are to be estimated, remain fixed during this process.
There is no information prior to the model specification. The experimental conditions under
which the data are collected are presumed to be controlled and repeatable. Results are gen-
erally expressed in terms of confidence intervals and confidence levels, obtained via statistical
hypothesis testing. Probabilities have meaning only for data yet to be collected. Calculations
generally are computationally straightforward.

Bayesianism: The only data « which matter are those which have been observed. The pa-
rameters @ are unknown and described probabilistically using a prior distribution, which is
generally based on some available information but which also may be at least partially sub-
jective. The priors are then to be updated based on observed data x. Results are expressed
in terms of posterior distributions and credible intervals. Calculations can be computationally
intensive.

In essence, frequentists say the data are random and the parameters are fixed. while Bayesians say the data are
fixed and the parameters are random'’. Overall, frequentism has dominated over the past several hundred
years, but Bayesianism has been coming on strong of late, and many physicists seem naturally drawn to
the Bayesian perspective.

1.6.2 Updating Bayesian priors

Given data D and a hypothesis H, Bayes’ theorem tells us

D|H) P(H)

P(H|D) = il (D) (1.104)

107 A frequentist is a person whose long-run ambition is to be wrong 5% of the time. A Bayesian is one who,
vaguely expecting a horse, and catching glimpse of a donkey, strongly believes he has seen a mule.” — Charles
guely exp 8 & glmp Y, &ty
Annis.
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Typically the data is in the form of a set of values = {z,...,2,}, and the hypothesis in the form
of a set of parameters § = {6,,...,0,}. It is notationally helpful to express distributions of x and
distributions of  conditioned on 6 using the symbol f, and distributions of 8 and distributions of 6
conditioned on x using the symbol 7, rather than using the symbol P everywhere. We then have

(0]z) = 1 @/0)(6) (1.105)

- [do’ f(x]6)m(0))
e

where © > 6 is the space of parameters. Note that [,df n(6|x) = 1. The denominator of the RHS
is simply f(x), which is independent of 8, hence 7(0|x) o f(x|0)n(0). We call 7(0) the prior for 6,
f(x|0) the likelihood of x given 6, and 7(6|x) the posterior for @ given x. The idea here is that while
our initial guess at the @ distribution is given by the prior 7(8), after taking data, we should update this
distribution to the posterior 7(8|x). The likelihood f(x|@) is entailed by our model for the phenomenon
which produces the data. We can use the posterior to find the distribution of new data points y, called
the posterior predictive distribution,

folw) = [0 fyl6)w(0lz) . (1.106)
e
This is the update of the prior predictive distribution,
f(x) = /d0 f(z]|0)7(0) . (1.107)
e

Example: coin flipping

Consider a model of coin flipping based on a standard Bernoulli distribution, where ¢ € [0, 1] is the
probability for heads (z = 1) and 1 — ¢ the probability for tails (z = 0). That is,

N
Fley, . ayl0) = E (1= 008,50+ 60, (1.108)

:QX(l—Q)N_X ,

where X = Zj\/:l xz; is the observed total number of heads, and N — X the corresponding number of
tails. We now need a prior 7(6). We choose the Beta distribution,

0o (1— )Pt
N B(a, ) ’

where B(«, 8) = I'(a) I'(B) /T (a + ) is the Beta function. One can check that 7(6) is normalized on the
unit interval: foldH m(8) = 1 for all positive «, 8. Even if we limit ourselves to this form of the prior,
different Bayesians might bring different assumptions about the values of « and 5. Note that if we
choose & = 3 = 1, the prior distribution for 6 is flat, with 7(#) = 1.

() (1.109)
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We now compute the posterior distribution for 6:

[z, ..., xzy]0)7(0) _gXHel(1 - N XA

w(0|lxqy,...,xNn) = = (1.110)
(Ol ~) Jodo fzy,... ayl0)w(0)  B(X +a,N—X+5)
Thus, we retain the form of the Beta distribution, but with updated parameters,
/ — X +
¢ “ (1.111)
=N-X+p8

The fact that the functional form of the prior is retained by the posterior is generally not the case in
Bayesian updating. We can also compute the prior predictive,

1
F@y ) :/dﬂfa:l,... 2x10) 7(0)

) (1.112)
/d90X+a 1 G)N—X-i-ﬁ—l: B(X—FQ,N—X—FB)
B(a, )
0
The posterior predictive is then
f(yl,---,ylel,---,wN):/d9f(y1,...,yMIG)W(9Iw1,---,:L"N)
(1.113)

1

— do 9X+Y+a—1 1—6 N—-X+M-Y+p-1
B(X+a,N—X+ﬁ)/ (1-9)

0

BIX+Y+a,N—X+M-Y +p)
B(X+a,N—X+5)

1.6.3 Hyperparameters and conjugate priors

In the above example, 6 is a parameter of the Bernoulli distribution, i.e. the likelihood, while quantities «
and [ are hyperparameters which enter the prior 7(#). Accordingly, we could have written 7(6|«, 3) for
the prior. We then have for the posterior

f(x|6) 7(6]c)

m(6le, o) = fde/ (#0) 7(0']a)

(1.114)

replacing eqn. 1.105, etc., where o € A is the vector of hyperparameters. The hyperparameters can
also be distributed, according to a hyperprior p(c), and the hyperpriors can further be parameterized by
hyperhyperparameters, which can have their own distributions, ad nauseum.

What use is all this? We’ve already seen a compelling example: when the posterior is of the same form
as the prior, the Bayesian update can be viewed as an automorphism of the hyperparameter space A4, i.e.
one set of hyperparameters o is mapped to a new set of hyperparameters .
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Definition: A parametric family of distributions P = {7 (0|a)|8 € O, a € A} is called a
conjugate family for a family of distributions { f(z|0) |z € X, § € O} if, forall z € X and
ac A,

f(z|0) =(0]cx)

(0|, ) = 40 [(@l8) ~(@']a) eP . (1.115)
C]

That is, 7(0|z, o) = 7(0|x) for some & € A, with a = a(a, x).

As an example, consider the conjugate Bayesian analysis of the Gaussian distribution. We assume a
likelihood

N
_ 1

f(x|u, s) = (2ms?)~N/? exp{— 357 Z(x] — u)z} . (1.116)

j=1

The parameters here are @ = {u, s}. Now consider the prior distribution
_ 2\ —1/2 (u— p)?
m(u, s|pg, 09) = (2mog) eXpy — o5 . (1.117)
0

Note that the prior distribution is independent of the parameter s and only depends on v and the hy-
perparameters o = (f1, o). We now compute the posterior:

7T(U, S’$7MO7UO) X f(w’ua 3) ﬂ-(u7 S‘:u070-0)

B 1 N , po - N{z) w3 N(z?) (1.118)
B exp{ <208 * 232>u * <a§ ) 202 T ’
with (z) = + ;-\7:1 z; and (2%) = % Z;VZI :L'j2 This is also a Gaussian distribution for u, and after

supplying the appropriate normalization one finds

2\—1/2 (U—M1)2
m(u, slz, po, o) = (2m07) €Xp§ — T 992 ) (1.119)
o1
with
1y = o+ N(<5E> —Mo)ffg
1=r0T "2 Ng2oo
Lo + N (1.120)
2 570p
91 = 3 2
5%+ Noj

Thus, the posterior is among the same family as the prior, and we have derived the update rule for the
hyperparameters (1, 0,) — (11,0;). Note that o; < 0, so the updated Gaussian prior is sharper than
the original. The updated mean y; shifts in the direction of () obtained from the data set.
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1.6.4 The problem with priors

We might think that the for the coin flipping problem, the flat prior 7(#) = 1 is an appropriate initial
one, since it does not privilege any value of 6. This prior therefore seems "objective” or "unbiased’, also
called ‘uninformative’. But suppose we make a change of variables, mapping the interval § € [0,1] to
the entire real line according to ¢ = In [§/(1 — )]. In terms of the new parameter ¢, we write the prior as
7(C). Clearly 7(6) do = 7(¢) d¢, so @(¢) = m(68) df/d¢. For our example, find 7(¢) = %sech2(g/2), which
is not flat. Thus what was uninformative in terms of § has become very informative in terms of the new
parameter (. Is there any truly unbiased way of selecting a Bayesian prior?

One approach, advocated by E. T. Jaynes, is to choose the prior distribution 7(0) according to the prin-
ciple of maximum entropy. For continuous parameter spaces, we must first define a parameter space
metric so as to be able to ‘count’ the number of different parameter states. The entropy of a distribution
7(0) is then dependent on this metric: S = — [du(0) 7(0) Inn(6).

Another approach, due to Jeffreys, is to derive a parameterization-independent prior from the likelihood
f(x|0) using the so-called Fisher information matrix,

2Inf(x
Iz’j(o) = —E,y <8819f7£§9‘m>

1.121
/d F(xl0) azlnf(mw) ( )
00,00, 90,
The Jeffreys prior m,(0) is defined as
7,(8) o \/det 1(6) . (1.122)

One can check that the Jeffries prior is invariant under reparameterization. As an example consider the
Bernoulli process, for which In f(x|f) = X In6 + (N — X)In(1 — 6), where X = SN 2. Then

=17
_d2 Inp(xld) X N-X

= 1.12
do? 02 (1-0)2 ( 3)
and since E, X = N6, we have
N 1 1
1(0) = = m,0) = - ——— , 1.124

which felicitously corresponds to a Beta distribution with @ = 3 = 3. In this example the Jeffries prior
turned out to be a conjugate prior, but in general this is not the case.

We can try to implement the Jeffreys procedure for a two-parameter family where each z; is normally
distributed with mean x and standard deviation o. Let the parameters be (0,,6,) = (1, o). Then

N

1
—1In f(x]0) = NInVv2r T Nino+ o (z; —p)? | (1.125)
7j=1

and the Fisher information matrix is

1(6) = ~Plnf(z)6) _ i R (1.126)
~ 06,00, |\ _ _ ' '
i oY@y —p) —No= 2430743 (x; — p)?
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Taking the expectation value, we have E (z; — y1) = 0 and E (z; — u)* = 0%, hence

No™* 0 > (1.127)

EI(G)Z( 0 2No2

and the Jeffries prior is m,(u, o) oc o~2. This is problematic because if we choose a flat metric on the
(i, o) upper half plane, the Jeffries prior is not normalizable. Note also that the Jeffreys prior no longer
resembles a Gaussian, and hence is not a conjugate prior.
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Thermodynamics
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2.2 Whatis Thermodynamics?

Thermodynamics is the study of relations among the state variables describing a thermodynamic system,
and of transformations of heat into work and vice versa.

2.21 Thermodynamic systems and state variables

Thermodynamic systems contain large numbers of constituent particles, and are described by a set of
state variables which describe the system’s properties in an average sense. State variables are classified
as being either extensive or intensive.

Extensive variables, such as volume V, particle number IV, total internal energy F, magnetization ),
etc., scale linearly with the system size, i.e. as the first power of the system volume. If we take two
identical thermodynamic systems, place them next to each other, and remove any barriers between
them, then all the extensive variables will double in size.

Intensive variables, such as the pressure p, the temperature 7', the chemical potential 1, the electric field
E, etc., are independent of system size, scaling as the zeroth power of the volume. They are the same
throughout the system, if that system is in an appropriate state of equilibrium. The ratio of any two
extensive variables is an intensive variable. For example, we write n = N/V for the number density,
which scales as V. Intensive variables may also be inhomogeneous. For example, n(r) is the number
density at position r, and is defined as the limit of AN/AV of the number of particles AN inside a
volume AV which contains the point 7, in the limit V' >> AV > V/N.

Heat and work are not state variables. That is to say, we cannot meaningfully speak of the heat or work
of a thermodynamic system the way we can speak of its energy or pressure. Rather, what is meaningful
is the heat () added to a system, say that supplied to a kettle of water on a hot stove, or the work W done
by a system, say by an expanding gas which pushes on a piston head. Both () and W have dimensions of
energy, and conservation of energy then entails that the internal energy change AE of a thermodynamic
system is given by AE = () — W, which is the First Law of Thermodynamics. As a crude analogy, think
of your bank account. You can deposit or withdraw funds in the form of checks or cash, which might be
likened to thermodynamic heat and work, each having the units of US dollars. But the bank just keeps
track of the total dollar value of your account, which is analogous to the total energy. You cannot say
that your account consists of so much in checks, so much in bills, or, at a more refined level, so much in
singles, fives, tens, twenties, efc.

Classically, the full motion of a system of N point particles requires 6N variables to fully describe it
(3N positions and 3N velocities or momenta, in three space dimensions)!. Since the constituents are
very small, N is typically very large. A typical solid or liquid, for example, has a mass density on the
order of o ~ 1g/cm?; for gases, o0 ~ 1073 g/cm®. The constituent atoms have masses of 10" to 102
grams per mole, where one mole of X contains N, of X, and N, = 6.0221415 x 10% is Avogadro’s
number?. Thus, for solids and liquids we roughly expect number densities n of 1072 — 10° mol/cm? for

For a system of N molecules which can freely rotate, we must then specify 3N additional orientational vari-
ables — the Euler angles — and their 3V conjugate momenta. The dimension of phase space is then 12/V.
ZHence, 1 guacamole = 6.0221415 x 10?3 guacas.
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classical mechanics thermodynamics
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Figure 2.1: From microscale to macroscale : physical versus social sciences.

solids and liquids, and 1075 — 1073 mol/cm? for gases. Clearly we are dealing with fantastically large
numbers of constituent particles in a typical thermodynamic system. The underlying theoretical basis
for thermodynamics, where we use a small number of state variables to describe a system, is provided
by the microscopic theory of statistical mechanics, which we shall study in the weeks ahead.

Intensive quantities such as p, T, and n ultimately involve averages over both space and time. Consider
for example the case of a gas enclosed in a container. We can measure the pressure (relative to atmo-
spheric pressure) by attaching a spring to a moveable wall, as shown in fig. 2.2. From the displacement
of the spring and the value of its spring constant £ we determine the force F'. This force is due to the dif-
ference in pressures, so p = p,+F/A. Microscopically, the gas consists of constituent atoms or molecules,
which are constantly undergoing collisions with each other and with the walls of the container. When
a particle bounces off a wall, it imparts an impulse 2n(n - p), where p is the particle’s momentum and
1 is the unit vector normal to the wall. (Only particles with p - 7 > 0 will hit the wall.) Multiply this
by the number of particles colliding with the wall per unit time, and one finds the net force on the wall;
dividing by the area gives the pressure p. Within the gas, each particle travels for a distance /, called the
mean free path, before it undergoes a collision. We can write ¢ = v7, where v is the average particle speed
and 7 is the mean free time. When we study the kinetic theory of gases, we will derive formulas for ¢ and
v (and hence 7). For now it is helpful to quote some numbers to get an idea of the relevant distance and
time scales. For O, gas at standard temperature and pressure (I' = 0° C, p = 1atm), the mean free path
is £ ~ 1.1 x 107 cm, the average speed is © ~ 480m/s, and the mean free time is 7 ~ 2.5 x 1070 s. Thus,
particles in the gas undergo collisions at a rate 77! ~ 4.0 x 10%s™!. A measuring device, such as our
spring, or a thermometer, effectively performs time and space averages. If there are N, collisions with

a particular patch of wall during some time interval on which our measurement device responds, then

/

the root mean square relative fluctuations in the local pressure will be on the order of N. /2 times the

average. Since NN, is a very large number, the fluctuations are negligible.

If the system is in steady state, the state variables do not change with time. If furthermore there are no
macroscopic currents of energy or particle number flowing through the system, the system is said to be
in equilibrium. A continuous succession of equilibrium states is known as a thermodynamic path, which
can be represented as a smooth curve in a multidimensional space whose axes are labeled by state
variables. A thermodynamic process is any change or succession of changes which results in a change of
the state variables. In a cyclic process, the initial and final states are the same. In a quasistatic process,
the system passes through a continuous succession of equilibria. A reversible process is one where the
external conditions and the thermodynamic path of the system can be reversed; it is both quasi-static
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Figure 2.2: The pressure p of a gas is due to an average over space and time of the impulses due to the
constituent particles.

and non-dissipative (i.e. no friction). The slow expansion of a gas against a piston head, whose counter-
force is always infinitesimally less than the force pA exerted by the gas, is reversible. To reverse this
process, we simply add infinitesimally more force to pA and the gas compresses. An example of a
quasistatic process which is not reversible: slowly dragging a block across the floor, or the slow leak of
air from a tire. Irreversible processes, as a rule, are dissipative. Oftentimes we will concern ourselves
with infinitesimal amounts of heat and work, and how these are related to infinitesimal changes in state
variables. Expressed in terms of differentials, there are several special processes we will discuss:

reversible: dQ) = T dS isothermal: dT = 0
spontaneous: dQ < T'dS isochoric: dV =0
adiabatic: dQ) = 0 isobaric: dp = 0

If ¢ is a state variable or a function of state variables, its infinitesimal change is expressed as d¢, which
is an exact differential. If ¢ is not a state variable, then its differential is in general inexact, and we express
its infinitesimal change as d¢. (More on exact and inexact differentials below in §2.2.2.) We shall discuss
the entropy S and its connection with irreversibility in §2.6.

2.2.2 Mathematical Interlude : Exact and Inexact Differentials

The differential

k
dF = A, da, 2.1)
i=1
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Figure 2.3: Two distinct paths with identical endpoints.

is called exact if there is a function F(z,...,z;) whose differential gives the right hand side of eqn.
2.148. In this case, we have

4= oF — 0A;  0A;
i oz, 83:]- - Oz,

(2

Vi, . (2.2)

For exact differentials, the integral between fixed endpoints is path-independent:

B
/dF:F(aj]f,...,xE)—F(:E‘f,...,ajz) , (2.3)
A

from which it follows that the integral of dF around any closed path must vanish: §dF = 0.

When the cross derivatives are not identical, i.e. when 04, /0x ; #* aAj /0x,, the differential is inexact. In
this case, the integral of dF' is path dependent, and does not depend solely on the endpoints.

As an example, consider the differential dF' = K, y dx + K, x dy . Let’s evaluate the integral of dF' along
each of the two paths in fig. 2.3:

T Ys
FO Z/dFZKl/dwyAJer/dwa =Ky, (25 —2,) + Ky 2 (Y — Ya) (2.4)
G Ta Ya
T Ys
F“”Z/dFZKl/dwyBJer/dywAZKlyB(:ﬂB—:UA)JerwA(yB—yA) : (2.5)

Ci Ta Ya
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where C, ;; are, respectively, paths I and II. Note that in general V' # F'". Thus, if we start at point A,

B
the value of F at point B will depend on the path taken, since the change AF = [ dF is path-dependent.
A

The difference in AF associated with each of the two paths is

FO — W = de = (Ky— Ky) (x5 —2,) (Up — Ya) (2.6)
C

where C = Cf;' o C; is the closed path formed by appending the reverse of path II (i.e. C;') to path L.
Thus, we see that if K| = K,, the work is the same for the two paths. In fact, if K; = K,, the work
would be path-independent, and would depend only on the endpoints. This is true for any path, and
not just piecewise linear paths of the type depicted in fig. 2.3. Thus, if K, = K,, we are justified in
using the notation dF for the differential. Explicitly, we then have F' = K zy. However, if K| # K,, the
differential is inexact, and we will henceforth write dF' in such cases.

2.2.3 Equations of state

How many state variables are necessary to fully specify the equilibrium state of a thermodynamic sys-
tem? For a single component system, such as water which is composed of one constituent molecule, the
answer is three. These can be taken to be T', p, and V. One always must specify at least one extensive
variable, else we cannot determine the overall size of the system. For a multicomponent system with
g different species, we must specify g + 2 state variables, which may be {7T',p, Ny, ..., N }, where N,

is the number of particles of species a. Another possibility is the set (T, p,V,z,,...,2, 1}, where the
concentration of species a is z, = N,/N. Here, N = }9_, N, is the total number of particles. Note that
g _
a=1Ta = L.

It then follows that if we specify more than g + 2 state variables, there must exist a relation among them.
Such relations are known as equations of state. The most famous example is the ideal gas law,

pV =Nk, T 2.7)

relating the four state variables T, p, V, and N. Here k, = 1.3806503 x 10~ !6 erg/K is Boltzmann’s
constant. Another example is the van der Waals equation,

= N2
<p + %) (V —bN) = Nk, T (2.8)
where @ and b are constants which depend on the molecule which forms the gas. For a third example,
consider a paramagnet, where

M CH

VT
where M is the magnetization, H the magnetic field, and C the Curie constant.

(2.9)

Any quantity which, in equilibrium, depends only on the state variables is called a state function. For
example, the total internal energy E of a thermodynamics system is a state function, and we may write
E = E(T,p,V). State functions can also serve as state variables, although the most natural state variables
are those which can be directly measured.
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2.2.4 Heat

Once thought to be a type of fluid, heat is now understood in terms of the kinetic theory of gases,
liquids, and solids as a form of energy stored in the disordered motion of constituent particles. The
units of heat are therefore units of energy, and it is appropriate to speak of heat energy, which we shall
simply abbreviate as heat:

1J =107 erg = 6.242 x 10"®¥ eV = 2.390 x 10~ * kecal = 9.478 x 10"*BTU . (2.10)

We will use the symbol ) to denote the amount of heat energy absorbed by a system during some given
thermodynamic process, and dQ to denote a differential amount of heat energy. The symbol d indicates
an ‘inexact differential’, about which we shall have more to say presently. This means that heat is not a
state function: there is no ‘heat function” Q(7, p, V).

2.2.5 Work

In general we will write the differential element of work dIW done by the system as

aw =Y FdX; | (2.11)

where F) is a generalized force and dX; a generalized displacement*. The generalized forces and displace-
ments are themselves state variables, and by convention we will take the generalized forces to be in-
tensive and the generalized displacements to be extensive. As an example, in a simple one-component
system, we have dW = pdV. More generally, we write

- Zj Yj de Za Hq AN,

AW = (pdV — H-dM — E-dP —odA+...) — (u; ANy + py dNy +....) (2.12)

Here we distinguish between two types of work. The first involves changes in quantities such as volume,
magnetization, electric polarization, area, etc. The conjugate forces y, applied to the system are then —p,
the magnetic field H, the electric field E, the surface tension o, respectively. The second type of work
involves changes in the number of constituents of a given species. For example, energy is required in
order to dissociate two hydrogen atoms in an H, molecule. The effect of such a process is ANy, = —1
and dNy = +2. Thus, dW = —dy - dX —dp - dN, with X = {X,,..., X} and N = {N;,...,N.}. In
this general setting there are d generalized displacements and ¢ component species. When § = 1, the
volume is the only displacement.

As with heat, dW is an inexact differential, and work W is not a state variable, since it is path-dependent.
There is no ‘work function” W (T, p, V).

30One calorie (cal) is the amount of heat needed to raise 1g of H,O from T, = 14.5°C to T; = 15.5°C at a
pressure of p, = 1atm. One British Thermal Unit (BTU) is the amount of heat needed to raise 11b. of H,O from
Ty, =63°F to T}, = 64°F at a pressure of p, = 1 atm.

“We use the symbol d in the differential dW to indicate that this is not an exact differential. More on this in
section 2.2.2 below.
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2.2.6 Pressure and temperature

The units of pressure (p) are force per unit area. The SI unit is the Pascal (Pa): 1 Pa = 1 N/m? = 1kg/ms2.
Other units of pressure we will encounter:

lbar =10°Pa latm = 1.01325 x 10°Pa 1torr = 133.3Pa

Temperature (') has a very precise definition from the point of view of statistical mechanics, as we
shall see. Many physical properties depend on the temperature — such properties are called thermometric
properties. For example, the resistivity of a metal p(7, p) or the number density of a gas n(T, p) are both
thermometric properties, and can be used to define a temperature scale. Consider the device known
as the ‘constant volume gas thermometer” depicted in fig. 2.4, in which the volume or pressure of a
gas may be used to measure temperature. The gas is assumed to be in equilibrium at some pressure
p, volume V, and temperature 7. An incompressible fluid of density g is used to measure the pressure
difference Ap = p — p,, where p, is the ambient pressure at the top of the reservoir:

p—po=09(hy —hy) (2.13)

where g is the acceleration due to gravity. The height h; of the left column of fluid in the U-tube provides
a measure of the change in the volume of the gas:

V(hy) =V(0) — Ahy (2.14)
where A is the (assumed constant) cross-sectional area of the left arm of the U-tube. The device can

operate in two modes:

¢ Constant pressure mode : The height of the reservoir is adjusted so that the height difference h,—h,
is held constant. This fixes the pressure p of the gas. The gas volume still varies with temperature
T, and we can define

T Vv
=T (2.15)
Tref ‘/ref
where T ; and V, ; are the reference temperature and volume, respectively.

¢ Constant volume mode : The height of the reservoir is adjusted so that 2; = 0, hence the volume
of the gas is held fixed, and the pressure varies with temperature. We then define
r _»p

= _r (2.16)
Tref Dret

where T.  and p,_ are the reference temperature and pressure, respectively.

What should we use for a reference? One might think that a pot of boiling water will do, but anyone who
has gone camping in the mountains knows that water boils at lower temperatures at high altitude (lower
pressure). This phenomenon is reflected in the phase diagram for H, O, depicted in fig. 2.5. There are two
special points in the phase diagram, however. One is the triple point, where the solid, liquid, and vapor
(gas) phases all coexist. The second is the critical point, which is the terminus of the curve separating
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Figure 2.4: The constant volume gas thermometer. The gas is placed in thermal contact with an object
of temperature 7. An incompressible fluid of density p is used to measure the pressure difference Ap =

Pgas — Po-

liquid from gas. At the critical point, the latent heat of transition between liquid and gas phases vanishes
(more on this later on). The triple point temperature 7} at thus unique and is by definition T, = 273.16 K.
The pressure at the triple point is 611.7 Pa = 6.056 x 1073 atm.

A question remains: are the two modes of the thermometer compatible? E.g. it we boil water at p = p, =
1atm, do they yield the same value for 7? And what if we use a different gas in our measurements? In
fact, all these measurements will in general be incompatible, yielding different results for the temperature
T. However, in the limit that we use a very low density gas, all the results converge. This is because all
low density gases behave as ideal gases, and obey the ideal gas equation of state pV = Nk,T.

2.2.7 Standard temperature and pressure

It is customary in the physical sciences to define certain standard conditions with respect to which any
arbitrary conditions may be compared. In thermodynamics, there is a notion of standard temperature
and pressure, abbreviated STP. Unfortunately, there are two different definitions of STP currently in use,
one from the International Union of Pure and Applied Chemistry (IUPAC), and the other from the U.S.
National Institute of Standards and Technology (NIST). The two standards are:

IUPAC : T, =0°C = 273.15K , po=10°Pa
NIST : T, =20°C =293.15K , p,=latm = 1.01325 x 10° Pa
To make matters worse, in the past it was customary to define STP as 7|, = 0° C and p, = 1 atm. We will

use the NIST definition in this course. Unless I slip and use the IUPAC definition. Figuring out what I
mean by STP will keep you on your toes.
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T, = 647K
p. = 22.06 MPa

freeze condense boil

LIQUID

p

SOLID
VAPOR

pressure

T, = 273.16 K
p, = 611.7Pa

sublimate

sublimate

temperature T’

Figure 2.5: A sketch of the phase diagram of H,O (water). Two special points are identified: the triple
point (Ti, p;) at which there is three phase coexistence, and the critical point (7¢, p.), where the latent
heat of transformation from liquid to gas vanishes. Not shown are transitions between several different
solid phases.

The volume of one mole of ideal gas at STP is then

Vv

Nk T, {22.711£ (IUPAC) 217)

Po 24219 ¢ (NIST) |,

where 1 /¢ = 10% cm?® = 1073 m? is one liter. Under the old definition of STP as T, = 0° C and p, = 1 atm,
the volume of one mole of gas at STP is 22.414 ¢, which is a figure I remember from my 10th grade
chemistry class with Mr. Lawrence.

2.3 The Zeroth Law of Thermodynamics

Equilibrium is established by the exchange of energy, volume, or particle number between different
systems or subsystems:

energy exchange - T = constant = thermal equilibrium
volume exchange = % = constant — mechanical equilibrium
particle exchange = % = constant = chemical equilibrium
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constant pressure
O, p

02 (constant volume)

I\I2 (constant volume)

temperature 7'

0 number density N

Figure 2.6: As the gas density tends to zero, the readings of the constant volume gas thermometer
converge.

Equilibrium is transitive, so

If A is in equilibrium with B, and B with C, then A is in equilibrium with C.

This known as the Zeroth Law of ThermodynamicsS.

2.3.1 Gibbs phase rule

We see in fig. 2.5 that there are special lower-dimensional subsets of the phase diagram (i.e. curves and
points) where different phases may coexist — a nongeneric state of affairs. For a system with c distinct
components, ¢ + 2 state variables are required for a complete specification of any equilibrium phase, at
least one of which must be extensive. If we choose only one extensive variable, say the volume V, then
we may construct a phase diagram where the axes correspond to the c + 1 quantities {7, p, pt1, ..., fbe_1 }-
The Gibbs-Duhem relation (see §2.111) then guarantees that any intensive quantity ¢ may be expressed
as a state function ¢ = (T, p, 1y, - - - , fte_1)- In particular, the g'" chemical potential ;. may be expressed
as such a state function. The phase diagram doesn’t depend on the extensive variable — H,O at atmo-
spheric pressure freezes at 0° C regardless of the amount of substance present.

As we shall derive in §2.11.5 below, a number ¢ distinct thermodynamic phases may coexist in a state
of phase equilibrium throughout a d(c, ¢) = c + 2 — ¢ dimensional subset of the full (¢ + 1)-dimensional
space X = {T,p, iy, .-, pe_1}°. Since d > 0, we must have ¢ < c + 2. Thus, for a single component
(g = 1) system like H,O, we can have up to three-phase coexistence (¢ < 3), as exemplified by the
existence of a triple point in the phase diagram. There are also curves along which there is two-phase
coexistence (p = 2) between solid and liquid, liquid and gas, and solid and gas. Away from these special

5 As we shall see further below, thermomechanical equilibrium in fact leads to constant p/T’, and thermochem-
ical equilibrium to constant x/T. If there is thermal equilibrium, then T is already constant, and so thermome-
chanical and thermochemical equilibria then guarantee the constancy of p and .

®Thus the codimension of the phase coexistence space is d(g,») = g + 1 — d(g,¢) = ¢ — 1. Thus for p = 1 we
have d = 0.
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phase coexistence regions, full equilibrium entails that p, 7', and y are constant throughout the system.
Furthermore, all intensive quantities, such as the specific volume v = n~! or energy density ¢, are also
constant. However, in the phase coexistence regions, this latter condition is no longer the case. Along
the liquid-gas boundary, for example, the liquid and gas regions —in the presence of a gravitational field,
the denser liquid component will separate out at the bottom — will have different specific volumes and
energy densities.

2.4 The First Law of Thermodynamics

2.4.1 Conservation of energy

The first law is a statement of energy conservation, and is depicted in fig. 2.7. It says, quite simply, that
during a thermodynamic process, the change in a system’s internal energy FE is given by the heat energy
() added to the system, minus the work W done by the system:

AE=Q-W . (2.18)
The differential form of this, the First Law of Thermodynamics, is
dE =dQ —aw . (2.19)

We use the symbol d in the differentials d@) and dW to remind us that these are inexact differentials. The
energy I/, however, is a state function, hence dFE is an exact differential.

Consider a volume V of fluid held in a flask, initially at temperature 7}, and held at atmospheric pres-
sure. The internal energy is then E, = E(T},p, V). Now let us contemplate changing the temperature in
two different ways. The first method (A) is to place the flask on a hot plate until the temperature of the
fluid rises to a value 7. The second method (B) is to stir the fluid vigorously. In the first case, we add
heat ), > 0 but no work is done, so W, = 0. In the second case, if we thermally insulate the flask and
use a stirrer of very low thermal conductivity, then no heat is added, i.e. , = 0. However, the stirrer
does work —WW,; > 0 on the fluid (remember W is the work done by the system). If we end up at the
same temperature 7}, then the final energy is £, = E(T},p, V') in both cases. We then have

AE=E —E,=Q,=-W, . (2.20)

It also follows that for any cyclic transformation, where the state variables are the same at the beginning
and the end, we have

Achyclic = Q -W=0 - Q =W (CYCHC) . (221)

AE=Q-W w
Q > Q >

heat added change in internal energy work done
to system by system

Figure 2.7: The first law of thermodynamics is a statement of energy conservation.
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2.4.2 Single component systems

A single component system is specified by three state variables. In many applications, the total number
of particles N is conserved, so it is useful to take IV as one of the state variables. The remaining two can
be (T',V) or (T, p) or (p, V). The differential form of the first law says
dE = dQ — dW
=dQ —pdV + pdN . (2.22)
The quantity p is called the chemical potential. We ask: how much heat is required in order to make an
infinitesimal change in temperature, pressure, volume, or particle number? We start by rewriting eqn.

2.22 as
dQ =dE+pdV — udN . (2.23)

We now must roll up our sleeves and do some work with partial derivatives.

o (T, V,N) systems : If the state variables are (T, V, N), we write

oF oF oF
dE = <—> dl + <—> dV + <—> dN . (2.24)
o )y oV Jrn ON Jry
Then
OF oF OF
dQ = <8_T>V,N drl + <8_V>T,N +pldV + (a—N>T,V — ,u] dN . (2.25)
e (T,p, N) systems : If the state variables are (T, p, N'), we write
oF OF oF
dE = <—> dl + (—) dp + <—> dN . (2.26)
or ), y o Jr N ON Jr,
We also write ov o v
dV = <—> dl + <—> dp + <—> dN . (2.27)
or ), y o )1 N ON Jr.,
Then
oF oV oF oV
0= (57), (), e |Gt (5 ) |
9T J, n T Jyn I Jr.N Ip Jr.n

(2.28)
+

or oV
(a—N>T,p+p <a—N)T7p‘“] w

e (p,V,N) systems : If the state variables are (p, V, N), we write

oOF oOF oOF
dE = | — dp + | — dav + | — dN . 2.29
<6p>V,N d <6‘V>p,N <6N>p,v (229

oF oF oE
dQ = | — dp + <—> + <—> —u|ldN . 2.30
@ <6p>VN P ov p,N P ON p,V : ( )

) )

Then
dV +
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p S p S
SUBSTANCE | (J/molK) | (J/gK) || SUBSTANCE | (J/molK) | (J/gK)
Air 29.07 1.01 H,0 (25°C) 75.34 4.181
Aluminum 24.2 0.897 H,0 (1005 C) 37.47 2.08
Copper 24.47 0.385 Iron 25.1 0.450
CO, 36.94 0.839 Lead 26.4 0.127
Diamond 6.115 0.509 Lithium 24.8 3.58
Ethanol 112 244 Neon 20.786 1.03
Gold 25.42 0.129 Oxygen 29.38 0.918
Helium 20.786 5.193 Paraffin (wax) 900 2.5
Hydrogen 28.82 5.19 Uranium 27.7 0.116
H,0 (-10°C) 38.09 2.05 Zinc 25.3 0.387
Table 2.1: Specific heat (at 25°C, unless otherwise noted) of some common substances. (Source:
Wikipedia.)

2.4.3 Heat capacity

The heat capacity of a body, C, is by definition the ratio d@Q)/dT" of the amount of heat absorbed by the
body to the associated infinitesimal change in temperature d7. The heat capacity will in general be
different if the body is heated at constant volume or at constant pressure. Setting dV' = 0 gives, from

eqn. 2.25,
dqQ OFE
_ (2 — (= 2.31
v (dT>V,N <6T >V,N @31
Similarly, if we set dp = 0, then eqn. 2.28 yields
aQ OFE ov
o bl — (== ~— 2.32
» <dT>p,N <8T>p7N r <8T >p,N ( )

Unless stated as otherwise, we shall assume that IV is fixed, and will write C}, for C’V, v and C,, for C’p’ N

The units of heat capacity are energy divided by temperature, e.g. J/K. The heat capacity is an extensive
quantity, scaling with the size of the system. If we divide by the number of moles N/N,, we obtain the
molar heat capacity, sometimes called the molar specific heat: ¢ = C/v, where v = N/N, is the number
of moles of substance. Specific heat is also sometimes quoted in units of heat capacity per gram of
substance. We shall define

C ¢ _ heat capacity per mole
mN M

(2.33)

¢ =
mass per mole

Here m is the mass per particle and M is the mass per mole: M = N, m.

Suppose we raise the temperature of a body from 7" = T, to T' = T},. How much heat is required? We
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have

Q= / daro(r) (2.34)

where C = Cy, or C = C,, depending on whether volume or pressure is held constant. For ideal gases,
as we shall discuss below, C'(T) is constant, and thus
Q

Q=C(T,~T) = T,=T.+5 . (2.35)

In metals at very low temperatures one finds C = vT', where 7 is a constant’. We then have

TB
Q= /dT OT) =3y(T5 - T) = T,=T2+2771'Q . (2.36)
TA

Calorimetry

We measure specific heat using a device called a calorimeter, of which there are many types. The basic
physics is that a substance initially in equilibrium at temperature 7' put in thermal contact with a refer-
ence fluid (typically H,O) in equilibrium at temperature 7;, > T} will come to equilibrium at some final
temperature 7; € (1),7;). If the substance and the reference fluid are thermally isolated from the rest
of the universe, then the heat energy gained by the solid is the heat energy lost by the reference fluid.
Assuming the specific heats & ,(T') are constant throughout the regime 7" € [T}, T5], we then have

_Mr T2_Tf

Q:Msés'(Tf_Tl):Mrér’(T2_1}) = 6s_]\4s Tf_Tl

(2.37)

Thus, a measurement of the final temperature 7} can be used to determine the unknown ¢,. For H,O, it
requires 4.1855 J per gram of energy to raise the temperature from 7" = 14.5°C to 7" = 15.5°C, which is
to say 6H20(T = 15°C) = 4.1855J /g °C.® In practice, the fluid is contained in a vessel which has its own
heat capacity and which must be accounted for in the determination of ¢,.

2.4.4 Ideal gases

The ideal gas equation of state is pV = Nk,T. In order to invoke the formulae in eqns. 2.25, 2.28, and
2.30, we need to know the state function E(7,V, N). A landmark experiment by Joule in the mid-19th
century established that the energy of a low density gas is independent of its volume’. Essentially, a gas

7In most metals, the difference between Cy, and C,, is negligible.
8The specific heat 5H20(T) is weakly temperature dependent throughout much of the liquid phase. It turns
out that ¢y o(T" = 20°C) = 4.1819J/g°C. The conversion factor between Joules and thermochemical calories is

1J = 4.184 cal. The so-called “15° calorie” is equivalent to 4.1855 Joules.
?See the description in E. Fermi, Thermodynamics, pp. 22-23.
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bof =1

Vibration

Cy

‘ Translation

' = T (K)
10 100 1000 ‘

Figure 2.8: Heat capacity Cy for one mole of hydrogen (H) gas. At the lowest temperatures, only
translational degrees of freedom are relevant, and f = 3. At around 200K, two rotational modes are
excitable and f = 5. Above 1000 K, the vibrational excitations begin to contribute. Note the logarithmic
temperature scale. (Data from H. W. Wooley et al., Jour. Natl. Bureau of Standards, 41, 379 (1948).)

at temperature 7 was allowed to freely expand from one volume V to a larger volume V' > V, with no
added heat @ and no work W done. Therefore the energy cannot change. What Joule found was that
the temperature also did not change. This means that F(7",V, N) = E(T, N) cannot be a function of the
volume.

Since F is extensive, we conclude that
E(T,V,N)=ve(T) , (2.38)

where v = N/N, is the number of moles of substance. Note that v is an extensive variable. From eqns.
2.31 and 2.32, we conclude

Cp(T)=ve(T) , C

(1) =Cy(T)+vR (2.39)
where we invoke the ideal gas law to obtain the second of these. Empirically it is found that C,,(T’)
is temperature independent over a wide range of T, far enough from boiling point. We can then write
Cy = vey, wherev = N, /N, is the number of moles, and where ¢y, is the molar heat capacity. We then
have ¢, = ¢;, + R. where R = N,k = 8.31457 J /mol K is the gas constant. We denote by v = ¢,/cy, the
ratio of specific heat at constant pressure and at constant volume.

From the kinetic theory of gases, one can show that

: . _ 3 _5 _5
monatomic gases: ¢y =5R , ¢,=35R , y=3
: ; . _ 5 _ 7 _7
diatomic gases: ¢y =3R , c¢,=5R , v=7%
polyatomic gases: ¢y =3R , c¢,=4R , 7= %
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Figure 2.9: Molar heat capacities cy for three solids. The solid curves correspond to the predictions of
the Debye model, which we shall discuss later.

Digression : kinetic theory of gases

We will conclude in general from noninteracting classical statistical mechanics that the specific heat of
a substance is ¢, = 1 fR, where f is the number of phase space coordinates, per particle, for which
there is a quadratic kinetic or potential energy function. For example, a point particle has three trans-
lational degrees of freedom, and the kinetic energy is a quadratic function of their conjugate momenta:
Hy, = (p2 + pz + p?)/2m. Thus, f = 3. Diatomic molecules have two additional rotational degrees of
freedom — we don’t count rotations about the symmetry axis — and their conjugate momenta also appear
quadratically in the kinetic energy, leading to f = 5. For polyatomic molecules, all three Euler angles
and their conjugate momenta are in play, and f = 6.

The reason that f = 5 for diatomic molecules rather than f = 6 is due to quantum mechanics. While
translational eigenstates form a continuum, or are quantized in a box with Ak, = 27 /L, being very
small, since the dimensions L, are macroscopic, angular momentum, and hence rotational kinetic en-
ergy, is quantized. For rotations about a principal axis with very low moment of inertia I, the corre-
sponding energy scale h2/2I is very large, and a high temperature is required in order to thermally
populate these states. Thus, degrees of freedom with a quantization energy on the order or greater than
g, are ‘frozen out’ for temperatures T' < gy / k.

In solids, each atom is effectively connected to its neighbors by springs; such a potential arises from
quantum mechanical and electrostatic consideration of the interacting atoms. Thus, each degree of free-
dom contributes to the potential energy, and its conjugate momentum contributes to the kinetic energy.
This results in f = 6. Assuming only lattice vibrations, then, the high temperature limit for ¢, (7") for
any solid is predicted to be 3R = 24.944 J /mol K. This is called the Dulong-Petit law. The high tempera-
ture limit is reached above the so-called Debye temperature, which is roughly proportional to the melting
temperature of the solid.

In table 2.1, we list ¢, and ¢, for some common substances at 7' = 25°C (unless otherwise noted).
Note that ¢, for the monatomic gases He and Ne is to high accuracy given by the value from kinetic
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theory, ¢, = 2R = 20.7864 J/mol K. For the diatomic gases oxygen (0O,) and air (mostly N, and O,),

kinetic theory predicts ¢, = IR = 29.10, which is close to the measured values. Kinetic theory predicts
c, = 4R = 33.258 for polyatomic gases; the measured values for CO, and H,0O are both about 10%

higher.

2.4.5 Adiabatic transformations of ideal gases

Assuming dN = 0 and E = ve(T'), eqn. 2.25 tells us that
dQ = CydT +pdV . (2.40)

Invoking the ideal gas law to write p = vRT'/V, and remembering C|, = v ¢,,, we have, setting dQ = 0,
— 4+ ——=0 . (2.41)

We can immediately integrate to obtain

TVY~1 = constant
Q=0 = pV7 = constant (2.42)

TVp'~7 = constant

where the second two equations are obtained from the first by invoking the ideal gas law. These are all
adiabatic equations of state. Note the difference between the adiabatic equation of state d(pV?) = 0 and
the isothermal equation of state d(pV') = 0. Equivalently, we can write these three conditions as

virt=wvgrf ., pIvIRR=plviT . =it (2.43)

It turns out that air is a rather poor conductor of heat. This suggests the following model for an adiabatic
atmosphere. The hydrostatic pressure decrease associated with an increase dz in height is dp = —pgdz,
where p is the density and g the acceleration due to gravity. Assuming the gas is ideal, the density can
be written as ¢ = Mp/RT, where M is the molar mass. Thus,

dp Mg

—=—"—Z4dz . 2.44

P RT & ( )
If the atmosphere is isothermal, then T is constant and p(z) = p(0) exp(—z/\), where A = RT/Mjg. This
also entails an exponential profile of the density: o(z) = 0(0) exp(—z/A). With M = 28.88 g for air and
T = 293K, we have A = 8.6 km.

If, on the other hand, the atmosphere is adiabatic, then from d(T7p'~7) = 0, we have

—1Tdp  ~—1DMg

N
T =
v p v R

dz | (2.45)

with the solution
T(z):TO—L—z:<1———>TO , (2.46)
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where 7|, = T(0) = 293K is the temperature at the earth’s surface, and A = RT,/Mg as above. Air is
mostly diatomic, and taking 7 = I we obtain dT/dz = —(1 — y~1) T, /A = —9.7 K /km. Note that in this
model the atmosphere ends at a height z, .. = vA/(y — 1) = 30km.

Again invoking the adiabatic equation of state, we can find p(z2):

(2) T\ 71 1 2\ 71
v— — v—
plz) _ (_) - (1 ~1t i) (2.47)
Py T 7oA
Since ¢ & p/T from the ideal gas law, we have
_1
@:0_7_—13)“ ' (2.48)
) 7oA

k
Finally, recall the mathematical result e* = limy_, (1 + %) . Thus, in the limit v — 1, where k£ =

v/(y — 1) — oo, we recover the isothermal result p(z) = p, exp(—z/A). This makes sense because
d(T7p'=7) =dT = 0 fory = 1.

2.4.6 Adiabatic free expansion

Consider the situation depicted in fig. 2.10. A quantity (v moles) of gas in equilibrium at temperature
T and volume V] is allowed to expand freely into an evacuated chamber of volume V, by the removal
of a barrier. Clearly no work is done on or by the gas during this process, hence W = 0. If the walls are
everywhere insulating, so that no heat can pass through them, then @ = 0 as well. The First Law then
gives AE = () — W = 0, and there is no change in energy.

If the gas is ideal, then since E(T,V,N) = N ¢/ T, then AE = 0 gives AT = 0, and there is no change in
temperature. (If the walls are insulating against the passage of heat, they must also prevent the passage
of particles, so AN = 0.) There is of course a change in volume: AV = V,, hence there is a change in
pressure. The initial pressure is p = Nk,T/V; and the final pressure is p’ = Nk;T/(V} + V3).

If the gas is nonideal, then the temperature will in general change. Suppose E(T,V,N) = a V® N1~ TV,
where «, z, and y are constants. This form is properly extensive: if V' and /N double, then E doubles. If
the volume changes from V' to V’ under an adiabatic free expansion, then we must have, from AE =0,

V(T , v\
If x/y > 0, the temperature decreases upon the expansion. If z/y < 0, the temperature increases.
Without an equation of state, we can’t say precisely what happens to the pressure, although we know

on general grounds that it must decrease because, as we shall see, thermodynamic stability entails a
positive isothermal compressibility: k. = =V =10V /dp)r 5 > 0.

Adiabatic free expansion of a gas is a spontaneous process, arising due to the natural internal dynamics of
the system. It is also irreversible. If we wish to take the gas back to its original state, we must do work
on it to compress it. If the gas is ideal, then the initial and final temperatures are identical, so we can
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place the system in thermal contact with a reservoir at temperature 7" and follow a thermodynamic path
along an isotherm. The work done on the gas during compression is then

Vi

av V V.
W= —Nk;BT/7 = Nk, T 1n<7f> = Nk,T In (1 + 7?) . (2.50)
f

The work done by the gas is W = [pdV = —W. During the compression, heat energy Q = W < 0 is
transferred to the gas from the reservoir. Thus, @ = W > 0 is given off by the gas to its environment.

2.5 Heat Engines and the Second Law of Thermodynamics

2.5.1 There’s no free lunch so quit asking

A heat engine is a device which takes a thermodynamic system through a repeated cycle which can be
represented as a succession of equilibrium states: A -+ B — C--- — A. The net result of such a cyclic
process is to convert heat into mechanical work, or vice versa.

For a system in equilibrium at temperature 7, there is a thermodynamically large amount of internal
energy stored in the random internal motion of its constituent particles. Later, when we study statistical
mechanics, we will see how each ‘quadratic’ degree of freedom in the Hamiltonian contributes kT
to the total internal energy. An immense body in equilibrium at temperature 7" has an enormous heat
capacity C, so extracting a finite quantity of heat () from it results in a temperature change AT = —Q/C
which is utterly negligible. Such a body is called a heat bath, or thermal reservoir. A perfect engine would,
in each cycle, extract an amount of heat () from the bath and convert it into work. Since AE = 0 for a
cyclic process, the First Law then gives W = Q. This situation is depicted schematically in fig. 2.11. One
could imagine running this process virtually indefinitely, slowly sucking energy out of an immense heat

Va

Figure 2.10: In the adiabatic free expansion of a gas, there is volume expansion with no work or heat
exchange with the environment: AE = Q =W =0.
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heat bath - heat bath
heatl Q heat IQZW
W=aQ w
—_— «—
work work
(a) a perfect engine (b) a perfect waste of time

Figure 2.11: A perfect engine would extract heat () from a thermal reservoir at some temperature 7" and
convert it into useful mechanical work W. This process is alas impossible, according to the Second Law
of thermodynamics. The inverse process, where work W is converted into heat Q, is always possible.

bath, converting the random thermal motion of its constituent molecules into useful mechanical work.
Sadly, this is not possible:

A transformation whose only final result is to extract heat from a source at fixed temperature
and transform that heat into work is impossible.

This is known as the Postulate of Lord Kelvin. It is equivalent to the postulate of Clausius,

A transformation whose only result is to transfer heat from a body at a given temperature to
a body at higher temperature is impossible.

These postulates which have been repeatedly validated by empirical observations, constitute the Second
Law of Thermodynamics.

2.5.2 Engines and refrigerators

While it is not possible to convert heat into work with 100% efficiency, it is possible to transfer heat from
one thermal reservoir to another one, at lower temperature, and to convert some of that heat into work.
This is what an engine does. The energy accounting for one cycle of the engine is depicted in the left
hand panel of fig. 2.12. An amount of heat @), > 0 is extracted- from the reservoir at temperature 7.
Since the reservoir is assumed to be enormous, its temperature change AT, = —Q,/C, is negligible,
and its temperature remains constant — this is what it means for an object to be a reservoir. A lesser
amount of heat, Q;, with 0 < Q, < @Q,, is deposited in a second reservoir at a lower temperature 7}.
Its temperature change AT, = +Q,/C, is also negligible. The difference W = @, — Q, is extracted as
useful work. We define the efficiency, n, of the engine as the ratio of the work done to the heat extracted

from the upper reservoir, per cycle:

W_, % (2.51)

T Q

This is a natural definition of efficiency, since it will cost us fuel to maintain the temperature of the upper
reservoir over many cycles of the engine. Thus, the efficiency is proportional to the ratio of the work
done to the cost of the fuel.

n
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heat bath 7 heat bath T,
heat¢@2 heat T QQ
W=Q2—1 W=0Qs—-Q1
— —
work work
heatlQ1 heatTQl
1 T,
heat bath heat bath
(a) engine (b) refrigerator

Figure 2.12: An engine (left) extracts heat ()2 from a reservoir at temperature 75> and deposits a smaller
amount of heat Q; into a reservoir at a lower temperature 77, during each cycle. The difference
W = Q2 — Qi is transformed into mechanical work. A refrigerator (right) performs the inverse pro-
cess, drawing heat @) from a low temperature reservoir and depositing heat Q> = @)1 + )V into a high
temperature reservoir, where WV is the mechanical (or electrical) work done per cycle.

A refrigerator works according to the same principles, but the process runs in reverse. An amount of
heat @); is extracted from the lower reservoir — the inside of our refrigerator — and is pumped into the
upper reservoir. As Clausius’ form of the Second Law asserts, it is impossible for this to be the only
result of our cycle. Some amount of work W must be performed on the refrigerator in order for it to
extract the heat ;. Since AE = 0 for the cycle, a heat 9, = W + @)1 must be deposited into the upper
reservoir during each cycle. The analog of efficiency here is called the coefficient of refrigeration, «, defined

as
_A_ @& (2.52)

K = =
W Q9 —Q
Thus, « is proportional to the ratio of the heat extracted to the cost of electricity, per cycle.

Please note the deliberate notation here. I am using symbols ) and W to denote the heat supplied fo the
engine (or refrigerator) and the work done by the engine, respectively, and Q and WV to denote the heat
taken from the engine and the work done on the engine.

A perfect engine has Q; = 0 and n = 1; a perfect refrigerator has Q; = Q, and x = oo. Both violate
the Second Law. Sadi Carnot'’ (1796 — 1832) realized that a reversible cyclic engine operating between
two thermal reservoirs must produce the maximum amount of work W, and that the amount of work
produced is independent of the material properties of the engine. We call any such engine a Carnot engine.

The efficiency of a Carnot engine may be used to define a temperature scale. We know from Carnot’s
observations that the efficiency 7. can only be a function of the temperatures 7} and T5: n¢ = 1o (1}, T5).
We can then define

Iy _

A=l T) 259
2

OCarnot died during the cholera epidemic of 1832. His is one of the 72 names engraved on the Eiffel Tower.
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h h
eat bat T,
heat l Q, heat I 44
W=Q,-=2%-Q; =W
work
heatl Q heatI Q}
Ty
heat bath
wonder engine Carnot refrigerator

Figure 2.13: A wonder engine driving a Carnot refrigerator.

Below, in §2.5.4, we will see that how, using an ideal gas as the ‘working substance’ of the Carnot engine,
this temperature scale coincides precisely with the ideal gas temperature scale from §2.2.6.

2.5.3 Nothing beats a Carnot engine

The Carnot engine is the most efficient engine possible operating between two thermal reservoirs. To
see this, let’s suppose that an amazing wonder engine has an efficiency even greater than that of the
Carnot engine. A key feature of the Carnot engine is its reversibility — we can just go around its cycle
in the opposite direction, creating a Carnot refrigerator. Let’s use our notional wonder engine to drive a
Carnot refrigerator, as depicted in fig. 2.13.

We assume that
W y W
) nwondcr nCarnot le

(2.54)

But from the figure, we have W = W, and therefore the heat energy Q) — @, transferred fo the upper
reservoir is positive. From

W=Qy—Q =Q-Q =W | (2.55)

we see that this is equal to the heat energy extracted from the lower reservoir, since no external work is
done on the system:

QD —-Q=0Q1 -9, >0 . (2.56)

Therefore, the existence of the wonder engine entails a violation of the Second Law. Since the Second
Law is correct — Lord Kelvin articulated it, and who are we to argue with a Lord? — the wonder engine
cannot exist.

We further conclude that all reversible engines running between two thermal reservoirs have the same efficiency,
which is the efficiency of a Carnot engine. In general, we have
w % T

B e T (2.57)
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and therefore
Qy
= 2K 2.
T, T, — 0 (2.58)

with the equalities holding only for reversible engines.

2.5.4 The Carnot cycle

Let us now consider a specific cycle, known as the Carnot cycle, depicted in fig. 2.14. The cycle consists
of two adiabats and two isotherms. The work done per cycle is simply the area inside the curve on our
p — V diagram:

W= jfpdv . (2.59)

The gas inside our Carnot engine is called the ‘working substance’. Whatever it may be, the system
obeys the First Law,

dE = dQ — aW = dQ — pdV . (2.60)

We will now assume that the working material is an ideal gas, and we compute W as well as Q; and @,
to find the efficiency of this cycle. In order to do this, we will rely upon the ideal gas equations,

vRT

FE =
v—1

, pV =vRT (2.61)

where y =c¢,/c, =1+ %, where f is the effective number of molecular degrees of freedom contributing
to the internal energy. Recall f = 3 for monatomic gases, f = 5 for diatomic gases, and f = 6 for
polyatomic gases. The finite difference form of the first law is

AE =E; — E; = Q¢ — Wy, (2.62)

where i denotes the initial state and f the final state.

AB: This stage is an isothermal expansion at temperature 7. It is the “power stroke” of the engine. We

have
VB
vRT. V.
W, = / AV —; 2 — yRT, In (ﬁ) (2.63)
VA
vRT.
EA=EB=7_;‘[ : (2.64)
hence

V.
Qup = AE,, + W,, = vRT, In <VB> . (2.65)
A
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BC:

CD:

DA:

CARNOT CYCLE

pressure p

Figure 2.14: The Carnot cycle consists of two adiabats (dark red) and two isotherms (blue).

This stage is an adiabatic expansion. We have
Qpc =0 (2.66)
vR
AE,,=E,—E; = —3 (T, - Ty) . (2.67)

The energy change is negative, and the heat exchange is zero, so the engine still does some work
during this stage:

vRR
Wie = Qpe — AEgc = 1 (T, -T1) . (2.68)
This stage is an isothermal compression, and we may apply the analysis of the isothermal expan-
sion, mutatis mutandis:
VD
vRT, Vi
Wy = / dV —> L = vRT, In <72> (2.69)
VC
vRT!
E,=E,=—1 2.7
C D v - 1 ’ ( O)
hence v
Qup = AE., + W, = vRT, In <VD> . (2.71)
C

This last stage is an adiabatic compression, and we may draw on the results from the adiabatic
expansion in BC:

Qo =0 (2.72)
AE,,=FE,—FE, = _1(T2—T1) . (2.73)
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The energy change is positive, and the heat exchange is zero, so work is done on the engine:

VR
WDA = QDA - AEDA = v -1 (Tl - T2) . (2-74)

We now add up all the work values from the individual stages to get for the cycle

W =W,g+ Wpe + Wep + Why

1% 1% (2.75)
=vRT; In (VB> +vRT| In <VZ> .

A

Since we are analyzing a cyclic process, we must have AE = 0, we must have ) = W, which can of
course be verified explicitly, by computing Q = Q .5+ Qpo + Qp + Q.- To finish up, recall the adiabatic
ideal gas equation of state, d(TV7~1) = 0. This tells us that

TVt =1 vi! (2.76)
VIt =T vyt (2.77)
Dividing these two equations, we find
Ve _ Vo
= == 2.78
o7 278)
and therefore
Vs
W =vR(T, —T;) In | = (2.79)
Vi
VB
Qe =VvRI,In| =) . (2.80)
Vi
Finally, the efficiency is given by the ratio of these two quantities:
n= =1-= . (2.81)
QAB T2

Examples of other useful thermodynamic cycles are discussed in the appendix, §2.15.

2.5.5 Carnot engine at maximum power output

While the Carnot engine described above in §2.5.4 has maximum efficiency, it is practically useless,
because the isothermal processes must take place infinitely slowly in order for the working material to
remain in thermal equilibrium with each reservoir. Thus, while the work done per cycle is finite, the
cycle period is infinite, and the engine power is zero.

A modification of the ideal Carnot cycle is necessary to create a practical engine. The idea'! is as follows.
During the isothermal expansion stage, the working material is maintained at a temperature 75, < T5,.

11See F. L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975). I am grateful to Professor Asle Sudbe for
correcting a typo in one expression and providing a simplified form of another.
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The temperature difference between the working material and the hot reservoir drives a thermal current,

4@y

e (Ty — Tyy) - (2.82)

Here, &, is a transport coefficient which describes the thermal conductivity of the chamber walls, multiplied
by a geometric parameter (which is the ratio of the total wall area to its thickness). Similarly, during the
isothermal compression, the working material is maintained at a temperature 7}, > 7}, which drives a
thermal current to the cold reservoir,

dQ
d—tl =y (Thy —Th) - (2.83)

Now let us assume that the upper isothermal stage requires a duration At, and the lower isotherm a
duration At;. Then

Qo = Ky Aty (Ty — Thy,) (2.84)
O =r A (T, —Ty) . (2.85)

Since the engine is reversible, we must have

— == (2.86)
le T2W
which says
Aty Ry Ty, (Th — Toy,)
= n we oo (2.87)
Aty kg Ty, (Tyy, — 1Y)
The power is
P= @ =9 (2.88)

(14 a) (At + Aty)
where we assume that the adiabatic stages require a combined time of o (At; + At,). Thus, we find

_ F1hRo (T — Thy) (Thy — 1) (T, — Ty,)

_ (2.89)
L+a k) Ty (Tyy —T7) + ky Ty, (Ty — Tyy,)

We optimize the engine by maximizing P with respect to the temperatures T}, and T, . This yields

_ T, — 11T,
Ty, =T, 2 VI122 (2.90)
L+ \/Ky/Ky
T =T + vhl, - T (2.91)
1w — 1 .

L+ /ky /Ry

The efficiency at maximum power is then

Q2 —

T
2
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| Power source | T, (°C) | T3 (°C) | Ncarmee | m (theor) | 7 (obs.) ||
West Thurrock (UK)
Coal Fired Steam Plant ~ 25 565 0.641 0.40 0.36
CANDU (Canada)
PHW Nuclear Reactor ~ 25 300 0.480 0.28 0.30
Larderello (Italy)
Geothermal Steam Plant ~ 80 250 0.323 0.175 0.16

Table 2.2: Observed performances of real heat engines, taken from table 1 from Curzon and Albhorn
(1975).

One also finds at maximum power
At, Ky

— . 2.93
Aty Ko ( )

Finally, the maximized power is

2
p = ks \/Tz - \/Tl ' (2.94)
max 1+ \/:‘4171"‘ \/H_2

Table 2.2, taken from the article of Curzon and Albhorn (1975), shows how the efficiency of this practical
Carnot cycle, given by eqn. 2.92, rather accurately predicts the efficiencies of functioning power plants.

2.6 The Entropy

2.6.1 Entropy and heat

The Second Law guarantees us that an engine operating between two heat baths at temperatures 7} and
T, must satisfy
QL@

2.95
TS0 (295)

with the equality holding for reversible processes. This is a restatement of eqn. 2.58, after writing
@, = —Q, for the heat transferred to the engine from reservoir #1. Consider now an arbitrary curve in
the p — V plane. We can describe such a curve, to arbitrary accuracy, as a combination of Carnot cycles,
as shown in fig. 2.15. Each little Carnot cycle consists of two adiabats and two isotherms. We then

conclude 0 a0
X v < .
Zﬂ%fTﬁ, (2.96)
¢ C

with equality holding if all the cycles are reversible. Rudolf Clausius, in 1865, realized that one could
then define a new state function, which he called the entropy, S, that depended only on the initial and
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pressure p

volume V'

Figure 2.15: An arbitrarily shaped cycle in the p — V' plane can be decomposed into a number of smaller
Carnot cycles. Red curves indicate isotherms and blue curves adiabats, with y = 2.

final states of a reversible process:

B
aqQ aq
A

Since () is extensive, so is S; the units of entropy are [S] = J/K.

2.6.2 The Third Law of thermodynamics

Eqn. 2.97 determines the entropy up to a constant. By choosing a standard state T, we can define S = 0,
and then by taking A = T in the above equation, we can define the absolute entropy S for any state.
However, it turns out that this seemingly arbitrary constant Sy in the entropy does have consequences,
for example in the theory of gaseous equilibrium. The proper definition of entropy, from the point of
view of statistical mechanics, will lead us to understand how the zero temperature entropy of a system
is related to its quantum mechanical ground state degeneracy. Walther Nernst, in 1906, articulated a
principle which is sometimes called the Third Law of Thermodynamics,

The entropy of every system at absolute zero temperature always vanishes.

Again, this is not quite correct, and quantum mechanics tells us that S(7" = 0) = k; In g, where g is the
ground state degeneracy. Nernst’s law holds when g = 1.

We can combine the First and Second laws to write

dE +dW =dQ <TdS | (2.98)

where the equality holds for reversible processes.
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2.6.3 Entropy changes in cyclic processes

For a cyclic process, whether reversible or not, the change in entropy around a cycle is zero: AS.,, = 0.
This is because the entropy S is a state function, with a unique value for every equilibrium state. A
cyclical process returns to the same equilibrium state, hence S must return as well to its corresponding
value from the previous cycle.

Consider now a general engine, as in fig. 2.12. Let us compute the total entropy change in the entire
Universe over one cycle. We have

(AS)TOTAL = (AS)ENGINE + (AS)HOT + (AS)COLD ’ (2-99)

written as a sum over entropy changes of the engine itself, the hot reservoir, and the cold reservoir'2.

Clearly (AS)gxame = 0. The changes in the reservoir entropies are

dQHOT QQ
(AS)uor = / =—-——= <0 2.100
HOT T T2 ( )
T=T,
_ [ dQcop _ Q21 @
(AS)corp = / T ST T 0, (2.101)
T=T,
because the hot reservoir loses heat ), > 0 to the engine, and the cold reservoir gains heat Q; = —Q; >0
from the engine. Therefore,
Q@ @
(AS) =— (— +=]1=>0 . (2.102)
TOTAL Tl Tz

Thus, for a reversible cycle, the net change in the total entropy of the engine plus reservoirs is zero. For
an irreversible cycle, there is an increase in total entropy, due to spontaneous processes.

2.6.4 Gibbs-Duhem relation

Consider a function f(x,...,z,) which is homogeneous of degree k, meaning
fOxzy, .. ) = Nof(xy,...,2,) (2.103)

for all z and . Thus, f(z,y) = ? + 2xy is homogeneous of degree k = 2, f(x,y,z) = 2 Lexp(y/2) +
mryz~3 is homogeneous of degree k = —1, etc. Now differentiate the above equation with respect to A
and then set A = 1, in which case we obtain

n

in % =kf (2.104)

i=1

a result known as Euler’s theorem for homogeneous functions. Try it out for yourself on the above examples!

12We neglect any interfacial contributions to the entropy change, which will be small compared with the bulk
entropy change in the thermodynamic limit of large system size.
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Now recall the general expression eqn. 2.12 for differential work,

d c
= y;dX; =Y p,dN, (2.105)
i—=1 a=1

where the (—y;, X ;) are conjugate pairs of generalized forces and generalized displacements, and (4, N,)
are conjugate pairs of chemical potentials and species numbers. Here each y; and 4, is intensive, while
each X ; and N, is extensive. For reversible systems, we can write

d c
dE = dQ —dW =TdS+ Y y;dX;+ Y p,dN, , (2.106)
j=1 a=1

which says that the energy £ is a function of the entropy S, the generalized displacements {X}, and
the particle numbers { N, }:
= E(SA{X,;},{N.}) . (2.107)

Furthermore, we have

T (g—@ L = (%) . < (.f]f) (2.108)
{X; N, } Ji/s Xy Nat SAX; Ny (ay}
Since E and all its arguments are extensive, we have
E(AS AKX} {AN,}) = AE(S.{X;}.{N,}) . (2.109)

which, according to eqn. 2.105, says that the energy is a homogeneous function of all the extensive
variables S, { X}, and {N,}, of degree k = 1. We then conclude that

E= 5— ZXJ ZNaaN

(2.110)
j=1 a=1
Taking the differential of eqn. 2.110, and then subtracting eqn. 2.106, we obtain
d c
SdT +>  X;dy;+> N,du,=0 . (2.111)

j=1 a=1

This is called the Gibbs-Duhem relation. It says that there is one equation of state which may be written in
terms of all the intensive quantities alone. For example, for a single component (p, V') system, we have
E =TS —pV + uN and p = p(T, i), the latter following from

SdI'—Vdp+ Ndp=0 . (2.112)
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2.6.5 Entropy for an ideal gas

For an ideal gas, we have E = % fNEST, and

_ 1 p H
dS = = dE + 5 dV — AN

— 1{Nk, % +Lav+ (%ka - %) AN 1)
Invoking the ideal gas equation of state pV' = Nk,T, we have
dS\N:%kaBdlnT—i—Ndean . (2.114)
Integrating, we obtain
S(T,V,N) = 3 fNky InT + Nk nV + o(N) (2.115)

where ¢(N) is an arbitrary function. Extensivity of S places restrictions on ¢(N), so that the most
general case is

S(T,V,N) = 2fNky, InT + Nk, In (%) + Na
(2.116)

E v

where a and b are constants, where b = a — % fkg ln(% fkg). When we study statistical mechanics, we will
tind that for the monatomic ideal gas the entropy is
v
5
5+ ln< >
2 N3

where A\, = \/27h? /mk,T is the thermal wavelength, which involves Planck’s constant h (with i = h/27).
Let’s now contrast two illustrative cases.

S(T,V,N) = Nk,

, (2.117)

¢ Adiabatic free expansion — Suppose the volume freely expands from V, to V; = rV,, with » > 1.
Such an expansion can be effected by a removal of a partition between two chambers that are
otherwise thermally insulated (see fig. 2.10). We have already seen how this process entails

AE=Q=W=0 |, (2.118)
and thus for an ideal gas T; = T;. But the entropy changes! According to eqn. 2.116, we have
AS =85 —8S; = NkgInr . (2.119)

* Reversible adiabatic expansion —If the gas expands quasistatically and reversibly, then S = S(E,V, N)

holds everywhere along the thermodynamic path. We then have, assuming dN = 0,

dE dv
O:dS:%kaBerNka 2.120)

= Nk, dln (VE//?)
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Integrating, we find

E v, 2/f
— = = . 2.121
E, ( G > (12D
Thus,
E=rNE — T,=r%T . (2.122)
2.6.6 [Example system
Consider a model thermodynamic system for which
E(S,V,N) = as® (2.123)
) ) - NV ) M
where a is a constant. We have
dE =TdS —pdV + udN (2.124)
and therefore
oF 3a5?
T= (= = 2.125
(55),, = *v @125)
OF aS3
- _ (= = 2.12
b <av >S7 v NV2 (2.126)
oF aS3
_ (9 _ _ , 2.127
a <aN >S7V N2V (2.127)

Choosing any two of these equations, we can eliminate .S, which is inconvenient for experimental pur-
poses. This yields three equations of state,

T3 Vv T3 N P N
. 974 — . —97aq — = 2.128
p2 7CL N 5 MZ 7CL V ) I V ’ ( )
only two of which are independent.
What about €y, and C,? To find Cy,, we recast eqn. 2.125as S = \/NVT /3a . We then have
1 /NVT\'? N 71?2
Cy=T 95y _1 - (2.129)
oT V.N 2 3a 18a p

where the last equality on the RHS follows upon invoking the first of the equations of state in eqn. 2.128.
To find C,,, we eliminate V' from eqns. 2.125 and 2.126, obtaining 7' 2/p = 9aS/N. From this we obtain

S 2N T?
C =T |— = —— . 2.130
P <8T>p7N 9a p ( )

Thus, C, /Cy =4.
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We can derive still more. To find the isothermal compressibility k. = —V ~1(aV/ 9p)7, v » use the first of

the equations of state in eqn. 2.128. To derive the adiabatic compressibility kg = —V ~1(9V/9p) 5N s use
eqn. 2.126, and then eliminate the inconvenient variable S.

Suppose we use this system as the working substance for a Carnot engine. Let’s compute the work done
and the engine efficiency. To do this, it is helpful to eliminate S in the expression for the energy, and to
rewrite the equation of state:

N ey _ [N T
B=pV =\ o VAT ot (2.131)

We assume dN = 0 throughout. We now see that for isotherms,

E
dl' =0 : — = constant 2.132
v (2.132)
Furthermore, since
we conclude that
dI' =0 : Wy =2(E; — E;) , Q= E;— B+ Wy =3(E; — E;) . (2.134)

For adiabats, eqn. 2.125 says d(T'V) = 0, and therefore

E
d@Q =0 : TV = constant , T = constant , FEV = constant (2.135)

as well as W,; = E; — E;. We can use these relations to derive the following:
Vo
By=\[77Ex o EBe=g 5P Ba » Bo=m By (2.136)
A

Now we can write

(2.137)
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Adding up all the work, we obtain

W= WAB + WBC + WCD + WDA

v T (2.138)
— B 1
()08
3 VB
Qup =3(Ep — E,) = Wi =3 (“ v 1) E, (2.139)

W, 4L (2.140)
QAB T2

Since

we find once again

2.6.7 Measuring the entropy of a substance

If we can measure the heat capacity Cy,(T') or C,(T') of a substance as a function of temperature down to
the lowest temperatures, then we can measure the entropy. At constant pressure, for example, we have
T dS = C,dT, hence

C,(T")

T/

T
S(p,T) = S(p, T = 0) + / T’
0

(2.141)

The zero temperature entropy is S(p, T" = 0) = k; In g where g is the quantum ground state degeneracy
at pressure p. In all but highly unusual cases, g = 1 and S(p,T = 0) = 0.

2.7 Thermodynamic Potentials

Thermodynamic systems may do work on their environments. Under certain constraints, the work done
may be bounded from above by the change in an appropriately defined thermodynamic potential.

2.71 Energy I

Suppose we wish to create a thermodynamic system from scratch. Let’s imagine that we create it from
scratch in a thermally insulated box of volume V. The work we must to to assemble the system is
then W = E. After we bring all the constituent particles together, pulling them in from infinity (say),
the system will have total energy E. After we finish, the system may not be in thermal equilibrium.
Spontaneous processes will then occur so as to maximize the system’s entropy, but the internal energy
remains at £.
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We have, from the First Law, dE = dQQ — dW and combining this with the Second Law in the form
dQ < T dS yields
dE <TdS —-dw . (2.142)

Rearranging terms, we have dW < T'dS — dE. Hence, the work done by a thermodynamic system under
conditions of constant entropy is bounded above by —dE, and the maximum dW is achieved for a reversible
process. It is sometimes useful to define the quantity

AWpoo = dW — pdV | (2.143)

which is the differential work done by the system other than that required to change its volume and
particle number. Then we have
AWieoe T dS —pdV —dE (2.144)

and we conclude for systems at fixed (S,V') that dWxee < —dE. Recall that in general we have
AW = —dy - dX —dp - dX, with X = {X,,..., X} and N = {N,,...,N_}. For what we may call
(p, V') systems, there is only d = 1 force/displacement pair, which is (y, X) = (—p, V).

For single component (p, V') systems in equilibrium, eqn. 2.142 says
dE =TdS —pdV + pdN . (2.145)
Therefore E = E(S,V, N) with

oF oFr or
r_ (9F _,— (%E _ (o2& , 214
<6S>V,N P (aV>S,N M <6N>S,v (2146)

These expressions are easily generalized to multicomponent systems, magnetic systems, efc.

Now consider a single component (p, V') system at fixed (S, V, N). We conclude that dE' < 0, which
says that spontaneous processes in a system with dS = dV' = dN = 0 always lead to a reduction in the
internal energy E. Therefore, spontaneous processes drive the internal energy E to a minimum in systems at
fixed (S,V,N).

2.7.2 Helmbholtz free energy F'

Suppose that when we spontaneously create our system while it is in constant contact with a thermal
reservoir at temperature 7. Then as we create our system, it will absorb heat from the reservoir. There-
fore, we don’t have to supply the full internal energy £, but rather only E — @, since the system receives
heat energy (@ from the reservoir. In other words, we must perform work W = E —T'S to create our sys-
tem, if it is constantly in equilibrium at temperature 7. The quantity £ — T'S is known as the Helmholtz
free enerqy, F', which is related to the energy E by a Legendre transformation,

F=E-TS . (2.147)
The general properties of Legendre transformations are discussed in Appendix II, §2.16.
Again invoking the Second Law, we have

dF < —SdT —dW . (2.148)
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Rearranging terms, we have dW < —S dT" — dF , which says that the work done by a thermodynamic system
under conditions of constant temperature is bounded above by —dF, and the maximum dW is achieved for a
reversible process. We also have the general result

AWpoo < =S dT —pdV —dF (2.149)
and we conclude, for systems at fixed (7', V'), that dWee < —dF.

Under equilibrium conditions, the equality in eqn. 2.148 holds, and for single component (p, V') systems
where dW = pdV — pdN we have dF = —SdT — pdV + pdN . This says that F' = F(T,V, N) with

oF oF oF
‘5—<a—T)V,N ’ ‘p—<a—v>T,N ’ “‘(a—N>T,V' (2:150)

For spontaneous processes, dF' < —S dT'—pdV + pdN says that spontaneous processes drive the Helmholtz
free energy F' to a minimum in systems at fixed (T, V,N).

2.7.3 Enthalpy H

Suppose that when we spontaneously create our system while it is thermally insulated, but in constant
mechanical contact with a “volume bath” at pressure p. For example, we could create our system inside
a thermally insulated chamber with one movable wall where the external pressure is fixed at p. Thus,
when creating the system, in addition to the system’s internal energy £, we must also perform work
pV in order to make room for it. In other words, we must perform work W = E + pV. The quantity
E +pV is known as the enthalpy, H'>. The enthalpy is obtained from the energy via a different Legendre
transformation than that used to obtain the Helmholtz free energy F', i.e.

H=FE+pV . (2.151)

Again invoking the Second Law, we have
dH <TdS —dW +pdV +Vdp (2.152)

hence with dW;,,, = dW — pdV, we have in general

AWpee <TdS +Vdp—dH (2.153)
and we conclude, for systems at fixed (.5, p), that AW < —dH.
In equilibrium, for single component (p, V') systems,

dH=TdS+Vdp+pndN (2.154)
which says H = H(S,p, N), with

OH OH OH
T <_> L v= <_> = <_> | (2.155)
65 p,N 8]9 S7N 8N S,p

For spontaneous processes, dH < T'dS + Vdp + pdN, which says that spontaneous processes drive the
enthalpy H to a minimum in systems at fixed (S,p, N).

13We use a different font to distinguish enthalpy H from magnetic field H.
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2.7.4 Gibbs free energy G

If we create a thermodynamic system at conditions of constant temperature 7" and constant pressure
p, then it absorbs heat energy () = T'S from the reservoir and we must expend work energy pV in
order to make room for it. Thus, the total amount of work we must do in assembling our system is
W = E —TS + pV. This is the Gibbs free energy, G. The Gibbs free energy is obtained from E after two
Legendre transformations, viz.

G=E-TS+pV (2.156)

Note that G = F + pV = H — T'S. The Second Law says that
dG < =SdT' + Vdp +pdV —adw (2.157)

which we may rearrange as dW,, ., < —Sd1T'+ Vdp — dG . Accordingly, we conclude, for systems at fixed
(T,p), that dWpee < —dG.

For equilibrium single component (p, V') systems, the differential of G is
dG = —=SdT +Vdp + pdN (2.158)

therefore G = G(T,p, N), with

oG e e
5= <_> V= <_> = <_> . (2.159)
8T p,N ap T7N aN T,p

Recall that Euler’s theorem for single component systems requires £ = T'S — pV + uN which says
G = pN. Thus, the chemical potential 1 is the Gibbs free energy per particle. For spontaneous processes,
dG < =S dT+ Vdp+ pdN, hence spontaneous processes drive the Gibbs free energy G to a minimum in systems
at fixed (T,p, N).

2.7.5 Grand potential (?

The grand potential, sometimes called the Landau free energy, is defined by

Q:E—TS—ZC:,%NG . (2.160)
a=1

The Second Law then requires

dgfg—Sdr—pdv>-§tA@dua—dﬁgm : (2.161)
a=1
where we formally define
dﬁéﬁgzdwf—pdvﬁ%ii;%dAz : (2.162)
a=1

We then have dW;, . < —SdT —pdV — N - dp — df2. We conclude that for systems at fixed (7', V, ) that
AW oo < —dS2.
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Under equilibrium conditions for single component (p, V') systems, we have

dQ = —SdT —pdV — Ndu | (2.163)

on on on
< or >V,y, P <8V >T7N < 81& >T,V ( )

Again invoking eqn. 2.110, we find {2 = —pV, which says that the pressure is the negative of the grand
potential per unit volume. For spontaneous processes, df2 < —SdI' — pdV — Ndu, hence spontaneous
processes drive the grand potential §2 to a minimum in systems at fixed (T, V, ).

hence

2.8 Maxwell Relations

Maxwell relations are conditions equating certain derivatives of state variables which follow from the
exactness of the differentials of the various state functions. For a general function ®(u,, us, ..., u,), if ®
itself class C? or smoother (meaning all its second derivatives exist and are continuous), then

?v_ 0 (0v)_ 0 (00
auiﬁuj_aui auj _auj ou,

d@ZRldul+R2dU2++Rndun s

Let us write

with R; = 0¢/0u; , where the derivative is computed holding all u; for u # j constant. Then the equality
of the mixed second partial derivatives is equivalent to the conditions

Ou; -\ 0y, ),

k(£9) k(D)

2.8.1 Relations deriving from E(S,V, N)

The energy E(S,V, N) is a state function, with
dE =TdS —pdV + pdN (2.165)

and therefore

oF oFr or
<8S>V,N P (aV>S,N M <6N>S,v (2166)
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Taking the mixed second derivatives, we find
°r__ (0T _ (o
P8 _ (T _(on
OSON  \ON Sy_ oS VN

OB (9 _ (o
VAN~ \0N Jgy  \V Jsy

2.8.2 Relations deriving from F'(T,V, N)

The energy F(T,V, N) is a state function, with
dF = —-SdT — pdV + pdN

and therefore

g (oF L (F _(oF
“\oT )y P=\ov )y 0 P \ON )y,
Taking the mixed second derivatives, we find
”F (0S8 ~ (op
orov ov TN N oT V.N
Pr___(95) _
OTON N

OF (o) _
VON ~—  \ON )py

2.8.3 Relations deriving from H(S, p, N)

The enthalpy H(S, p, V) satisfies
dH=TdS +Vdp+ pdN

which says H = H(S, p, N), with

OH OH OH
@, @
oS N Op S,.N ON S,p

(2.167)

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)

(2.173)

(2.174)

(2.175)

(2.176)
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Taking the mixed second derivatives, we find

0%H oT oV

950 — <a—p>S,N = <%>N @177)
0’H oT o

ISON <8_N>S = <%>N 2178)
0’H ov o

opON <8—N>S = <a—p>&N : @179)

2.8.4 Relations deriving from G(T, p, N)

The Gibbs free energy G(T', p, N) satisfies

dG = -SdI' +Vdp+ pdN (2.180)
therefore G = G(T,p, N), with
oG oG oG
Taking the mixed second derivatives, we find
°G ov (2.182)
oTdp or ), '
0’°G
o = <aN)Tp—< T) 2189
0’G ou
o = (aw ) <8_> (215
2.8.5 Relations deriving from (7, V, )
The grand potential £2(7, V, 1) satisfied
d2 =—-SdT —pdV — Ndu (2.185)

hence

o5 o5 o5
S (22 L o= (& ., -N=(Z : 2.186
<0T>V,u P (aV>T,M (ém)T,v (2156)
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Taking the mixed second derivatives, we find
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%02 Op
_ _ 2.187
T OV <a:r>w (2.187)
9% ON
oT o~ >T,V o <8—T>V,u (2189)
9% ON
_ _ 2.1
oV ou < oV >T7u (2.189)

Relations deriving from S(E,V, N)

We can also derive Maxwell relations based on the entropy S(E, V, N) itself. For example, we have

iS=Lap+Lav - % AN (2.190)
Therefore S = S(E,V, N) and
2 —1 -1
o5 _ (0T _ (90T , (2.191)
OE oV WV Jpn 0E )

et cetera.

2.8.6 Generalized thermodynamic potentials

We have up until now assumed a generalized force-displacement pair (y, X) = (—p, V). But the above
results also generalize to e.g. magnetic systems, where (y, X) = (H, M). In general, we have

| THIS SPACE AVAILABLE | dE =TdS +ydX + udN (2.192)
F=E-TS dF = —SdT +ydX + pdN (2.193)
H=F—yX dH=TdS — X dy + pdN (2.194)
G=FE-TS—yX dG = —SdT — X dy + pdN (2.195)
Q2=E-TS—uN df2=—SdT +ydX — N du (2.196)



2.9. EQUILIBRIUM AND STABILITY 71

Generalizing (—p, V) — (y, X), we also obtain, mutatis mutandis, the following Maxwell relations:

oy _ (% oy _ (o oY (o 2197
0X S,N_ oS XN ON S7X_ oS XN ON S7X_ 0X SN '

(), (L@, Bl e
B (ol B, e
BlG) GGl (@), e
Bl GLeGl @G, e

2.9 Equilibrium and Stability

29.1 Equilibrium

Suppose we have two systems, A and B, which are free to exchange energy, volume, and particle number,
subject to overall conservation rules

E.+E,=FE , V,+Vy=V , N, +N;,=N (2.202)
where I, V, and N are fixed. Now let us compute the change in the total entropy of the combined

systems when they are allowed to exchange energy, volume, or particle number. We assume that the
entropy is additive, i.e.

S — <85A> _<8SB> i, + <85> <<‘?SB> qv,
9B, Jy, N, 9By v, N, Wy /g, N, Vs e, N,
S, 0S5y
+ [<6N >EA’V <8N >E v AN, . (2.203)

Note that we have used dE, = —dFE,, dV, = —dV,, and dN, = —dN,. Now we know from the Second
Law that spontaneous processes result in 7'dS > 0, which means that S tends to a maximum. If S'is a
maximum, it must be that the coefficients of dE,, dV,, and dN, all vanish, else we could increase the total
entropy of the system by a judicious choice of these three differentials. From 7'dS = dE + pdV — pdN,

we have
1 oS P oS 7 oS
1_ (95 p_ (95 L , 2.204
T <3E>V,N T <8V>E,N T <8N>E7V (2209
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Thus, we conclude that in order for the system to be in equilibrium, so that S is maximized and can
increase no further under spontaneous processes, we must have

T, =15 (thermal equilibrium) (2.205)
Pa _ Po (mechanical equilibrium) (2.206)
TA TB
Pa _ He (chemical equilibrium) (2.207)
TA TB

In general, with conjugate force and displacement (y, X'), where X can be exchanged between subsys-
tems, equilibrium requires y, /T, = yy/1;-

2.9.2 Stability

Next, consider a uniform system with energy E’ = 2E, volume V' = 2V, and particle number N’ = 2N.
We wish to check that this system is not unstable with respect to spontaneously becoming inhomoge-
neous. To that end, we imagine dividing the system in half. Each half would have energy E, volume V,
and particle number N. But suppose we divided up these quantities differently, so that the left half had
slightly different energy, volume, and particle number than the right, as depicted in fig. 2.16. Does the
entropy increase or decrease? We have

AS = S(E + AE,V + AV,N + AN) + S(E — AE,V — AV,N — AN) — S(2E, 2V, 2N)

9% , 0% , 0% )
= gmz (BB + 553 (AV)" 4 5 (AN) (2.208)
0%S 528 929
2—"_AEAV 42— AEAN +2 AV AN
2 opav AFAY T i oEan e ovan
Thus, we can write
AS=3"Quwv; (2.209)
4,
where
9% 928 9%
OF? OE0V  OFEON
2 2 2
Q=|am5v &= avon (2.210)

028 2% 8%
9EON 9VON  ON?
is the matrix of second derivatives, known in mathematical parlance as the Hessian, and ¥ = (AE, AV, AN).
Note that @) is a symmetric matrix.

Since S must be a maximum in order for the system to be in equilibrium, we are tempted to conclude that
the homogeneous system is stable if and only if all three eigenvalues of () are negative. If one or more
of the eigenvalues is positive, then it is possible to choose a set of variations ¥ such that AS > 0, which
would contradict the assumption that the homogeneous state is one of maximum entropy. A matrix with
this restriction is said to be negative definite. While it is true that ) can have no positive eigenvalues, it
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E+AE | E—AE
V+AV | VAV
N+AN | N-AN

Figure 2.16: To check for an instability, we compare the energy of a system to its total energy when we
reapportion its energy, volume, and particle number slightly unequally.

is clear from homogeneity of S(E, V, N) that one of the three eigenvalues must be zero, corresponding
to the eigenvector ¥ = (E,V, N). Homogeneity means S(AE, \V,AN) = AS(E,V, N). Now let us take
A = 1+ n, where 7 is infinitesimal. Then AE = nE, AV =nV,and AN = N, and homogeneity says
S(E+AE,V+AV,N+AN)=(1+n)S(E,V,N)and AS = (1+7)S + (1 —n)S — 25 = 0. We then
have a slightly weaker characterization of Q) as negative semidefinite.

However, if we fix one of the components of (AE, AV, AN) to be zero, then ¥ must have some com-
ponent orthogonal to the zero eigenvector, in which case AS < 0. Suppose we set AN = 0 and we
just examine the stability with respect to inhomogeneities in energy and volume. We then restrict our
attention to the upper left 2 x 2 submatrix of ). A general symmetric 2 x 2 matrix may be written

a b
Q= <b C) (2.211)
It is easy to solve for the eigenvalues of (). One finds
a—+c a—c\ 9
A= (5 )% 5 ) T (2.212)

In order for @) to be negative definite, we require A\, <Oand A_ < 0. Thus, TrQ =a+c=A, +A_ <0
and detQ = ac — b> = \ 4+ A_ > 0. Taken together, these conditions require

a<0 c<0 ac>b* . (2.213)
Going back to thermodynamic variables, this requires

P8 78 7S S (P8 Y
0L ’ © 9B 0v? T \OEOV

572 (2.214)

Thus the entropy is a concave function of E and V at fixed N. Had we set AE = 0 and considered the lower
right 2 x 2 block of ), we’d have concluded that S(V, N) is concave at fixed E. Since (9S/0E),, =T,
we have 92S/9E? = —T~%(0T/OE),, = —C,/T? < 0, whence Cy, > 0 for stability.

Many thermodynamic systems are held at fixed (7', p, N), which suggests we examine the stability crite-
ria for G(T', p, N). Suppose our system is in equilibrium with a reservoir at temperature 7;, and pressure
po- Then, suppressing N (which is assumed constant), we have



74 CHAPTER 2. THERMODYNAMICS

Now suppose there is a fluctuation in the entropy and the volume of our system, which is held at fixed
particle number. Going to second order in AS and AV, we have

ac=|(2) —qlas+ | (2E) £p|av
25 ), v ),
i i i (2.216)
1ok ., . o OB

Equilibrium requires that the coefficients of AS and AV both vanish, i.e. that T' = (0E/0S)y, 5 = T; and

p=—(0E/9V)g x = py- The condition for stability is that AG > 0 for all (AS, AV). Stability therefore
requires that the Hessian matrix () be positive definite, with

’E I’E
852 959V
Q= . (2.217)
I’E ’E
950V  oVZ
Thus, we have the following three conditions:
o0’E oT T
=) = 2.218
95? <as >V ¢, 0 (2.218)
o0’E dp 1
= [ Z2E) = 2.219
av? <av>s Vig " (2.219)
2 2 2 2 2
8E‘8E_ oE = T — 8_T >0 . (2.220)
08% ov? oS oV Vig Cy, vV Jg

As we shall discuss below, the quantity ag = V~1(0V/0T) sy is the adiabatic thermal expansivity
coefficient. We therefore conclude that stability of any thermodynamic system requires

C
Tv>0 , K‘S>0 , Qg >

kg Cy
vT

(2.221)

2.10 Applications of Thermodynamics

A discussion of various useful mathematical relations among partial derivatives may be found in the
appendix in §2.17. Some facility with the differential multivariable calculus is extremely useful in the
analysis of thermodynamics problems.

2.10.1 Adiabatic free expansion revisited

Consider once again the adiabatic free expansion of a gas from initial volume V; to final volume V; = rV;.
Since the system is not in equilibrium during the free expansion process, the initial and final states do
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volume V

initial

VT7/? = const.

temperature T

Figure 2.17: Adiabatic free expansion via a thermal path. The initial and final states do not lie along an
adabat! Rather, for an ideal gas, the initial and final states lie along an isotherm.

not lie along an adiabat, i.e. they do not have the same entropy. Rather, as we found, from Q = W =0,
we have that E; = E;, which means they have the same energy, and, in the case of an ideal gas, the
same temperature (assuming N is constant). Thus, the initial and final states lie along an isotherm. The
situation is depicted in fig. 2.17. Now let us compute the change in entropy AS = S; — S, by integrating
along this isotherm. Note that the actual dynamics are irreversible and do not quasistatically follow any
continuous thermodynamic path. However, we can use what is a fictitious thermodynamic path as a
means of comparing S in the initial and final states.

We have
1%

f
S
AS_&—&_/W<EQW . (2.222)
V b}

i

But from a Maxwell equation deriving from F, we have

a8 Op
— = | — 2.22
(aV>T,N <8T>V,N ’ (2.223)

hence

Ve
dp
AS = [dV | = . 2.224
[ (5 ), @
‘/i )
For an ideal gas, we can use the equation of state pV' = Nk,T to obtain

<%> L (2.225)
V.N

aT %
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The integral can now be computed:
Vi
AS = [dV
v,

i

Nk,

= Nk Inr | (2.226)

as we found before, in eqn. 2.119 What is different about this derivation? Previously, we derived the
entropy change from the explicit formula for S(E,V, N). Here, we did not need to know this function.
The Maxwell relation allowed us to compute the entropy change using only the equation of state.

2.10.2 Energy and volume

We saw how E(T,V,N) = 3 fNk,T for an ideal gas, independent of the volume. In general we should
have

E(T,V,N)=N¢(T, %) - (2.227)
For the ideal gas, (T, V/N) = 3 fk;T is a function of T alone and is independent on the other intensive

quantity V/N. How does energy vary with volume? At fixed temperature and particle number, we
have, from E =F + TS,

OE\  [OF 25\ p
(WZJ(WZ,N*T(W)T,N—‘“T(a—T)V,N ’ (2.226)

where we have used the Maxwell relation (05/0V ).y = (Op/0T)y, , derived from the mixed second

derivative §°F /0T 9V . Another way to derive this result is as follows. Write dE = T'dS — pdV + pdN
and then express dS in terms of dT', dV/, and dN, resulting in
oS 0
T (—M> +u
or )y

05
AB=T <a—T>V,N A (a—vlw P

Now read off (OE/0V) 5 and use the same Maxwell relation as before to recover eqn. 2.228. Applying
this result to the ideal gas law pV = Nk T results in the vanishing of the RHS, hence for any substance
obeying the ideal gas law we must have

dv — AN . (2.229)

E(T,V,N) = ve(T) = Ne(T)/N, . (2.230)

2.10.3 van der Waals equation of state

It is clear that the same conclusion follows for any equation of state of the form p(T,V, N) =T - f(V/N),
where f(V/N) is an arbitrary function of its argument: the ideal gas law remains valid'*. This is not
true, however, for the van der Waals equation of state,

(p + %) (v—b)=RT | (2.231)

“Note V/N = v/N,.
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gas a <Lri'oki§r) b (%) p. (bar) | T, (K) | v, (I/mol)
Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 | 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 | 7404 304.0 0.1280
Ethanol 12.18 0.08407 | 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 | 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 | 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 | 34.06 128.2 0.1174
Oxygen 1.378 0.03183 | 50.37 154.3 0.0955
Water 5.536 0.03049 | 220.6 647.0 0.0915

Table 2.3: Van der Waals parameters for some common gases. (Source: Wikipedia.)

where v = N, V/N is the molar volume. We then find (always assuming constant V),

OE\ [0\ Op _a
(v ), = (), =7 (or), =35 - 222
where E(T,V,N) = ve(T,v). We can integrate this to obtain
(T, v) = w(T) — % : (2.233)

where w(T') is arbitrary. From eqn. 2.31, we immediately have
Oe
oy = <6_T>v =u'(T) . (2.234)

What about ¢,? This requires a bit of work. We start with eqn. 2.32,

85—:) ((%) < a> ((%)
e=(—) +p(l=) =cp+ (p+—= | (=] . (2.235)
P (an or), v ) \aT ),

We may rewrite the equation of state as

RT a
P=""3 "2 - (2.236)
Taking the differential of both sides,
dp = <g—§> dTl + <?> dv
n UR§ , (2.237)
a
= U_de—i— [— 7(2}_17)2 +F]dv
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Setting dp = 0, we may read off

ov\ Op dp
<a—T>p—‘<a—T>v/ (5), - 229

which follows from eqn. 2.483 in the mathematical appendix §2.17 below. Putting this all together, we

obtain
ov Ruv3(v —b)
(8_T>p -~ RT3 —2a(v—10b)2 2.239)

One immediate result is the following expression for the isobaric thermal expansion coefficient,

1 [ 0v Rv%(v —b)
Ty (8_T>p -~ RTv3 —2a(v—0b)% (2:240)

Another result is the difference ¢, — ¢y, from eqn. 2.235,

a ov RT3
Cp — Cy = <p + W) <8_T>p = RT’U?’ — 2(],(’0 — b)2 . (2241)

To fix w(T') and thus ¢;, = w'(T'), we consider the v — oo limit, where the density of the gas vanishes.
In this limit, the gas must be ideal, hence eqn. 2.233 says that w(7') = 3 fRT. Therefore c,(T,v) = 3 fR,
just as in the case of an ideal gas. However, rather than ¢, = ¢y + R, which holds for ideal gases, cp(T7 v)
is given by eqn. 2.241, and

4PV = 1SR
RT3 (2.242)
RTv3 — 2a(v — b)?

PV = LR+

Note that ¢,(a — 0) = ¢, + R, which is the ideal gas result.

As we shall see in chapter 7, the van der Waals system is unstable throughout a region of parameters,
where it undergoes phase separation between high density (liquid) and low density (gas) phases. The
above results are valid only in the stable regions of the phase diagram.

2.10.4 General equation of state

Suppose we can’t isolate any of the state variables in the equation of state as we did when writing
p = p(T,v) above. Rather, let the equation of state take the form Z(T,p,v) = 0. Setting consecutively
dv=0,dI =0,and dp = 0, we then obtain

o4 oz oz
07 <_> dT+<—> dp+<—> v =0
orT o Op T ov Tp
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We then have
<5 ) < 0 ) / <51 >
P Jy p Tw pv
( >T < >T / < >T
ov ov » Op »
< i > < ) / < >T
oT p oT b ov »

2.10.5 Thermodynamic response functions

Consider the entropy S expressed as a function of 7', V, and V:

oS oS oS
S = | == ar — d —— dN . 2.243
5= () (), v = (59, a2
Dividing by dT', multiplying by 7', and assuming dN = 0 throughout, we have
oS ov
C,—Cy=T <8_V>T <8_T>p . (2.244)
Appealing to a Maxwell relation derived from F(T',V, N), and then appealing to eqn. 2.482, we have
oS Op Op oV
) =(Z) = [ZX£ — . 2.245
(ov), = Gr), = (@), (5r), (225
This allows us to write )
Op oV
—Cy=-T| 5= — . 2.24
o-co==(57), (Gr) =
We define the response functions,
2
isothermal compressibility: k3 = —% <%—‘;>T = —% ({;? (2.247)
2
adiabatic compressibility: g = —% <%—‘;>S = —% Z?T];I (2.248)
1
thermal expansivity: «, = — g_V) . (2.249)
v P
Thus,
T ozg
or, in terms of intensive quantities,
v Tozf,
e , (2.251)
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where, as always, v = VN, /N is the molar volume.
This above relation generalizes to any conjugate force-displacement pair (—p, V) — (y, X):

_ dy oxX\ Oy 0X\?
o= (), (57), 7 (%), (57, R

y
For example, we could have (y, X) = (H*, M®).

A similar relationship can be derived between the compressibilities x, and xg. We then clearly must
start with the volume, writing

dv = <6_V> dp + <6_V> as + (8—‘/) dN . (2.253)
Op SN oS o N dp S
Dividing by dp, multiplying by —V !, and keeping N constant, we have
1 <8V> <85 >
kp—kg=—= |55 | == . (2.254)
T v\es ), \op )y
Again we appeal to a Maxwell relation, writing
oS ov
) = (== 2.2
()=o), - @2
and after invoking the chain rule,
8V> <8V> <8T> T <8V>
Tl (22 ) (=) = = (2= , (2.256)
<8Sp or J,\os /), C,\oT ),
we obtain
v Taf,
Rp —Rg = (2.257)

Cp

Comparing eqns. 2.251 and 2.257, we find

(cp —cy) kp = (kp — Kg)c, = vTozf, . (2.258)
This result entails
c
» _Er (2.259)
v Rg

The corresponding result for magnetic systems is'°

P 2
(cyy — Cpp) X = (X — Xg) €y = T<8—Zf> : (2.260)
H

5Recall the subtle font difference in notation: H is enthalpy while H is magnetic field.
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where m = M /v is the magnetization per mole of substance, and

: - oM 1 0°G
isothermal susceptibility: X, = <8—H>T = o2 (2.261)
N - oM 1 9%H
adiabatic susceptibility: Xg = <8—H>S =~ 9 (2.262)
Here the enthalpy and Gibbs free energy are
H=E—-HM dH=TdS - MdH (2.263)
G=E-TS-HM dG = -SdT' — MdH . (2.264)

The previous discussion has assumed an isotropic magnetic system where M and H are collinear, hence
H - M = HM. In general, we have

oM™ 1 oG
af _ __ S
Xr = <8H6 >T v OH>OHP (2.265)
oM® 1 0%H
af _ _ - i
Xs = <3H6 >5 v OHOOHP (2:266)

In this case, the enthalpy and Gibbs free energy are

H=FE-HM dH=TdS — M-dH (2.267)
G=FE-TS—H-M dG = —SdT — M-dH . (2.268)

2.10.6 Joule effect: free expansion of a gas

Previously we considered the adiabatic free expansion of an ideal gas. We found that () = W = 0 hence
AE = 0, which means the process is isothermal, since E = ve(T") is volume-independent. The entropy
changes, however, since S(E,V, N) = Nk, In(V/N) + 3 fNk,In(E/N) + Ns,. Thus,

S; =S, + Nk, ln(%) . (2.269)

What happens if the gas is nonideal?

We integrate along a fictitious thermodynamic path connecting initial and final states, where dEl = 0

along the path. We have
OF OFE
0=dE = <W>T av + <8—T>V ar (2.270)

hence
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pI,V pf?‘/vf

i
Figure 2.18: In a throttle, a gas is pushed through a porous plug separating regions of different pressure.
The change in energy is the work done, hence enthalpy is conserved during the throttling process.

OB\ . (95 ()
(), =7 (&%), »=7(57), 227

L T I L
v ), o, aT ),

Note that the term on the RHS vanishes for any system obeying the ideal gas law. For a nonideal gas,

Vi
oT
AT = — 2.274
/ dv<aV>E ’ @274)
V'i

We also have

Thus,

(2.273)

which is in general nonzero.

Now consider a van der Waals gas, for which

<p+%>(v—b):RT

We then have

Op a av?
p_T<a_T>V:_v_2:_W , (2.275)

In §2.10.3 we concluded that C;, = % fvR for the van der Waals gas, hence

Vi
2av [ dV 2a (1 1
ANT=——— | —=———— . 2.276
fR/V2 fR<”f ”i) ( )
V.

1

Thus, if V; > V,, we have T; < T; and the gas cools upon expansion.

Consider O, gas with an initial specific volume of v; = 22.4L/mol, which is the STP value for an ideal
gas, freely expanding to a volume v; = oo for maximum cooling. According to table 2.3, a = 1.378 L2 -
bar/mol?, and we have AT = —2a/fRv, = —0.296 K, which is a pitifully small amount of cooling.
Adiabatic free expansion is a very inefficient way to cool a gas.
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2.10.7 Throttling: the Joule-Thompson effect

In a throttle, depicted in fig. 2.18, a gas is forced through a porous plug which separates regions of
different pressures. According to the figure, the work done on a given element of gas is

Vi Vi

i

f
W= [avp - [avm=pi-pvi (2.277)
0 0

Now we assume that the system is thermally isolated so that the gas exchanges no heat with its envi-
ronment, nor with the plug. Then Q = 0so AE = —W, and

E;+pVi = Ef + pVy

2.278
e (2.278)

where H is enthalpy. Thus, the throttling process is isenthalpic. We can therefore study it by defining a
fictitious thermodynamic path along which dH = 0. The, choosing 7" and p as state variables,

oH OH
0=dH = <8_T>p dr + <3_p>T dp (2.279)
hence 5 (OH/0p)
T D)1
— | === . 2.280
(55). = -G, e
The numerator on the RHS is computed by writing dH = T'dS + V dp and then dividing by dp, to obtain
oH oS ov
— | =V+T|— ) =V -T( 5 . 2.281
(%), (%), (r), (2250
The denominator is oH oH o .
(o)~ (3s), (52), -7 (37), =& (2262
Thus,
or 1 ov v
) =) v =~ (Ta, —1 2.2
(22~ L () -] - 2 -

where a;, = V=1(0V/0T),, is the volume expansion coefficient at constant pressure.

From the van der Waals equation of state, we obtain, from eqn. 2.240,

T [ Ov RT /v v—2>
TOép = E <8_T> = ~ o n 2ab = 20 0B 2 . (2284:)
D p 02 03 v — BRT (T)

Assuming v > a/RT and v > b, we have

oT 1/ 2a
(a—plza(ﬁ‘b) ' (2.289)
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Figure 2.19: Inversion temperature 7 (p) for the van der Waals gas. Pressure and temperature are given
in terms of p. = a/27b* and T = 8a/27bR, respectively.

Thus, for T' > T* = 2a/Rb, we have (07/0p), < 0 and the gas heats up upon an isenthalpic pressure
decrease. For T' < T, the gas cools under such conditions.

In fact, there are two inversion temperatures 77 , for the van der Waals gas. To see this, we set T, = 1,
which is the criterion for inversion. From eqn. 2.284 it is easy to derive

% bRT (2.286)

=1—
2a

We insert this into the van der Waals equation of state to derive a relationship 7' = T™(p) at which
Ta,=1 holds. After a little work, we find

3RT 8aRT «a
p=— % +4/ B (2.287)

This is a quadratic equation for 7', the solution of which is

2
. 2a 3b?
T(M:YE§<21 1__E£> : (2.288)

In fig. 2.19 we plot pressure versus temperature in scaled units, showing the curve along which the
derivative (07'/0p) = 0. The volume, pressure, and temperature scales defined are

a 8a
= — T =
27 b2 ’ ¢ 27bR

v, = 3b , De (2.289)
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Values for p,, T.., and v, are provided in table 2.3. If we define v = v/v,, p = p/p., and T = T/T,, then
the van der Waals equation of state may be written in dimensionless form:

<p ¥ %) (3v—1)=8T . (2:290)

In terms of the scaled parameters, the equation for the inversion curve (07'/9p);; = 0 becomes

p:9—36<1—\/%7T)2 — T:3(1i\/1—$p>2- (2.291)

Thus, there is no inversion for p > 9p.. We are usually interested in the upper inversion temperature,
T3, corresponding to the upper sign in eqn. 2.288. The maximum inversion temperature occurs for
p = 0, where T} .. = 2a/bR = 27T,/4. For H,, from the data in table 2.3, we find T, (H,) = 224K,
which is within 10% of the experimentally measured value of 205 K.

What happens when H, gas leaks from a container with 7" > T5? Since (07/0p); < 0 and Ap < 0,
we have AT > 0. The gas warms up, and the heat facilitates the reaction 2H, + O, — 2H,0, which
releases energy, and we have a nice explosion.

2.11 Phase Transitions and Phase Equilibria

A typical phase diagram of a p-v - T system is shown in the fig. 2.20(a). The solid lines delineate bound-
aries between distinct thermodynamic phases. These lines are called coexistence curves. Along these
curves, we can have coexistence of two phases, and the thermodynamic potentials are singular. The
order of the singularity is often taken as a classification of the phase transition. Le. if the thermodynamic
potentials £, F, G, and H have discontinuous or divergent m"™ derivatives, the transition between the
respective phases is said to be m'" order. Modern theories of phase transitions generally only recognize

[ .
| generic
I.' substance

solid 1

| solid 2
Q; ; "l T = normal
» solid | 310 2100 Tiquid
= | i = =
a [ critical 3 10F liquid B normal . 2 10f vl
F M ik y 7 iqui a I
»n :IIQUId/ point 8 Tiquid 8
9 " Ve R = 00k 7
o triple /| ' vapour ’ vapour
cud \
oint | S — I 001 I
p/ gas 001 0.1 10 100 100 | 10 100 001 0.1 1.0 100 100 | g 100l
- mK temperature K mKk temperature K
temperature T’ 3SHe 4He

Figure 2.20: (a) Typical thermodynamic phase diagram of a single component p-v-T system, showing
triple point (three phase coexistence) and critical point. (Credit: Univ. of Helsinki.) Also shown: phase
diagrams for *He (b) and *He (c). What a difference a neutron makes! (Credit: Brittanica.)
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Figure 2.21: The surface p(v,T) = RT/v corresponding to the ideal gas equation of state, and its projec-
tions onto the (p, T'), (p,v), and (T, v) planes.

two possibilities: first order transitions, where the order parameter changes discontinuously through the
transition, and second order transitions, where the order parameter vanishes continuously at the bound-
ary from ordered to disordered phases'®. We’ll discuss order parameters when we get to chapter 7.

For a more interesting phase diagram, see fig. 2.20(b,c) for *He and “He. The only difference between
these two atoms is that the former has one fewer neutron: (2p + 1n + 2e) in *He versus (2p + 2n + 2e) in
4He. As we shall learn when we study quantum statistics, this extra neutron makes all the difference,
because *He is a fermion while “He is a boson.

2111 p-v-T surfaces

The equation of state for a single component system may be written as
fp,v,T)=0 . (2.292)
This may in principle be inverted to yield p = p(v,T") or v = v(T, p) or T' = T'(p, v). The single constraint

f(p,v,T) on the three state variables defines a surface in {p, v, T} space. An example of such a surface is
shown in fig. 2.21, for the ideal gas.

16Some exotic phase transitions in quantum matter, which do not quite fit the usual classification schemes, have
recently been proposed.
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triple line

pressure P

molar volume v

Figure 2.22: A p-v-T surface for a substance which contracts upon freezing. The red dot is the critical
point and the red dashed line is the critical isotherm. The yellow dot is the triple point at which there is
three phase coexistence of solid, liquid, and vapor.

Real p-v-T surfaces are much richer than that for the ideal gas, because real systems undergo phase
transitions in which thermodynamic properties are singular or discontinuous along certain curves on
the p-v-T surface. An example is shown in fig. 2.22. The high temperature isotherms resemble those of
the ideal gas, but as one cools below the critical temperature T, the isotherms become singular. Precisely
at T' = T, the isotherm p = p(v,T,) becomes perfectly horizontal at v = v, which is the critical molar
volume. This means that the isothermal compressibility, k. = —v™(9v/dp) diverges at T = T,,. Below
T, the isotherms have a flat portion, as shown in fig. 2.25, corresponding to a two-phase region where
liquid and vapor coexist. In the (p, T') plane, sketched for H,O in fig. 2.5 and shown for CO, in fig. 2.24,
this liquid-vapor phase coexistence occurs along a curve, called the vaporization (or boiling) curve.
The density changes discontinuously across this curve; for H,O, the liquid is approximately 1000 times
denser than the vapor at atmospheric pressure. The density discontinuity vanishes at the critical point.
Note that one can continuously transform between liquid and vapor phases, without encountering any
phase transitions, by going around the critical point and avoiding the two-phase region.

In addition to liquid-vapor coexistence, solid-liquid and solid-vapor coexistence also occur, as shown in
tig. 2.22. The triple point (T, , p,) lies at the confluence of these three coexistence regions. For H,O, the
location of the triple point and critical point are given by

T, =273.16K T, = 647K
p, = 611.7Pa = 6.037 x 10~% atm pP. = 22.06 MPa = 217.7 atm
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v

Figure 2.23: Equation of state for a substance which expands upon freezing, projected to the (v,T") and
(v,p) and (T, p) planes.

2.11.2 The Clausius-Clapeyron relation

Recall that the homogeneity of E(S,V, N) guaranteed E = T'S — pV + uN, from Euler’s theorem. It also
guarantees a relation between the intensive variables T, p, and p, according to eqn. 2.112. Let us define
g = G/v = N, pu, the Gibbs free energy per mole. Then

dg=—sdT +vdp (2.293)

where s = S/v and v = V/v are the molar entropy and molar volume, respectively. Along a coexistence
curve between phase #1 and phase #2, we must have g, = gy, since the phases are free to exchange
energy and particle number, i.e. they are in thermal and chemical equilibrium. This means

dg, = —s1dI" +vydp = —s,dT" + vy dp = dgy . (2.294)

Therefore, along the coexistence curve we must have

dp 59 — 5 14
= = = 2.295
<dT>cocx Vg — TAv ~ ( )

where ¢ =T As =T (sy — s) is the molar latent heat of transition. This is known as the Clapeyron relation.
Heat energy ¢ per mole must be supplied in order to change from phase #1 to phase #2, even without
changing p or T'. If £ is the latent heat per mole, then we write / as the latent heat per gram: £ = ¢/M,
where M is the molar mass.
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Figure 2.24: Phase diagram for CO in the (p, T') plane. (Source: www.scifun.org.)

Along the liquid-gas coexistence curve, we typically have v,,, > vy;,,,q, and assuming the vapor is
ideal, we may write Av & v,,, ~ RT'/p, resulting in the Clausius-Clapeyron relation,

dp . 14 N pl
<ﬁ>nq_ga5 “TAv T RIE (2.296)

If ¢ remains constant throughout a section of the liquid-gas coexistence curve, we may integrate the
above equation to get

- = p(T) = p(TO) eZ/RTO e_é/RT . (2297)

2.11.3 Liquid-solid line in H,O
Life on planet earth owes much of its existence to a peculiar property of water: the solid is less dense
than the liquid along the coexistence curve'”. For example at 7' = 273.1K and p = 1 atm,

Dyater = 1.00013cm3/g | Ty = 1.0907cm?/g . (2.298)
The latent heat of the transition is £ = 333.J/g = 79.5cal /g. Thus,

dp - 333 /g

AT ) jiq—so  TAD — (273.1K) (=9.05 x 102 cm?/g)
dyn atm
em?K —1 °C

17Were the solid more dense, ponds and lakes would freeze from the bottom, with unfortunate consequences
for life.

(2.299)

= —1.35 x 10%
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Figure 2.25: Projection of the p-v-T surface of fig. 2.22 onto the (v, p) plane.

The negative slope of the melting curve is invoked to explain the movement of glaciers: as glaciers slide
down a rocky slope, they generate enormous pressure at obstacles'® Due to this pressure, the story goes,
the melting temperature decreases, and the glacier melts around the obstacle, so it can flow past it, after
which it refreezes. But it is not the case that the bottom of the glacier melts under the pressure, for
consider a glacier of height h = 1km. The pressure at the bottom is p ~ gh/% ~ 107 Pa, which is only
about 100 atmospheres. Such a pressure can produce only a small shift in the melting temperature of
about AT, . = —0.75°C.

m

Does the Clausius-Clapeyron relation explain how we can skate on ice? When my daughter was seven
years old, she had a mass of about M = 20kg. Her ice skates had blades of width about 5mm and
length about 10 cm. Thus, even on one foot, she imparted an additional pressure of only

Mg _ 20kg x 9.8m/s?
A 7 (5x1073m) x (10~!m)

Ap = =3.9x10°Pa=3.9atm . (2.300)

The corresponding change in the melting temperature is thus minuscule: AT, . ~ —0.03° C.

So why could my daughter skate so nicely? The answer isn’t so clear!'’ There seem to be two relevant
issues in play. First, friction generates heat which can locally melt the surface of the ice. Second, the
surface of ice, and of many solids, is naturally slippery. Indeed, this is the case for ice even if one is
standing still, generating no frictional forces. Why is this so? It turns out that the Gibbs free energy of
the ice-air interface is larger than the sum of free energies of ice-water and water-air interfaces. That is
to say, ice, as well as many simple solids, prefers to have a thin layer of liquid on its surface, even at

8The melting curve has a negative slope at relatively low pressures, where the solid has the so-called Ih hexag-
onal crystal structure. At pressures above about 2500 atmospheres, the crystal structure changes, and the slope of
the melting curve becomes positive.

YFor a recent discussion, see R. Rosenberg, Physics Today 58, 50 (2005).
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Figure 2.26: Left panel: data from R. R. Gilpin, J. Colloid Interface Sci. 77, 435 (1980) showing mea-
sured thickness of the surface melt on ice at temperatures below 0°C. The straight line has slope — %, as
predicted by theory. Right panel: phase diagram of H,0O, showing various high pressure solid phases.
(Source : Physics Today, December 2005).

temperatures well below its bulk melting point. If the intermolecular interactions are not short-ranged?,
theory predicts a surface melt thickness d o< (7}, — 7)) ~'/3. In fig. 2.26 we show measurements by Gilpin
(1980) of the surface melt on ice, down to about —50° C. Near 0° C the meltlayer thickness is about 40 nm,
but this decreases to ~ 1nm at 7' = —35° C. At very low temperatures, skates stick rather than glide. Of
course, the skate material is also important, since that will affect the energetics of the second interface.
The 19th century novel, Hans Brinker, or The Silver Skates by Mary Mapes Dodge tells the story of the
poor but stereotypically decent and hardworking Dutch boy Hans Brinker, who dreams of winning an
upcoming ice skating race, along with the top prize: a pair of silver skates. All he has are some lousy
wooden skates, which won’t do him any good in the race. He has money saved to buy steel skates, but
of course his father desperately needs an operation because — I am not making this up — he fell off a dike
and lost his mind. The family has no other way to pay for the doctor. What a story! At this point, I
imagine the suspense must be too much for you to bear, but this isn’t an American Literature class, so
you can use Google to find out what happens (or rent the 1958 movie, directed by Sidney Lumet). My
point here is that Hans’ crappy wooden skates can’t compare to the metal ones, even though the surface
melt between the ice and the air is the same. The skate blade material also makes a difference, both for
the interface energy and, perhaps more importantly, for the generation of friction as well.

2.11.4 Slow melting of ice : a quasistatic but irreversible process

Suppose we have an ice cube initially at temperature 7, < © = 273.15K (i.e. © = 0° C) and we toss it
into a pond of water. We regard the pond as a heat bath at some temperature 7} > ©. Let the mass of

2For example, they could be of the van der Waals form, due to virtual dipole fluctuations, with an attractive
1/75 tail.
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the ice be M. How much heat () is absorbed by the ice in order to raise its temperature to 7;? Clearly
Q = Mé&(6 —Ty) + Mi+ Mé, (T, — 6) (2.301)

where ¢ and ¢, are the specific heats of ice (solid) and water (liquid), respectively?', and / is the latent
heat of melting per unit mass. The pond must give up this much heat to the ice, hence the entropy of
the pond, discounting the new water which will come from the melted ice, must decrease:

Q
ASpond - —?1 (2302)
Now we ask what is the entropy change of the H,O in the ice. We have
a0 foomMe i [ e
¢ ¢
A . = _— = 8 _ L

Sice /T /dTT —I—@+/dTT

T, e (2.303)

B} o Mi _ (T
:MCSIH<TO>+E+MCLIH<51>

The total entropy change of the system is then

ASiota1 = ASpond T ASice

(e _ (6T, /11 (T (T, -0\ (2.304)
() (45 (- ) () o ()

Now since T, < © < T}, we have

otal

AR ¥ _ (O -T
Mcs< T 0> <Mcs< 5 0> : (2.305)
Therefore,
-1 1
AS > M/ <@_T> —|—Mésf(T0/(9)+MéLf(@/T1) , (2.306)
1

where f(z) = 2 — 1 — Inx. Clearly f'(x) = 1 — 27! is negative on the interval (0, 1), which means that
the maximum of f(x) occurs at z = 0 and the minimum at z = 1. But f(0) = oo and f(1) = 0, which
means that f(z) > 0 for z € [0, 1]. Since T, < © < T} , we conclude AS, , , > 0.

tota

2.11.5 Gibbs phase rule

Equilibrium between two phases means that p, ', and p(p, T') are identical. From

pi(p, T) = py(p,T) (2.307)

Z'We assume ¢,(T') and ¢, (T') have no appreciable temperature dependence, and we regard them both as con-
stants.
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we derive an equation for the slope of the coexistence curve, the Clausius-Clapeyron relation. Note that
we have one equation in two unknowns (7, p), so the solution set is a curve. For three phase coexistence,
we have

p(p,T) = po(p, T) = ps(p, T) (2.308)

which gives us two equations in two unknowns. The solution is then a point (or a set of points). A
critical point also is a solution of two simultaneous equations:

critical point = v (p,T) = vo(p,T) , (P, T)=ps(p,T) . (2.309)

Recall v = N, (?TZ) - Note that there can be no four phase coexistence for a simple p-v-T' system.

Now for the general result. Suppose we have c species, with particle numbers N,, wherea = 1,...,c.
It is useful to briefly recapitulate the derivation of the Gibbs-Duhem relation. The internal energy
E(S,V,Ny,...,N,) is a homogeneous function of degree one:

E(AS,AV,AN,,...,AN,) = AE(S,V,Ny,...,N.) . (2.310)

From Euler’s theorem for homogeneous functions (just differentiate with respect to A and then set A = 1),
we have

E=TS-pV+)Y uN, . (2.311)
a=1

Taking the differential, and invoking the First Law,

C
dE =TdS —pdV + ) p,dN, (2.312)
a=1
we arrive at the relation .
SdT —Vdp+> Nydp, =0 | (2.313)
a=1

of which eqn. 2.111 is a generalization to additional internal ‘work” variables. This says that the c + 2

quantities (7', p, it - - ., fc) are not all independent. We can therefore write
He = :uc(Tvpnulv"'Huc—l) . (2314)

If there are ¢ different phases, then in each phase j, with j = 1,..., ¢, there is a chemical potential u,(lj )

for each species a. We then have

& = @ (T, D)) 2a15)

Here ,u,(f ) is the chemical potential of the a™ species in the j* phase. Thus, there are ¢ such equations
relating the 2 + c ¢ variables (7', p, { pud) }), meaning that only 2 + (c — 1)¢ of them may be chosen as
independent. This, then, is the dimension of ‘thermodynamic space’ containing a maximal number of
intensive variables:

dlc,p) =24 p(c—1) . (2.316)
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To completely specify the state of our system, we of course introduce a single extensive variable, such
as the total volume V. Note that the total particle number N = > °_, N, may not be conserved in the
presence of chemical reactions!

Now suppose we have equilibrium among ¢ phases. We have implicitly assumed thermal and mechan-
ical equilibrium among all the phases, meaning that p and 7" are constant. Chemical equilibrium applies
on a species-by-species basis. This means

) = p") (2.317)
where j,5' € {1,...,}. This gives c(¢ — 1) independent equations equations?’. Thus, we can have phase

equilibrium among the ¢ phases of c species over a region of dimension
dog(c,0) =2+p(c—1)—c(p—-1)=2+c—p . (2.318)

Since dpr > 0, we must have ¢ < ¢ + 2. Thus, with two species (c = 2), we could have at most four
phase coexistence.

If the various species can undergo r distinct chemical reactions of the form

A+ A+ PA=0 (2:319)
where A , is the chemical formula for species a, and CC(LZ) is the stoichiometric coefficient for the a** species
in the ['" reaction, with [ € {1,...,r}, then we have an additional r constraints of the form

Wi =0 . (2.320)
a=1
Therefore,
dog(c,or) =24+c—p—r . (2.321)

One might ask what value of j are we to use in eqn. 2.320, or do we in fact have ¢ such equations for
each [? The answer is that eqn. 2.317 guarantees that the chemical potential of species a is the same in
all the phases, hence it doesn’t matter what value one chooses for j in eqn. 2.320.

Let us assume that no reactions take place, ie. r = 0, so the total number of particles Y ;_, N, is
)

conserved. Instead of choosing (T, p, py,...,p ;) as dr, intensive variables, we could have chosen
(T, p, pty,- - - ,:ngj_)l), where z, = N, /N is the concentration of species a.

With d independent generalized displacements, the dimensions of the thermodynamic space and re-
gions of phase equilibria are

d(c7(10):1+d+90(c_1) ) dPE(C7(107r):1+d+C_(10_r ’ (2322)
whence p <1+4+d+c—r.

Why do phase diagrams in the (p,v) and (7,v) plane look different than those in the (p,T) plane??’
For example, fig. 2.23 shows projections of the p-v-T surface of a typical single component substance

22Get j = 1 and let j’ range over the p — 1 values 2, ..., ¢.
ZThe same can be said for multicomponent systems: the phase diagram in the (7, z) plane at constant p looks
different than the phase diagram in the (7', i) plane at constant p.
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onto the (T,v), (p,v), and (p,T) planes. Coexistence takes place along curves in the (p,T") plane, but in
extended two-dimensional regions in the (7, v) and (p, v) planes. The reason that p and 7" are special is
that temperature, pressure, and chemical potential must be equal throughout an equilibrium phase if it
is truly in thermal, mechanical, and chemical equilibrium. This is not the case for an intensive variable
such as specific volume v = N, V/N or chemical concentration z, = N,/N.

212 Entropy of Mixing and the Gibbs Paradox

2121 Computing the entropy of mixing

Entropy is widely understood as a measure of disorder. Of course, such a definition should be supple-
mented by a more precise definition of disorder — after all, one man’s trash is another man’s treasure.
To gain some intuition about entropy, let us explore the mixing of a multicomponent ideal gas with c
component species. Let N = )¢ | N, be the total number of particles of all species, and let z, = N, /N

be the concentration of species a. Note that Y . _; z, = 1.

For any substance obeying the ideal gas law pV = Nk,T, the entropy is
S(T,V,N) = Nk;In(V/N)+ No(T) (2.323)

since (0S/0V)p ny = (Op/0T)y y = Nky/V. Note that in eqn. 2.323 we have divided V' by N before
taking the logarithm. This is essential if the entropy is to be an extensive function (see §2.6.5). If, as we
shall discuss below, the entropy is proportional to the number of ways a system can be ‘configured’, one
might think that the entropy of an ideal gas should scale as In(V") = N InV, since each particle can be
anywhere in the volume V. However, if the particles are indistinguishable, then permuting the particle
labels does not result in a distinct configuration, and so the configurational entropy is proportional to
In(VN/N!) ~ NIn(V/N) — N. The origin of this indistinguishability factor will become clear when
we discuss the quantum mechanical formulation of statistical mechanics. For now, note that such a
correction is necessary in order that the entropy be an extensive function.

If we did not include this factor and instead wrote S*(T,V,N) = Nk,InV + N¢(T), then we would
find S*(T,V,N) — 25*(T, 3V,4N) = Nk, In2, i.e. the total entropy of two identical systems of particles
separated by a barrier will increase if the barrier is removed and they are allowed to mix. This seems
absurd, though, because we could just as well regard the barriers as invisible. This is known as the Gibbs
paradox. The resolution of the Gibbs paradox is to include the indistinguishability correction, which
renders S extensive, in which case S(T,V, N) = 2S(T, 1V, $N).

Consider now the situation in fig. 2.27, where we have separated the different components into their
own volumes V,. Let the pressure and temperature be the same everywhere, so pV, = N, k;T. The
entropy of the unmixed system is then

Sunmised = 9 S0 = D | Na ki In(Va/No) + Ny 6,(T)] (2.324)

a

Now let us imagine removing all the barriers separating the different gases and letting the particles mix
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N 1 2
(»,7) (»,T)
N, 4 3
(p,T) (»7T)

Figure 2.27: A multicomponent system consisting of isolated gases, each at temperature 7" and pressure
p. Then system entropy increases when all the walls between the different subsystems are removed.

thoroughly. The result is that each component gas occupies the full volume V/, so the entropy is
Srnixed = Z S, = Z [Na k, In(V/N,) + N, ¢a(T)] , (2.325)

Thus, the entropy of mixing is
AS

mix

=S5

mixed

—ZN k, In(V/V,) = —Nk Zf Inf, . (2.326)

-8

unmixed

where f, = N,/N =V, /V is the fraction of species a. Note that AS ; >0

What if all the components were initially identical? It seems absurd that the entropy should increase
simply by removing some invisible barriers. This is again the Gibbs paradox. In this case, the resolution
of the paradox is to note that the sum in the expression for S, .. .4 is @ sum over distinct species. Hence

if the particles are all identical, we have S, 4 = Nk, In(V/N) 1 No(T)=S hence AS, ;. =

unmixed”’

2.12.2 Entropy and combinatorics

As we shall learn when we study statistical mechanics, the entropy may be interpreted in terms of the
number of ways W (E, V, N) a system at fixed energy and volume can arrange itself. One has

S(E,V,N) =k, InW(E,V,N) . (2.327)

Consider a system consisting of c different species of particles. Initially, each species a € {1,...,c} is
confined to its own region consisting of B, little boxes, with each little box containing either 0 or 1 of the
a-particles. Adding up the total number of boxes over all of the c regions yields B = > _; B, (see fig.
2.28). How many ways W, are there to configure N, identical particles among B, little boxes? Clearly

B, B,!
= () = s )

a
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Figure 2.28: Mixing among three different species of particles. The mixed configuration has an addi-
tional entropy, ASmix.

Were the particles distinct, we’d have had Wdistinet — B 1/(B, — N,)!, which is N,! times greater. This
is because permuting distinct particles results in a different configuration, and there are N,! ways to
permute N, particles.

The entropy for species a is then S, = k, In W, = k; In (5¢). We then use Stirling’s approximation,
In(K)=KInK-K+ihK+1in@r)+0EK™?) |, (2.329)

which is an asymptotic expansion valid for & > 1. One then finds for B, N > 1, withz = N/B € [0, 1],

In (f]) = (B InB — B) - (ajB In(zB) — ajB) - ((1 —z)Bln((1-2)B) — (1 - :E)B)
- B [x Inz + (1 —z)In(l - x)] . (2.330)

This is valid up to terms of order B in Stirling’s expansion. Since In B < B, the next term is small and
we are safe to stop here. Summing up the contributions from all the species, we get

Sunmixed = Kp Ec: InW, = -k, Ec: B, [:Ea Inz, + (1 —x,)In(1 - :L'a)] , (2.331)

a=1 a=1
where ., = N_/B_ is the initial dimensionless density of species a.
a a a y p

Now let’s remove all the partitions between the different species so that each of the particles is free to
explore all of the boxes. The total number of ways of placing N, particles of species a = 1 through N_
particles of species c is

B!
ixed = NN TN 2.332
Wmlxed N0| N1' . Nc' ’ ( )
where N, = B — ) _, N, is the number of vacant boxes. Again using Stirling’s rule, we find
C
Smixed = —ksB >y, Iy, (2.333)

a=0
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where y, = N,/B is the fraction of all boxes containing a particle of species a, where we include the
a = 0 term in the sum to account for the vacant boxes. Note that

Na Na Ba _
ya—E—B—a‘ B —I'afa N (2334:)

where f, = B,/B. Note that ) .. _, f, = 1because B=>._, B, .

We may now write

Yo
< < < (2.335)
Smixed = _kBB Z |:xa fa ln(fa) + fa L, lnwa] - kBB (1 - Zxa fa) 111(1 - Zwafa)
a=1 a=1 a=1
If z, =z foralla € {1,...,c}, meaning that the dimensionless number density is the same in each of
the c initial regions, then
S inmixed = kB [:L' Inz+ (1—2)In(1 — :L')]
(2.336)

C
Siised = —k:BBxZ folnf, — kB |::L' Inz+ (1—-2z)In(1 - 3:]

a=1
and thus, after identifying N = =B is the total number of particles (i.e. occupied little boxes), the entropy
of mixing is
ASi=—Nkg Y fonf, (2.337)
a=1

where N = Y¢_, N, is the total number of particles among all species (excluding vacancies) and

N, N,
= = a 2.338
Ja B Ny + N ( )

is the fraction of all boxes occupied by species a.

2.12.3 Weak solutions and osmotic pressure

Suppose one of the species is much more plentiful than all the others, and label it with a = 0. We will
call this the solvent. The entropy of mixing is then

N < N
AS. . = —k. |Nyln[ —2— N In[ —9%— 2.339
Smlx B[ On<NO+N/>+C; an<NO+N/>] ’ ( )

where N' = Zzlzl N, is the total number of solvent molecules, summed over all solvent species. The
total number of solvent species is defined to be ¢/, with ¢ = 1+’ the total number of all species including
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the solvent. We assume the solution is weak, which means N, < N’ < N,. Expanding in powers of
N'/Ny and N,/N,, we find

Spix = —k Z[Nl( > ] Z <]§;> . (2.340)

a,b=1

Consider now a solution consisting of N, molecules of a solvent and IV, molecules of species a of solute,
where a = 1,...,c, with ¢’ the total number of solute species. (The total number of all species is then
c = 14 c’.) We begin by expanding the Gibbs free energy G(T', p, Ny, Ny, ..., N_,) in powers of the solute
populations. Recall G = E —T'S+pV, so we should be careful to include a contribution AG = —TAS_ ;.
due to the entropy of mixing. Thus,

N,
G(T7p7N07{Na}) Nogo(Tp +k TZN In <6N>

, (2.341)

1 c

+ ZNa %(T,p) + m Z Aab(Tap) Na Nb
a=1

a,b=1

The first term on the RHS corresponds to the Gibbs free energy of the solvent. The second term is due
to the entropy of mixing. The third term is the contribution to the total free energy from the individual
species. Note the factor of e in the denominator inside the logarithm, which accounts for the second
term in the brackets on the RHS of eqn. 2.340. The last term is due to interactions between the species
plus a contribution from AS_ ; . It is truncated at second order in the solute populations.

The chemical potential for the solvent is

e i
Ho(Tp) = 5 = ao(Top) — TZx - = Z Ap(T,p)z,zy (2.342)
0 a,b:l

and the chemical potential for species a is

(%G =kyTInz, +9,(T,p) + ) _ Aup(T\p)z) (2.343)

a b=1

o (T, p) =

where z, = N,/N, is the concentrations of solute species a. By assumption, the last term on the RHS

of each of these equations is small, since N’ < N,, where N’ = Zfllzl N, is the total number of solute
molecules. To lowest order, then, we have

o(T,p) = go(T,p) — x kT (2.344)
to(T,p) = kT Inw, + ¢, (T,p) (2.345)

where z = Za 1 T, is the total solute concentration.

If we add sugar to a solution confined by a semipermeable membrane”*, the pressure increases! To see
why, consider a situation where a rigid semipermeable membrane separates a solution (solvent plus

24‘Semipermeable’ in this context means permeable to the solvent but not the solute(s).
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Osmotic pressure: Do
— !
T =p0gAh Ab
Po
|
pure solvent p ! p+m withsolute

Figure 2.29: Osmotic pressure causes the column on the right side of the U-tube to rise higher than the
column on the left by an amount Ak = 7/pg.

solutes) from a pure solvent. There is energy exchange through the membrane, so the temperature is
T throughout. There is no volume exchange, however: dV = dV’ = 0, hence the pressure need not be
the same. Since the membrane is permeable to the solvent, we have that the chemical potential 1, is the
same on each side. This means

90(T,p) — wkgT = go(T,py) (2.346)

where p, ; is the pressure on the left and right sides of the membrane, and x = N/N, is again the
total solute concentration. This equation once again tells us that the pressure p cannot be the same on
both sides of the membrane. If the pressure difference is small, we can expand in powers of the osmotic
pressure, m = p, — p, , and we find

3M0>
T=xk,T — . 2.347
? / < op Jr ( :
But a Maxwell relation (§2.8) guarantees
e _ (2 =o(T,p)/N, 2.348
(30),..= (5w), =vewm. 349

where v(T), p) is the molar volume of the solvent.
v =zRT | (2.349)

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’)
solutions! The resulting pressure has a demonstrable effect, as sketched in fig. 2.29. Consider a solution
containing v moles of sucrose (C;,H,0,;) per kilogram (55.52mol) of water at 30°C. We find 7 =
2.5atm when v = 0.1.

One might worry about the expansion in powers of 7 when 7 is much larger than the ambient pressure.
But in fact the next term in the expansion is smaller than the first term by a factor of 7x,, where x is
the isothermal compressibility. For water one has k. &~ 4.4 x 107° (atm) !, hence we can safely ignore
the higher order terms in the Taylor expansion.
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2.12.4 Effect of impurities on boiling and freezing points

Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two
phases are identical:

pe(T,p) = p(T,p) (2.350)

Here we write p1° for ;1 to emphasize that we are talking about a phase with no impurities present. This
equation provides a single constraint on the two variables 7" and p, hence one can, in principle, solve to
obtain 7" = Tj(p), which is the equation of the liquid-vapor coexistence curve in the (7', p) plane. Now
suppose there is a solute present in the liquid. We then have

p (T, p,x) = (T, p) — ks T, (2.351)

where z is the dimensionless solute concentration, summed over all species. The condition for liquid-
vapor coexistence now becomes
pr(T,p) — wky T = po(T,p) - (2.352)

This will lead to a shift in the boiling temperature at fixed p. Assuming this shift is small, let us expand
to lowest order in (T — T (p)), writing

0 * a:ug * 0 * a:u(\)/ *
e (Top) + | 57 (T_TO) —xkpy T = py(Tg,p) + | 57+ (T_TO) . (2.353)
p p

oT
), (ov)
L) = (22 (2.354)
(57), = (%),

from a Maxwell relation deriving from exactness of dG. Since S is extensive, we can write S = (N/N, ) s(T', p),
where s(T, p) is the molar entropy. Solving for T, we obtain

Note that

zR[T§(p))
. (p) ’

where ¢, = Tj - (s, — s, ) is the latent heat of the liquid-vapor transition (see §2.11.2). The shift AT* =
T* — Ty is called the boiling point elevation.

T*(p,z) =T5(p) + (2.355)

As an example, consider seawater, which contains approximately 35g of dissolved Na®™Cl~ per kilo-
gram of H,O. The atomic masses of Na and Cl are 23.0 and 35.4, respectively, hence the total ionic
concentration in seawater (neglecting everything but sodium and chlorine) is given by

2. 35 1000
T = 23.0+35'4/ o~ 0022 (2.356)

The latent heat of vaporization of H,O at atmospheric pressure is £ = 40.7kJ /mol, hence

(0.022)(8.3J/mol K) (373 K)?

AT =
4.1 x 10* J /mol

~06K . (2.357)

Put another way, the boiling point elevation of H,O at atmospheric pressure is about 0.28°C per percent
solute. We can express this as AT* = Km, where the molality m is the number of moles of solute per
kilogram of solvent. For H,O, we find K = 0.51°C kg/mol.
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Latent Heat | Melting | Latent Heat of | Boiling
Substance | of Fusion /¢ Point | Vaporization /. | Point
J/g °C J/g °C
C,H;OH 108 -114 855 78.3
NH, 339 -75 1369 -33.34
CO, 184 -57 574 -78
He - - 21 -268.93
H 58 -259 455 -253
Pb 24.5 372.3 871 1750
N, 25.7 -210 200 -196
O, 13.9 -219 213 -183
H,O 334 0 2270 100

Table 2.4: Latent heats of fusion and vaporization at p = 1 atm.

Similar considerations apply at the freezing point, when we equate the chemical potential of the solvent
plus solute to that of the pure solid. The latent heat of fusion for H,O is about £; = T - (sy1qun — Ssorm) =

6.01 kJ /mol®® We thus predict a freezing point depression of AT* = —xR[T{] 2/ ly = 1.03°C - 2[%)]. This can
be expressed once again as AT* = —Km, with K = 1.86°C kg/mol?°.

2.12.5 Binary solutions

Consider a binary solution, and write the Gibbs free energy G(T',p, N, Ng) as

N
G(T7p7 NA7 NB) = NA M%(T7p) + NB M%(T7p) + NAkBT In <7A>

N, + N
ATTE (2.358)
+ N, len( Ng >+)\ Nalg
. _ ‘B _alVB
° Nj + Ng Nj + Ng

The first four terms on the RHS represent the free energy of the individual component fluids and the
entropy of mixing. The last term is an interaction contribution. With A > 0, the interaction term prefers
that the system be either fully A or fully B. The entropy contribution prefers a mixture, so there is a
competition. What is the stable thermodynamic state?

It is useful to write the Gibbs free energy per particle, g(T',p,z) = G/(N, + Ng), in terms of T, p, and

the concentration x = x5 = Ng /(N + Ng) of species B (hence x, = 1 — x is the concentration of species
A). Then

g(T,p,x) =1 —2)p +xpg +k,T{rnz+ (1 —2z)In(l —z)| + Az (1 —z) . (2.359)

%Gee table 2.4, and recall M = 18 g is the molar mass of H,O.
26Tt is more customary to write AT* = T** - T

pure solvent X lution 1N the case of the freezing point depression, in
which case AT™* is positive.
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molar free energy g

0 0.2 0.4 0.6 0.8 1
concentration x

Figure 2.30: Gibbs free energy per particle for a binary solution as a function of concentration x = zg
of the B species (pure A at the left end = 0 ; pure B at the right end z = 1), in units of the interaction
parameter \. Dark red curve: T = 0.65\/kg > T, ; green curve: T' = \/2kg = 1 ; blue curve:
T = 0.40 \/ky < T.. We have chosen p = 0.60 A — 0.50 ks T and pg = 0.50 A — 0.50 ks 7. Note that the
free energy ¢(T', p, z) is not convex in z for T' < T, indicating an instability and necessitating a Maxwell
construction.

In order for the system to be stable against phase separation into relatively A-rich and B-rich regions,
we must have that g(7', p, z) be a convex function of z. Our first check should be for a local instability,
i.e. spinodal decomposition. We have

dg ¢ 0 x
% = ug — pp + ]{TBT In <ﬁ> + A (1 — 2:L') (2360)

and
9% kT N kT
or2 = 1—2x

—2\ . (2.361)

The spinodal is given by the solution to the equation 9%/92? = 0, which is

T (z) = i—)\ x(l—z) . (2.362)

Since z (1 — z) achieves its maximum value of § at z = 3, we have T* < k; /2.

In fig. 2.30 we sketch the free energy ¢(7',p,x) versus z for three representative temperatures. For
T > M\/2kg, the free energy is everywhere convex in A\. When T' < \/2k,, there free energy resembles
the blue curve in fig. 2.30, and the system is unstable to phase separation. The two phases are said to be
immiscible, or, equivalently, there exists a solubility gap. To determine the coexistence curve, we perform
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Figure 2.31: Upper panels: chemical potential shifts Apt = Aua £ App versus concentration r = xg.
The dashed black line is the spinodal, and the solid black line the coexistence boundary. Temperatures
range from 7" = 0 (dark blue) to 7" = 0.6 A\ /kg (red) in units of 0.1 A /kz. Lower panels: phase diagram in
the (T, Ap+) planes. The black dot is the critical point.

a Maxwell construction, writing

9(@y) — g(@y) _ @
Ty — T, ox

_ 9

== (2.363)

Ty To

Here, z; and z, are the boundaries of the two phase region. These equations admit a symmetry of
x <+ 1 —x, hence we can set z = x; and =, = 1 — z. We find

g(1 —x) —g(z) = (1 - 22) (ug — pa) (2.364)
and invoking eqns. 2.363 and 2.360 we obtain the solution

A 1—2x
Tcoex(x) = g : In (1__95)

T

(2.365)
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Figure 2.32: Phase diagram for the binary system. The black curve is the coexistence curve, and the
dark red curve is the spinodal. A-rich material is to the left and B-rich to the right.

The phase diagram for the binary system is shown in fig. 2.32. For T' < T*(x), the system is unstable,
and spinodal decomposition occurs. For T*(z) < T < T (x), the system is metastable, just like the van
der Waals gas in its corresponding regime. Real binary solutions behave qualitatively like the model
discussed here, although the coexistence curve is generally not symmetric under x <+ 1 — z, and the
single phase region extends down to low temperatures for x ~ 0 and = ~ 1. If X itself is temperature-
dependent, there can be multiple solutions to eqns. 2.362 and 2.365. For example, one could take
Ao T
\NT) =29 _ | 2.366

1) = 2 (2366)
In this case, kT > A at both high and low temperatures, and we expect the single phase region to be
reentrant. Such a phenomenon occurs in water-nicotine mixtures, for example.

It is instructive to consider the phase diagram in the (7', ;1) plane. We define the chemical potential shifts,

App = pig — px = kg TIn(1 — ) + A2? (2.367)
Apg = pg — pg =k Tlnz +X(1 —z)? | (2.368)

and their sum and difference, Ay = App £ Apg. From the Gibbs-Duhem relation, we know that
we can write ug as a function of 7', p, and p,. Alternately, we could write Ay, in terms of T', p, and
Ap, so we can choose which among Ay, and Ap_ we wish to use in our phase diagram. The results
are plotted in fig. 2.31. It is perhaps easiest to understand the phase diagram in the (7', Ap_) plane.
At low temperatures, below T' = T, = \/2k,, there is a first order phase transition at Au_ = 0. For
T < T, = )2k, and Ap_ = 0T, i.e. infinitesimally positive, the system is in the A-rich phase, but for
Ap_ = 07, ie. infinitesimally negative, it is B-rich. The concentration = xg changes discontinuously
across the phase boundary. The critical point lies at (T, Apu_) = (A\/2kg, 0).
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If we choose N = N, + N to be the extensive variable, then fixing N means dN, + dNg = 0. So st fixed
T and p,

dG‘T,p = [p dNA + HB dNB = d'g‘T,p = —A/L_ d;p . (2369)
Since Ap_(z,T) = o(x,T)— (1 —2,T) = —Ap_(1—2,T), where p(z,T) = Az — kT In 2, we have that

1-x
the coexistence boundary in the (z, A_) plane is simply the line Ay = 0, because [da’ Ap_(2',T) = 0.

Note also that there is no two-phase region in the (T, Au) plane; the phase boundary in this plane is
a curve which terminates at a critical point. As we saw in §2.11, the same situation pertains in single
component (p, v, T') systems. That is, the phase diagram in the (p, v) or (T, v) plane contains two-phase
regions, but in the (p, T") plane the boundaries between phases are one-dimensional curves. Any two-
phase behavior is confined to these curves, where the thermodynamic potentials are singular.

The phase separation can be seen in a number of systems. A popular example involves mixtures of
water and ouzo or other anise-based liqueurs, such as arak and absinthe. Starting with the pure liqueur
(x = 1), and at a temperature below the coexistence curve maximum, the concentration is diluted by
adding water. Follow along on fig. 2.32 by starting at the point (x = 1, k;7/\ = 0.4) and move to the
left. Eventually, one hits the boundary of the two-phase region. At this point, the mixture turns milky,
due to the formation of large droplets of the pure phases on either side of coexistence region which
scatter light, a process known as spontaneous emulsification”’. As one continues to dilute the solution
with more water, eventually one passes all the way through the coexistence region, at which point the
solution becomes clear once again, and described as a single phase.

What happens if A < 0? In this case, both the entropy and the interaction energy prefer a mixed phase,
and there is no instability to phase separation. The two fluids are said to be completely miscible. An
example would be benzene, C;H;, and toluene, C,Hg (i.e. C4gH;CH;). The phase diagram would be
blank, with no phase boundaries below the boiling transition, because the fluid could exist as a mixture
in any proportion.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the
boiling points of our A and B fluids are T} ;, and without loss of generality let us take Ty < 73 at some
given fixed pressure?®. This means u%(Tx,p) = px(Tx,p) and uk (T3, p) = pg(Ts, p). What happens to
the mixture? We begin by writing the free energies of the mixed liquid and mixed vapor phases as

6u(T,p,2) = (1= 2) i (T,p) + 2 p(T,p) + ko T |z + (1 = 2) (1 — 1) + A a(l—2)  (2370)

g (T,p,x) = (1 —z) up(T,p) + z pg(T,p) + kBT[x Inz+ (1—2)In(1 - w)] +A,z(l—2) . (2.371)

Typically A\, ~ 0. Consider these two free energies as functions of the concentration z, at fixed 7" and
p. If the curves never cross, and g, (z) < g, (z) for all z € [0, 1], then the liquid is always the state of
lowest free energy. This is the situation in the first panel of fig. 2.33. Similarly, if g, (z) < g, (x) over
this range, then the mixture is in the vapor phase throughout. What happens if the two curves cross at
some value of x? This situation is depicted in the second panel of fig. 2.33. In this case, there is always

%’ An emulsion is a mixture of two or more immiscible liquids.
2We assume the boiling temperatures are not exactly equal.
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Figure 2.33: Gibbs free energy per particle g for an ideal binary solution for temperatures T' € [T, T3].
The Maxwell construction is shown for the case Ty < T < Tj. Right: phase diagram, showing two-
phase region and distillation sequence in (z,7") space.

a Maxwell construction which lowers the free energy throughout some range of concentration, i.e. the
system undergoes phase separation.

In an ideal fluid, we have \; = A, = 0, and setting g, = g,, requires

where Ay, /B(T, p) = pia /B(T, P) — pin /B(T, p). Expanding the chemical potential about a given tempera-
ture T,

W(p) = T p) s ) (01 = L ey 373)

where we have used the fact that (9u/0T), y = —0S/0ON1,, = —s(T p) is the entropy per particle, and
(0s/0T),, x = c,/T. Thus, expanding A,uA/B about TR /g, We have

A% L

T — T2+ ...
2T ( A+

App = g — i = (sa = sA)IT = T3) +

v (2.374)
Apug = s — iy = (s§ — s§)(T — Tg) + L™ (T = T3)" + ..

B

We assume s, g > sg g, i.e. the vapor phase has greater entropy per particle. Thus, Ay, 5(T') changes

sign from negative to positive as 71" rises through Ty /B If we assume that these are the only sign changes

for Ap, /B(T) at fixed p, then eqn. 2.372 can only be solved for T € [T, T]. This immediately leads to

the phase diagram in the rightmost panel of fig. 2.33.

According to the Gibbs phase rule, with ¢ = 2, two-phase equilibrium (¢ = 2) occurs along a subspace
of dimension d.,, = 2+ ¢ — ¢ = 2. Thus, if we fix the pressure p and the concentration z = x,, liquid-gas
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Figure 2.34: Negative (left) and positive (right) azeotrope phase diagrams. From Wikipedia.

equilibrium occurs at a particular temperature 7, known as the boiling point. Since the liquid and the
vapor with which it is in equilibrium at 7* may have different composition, i.e. different values of z, one
may distill the mixture to separate the two pure substances, as follows. First, given a liquid mixture of
A and B, we bring it to boiling, as shown in the rightmost panel of fig. 2.33. The vapor is at a different
concentration z than the liquid (a lower value of z if the boiling point of pure A is less than that of pure
B, as shown). If we collect the vapor, the remaining fluid is at a higher value of z. The collected vapor
is then captured and then condensed, forming a liquid at the lower = value. This is then brought to
a boil, and the resulting vapor is drawn off and condensed, etc The result is a purified A state. The
remaining liquid is then at a higher B concentration. By repeated boiling and condensation, A and B
can be separated. For liquid-vapor transitions, the upper curve, representing the lowest temperature at
a given concentration for which the mixture is a homogeneous vapor, is called the dew point curve. The
lower curve, representing the highest temperature at a given concentration for which the mixture is a
homogeneous liquid, is called the bubble point curve. The same phase diagram applies to liquid-solid
mixtures where both phases are completely miscible. In that case, the upper curve is called the liquidus,
and the lower curve the solidus.

When a homogeneous liquid or vapor at concentration x is heated or cooled to a temperature 7" such
that (x,T) lies within the two-phase region, the mixture phase separates into the the two end compo-
nents (z;,T) and (z¥,T), which lie on opposite sides of the boundary of the two-phase region, at the
same temperature. The locus of points at constant 7" joining these two points is called the tie line. To
determine how much of each of these two homogeneous phases separates out, we use particle number
conservation. If i, , is the fraction of the homogeneous liquid and homogeneous vapor phases present,
then n z} + nyad = x, which says n, = (v — 23)/(zf — 2¥) and n, = (z — 2})/(z¥ — z}). This is known
as the lever rule.
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Figure 2.35: Free energies before Maxwell constructions for a binary fluid mixture in equilibrium with a
vapor (A\y = 0). Panels show (a) A\, = 0 (ideal fluid), (b) A\, < 0 (miscible fluid; negative azeotrope),
(c) Aiz > 0 (positive azeotrope), (d) As; > 0 (heteroazeotrope). Thick blue and red lines correspond
to temperatures Tx and 7}, respectively, with Ty < T3. Thin blue and red curves are for temperatures
outside the range [Tx, T5]. The black curves show the locus of points where g is discontinuous, i.e. where
the liquid and vapor free energy curves cross. The yellow curve in (d) corresponds to the coexistence
temperature for the fluid mixture. In this case the azeotrope forms within the coexistence region.

For many binary mixtures, the boiling point curve is as shown in fig. 2.34. Such cases are called
azeotropes. For negative azeotropes, the maximum of the boiling curve lies above both T ;. The free
energy curves for this case are shown in panel (b) of fig. 2.35. For z < z*, where z* is the azeotropic
composition, one can distill A but not B. Similarly, for # > z* one can distill B but not A. The situation
is different for positive azeotropes, where the minimum of the boiling curve lies below both T} g, corre-
sponding to the free energy curves in panel (c) of fig. 2.35. In this case, distillation (i.e. condensing and
reboiling the collected vapor) from either side of z* results in the azeotrope. One can of course collect
the fluid instead of the vapor. In general, for both positive and negative azeotropes, starting from a
given concentration z, one can only arrive at pure A plus azeotrope (if + < x*) or pure B plus azeotrope
(if > z*). Ethanol (C,H;OH) and water (H,O) form a positive azeotrope which is 95.6% ethanol and
4.4% water by weight. The individual boiling points are T¢, y_oy = 78.4°C, 17}, = 100°C, while the
azeotrope boils at 7%, = 78.2°C. No amount of distillation of this mixture can purify ethanol beyond
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Figure 2.36: Phase diagram for a eutectic mixture in which a liquid L is in equilibrium with two solid
phases a and 3. The same phase diagram holds for heteroazeotropes, where a vapor is in equilibrium
with two liquid phases.

the 95.6% level. To go beyond this level of purity, one must resort to azeotropic distillation, which in-
volves introducing another component, such as benzene (or a less carcinogenic additive), which alters
the molecular interactions.

To model the azeotrope system, we need to take A\, # 0, in which case one can find two solutions to
the energy crossing condition g, (z) = g, (x). With two such crossings come two Maxwell constructions,
hence the phase diagrams in fig. 2.34. Generally, negative azeotropes are found in systems with \; < 0,
whereas positive azeotropes are found when A; > 0. As we’ve seen, such repulsive interactions between
the A and B components in general lead to a phase separation below a coexistence temperature T, ()
given by eqn. 2.365. What happens if the minimum boiling point lies within the coexistence region?
This is the situation depicted in panel (d) of fig. 2.35. The system is then a liquid/vapor version of the
solid /liquid eutectic (see fig. 2.36), and the minimum boiling point mixture is called a heteroazeotrope.

2.13 Some Concepts in Thermochemistry

2.13.1 Chemical reactions and the law of mass action

Suppose we have a chemical reaction among c species, written as
A +CGA 4+ +CA =0 (2.375)

where A, represents a chemical formula and ¢, the corresponding stoichiometric coefficient. For exam-
ple, we could have
—3H,— N, +2NH; =0  (3H,+N, = 2NH,) (2.376)
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for which
(Hy)=-3 , ((Ny)=-1 , ((NHy)=2 . (2.377)
When (, > 0, the corresponding A, is a product; when (, < 0, the corresponding A, is a reactant. The

bookkeeping of the coefficients {, which ensures conservation of each individual species of atom in the
reaction(s) is known as stoichiometry®’

Now we ask: what are the conditions for equilibrium? At constant 7" and p, which is typical for many
chemical reactions, the conditions are that G (T, D, {Na}) be a minimum. Now

dG = —SdT +Vdp+» p,dN, | (2.378)

so if we let the reaction go forward, we have dN, = (,, and if it runs in reverse we have dN, = —(,.
Thus, setting dT" = dp = 0, we have the equilibrium condition

> lotta=0 . (2.379)
a=1

Let us investigate the consequences of this relation for ideal gases. The chemical potential of the a'*
species is
1a(T.p) = kT 8,(T) + kyTlnp, . (2.380)

Here p, = pz,, is the partial pressure of species a, where z, = N,/ >, N, the dimensionless concentra-
tion of species a. Chemists sometimes write z, = [A,] for the concentration of species a. In equilibrium
we must have

S G [mp+ma, +o,m)] =0 (2.381)

which says

D Cna, ==Y ¢ lnp—Y (¢ o,(T) . (2.382)

2 Antoine Lavoisier, the “father of modern chemistry”, made pioneering contributions in both chemistry and
biology. In particular, he is often credited as the progenitor of stoichiometry. An aristocrat by birth, Lavoisier
was an administrator of the Ferme générale, an organization in pre-revolutionary France which collected taxes on
behalf of the king. At the age of 28, Lavoisier married Marie-Anne Pierette Paulze, the 13-year-old daughter
of one of his business partners. She would later join her husband in his research, and she played a role in his
disproof of the phlogiston theory of combustion. The phlogiston theory was superseded by Lavoisier’s work,
where, based on contemporary experiments by Joseph Priestley, he correctly identified the pivotal role played
by oxygen in both chemical and biological processes (i.e. respiration). Despite his fame as a scientist, Lavoisier
succumbed to the Reign of Terror. His association with the Ferme générale, which collected taxes from the poor
and the downtrodden, was a significant liability in revolutionary France (think Mitt Romney vis-a-vis Bain Cap-
ital). Furthermore — and let this be a lesson to all of us — Lavoisier had unwisely ridiculed a worthless pseu-
doscientific pamphlet, ostensibly on the physics of fire, and its author, Jean-Paul Marat. Marat was a journalist
with scientific pretensions, but apparently little in the way of scientific talent or acumen. Lavoisier effectively
blackballed Marat’s candidacy to the French Academy of Sciences, and the time came when Marat sought re-
venge. Marat was instrumental in getting Lavoisier and other members of the Ferme générale arrested on charges
of counterrevolutionary activities, and on May 8, 1794, after a trial lasting less than a day, Lavoisier was guil-
lotined. Along with Fourier and Carnot, Lavoisier’s name is one of the 72 engraved on the Eiffel Tower. Source:
http://www.vigyanprasar.gov.in/scientists/ALLavoisier.htm
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Exponentiating, we obtain the law of mass action:
[[zée =p 2 exp (— e %(T)) = x(p,T) . (2.383)

The quantity «(p,T") is called the equilibrium constant. When « is large, the LHS of the above equation
is large. This favors maximal concentration x, for the products (, > 0) and minimal concentration z,
for the reactants ((, < 0). This means that the equation REACTANTS = PRODUCTS is shifted to the
right, i.e. the products are plentiful and the reactants are scarce. When &« is small, the LHS is small and
the reaction is shifted to the left, i.e. the reactants are plentiful and the products are scarce. Remember
we are describing equilibrium conditions here. Now we observe that reactions for which > (, > 0 shift
to the left with increasing pressure and shift to the right with decreasing pressure, while reactions for
which )~ ¢, > 0 the situation is reversed: they shift to the right with increasing pressure and to the left
with decreasing pressure. When ) ¢, = 0 there is no shift upon increasing or decreasing pressure.

The rate at which the equilibrium constant changes with temperature is given by

Olnk ,
( o >p: NI (2384)

Now from eqn. 2.380 we have that the enthalpy per particle for species ¢ is

_ g
hy = ptg — T ( o ),, : (2.385)

sinceH=G+ TS and S = —(0G/9T), . We find

he = —kaT? $L(T) | (2.386)
and thus o1 S o AR
nk 4
) =&icala 2.387
( T >p kT2 kT2 (2.387)

where Ah is the enthalpy of the reaction, which is the heat absorbed or emitted as a result of the reaction.

When Ah > 0 the reaction is endothermic and the yield increases with increasing 7. When Ah < 0 the
reaction is exothermic and the yield decreases with increasing 7T'.

As an example, consider the reaction H, + I, = 2 HI. We have
C(Hy) =—-1 , ((I)=-1 C(HI) =2 . (2.388)

Suppose our initial system consists of v/ moles of H,, ) = 0 moles of I, and v moles of undissociated
HI . These mole numbers determine the initial concentrations z%, where z, = v,/ 5", v, . Define

0 _
a=5"% (2.389)

in which case we have

xy = ad + %(wjg , Xy = %(wjg , 3 =01—-a)z3 . (2.390)
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AH? AR
Formula | Name State | kJ/mol || Formula | Name State | kJ/mol
Ag Silver crystal 0.0 NiSO, Nickel sulfate crystal | -872.9
C Graphite crystal 0.0 Al,O3 Aluminum oxide crystal | -1657.7
C Diamond crystal 1.9 Ca3P,0g | Calcium phosphate | gas | -4120.8
O3 Ozone gas 142.7 || HCN Hydrogen cyanide | liquid | 108.9
H>O Water liquid || -285.8 || SFs Sulfur hexafluoride | gas | -1220.5
H3BOs3 Boric acid crystal | -1094.3 || CaF; Calcium fluoride crystal | -1228.0
ZnSOy Zinc sulfate | crystal | -982.8 || CaCly Calcium chloride crystal | -795.4

Table 2.5: Enthalpies of formation of some common substances.

Then the law of mass action gives
4(1-w)?

where r = 29/2% = 1¥/1). This yields a quadratic equation, which can be solved to find a(k,r). Note
that k = x(T) for this reaction since > _, {, = 0. The enthalpy of this reaction is positive: Ah > 0.

2.13.2 Enthalpy of formation

Most chemical reactions take place under constant pressure. The heat @;; associated with a given iso-
baric process is

f f
Qif:/dm/pdv:<Ef—Ei>+p<vf—%>=Hf—Hi , (2.392)

where H is the enthalpy,
H=E+pV . (2.393)

Note that the enthalpy H is a state function, since F is a state function and p and V' are state variables.
Hence, we can meaningfully speak of changes in enthalpy: AH = H; —H;. If AH < 0 for a given reaction,
we call it exothermic — this is the case when @);; < 0 and thus heat is transferred to the surroundings. Such
reactions can occur spontaneously, and, in really fun cases, can produce explosions. The combustion
of fuels is always exothermic. If AH > 0, the reaction is called endothermic. Endothermic reactions
require that heat be supplied in order for the reaction to proceed. Photosynthesis is an example of an
endothermic reaction.

Suppose we have two reactions (AH)
A,

A+ B C (2.394)
and

C+D (AH), B (2.395)
Then we may write (AH)
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Figure 2.37: Left panel: reaction enthalpy and activation energy (exothermic case shown). Right panel:
reaction enthalpy as a difference between enthalpy of formation of reactants and products.

with
(AH); + (AH), = (AH)5 . (2.397)

We can use this additivity of reaction enthalpies to define a standard molar enthalpy of formation. We
tirst define the standard state of a pure substance at a given temperature to be its state (gas, liquid, or
solid) at a pressure p = 1bar. The standard reaction enthalpies at a given temperature are then defined to
be the reaction enthalpies when the reactants and products are all in their standard states. Finally, we
define the standard molar enthalpy of formation AHP(X) of a compound X at temperature 7" as the reaction
enthalpy for the compound X to be produced by its constituents when they are in their standard state.
For example, if X = SO,, then we write

AH?[SO,)

S+ 0, SO, . (2.398)

The enthalpy of formation of any substance in its standard state is zero at all temperatures, by definition:
AH?[0,] = AHY[He] = AHY[K] = AH?[Mn] = 0, etc.

Suppose now we have a reaction
aA+bB -2 ccrdD . (2.399)

To compute the reaction enthalpy AH, we can imagine forming the components A and B from their
standard state constituents. Similarly, we can imagine doing the same for C' and D. Since the number of
atoms of a given kind is conserved in the process, the constituents of the reactants must be the same as
those of the products, we have

AH = —a AH(A) — b AH(B) + c AH)(C) + d AH)(D) . (2.400)

A list of a few enthalpies of formation is provided in table 2.5. Note that the reaction enthalpy is inde-
pendent of the actual reaction path. That is, the difference in enthalpy between A and B is the same
whether the reactionis A — Bor A — X — (Y + Z) — B. This statement is known as Hess’s Law.
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Note that
dH=dE +pdV +Vdp=dQ+Vdp |, (2.401)
hence
dQ OH
C = <—> = <—> . (2.402)
p dT » oT »
We therefore have .
H(T,p,v) = H(Ty, p,v) + I//dT/ e, (T") . (2.403)
TO

For ideal gases, we have ¢, (1) = (1+ % f) R. For real gases, over a range of temperatures, there are small
variations:

ep(T)=a+ BT +yT* . (2.404)

Two examples (300K < T' < 1500 K, p = 1atm):

Os: a=25503 m(;]lK ., B=13612x 1073 mofKZ .y =-42.553 x 1077 mo‘ng
H,O: «a=30.206 mo‘]lK ., £ =09.936x10"3 mo‘fw ., y=11.14x 1077 mofK3
If all the gaseous components in a reaction can be approximated as ideal, then we may write
(AH) iy = (AE)p + 3 G RT (2.405)

where the subscript ‘rxn” stands for ‘reaction’. Here (AFE)
products.

is the change in energy from reactants to

rxXn

2.13.3 Bond enthalpies

The enthalpy needed to break a chemical bond is called the bond enthalpy, h[e]. The bond enthalpy is
the energy required to dissociate one mole of gaseous bonds to form gaseous atoms. A table of bond
enthalpies is given in Tab. 2.6. Bond enthalpies are endothermic, since energy is required to break
chemical bonds. Of course, the actual bond energies can depend on the location of a bond in a given
molecule, and the values listed in the table reflect averages over the possible bond environment.

The bond enthalpies in Tab. 2.6 may be used to compute reaction enthalpies. Consider, for example, the
reaction 2 H,(g) + O5(g) — 2H,0(l). We then have, from the table,

(AH),,, = 2h[H—H] 4+ h[0=0] — 4h[H—O]

B (2.406)
= —483kJ/mol O,

Thus, 483 k] of heat would be released for every two moles of H,O produced, if the H,O were in the
gaseous phase. Since H,O is liquid at STP, we should also include the condensation energy of the
gaseous water vapor into liquid water. At 7" = 100°C the latent heat of vaporization is ¢ = 2270J/g,
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enthalpy enthalpy enthalpy enthalpy

bond | (kJ/mol) || bond | (kJ/mol) || bond | (kJ/mol) || bond (kJ /mol)
H-H 436 Cc-C 348 CcC-S 259 F-F 155
H-C 412 C=C 612 N-N 163 F - Cl 254
H-N 388 C=C 811 N=N 409 Cl - Br 219
H-0O 463 C—-N 305 N=N 945 Cl-1 210
H-F 565 C=N 613 N-O 157 Cl-S 250
H-Cl 431 C=N 890 N—-F 270 Br — Br 193
H— Br 366 C-0 360 N —Cl 200 Br —1 178
H-1I 299 C=0 743 N —Si 374 Br—-S 212
H-S 338 C-F 484 0-0 146 I-1 151
H-P 322 C-Cl 338 0=0 497 S-S 264
H - Si 318 C—DBr 276 O-F 185 P-P 172
C-1 238 O0-Cl 203 Si—Si 176

Table 2.6: Average bond enthalpies for some common bonds. (Credit: L. Pauling, The Nature of the
Chemical Bond (Cornell Univ. Press, NY, 1960).)

but at T = 20°C, one has ¢ = 2450 /g, hence with M = 18 we have ¢ = 44.1kJ/mol. Therefore, the
heat produced by the reaction 2 H,(g) + O4(g) = 2H,0(l) is (AH),, = —571.2kJ /mol O,. Since the

reaction produces two moles of water, we conclude that the enthalpy of formation of liquid water at STP
is half this value: AHJ[H,0] = 285.6kJ /mol.

Hydrogenation of ethene

Hydrogenation is the adding of hydrogen to a carbon-carbon double bond. Consider the hydrogenation
of ethene (ethylene): C,H, + H, = C,H;. The product is known as ethane. The energy accounting
is shown in fig. 2.38. To compute the enthalpies of formation of ethene and ethane from the bond
enthalpies, we need one more bit of information, which is the standard enthalpy of formation of C(g)
from C(s), since the solid is the standard state at STP. This value is AH?[C(g)] = 718 kJ/mol. We may
now write

—2260kJ

2C(g) + 4H(g) CyH,(g)
9 C(S) 1436 kJ 9 C(g)
2H,(g) — ' 5 4H(g)

Thus, using Hess’s law, i.e. adding up these reaction equations, we have

48kJ

2C(s) + 2Hy(g) CyHy(g)
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H\ 2 H H
/C =C\ _(AH)rxn | |
H H | ——— | H—C—C—H
-+ —124kJ | |
H H
H—H
N A avi
# bond l;‘cost (kj) total (kj) H H H ; bond | cost (k) .total (k)
|| HH | 436 | 436 1 cc | 348 | 348 |
4] HC | 412 | less | H H H 6| HC | 412 | 2472
1| c=c | 612 | 612 | T tor '
| TOTAL | 2696 | C C L

Figure 2.38: Calculation of reaction enthalpy for the hydrogenation of ethene (ethylene), CoH,.

Thus, the formation of ethene is endothermic. For ethane,
—2820kJ
2C(g) + 6H(g) ————— C,Hg(g)

9 C(S) 1436 kJ 9 C(g)

1306 kJ
3H,(g) ——— GH(g)

Add ‘em up:
~76kJ

2C(s) + 3Hy(g) CyHg(g)

which is exothermic. Thus,

CyH,(g) + Hy(g) — " 20(s) + 3Hy(g) ———— CoHylg) (2.407)
which says i
CoHy(g) + Hy(g) ———— CyHg(g) - (2.408)

The hydrogenation of ethene is thus exothermic. However, there is a high activation energy associated
with the intermediate state which prevents the reaction from taking place under normal conditions. This
may be circumvented, however, through use of a catalyst, such as a Pt, Pd, or Ni surface.

2.14 AppendixI: Integrating Factors

Suppose we have an inexact differential
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Here I am adopting the ‘Einstein convention” where we sum over repeated indices unless otherwise
explicitly stated; A, dz, = Y, A, dx,. An integrating factor exp|L(x)] is a function which, when divided
into dF, yields an exact differential:

= etaw = U du; (2.410)
ox;
Clearly we must have
o*U 0o , 1 0o , _p
Applying the Leibniz rule and then multiplying by e” yields
04; OL  0A,; oL
J—A-—: LA 2412
oz, 70z, Oz " Ox; ( )
If there are K independent variables {1,...,z}, then there are K (K — 1) independent equations of
the above form — one for each distinct (, j) pair. These equations can be written compactly as
oL
Qi Br, ;o (2.413)
where
Qz‘jk = Ay — A 5jk (2.414)
0A;  0A,
Fyj=—4—-— . 2.41
Y Ox;  Oxy (2.415)
Note that F}; is antisymmetric, and resembles a field strength tensor, and that (2,;, = —(2,,, is antisym-

metric in the first two indices (but is not totally antisymmetric in all three).

Can we solve these 1 K (K — 1) coupled equations to find an integrating factor L? In general the answer
is no. However, when K = 2 we can always find an integrating factor. To see why, let’s call x = x; and
Yy = x4. Consider now the ODE

dy  Ay(z.y)

dz Ay (z,y)
This equation can be integrated to yield a one-parameter set of integral curves, indexed by an initial
condition. The equation for these curves may be written as U, (z,y) = 0, where ¢ labels the curves. Then
along each curve we have

(2.416)

_du, _ou, 0U. dy
dx ox Oy dx
oU. A oU, (2.417)
T or A, 9y
Thus,
We y e y =e 4,4, . (2.418)

ox Y oy "
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This equation defines the integrating factor L:

1 oU, 1 oU
L=—In|——£) =—In| — —£ . 2.419
(1 %) - (5 %) 219
We now have that oU oU
— L% c — el ¢ 2.420
ASE € aw ) Ay € ay ) ( )
and hence o U
e law = de + —Sdy=dU, . (2.421)
Oz oy

2.15 Appendix II : Other Thermodynamic Cycles

2.15.1 The Stirling cycle

In §2.5.4 we analyzed the famous Carnot cycle. Many other thermodynamic cycles are commonly used.
The Stirling cycle, depicted in fig. 2.39, consists of two isotherms and two isochores. Recall the isother-
mal ideal gas equation of state, d(pV') = 0. Thus, for an ideal gas Stirling cycle, we have

pVi=psVo . ppVi=pVe (2.422)
which says
o _%o_h (2.423)
Pa Po V2

AB: This isothermal expansion is the power stroke. Assuming v moles of ideal gas throughout, we
have pV = vRT, = p,V}, hence

V2
vRT. V.
LnBz/ﬂfV?:uRQm<ﬁ>. (2.424)
Vl

Since AB is an isotherm, we have E, = E;, and from AE,; = 0 we conclude Q5 = W,;.

BC: Isochoric cooling. Since dV = 0 we have W = 0. The energy change is given by

AE@C::EE——EB::EEﬁZL;EQQ, (2.425)
fY J—
which is negative. Since W, = 0, we have @, = AE,..

CD: Isothermal compression. Clearly

Vl

vRT | %
WQD:/QV Vlz—wRﬂln<ﬁ> : (2.426)
V.

2

Since CD is an isotherm, we have E, = E_, and from AE_, = 0 we conclude Q ., = W,.
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STIRLING CYCLE

pressure p

volume V

Figure 2.39: A Stirling cycle consists of two isotherms (blue) and two isochores (green).

DA: Isochoric heating. Since dV = 0 we have W,, = 0. The energy change is given by

T,—T
AE,, =E, — E, = 7”3(7 - ) (2.427)

which is positive, and opposite to AE}, . Since W,,, = 0, we have Q,, = AE,,.

We now add up all the work contributions to obtain

W= WAB + WBC + WCD + WDA

2.428
Vi
The cycle efficiency is once again

w T
— —1-zL (2.429)
QAB T2

n

2.15.2 The Otto and Diesel cycles

The Otto cycle is a rough approximation to the physics of a gasoline engine. It consists of two adiabats
and two isochores, and is depicted in fig. 2.40. Assuming an ideal gas, along the adiabats we have
d(pV?) = 0. Thus,

Pa Vlﬁf = DPs V2ﬂy 5 Pp ‘/17 = Pc Vgﬁf s (2430)
which says
Y
Py _ Lo _ <E> . (2.431)
Pa  Pp V,
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AB:

BC:

CD:

DA:

OTTO CYCLE

pressure p

volume V

Figure 2.40: An Otto cycle consists of two adiabats (dark red) and two isochores (green).
Adiabatic expansion, the power stroke. The heat transfer is @, = 0, so from the First Law we

have W,, = —AFE,, = E, — £}, thus
iy
- = . 2.432
(i) ] (2432

Note that this result can also be obtained from the adiabatic equation of state pV? = p, V}":

1
_ (%)7 ] . (2.433)
2

Isochoric cooling (exhaust); dV' = 0 hence W, = 0. The heat @), absorbed is then

W,, = PaVi —psVo _ paVA

v—1 v—1

Vs

Qpc = Ec — B = 1

(P —pg) - (2.434)

In a realistic engine, this is the stage in which the old burned gas is ejected and new gas is inserted.

Adiabatic compression; Q., = 0and W, = E, — E,:

Vo =V, %
WCD:pcz ]iD 1:_29D11
Y- v

iy
— | = . 2.435
)] @s®
Isochoric heating, i.e. the combustion of the gas. As with BC we have dV = 0, and thus W,,, =0

The heat ), absorbed by the gas is then

Vi
-1

Qor = E, — Ep = (Pa —Pp) - (2.436)
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D dp=0 A DIESEL CYCLE

pressure p

volume V

Figure 2.41: A Diesel cycle consists of two adiabats (dark red), one isobar (light blue), and one isochore
(green).

The total work done per cycle is then

W= WAB + WBC + WCD + WDA

_ i |, (Y (2.437)
v—1 Vy ’
and the efficiency is defined to be
y—1
n= QW =1- <¥> : (2.438)
DA )

The ratio V,/V; is called the compression ratio. We can make our Otto cycle more efficient simply by
increasing the compression ratio. The problem with this scheme is that if the fuel mixture becomes
too hot, it will spontaneously ‘preignite’, and the pressure will jump up before point D in the cycle is
reached. A Diesel engine avoids preignition by compressing the air only, and then later spraying the fuel
into the cylinder when the air temperature is sufficient for fuel ignition. The rate at which fuel is injected
is adjusted so that the ignition process takes place at constant pressure. Thus, in a Diesel engine, step DA
is an isobar. The compression ratio is r = V,,/V},, and the cutoff ratio is s = V, /V,. This refinement of the
Otto cycle allows for higher compression ratios (of about 20) in practice, and greater engine efficiency.

For the Diesel cycle, we have, briefly,

V, — sV, V., —p,V,
W:pA(VA_VD)+pAA Py B+pCC PpVp

v—1 v—1
(2.439)
_ 1pa(Va = V5) . (Ps = Pc)Vss
v—1 v—1
and Vv
Qo = 12alVa = To) (2.440)

v—1
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To find the efficiency, we will need to eliminate p, and p, in favor of p, using the adiabatic equation of

state d(pV"7) = 0. Thus,
V. \ 174\
Pp =D (7:> . Do =Dx- (i) , (2.441)

where we've used p,, = p, and V, = V;,. Putting it all together, the efficiency of the Diesel cycle is

W _1 1ri=7(s7 = 1)
Qpa Y s—1

n (2.442)

2.15.3 The Joule-Brayton cycle

Our final example is the Joule-Brayton cycle, depicted in fig. 2.42, consisting of two adiabats and two
isobars. Along the adiabats we have Thus,

pVi=mV ,  pV=p Vo, (2.443)
which says
v, V, U
o _ Yo _ (&) , (2.444)
V., V; Dy

VB
Wi = /de2 =py, (Vs = V) (2.445)
VA
AE,, - B, — B, = 22U 1VA) (2.446)
N —
v
Quo = AE,, + Wy, = 122 fy " V) (2.447)
BC: Adiabatic expansion; @, = 0 and W, = E}; — E.. The work done by the gas is

PV =iV _ Vs o Vo

Be Y- 1 Y= 1 < Py VB
(2.448)

Py VB

v—1

()]
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JOULE—-BRAYTON

. P78 CYCLE
D P=pP; C

volume V

pressure p

Figure 2.42: A Joule-Brayton cycle consists of two adiabats (dark red) and two isobars (light blue).

CD: Isobaric compression at p = p;.

VD -1
1=y
p
Wep = /del =p1 (Vo = Vo) = —po (V5 = V) <p_1> (2.449)
2
VC
AE., = B, - B, =22 0o _1VC) (2.450)
ry —
VP p 7
Qep = ABcp + Wep = — 21 (Vs =V,) <_1> : (2.451)
Y= %)
DA: Adiabatic expansion; ), = 0 and W, = E, — E,. The work done by the gas is
W, — PiVo — PV _ _psz <1 _ b E)
o v-1 v-1 Py Va
1—n—1 (2.452)
_ _pVal, <&>
71 Ps

The total work done per cycle is then

W= WAB + WBC + WCD + WDA

-1
_ o (e=Va) |, <&>1 ’ (2.453)
y—1 Do
and the efficiency is defined to be
1—~1
n= QW —1 - <§—1> . (2.454)
AB 2
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216 Appendix III: Legendre Transformations

A convex function of a single variable f(z) is one for which f”(x) > 0 everywhere. The Legendre transform
of a convex function f(z) is a function g(p) defined as follows. Let p be a real number, and consider the
line y = px, as shown in fig. 2.43. We define the point x(p) as the value of = for which the difference
F(z,p) = px — f(x) is greatest. Then define g(p) = F(z(p),p).”" The value z(p) is unique if f(z) is
convex, since z(p) is determined by the equation

fzp) =p . (2.455)

Note that from p = f’ (m(p)) we have, according to the chain rule,

d -1
5 @0 =) e = 0= [w)] (2.456)
From this, we can prove that g(p) is itself convex:
d
/ _ — p—
9w = pe) - f(=0)] (2.457)
=pa'(p) + 2(p) — f'(x(p)) 2’ (p) = z(p) .
hence .
g'0) =) = [/ =0)] >0 . (2.458)
In higher dimensions, the generalization of the definition f”(z) > 0 is that a function F(zy,...,x,) is
convex if the matrix of second derivatives, called the Hessian,
O°F
Hij(x) = 81’2.—81']. (2.459)

is positive definite. That is, all the eigenvalues of H;;(x) must be positive for every x. We then define
the Legendre transform G(p) as

Glp)=p x=— F(x) (2.460)
where
p=VF . (2.461)
Note that
dG =z -dp+p-de —VF -de=zx-dp , (2.462)
which establishes that G is a function of p and that
oG
J

Note also that the Legendre transformation is self dual, which is to say that the Legendre transform of
G(p) is F(x): F — G — F under successive Legendre transformations.

3Note that g(p) may be a negative number, if the line y = pz lies everywhere below f(x).
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Figure 2.43: Construction for the Legendre transformation of a function f(x).

We can also define a partial Legendre transformation as follows. Consider a function of g variables F'(z,y),
where x = {z{,...,z,,} and y = {yy,...,yn}, with ¢ = m + n. Define p = {p;,...,p,,}, and

G(p,y) =p-z— F(z,y) (2.464)
where OF
= =1,... 2.4
Po = g (@a=1,...,m) (2.465)
These equations are then to be inverted to yield
T, =T,(p,y) = SZ (2.466)
Note that OF
P =g, (#(P.9).9) (2.467)
Thus, from the chain rule,
2 2
5ab:%: OF 0Oz,  OF oG ’ (2.468)
op, 0Ox,0x.dp, Ox,0x. dp.Op,
which says
oG Oz
Al 2.469
Op,Op,  Op, * (2469)
where the m x m partial Hessian is
2
/2
OF Oy (2.470)

Ox, 0z, Oz,
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Note that K, = K, is symmetric. And with respect to the y coordinates,

G O%F
- _ - L, 2.471
dy,, 0y, dy,, 0y, " @47
where o2
)3
w = By o, (2.472)

is the partial Hessian in the y coordinates. Now it is easy to see that if the full ¢ x ¢ Hessian matrix H,;
is positive definite, then any submatrix such as K, or L, must also be positive definite. In this case, the
partial Legendre transform is convex in {p,,...,p,,} and concave in {y,,...,y,}

2.17 Appendix IV : Useful Mathematical Relations

Consider a set of n independent variables {z, . .., z,,}, which can be thought of as a point in n-dimensional
space. Let {y;,...,y,} and {z;,..., z,} be other choices of coordinates. Then
81'@' 8332 8yj
= = 2.473
0z, ayj 0z, ( )

Note that this entails a matrix multiplication: A, = B;; C;;, where A, = 0x,/0z;, B;; = 0x,/0dy,, and
Cjx = 0y;/0z;,.. We define the determinant

J
O\ _ Oy, .. xn)
det(azk> =G, m) (2.474)

Such a determinant is called a Jacobian. Now if A = BC, then det(A) = det(B) - det(C'). Thus,

8(33‘1,...,1’”) 8(33‘1,...,1‘”) 8(y17"'>yn)
= . . 2.475
8(21,...,,2”) a(y1>"'>yn) 8(21,...,,2”) ( )
Recall also that 5
5z, = S - (2.476)

Consider the case n = 2. We have
(), (50,

(g @) GLELGLE, e

d(z,y) O(u,v) _ d(z,y)
O(u,v) O(r,s)  A(r,s) (2.478)

From this simple mathematics follows several very useful results.

We also have
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1) First, write

Now letv = y:

Thus,

2) Second, we have

which is to say

Invoking eqn. 2.481, we conclude that

3) Third, we have

which says

This is simply the chain rule of partial differentiation.

4) Fourth, we have

which says

CHAPTER 2. THERMODYNAMICS

(2.479)

(2.480)

(2.481)

(2.482)

(2.483)

(2.484)

(2.485)

(2.486)

(2.487)
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5) Fifth, whenever we differentiate one extensive quantity with respect to another, holding only inten-
sive quantities constant, the result is simply the ratio of those extensive quantities. For example,

as> S
) =2 (2.488)
<av oV

The reason should be obvious. In the above example, S(p, V,T) = V¢(p,T), where ¢ is a function of the
two intensive quantities p and 7". Hence differentiating S with respect to V holding p and 7" constant is
the same as dividing S by V. Note that this implies

as> <8S> <8S> S
95 (92 _ (22} _52 (2.489)
(av r NV ) \av ),V

where n = N/V is the particle density.

6) Sixth, suppose we have a function ¢(y, v) and we write

dP =zdy+udv . (2.490)
That is,
19)] oP
=— | = =) =9 2.491
= (G (&)= e
Now we may write
de =&, dy+ P, dv (2.492)
du =, dy+ P,,dv . (2.493)
If we demand du = 0, this yields
Oz Py,
— | = . 2.494
(50) 3,, (2454
Note that #,,, = @, . From the equation du = 0 we also derive
oy P
2 ) =- . 2.495
(5), 3, (2459)
Next, we use eqn. 2.493 with du = 0 to eliminate dy in favor of dv, and then substitute into eqn. 2.492.
This yields
ox dsyy QSUU
<%>u =P, - o (2.496)
Finally, eqn. 2.493 with dv = 0 yields
y 1
= | = . 2.497
(5), 3., (2457)

Combining the results of eqns. 2.494, 2.495, 2.496, and 2.497, we have
O(,y) _ (Oz\ (Oy\ _ (D) (0y
O(u,v) ou J, \ov ), ov J, \ou ),
(@) (-52) - (=-2) (5;) -
évy @vy Y @vy ¢vy

(2.498)




130 CHAPTER 2. THERMODYNAMICS

Thus, if » = E(S,V); then (z,y) = (7, S) and (u,v) = (—p, V), we have

a(T, S)

S = 1. (2.499)

Nota bene: It is important to understand what other quantities are kept constant, otherwise we can run
into trouble. For example, it would seem that eqn. 2.498 would also yield
Ou, N)
V) 1 . (2.500)
But then we should have
or,s) _ 9(1,5) 9(-p,V)
8(:“7 N) a a(—p, V) a(/" N)

when according to eqn. 2.498 it should be —1. What has gone wrong?

=+1 (WRONG)

The problem is that we have not properly specified what else is being held constant. In eqn. 2.499 it is
N (or i) which is being held constant, while in eqn. 2.500 it is .S (or T) which is being held constant.
Therefore a naive application of the chain rule for determinants yields the wrong result, as we have seen.

Let’s be more careful. Applying the same derivation to dE' = x dy + udv + r ds and holding s constant,
we conclude

O(w,y,s) (Ox oy Ox oy L
o(u,v,8) <8u>v78 (81} s v ), s \Ou/, =1 (2.501)
Thus, if
dE =TdS +ydX +pudN (2.502)
where (y, X) = (—p,V) or (H*, M®) or (E“, P?), the appropriate thermodynamic relations are
AT, SN) _ TS5 _
9y, X, N) (y,X )
Op, N, X) _ o Ny)
AT 5.X) 1 AT 5.4) S y) 1 (2.503)
o X5 _ A X.T)
I(u, N, S) (p, N, T)

For example,
HpV.N) ~ O(LN.8) _ aT.8v) | (2.504)

and

opVow)  ONT) TS —p) (2.505)

If we are careful, then the results in eq. 2.503 can be quite handy, especially when used in conjunction
with eqn. 2.475. For example, we have

=1

———
(8 _9(T,5,N) O(,8,N) 9(p,V,N) _ (0dp
oV Jpn O, V,N) 0(p,V,N) O(T,V,N) \oT },,n

, (2.506)
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which is one of the Maxwell relations derived from the exactness of dF (T, V, N). Some other examples
include

=1

ov d(V.p,N) 8(V,p,N) 9(S.T.N) (0T
_ y D, o » Dy
<%>p]v ~ 9(S.p,N) —9(S,T.N) 0(S,p,N) (ap >SN (2.507)

=1

(25), - 2ot TSI k) (30)
ON )p O(N,T,p) 9(u,N,p) O(N,T,p) orT

, (2.508)

which are Maxwell relations deriving from dH (S,p, N) and dG(T', p, N ), respectively. Note that due to
the alternating nature of the determinant — it is antisymmetric under interchange of any two rows or

columns — we have
8(1:7 y? Z) 8(2/7 x? Z) 8(2/7 x? Z)

0(u, v, w) - _8(u,v,w) - d(w, v, ) = (2.509)

In general, it is usually advisable to eliminate S from a Jacobian. If we have a Jacobian involving T', S,
and N, we can write

oT,5 N) O, 5 N) o(p,V,N) _ d(p,V,N)

B(s, o N) ~ 0(pV,N) (v, o, N) (s, e, N) (2510
where each e is a distinct arbitrary state variable other than V.
If our Jacobian involves the S, V, and N, we write
O(S,V.N) _SV.N) ATV,N) Cp T,V,N) 25
O(e, e N) OT,V,N) O(e,e,N) T O(e,e,N) '
If our Jacobian involves the S, p, and N, we write
o(S,p,N) _ 9(8,p,N) 9(T,p,N) _C OT,p,N) (2.512)
d(e,e,N) O(T,p,N) O(e,e,N) T OJ(e,e N) '
For example,
=1
e e
<6_T> _Ansm UESN] SN AT T (31 2513
() SN _ALSN) HLLN) SnT) Gy (9) 51
p )y 0, S,N) OV, T,N) dp,T,N) 9p,SN) C, \p)ry '

Withk = —& %—‘; the compressibility, we see that the second of these equations says k¢, = rgc,,
relating the isothermal and adiabatic compressibilities and the molar heat capacities at constant volume
and constant pressure. This relation was previously established in eqn. 2.259.
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Chapter 3

Ergodicity and the Approach to
Equilibrium

3.1 References

— R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, 1975)
An advanced text with an emphasis on fluids and kinetics.

— R. Balian, From Macrophysics to Microphysics (2 vols., Springer-Verlag, 2006)
A very detailed discussion of the fundamental postulates of statistical mechanics and their impli-
cations.)
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3.2 Modeling the Approach to Equilibrium

3.2.1 Equilibrium

A thermodynamic system typically consists of an enormously large number of constituent particles,
a typical ‘large number’ being Avogadro’s number, N, = 6.02 x 10?3. Nevertheless, in equilibrium,
such a system is characterized by a relatively small number of thermodynamic state variables. Thus,
while a complete description of a (classical) system would require us to account for O (10*) evolving
degrees of freedom, with respect to the physical quantities in which we are interested, the details of
the initial conditions are effectively forgotten over some microscopic time scale 7, called the collision
time, and over some microscopic distance scale, ¢, called the mean free pathl. The equilibrium state is
time-independent.

3.2.2 The Master Equation

Relaxation to equilibrium is often modeled with something called the master equation. Let P;(t) be the
probability that the system is in a quantum or classical state ¢ at time ¢. Then write

dPp,
=2 (WP —Wy,P) (3.1)

J

Here, W, is the rate at which j makes a transition to i. Note that we can write this equation as

dP,
=D Tyb (32)
J
where
D S (3.3)
Wi ifi=j

where the prime on the sum indicates that k£ = j is to be excluded. The constraints on the W, are that
W;; = O forall i, j, and we may take W;; = 0 (no sum on ). Fermi’s Golden Rule of quantum mechanics
says that

Wy = iV 15)p(E,) 34

where I, i) =E;|i), V is an additional potential which leads to transitions, and p(E;) is the density
of final states at energy E;. The fact that Wij > 0 means that if each P;(t = 0) > 0, then P,(t) > 0 for all
t > 0. To see this, suppose that at some time ¢ > 0 one of the probabilities P, is crossing zero and about
to become negative. But then eqn. 3.1 says that P;(t) = 3 ;Wi P;(t) = 0. So P(t) can never become
negative.

'Exceptions involve quantities which are conserved by collisions, such as overall particle number, momentum,
and energy. These quantities relax to equilibrium in a special way called hydrodynamics.
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3.2.3 Equilibrium distribution and detailed balance

If the transition rates W, are themselves time-independent, then we may formally write
Py(t) = (e7""),; F;(0) . (3.5)

Here we have used the Einstein ‘summation convention” in which repeated indices are summed over
(in this case, the j index). Note that } 0, I;; = 0, which says that the total probability ) _; P, is conserved:

dtzp_ ZF P“Z(% Zijrm):o : (3.6)

We conclude that ¢ = (1 1 --- 1)isalefteigenvector of I" with eigenvalue A = 0. The corresponding
right eigenvector, which we write as P;, satisfies I, P = 0, and is a stationary (i.e. time independent)
solution to the master equation. Generally, there is only one right/left eigenvector pair corresponding to
A = 0, in which case any initial probability distribution P;(0) converges to P;® ast — 0o, as shown in the
appendix §3.7. Note, however, that since the matrix I" is in general not symmetric, its eigenvectors may
not span, which is to say that it may contain nontrivial Jordan blocks when it is brought to canonical
form. See the appendix in §3.6 below for a complete discussion.

In equilibrium, the net rate of transitions into a state | i) is equal to the rate of transitions out of |7 ). If
for each state | j) the transition rate from |i) to | j) is equal to the transition rate from |j) to |i), we
say that the rates satisfy the condition of detailed balance. In other words, W;; P;* = W, P/ Assuming
W,; # 0and P/ # 0, we can divide to obtain

w, P .
W, " P (3.7)

Note that detailed balance is a stronger condition than that required for a stationary solution to the
master equation.

If I' = I'* is symmetric, then the right eigenvectors and left eigenvectors are transposes of each other,
hence P°! = 1/N, where N is the dimension of I'. The system then satisfies the conditions of detailed
balance. See §3.7.2 below for an example of this formalism applied to a model of radioactive decay.

3.2.4 Boltzmann’s H-theorem

Suppose for the moment that I" is a symmetric matrix, i.e. [}; = sz’- Then construct the function

ZP InP(t) . (3.8)

Then

dH dP, dP,
E:zi: o L(1+InP)= Z P

==Y I;yPWP,=) I;P(nP~InF) |
i i

(3.9)



136 CHAPTER 3. ERGODICITY AND THE APPROACH TO EQUILIBRIUM

where we have used ), I;; = 0. Now switch i <> j in the above sum and add the terms to get

daH 1
= = 5ZFZ.j(Pi—Pj) (lnP, —InP) . (3.10)
irj
Note that the ¢ = j term does not contribute to the sum. For i # j we have I';; = —W,; < 0, and using
the result
(r—y)(Inz—Iny) >0 (3.11)
we conclude B
— <0 . 3.12
dt — 0 (3.12)
In equilibrium, P/ is a constant, independent of i. We write
1
ed _ _ —
Fl=g ) 9_21 — H=-IhQ . (3.13)

If I;; # I';;, we can still prove a version of the H-theorem when there is detailed balance. Define a new
symmetric matrix

and the generalized H-function,
_ pi(t)
H(t) = ZPZ-(t) ln< e ) . (3.15)
Then
dH 1 WP,
% __2 Z(WJZPZ Wiij) ln<Wiij>
" (3.16)

LS (B i
Y ZWU <Pieq - Pjeq>

1,J

3.3 Phase Flows in Classical Mechanics

3.3.1 Hamiltonian evolution

The master equation provides us with a semi-phenomenological description of a dynamical system’s
relaxation to equilibrium. It explicitly breaks time reversal symmetry. Yet the microscopic laws of Nature
are (approximately) time-reversal symmetric. How can a system which obeys Hamilton’s equations of
motion come to equilibrium?

Let’s start our investigation by reviewing the basics of Hamiltonian dynamics. Recall the Lagrangian
L = L(q,q,t) =T — V. The Euler-Lagrange equations of motion for the action S [q(t)] = [dt L are

. d ([ OL oL
%ﬁ(a—qg)—a—qg ’ (3.17)
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where p, is the canonical momentum conjugate to the generalized coordinate g, , i.e. p» = OL/0q, .
Here N is the number of degrees of freedom of the system, which is the total number of generalized
coordinates.

The Hamiltonian, H(q, p) is obtained by a Legendre transformation,

N
)= prd,—L . (3.18)
o=1
Note that
N
oL oL oL
dH = dg dp, — —dq, — =—dq, | — — dt
z_:l <po' qo’ + qu po’ aqa qO' aqa QO'> at
o= (3.19)

N
oL oL
z:: <QO' dpo - T dq0> - a dt

Thus, we obtain Hamilton’s equations of motion,

oH . 0H OL

- = —_— —— = — ) .2
8p0 QO' Y 8(]0- aqo— po’ (3 O)

and
dH O0H 0L

T o o (3.21)

Define the rank 2V vector ¢ by its components,

q; ifl<i:<N
0, = . . (3.22)
pi_y N <i<2N

Then we may write Hamilton’s equations compactly as
oOH
by = Jii —
©i 1] a(Pj

J = < 0N><N 1N><N> (3_24)

_1N><N 0N><N

(3.23)

where

is a rank 2N matrix. Note that J* = —.J, i.e. J is antisymmetric, and that J 2= =1y yan-

For any function F (¢, p, t), the total time derivative is given by
N
dF  OF OF dq, OF dp,
I E*JZ <a—%ﬁ+a—%ﬁ>

_OF
=3 +{F,H} |,

(3.25)

where {o, o} is the Poisson bracket,

0A OB OA OB
{45} = Z (3% 9, Op, 0%) ' (3.26)
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3.3.2 Dynamical systems and the evolution of phase space volumes

Consider a general dynamical system,

de
— =Vl (3.27)

where () is a point in an n-dimensional phase space. Consider now a compact” region R, in phase
space, and consider its evolution under the dynamics. That is, R, consists of a set of points {cp |l €Ry },
and if we regard each ¢ € R, as an initial condition, we can define the time-dependent set R(¢) as the
set of points (t) that were in R, at time ¢ = 0:

= {o(t) | p(0) e Ry} . (3.28)

Now consider the volume €(t) of the set R(t). We have

= / du (3.29)
where dp = dp; dp, - - - dp,, for an n-dimensional phase space. For a Hamiltonian system, n = 2N. We
then have

Ot + dt) = /d,u—/d ‘8‘%t+dt)‘ , (3.30)
R(t+dt)  R(1) #(t
where

‘asoz-(ﬂrdt)' g, )
8()0]‘ (t) 8(9017 RN (pn)

is a determinant, which is the Jacobean of the transformation from the set of coordinates {¢; = ¢, (t)} to
the coordinates {¢; = ¢,(t + dt) }. But according to the dynamics, we have

(3.31)

@i(t+dt) = ¢;(t) + V(e(t)) dt + O(dt?) (3.32)
and therefore D (t + do) o
. (t+dt . 9
LT b 4 L dt 4 O(d?) . 3.33
0o 1) 9 g, MO 039

We now make use of the matrix equality Indet M = Tr In M, which gives us®, for small ¢,
det(1+cA) =expTrin(14+eA)=1+¢ TrA+ %52<(TrA)2 —Tr (A2)> +... (3.34)

Thus,
Q(t + dt) = Q(t) + /du V-V dt+0@dt?) (3.35)
R(t)

2Compact’ in the parlance of mathematical analysis means ‘closed and bounded’.
3The equality Indet M = Tr In M is most easily proven by bringing the matrix to diagonal form via a similarity
transformation, and proving the equality for diagonal matrices.
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which says
/d,uV \%4 /dSn \%4 (3.36)
R(t)
Here, the divergence is the phase space divergence,

V.V = Za}; , (3.37)

and we have used the divergence theorem to convert the volume integral of the divergence to a surface
integral of n - V, where n is the surface normal and dS is the differential element of surface area, and
OR denotes the boundary of the region R. We see that if V-V = 0 everywhere in phase space, then 2(¢)
is a constant, and phase space volumes are preserved by the evolution of the system.

For an alternative derivation, consider a function p(¢,t) which is defined to be the density of some
collection of points in phase space at phase space position ¢ and time ¢. This must satisfy the continuity

equation,

Do

E%—V(V):O . (3.38)
This is called the continuity equation. It says that ‘nobody gets lost’. If we integrate it over a region of

phase space R, we have
7 /d,ug = /d,uV (V) = /dSn (oV) . (3.39)

It is perhaps helpful to think of ¢ as a charge density, in which case J = ¢V is the current density. The
above equation then says

dQR / dSn-J (3.40)

where @ is the total charge contained inside the region R. In other words, the rate of increase or
decrease of the charge within the region R is equal to the total integrated current flowing in or out of R
at its boundary.

The Leibniz rule lets us write the continuity equation as

%H/vﬁgvv_o . (341)
But now suppose that the phase flow is divergenceless, i.e. V-V = 0. Then we have
D
Q <§t—|—VV>g:O . (3.42)

The combination inside the brackets above is known as the convective derivative. It tells us the total rate
of change of p for an observer moving with the phase flow. That is

d do dp; | Do

ot Q(‘P(t)7 ) = a—% dt G

8p ag Do
- Z Vige Vot = Dt

(3.43)
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OO0
L&

=Ly

Figure 3.1: Time evolution of two immiscible fluids. The local density remains constant.

If Do/Dt = 0, the local density remains the same during the evolution of the system. If we consider the
‘characteristic function’
1 ifpeR
ole,t=0) = - (344)
0 otherwise

then the vanishing of the convective derivative means that the image of the set R, under time evolution
will always have the same volume.

Hamiltonian evolution in classical mechanics is volume preserving. The equations of motion are

OH oH
_ y) = 4
+ apa ) po’ aq (3 5)

[

A point in phase space is specified by N positions g, and N momenta p,, hence the dimension of phase

spaceisn = 2N:
_(q _(4\ _ ([ +0H/op
e=() - v=(Y)-(Comen) - (3.46)

Hamilton’s equations of motion guarantee that the phase space flow is divergenceless:

N . .
B dq, Opo
v V_Z:I{E?%Jr 01)0}
7= (3.47)

S () w5}

o=1
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Thus, we have that the convective derivative vanishes, viz.

Do _ 9o

_ E —_— . = .4

Do V-No=0 , (3.48)
for any distribution (¢, t) on phase space. Thus, the value of the density o(¢(%),t) is constant, which
tells us that the phase flow is incompressible. In particular, phase space volumes are preserved.

3.3.3 Liouville’s equation and the microcanonical distribution

Let o(¢,t) = o(g, p,t) be a distribution on phase space. Assuming the evolution is Hamiltonian, we can
write

0 .
a—f:—cp-Vg:—{g,H} . (3.49)

We may also write this as 9,0 + iLo = 0, where L is a differential operator known as the Liouvillian:

N
- OH 0 O0H 0
L = — - 3.50
! = {Gpa 0q, 0q, Op, } (3:50)
Eqn. 3.49, known as Liouville’s equation. Note i LF = {F,H} for any function F(¢, t).
Recall that the evolution of quantum mechanical density matrices satisfies
00 1 -
—=—10H 3.51
5 hw,], (3.51)
whence we infer the correspondence
1.
{@H}—>E[@fq . (3.52)

Suppose that there is a family of conserved quantities A,(¢), with a € {1,...,k}, each of which is
conserved by the dynamics of the system. Such conserved quantities might include the components
of the total linear momentum (if there is translational invariance), the components of the total angular
momentum (if there is rotational invariance), and the Hamiltonian itself (if it is not explicitly time-
dependent). Now consider a distribution o(¢) = 0(A;, 4,,...,A,) which is a function only of these
various conserved quantities. That A, is conserved entails - VA, = {A,, H} = 0. Then from the chain

rule, we have
Zk do
‘P . VQ = 2 aAa

We conclude that any distribution o(¢) = o(A4;, Ay, ..., A4;) which is a function solely of conserved
dynamical quantities is a stationary solution to Liouville’s equation.

G-VA =0 . (3.53)

Clearly the microcanonical distribution,

0(E—H(p)  O(E—H(y))
D(E) Jdps(E—H(p))

op(p) = (3.54)
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is a fixed point solution of Liouville’s equation. If there were a second conserved quantity, A(¢), the
generalized microcanonical distribution,

§(E—-H(p)d(Q—Alp)  I(E—-H(p) Q- Alp))

= = 3.55
ena(¥) D(EQ) Tans(B - Hgs@ ) 0P
would be a solution to Liouville’s equation for arbitrary E and Q.
Similarly, the Gibbs distribution,
1
— —BH(#)
= e , 3.56

where Z(8) = Tr e”#H(#) is the partition function, satisfies {04, H} = 0. In the presence of multiple
conserved quantities, one defines the generalized Gibbs distribution,

k
09l) = i (— >4 Aa<<p>) , (357)

where the {4,(p)}, with a € {1,...,k}, are the conserved quantities, including among them H itself.

The coefficients {3, } are k Lagrange multipliers enforcing the k conservation constraints A,(¢) = Q,, .

3.4 Irreversibility and Poincaré Recurrence

The dynamics of the master equation describe an approach to equilibrium. These dynamics are irre-
versible: dH /dt < 0, where H is Boltzmann’s H-function. However, the microscopic laws of physics are
(almost) time-reversal invariant*, so how can we understand the emergence of irreversibility? Further-
more, any dynamics which are deterministic and volume-preserving in a finite phase space exhibits the
phenomenon of Poincaré recurrence, which guarantees that phase space trajectories are arbitrarily close
to periodic if one waits long enough.

3.4.1 Poincaré recurrence theorem

The proof of the recurrence theorem is simple. Let g, be the “7-advance mapping” which evolves points
in phase space according to Hamilton’s equations. Assume that g, is invertible and volume-preserving,
as is the case for Hamiltonian flow. Further assume that phase space volume is finite. Since energy is
preserved in the case of time-independent Hamiltonians, we simply ask that the volume of phase space
at fixed total energy E be finite, i.e.

/d,u §(F—H(q,p)) <oo (3.58)

where du = dq dp is the phase space uniform integration measure.

Theorem: In any finite neighborhood R, of phase space there exists a point ¢, which will return to R,
after m applications of g,, where m is finite.

# Actually, the microscopic laws of physics are not time-reversal invariant, but rather are invariant under the
product PCT, where P is parity, C is charge conjugation, and 7" is time reversal.
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gTRO

¥1

Figure 3.2: Successive images of a set Ry under the T-advance mapping ¢, projected onto a two-
dimensional phase plane. The Poincaré recurrence theorem guarantees that if phase space has finite
volume, and g, is invertible and volume preserving, then for any set R there exists an integer m such
that Ro N g™ Ro # 0.

Proof: Assume the theorem fails; we will show this assumption results in a contradiction. Consider the
set Y formed from the union of all sets g* R for all m:

T=JdR, (3.59)
k=0

We assume that the set {g¥ R, | k € N} is disjoint’. The volume of a union of disjoint sets is the sum of
the individual volumes. Thus,

vol(T) = “vol(gf Ry) =vol(Ry) - > 1=00 (3.60)
k=0 k=0

since vol (g% R,) = vol(R,) from volume preservation. But clearly Y is a subset of the entire phase space,
hence we have a contradiction, because by assumption phase space is of finite volume.

Thus, the assumption that the set {g* R, | k€N, } is disjoint fails. This means that there exists some pair
of integers k and [, with k # [, such that ¢* R, N g\ R, # (). Without loss of generality we may assume
k < I. Apply the inverse g-! to this relation k times to get ¢-"* R, N R, # 0. Now choose any point
¢ € 97" Ry N'Ry, where m = | — k, and define ¢, = g "¢;. Then by construction both ¢, and g" ¢,
lie within R, and the theorem is proven.

Poincaré recurrence has remarkable implications. Consider a bottle of perfume which is opened in
an otherwise evacuated room, as depicted in fig. 3.3. The perfume molecules evolve according to

>The natural numbers N is the set of non-negative integers {0, 1,2,...}.
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t = t=1s

Figure 3.3: Poincaré recurrence guarantees that if we remove the cap from a bottle of perfume in an
otherwise evacuated room, all the perfume molecules will eventually return to the bottle! (Here H is the
Hubble constant.)

Hamiltonian evolution. The positions are bounded because physical space is finite. The momenta are
bounded because the total energy is conserved, hence no single particle can have a momentum such that
T(p) > E,r, where T(p) is the single particle kinetic energy function®. Thus, phase space, however
large, is still bounded. Hamiltonian evolution, as we have seen, is invertible and volume preserving,
therefore the system is recurrent. All the molecules must eventually return to the bottle. What’s more,
they all must return with momenta arbitrarily close to their initial momenta!” In this case, we could
define the region R, as

R(]:{(q17"'7qr7p17"'7p7")‘|qi_q?|§Aqand |p]—p§)|§ApVZ,]} ) (361)
which specifies a hypercube in phase space centered about the point (g°, p).

Each of the three central assumptions — finite phase space, invertibility, and volume preservation — is
crucial. If any one of these assumptions does not hold, the proof fails. Obviously if phase space is
infinite the flow needn’t be recurrent since it can keep moving off in a particular direction. Consider
next a volume-preserving map which is not invertible. An example might be a mapping f: R — R
which takes any real number to its fractional part. Thus, f(7) = 0.14159265.... Let us restrict our
attention to intervals of width less than unity. Clearly f is then volume preserving. The action of f on
the interval [2, 3) is to map it to the interval [0,1). But [0,1) remains fixed under the action of f, so no
point within the interval [2, 3) will ever return under repeated iterations of f. Thus, f does not exhibit
Poincaré recurrence.

Consider next the case of the damped harmonic oscillator. In this case, phase space volumes contract.
For a one-dimensional oscillator obeying i + 283i + 222 = 0 one has V-V = —23 < 0, since 8 > 0
for physical damping. Thus the convective derivative is D;o = —(V-V')p = 230 which says that the
density increases exponentially in the comoving frame, as o(t) = €2 9(0). Thus, phase space volumes
collapse: Q(t) = e~292Q(0), and are not preserved by the dynamics. The proof of recurrence therefore

®In the nonrelativistic limit, 7' = p?/2m. For relativistic particles, we have T' = (p?c? + m?c*)1/2 — mc2.

7 Actually, what the recurrence theorem guarantees is that there is a configuration arbitrarily close to the initial
one which recurs, to within the same degree of closeness.
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Figure 3.4: Left: A configuration of the Kac ring with N = 16 sites and F' = 4 flippers. The flippers,
which live on the links, are represented by blue dots. Right: The ring system after one time step. Evolu-
tion proceeds by clockwise rotation. Spins passing through flippers are flipped.

fails. In this case, it is possible for the set T to be of finite volume, even if it is the union of an infinite
number of sets g¥ R, because the volumes of these component sets themselves decrease exponentially,
as vol(g" Ry) = e~ 27 vol(R,). A damped pendulum, released from rest at some small angle 6,, will
not return arbitrarily close to these initial conditions.

3.4.2 Kacring model

The implications of the Poincaré recurrence theorem are surprising — even shocking. If one takes a bottle
of perfume in a sealed, evacuated room and opens it, the perfume molecules will diffuse throughout the
room. The recurrence theorem guarantees that after some finite time 7" all the molecules will go back
inside the bottle (and arbitrarily close to their initial velocities as well). The hitch is that this could take
a very long time, e.g. much much longer than the age of the Universe.

On less absurd time scales, we know that most systems come to thermodynamic equilibrium. But how
can a system both exhibit equilibration and Poincaré recurrence? The two concepts seem utterly incom-
patible!

A beautifully simple model due to Kac shows how a recurrent system can exhibit the phenomenon of
equilibration. Consider a ring with N sites. On each site, place a ‘spin” which can be in one of two
states: up or down. Along the N links of the system, F' of them contain ‘flippers’. The configuration of
the flippers is set at the outset and never changes. The dynamics of the system are as follows: during
each time step, every spin moves clockwise a distance of one lattice spacing. Spins which pass through
flippers reverse their orientation: up becomes down, and down becomes up.

The ‘phase space’ for this system consists of 2V discrete configurations. Since each configuration maps
onto a unique image under the evolution of the system, phase space ‘volume’ is preserved. The evo-
lution is invertible; the inverse is obtained simply by rotating the spins counterclockwise. Figure 3.4
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Figure 3.5: Three simulations of the Kac ring model with N = 2500 sites and three different concentra-
tions of flippers. The red line shows the magnetization as a function of time, starting from an initial con-
figuration in which 100% of the spins are up. The blue line shows the prediction of the Stosszahlansatz,
which yields an exponentially decaying magnetization with time constant 7.

depicts an example configuration for the system, and its first iteration under the dynamics.

Suppose the flippers were not fixed, but moved about randomly. In this case, we could focus on a single
spin and determine its configuration probabilistically. Let p,, be the probability that a given spin is in
the up configuration at time n. The probability that it is up at time (n + 1) is then

i1 =1 —2)pp+2(1—p,) (3.62)

where x = F/N is the fraction of flippers in the system. In words: a spin will be up at time (n + 1) if it
was up at time n and did not pass through a flipper, or if it was down at time n and did pass through
a flipper. If the flipper locations are randomized at each time step, then the probability of flipping is
simply z = F//N. Equation 3.62 can be solved immediately:

Po=5+(1-22)"(po—3) , (3.63)
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Figure 3.6: Simulations of the Kac ring model. Top: N = 2500 sites with F' = 201 flippers. After
2500 iterations, each spin has flipped an odd number of times, so the recurrence time is 2/NV. Middle:
N = 2500 with F' = 2400, resulting in a near-complete reversal of the population with every iteration.
Bottom: N = 25000 with N = 1000, showing long time equilibration and dramatic resurgence of the
spin population.

which decays exponentially to the equilibrium value of peq = 3 with time scale

1

7(x) = Tl = oa] (3.64)

We identify 7(z) as the microscopic relaxation time over which local equilibrium is established. If we
define the magnetization m = (N, — N|)/N, then m = 2p — 1, so m;, = (1 — 22)" mo. The equilibrium
magnetization is meq = 0. Note that for § < z < 1 that the magnetization reverses sign each time step,
as well as decreasing exponentially in magnitude.

The assumption that leads to equation 3.62 is called the Stosszahlansatz®, a long German word mean-

8Unfortunately, many important physicists were German and we have to put up with a legacy of long German
words like Gedankenexperiment, Zitterbewegung, Brehmsstrahlung, Stosszahlansatz, Kartoffelsalat, etc.
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ing, approximately, ‘assumption on the counting of hits’. The resulting dynamics are irreversible: the
magnetization inexorably decays to zero. However, the Kac ring model is purely deterministic, and the
Stosszahlansatz can at best be an approximation to the true dynamics. Clearly the Stosszahlansatz fails to
account for correlations such as the following: if spin i is flipped at time n, then spin 7 + 1 will have been
flipped at time n — 1. Also if spin i is flipped at time n, then it also will be flipped at time n + N. Indeed,
since the dynamics of the Kac ring model are invertible and volume preserving, it must exhibit Poincaré
recurrence. We see this most vividly in figs. 3.5 and 3.6.

The model is trivial to simulate. The results of such a simulation are shown in figure 3.5 for a ring of
N = 1000 sites, with F' = 100 and F' = 24 flippers. Note how the magnetization decays and fluctuates

about the equilibrium value meq = 0, but that after IV iterations m recovers its initial value: m, = m,,.
The recurrence time for this system is simply [V if F' is even, and 2N if F' is odd, since every spin will
then have flipped an even number of times.

In figure 3.6 we plot two other simulations. The top panel shows what happens when z > 1, so that the
magnetization wants to reverse its sign with every iteration. The bottom panel shows a simulation for a
larger ring, with N = 25000 sites. Note that the fluctuations in m about equilibrium are smaller than in
the cases with N = 1000 sites. Why?

3.5 Remarks on Ergodic Theory

3.5.1 Definition of ergodicity
A mechanical system evolves according to Hamilton’s equations of motion. We have seen how such a
system is recurrent in the sense of Poincaré.

There is a level beyond recurrence called ergodicity. In an ergodic system, time averages over intervals
[0,T] with T" — oo may be replaced by phase space averages. The time average of a function f(¢) is
defined as

(f(9)), =

li
T—

T
1
m T/dt fle) . (3.65)
0
For a Hamiltonian system, the phase space average of the same function is defined by

(@Dee = [n@)3(E - 1(0) | [aus(E - () (3.66)

where H(p) = H(q, p) is the Hamiltonian, and where 6(z) is the Dirac d-function. The energy is fixed
tobe E = H(p(t =0)). Thus,

ergodicity <= (()), = (f®))ce - (567)

for all smooth functions f(¢) for which ( f (cp)>uCE exists and is finite. Note that we do not average over

all of phase space. Rather, we average only over a hypersurface along which H(y) = E is fixed, i.e.
over one of the level sets of the Hamiltonian function. This is because the dynamics preserves the energy.
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Ergodicity means that almost all points ¢ will, upon Hamiltonian evolution, move in such a way as to
eventually pass through every finite neighborhood on the energy surface, and will spend equal time in
equal regions of phase space.

Let X (¢) be the characteristic function of a region R:

1 ifpeR

% = 3.68
r(#) {0 otherwise, (3.68)

where H(p) = E forall ¢ € R,sodimR = 2N — 1. Then

L time spentin R
(Xr(p)), = Jim_ < 7 ) : (3.69)
If the system is ergodic, then
Dy (E)
=P(R) ==k 7

(Xr(®)), = P(R) DE) (3.70)

where P(R) is the a priori probability to find ¢ € R, based solely on the relative volumes of R and of
the entire energy-restricted phase space. Here,

D(E) :/du §(E — H(p)) :/dEE : (3.71)

Sg

called the density of states, is the surface area of phase space at energy E. The hypersurface S is the set
of points ¢ satisfying H(¢) = E, and the invariant differential surface element dX, is defined as follows.
We can write the differential phase space volume dy as the product du = dSy d(;, where dSy; is the
differential surface element for the level set S5, and (j; is a phase space coordinate locally perpendicular
to Si . We then define’

as
Ay, = —L , (3.72)
F ’VH’ H(p)=FE
and we may now write diu = dE dX';,. Note that we may also express D(E) as
_d _dQU(E)
D(E) = B /du O(E—H(p)) = —5 (3.73)

where Q(E) = [du ©(E — H(y)) is the volume of phase space over which H () < E. The density of
states for the subset R is defined as
Dy (E) = /dZE . (3.74)
R
Note that R C S, .

9Recall that the phase space coordinates don’t all have the same units! N of the coordinates have units of posi-
tion and N have units of momentum. Furthermore, some may be angles and some angular momenta. However
in any case du has units AV, where A stands for action, i.e. [du] = ML?/T. Thus while the product du = dS d(
has units of A, individually the units of dSy and d(j vary along the hypersurface S, ! However, the invariant
differential surface element dX'}; always has units of A" /E. To resolve any confusion, one may choose to rescale
so that all phase space coordinates are dimensionless.
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o

Figure 3.7: Constant phase space velocity at an irrational angle over a toroidal phase space is ergodic,
but not mixing. A circle remains a circle, and a blob remains a blob.

3.5.2 The microcanonical ensemble

The distribution,
S(E-H(p)  §(E-H(p)

op(p) = = ; (3.75)
2= TT5E) T Taps(E - H(p)
defines the microcanonical ensemble (1.CE) of Gibbs. We could also write
1
(0)),ce = B | 150 1) (376)

E

integrating over the hypersurface S, rather than the entire phase space.

3.5.3 Ergodicity and mixing

Just because a system is ergodic, it doesn’t necessarily mean that o(¢,t) — 0°U(¢), for consider the
following motion on the toroidal space (cp = (q,p) | 0<g<1l ,0<p< 1}, where we identify
opposite edges, i.e. we impose periodic boundary conditions. We also take ¢ and p to be dimensionless,
for simplicity of notation. Let the dynamics be givenby ¢ = 1 and p = «. The motion is then ¢(t) = ¢, +1
and p(t) = p, + at. Thus the phase curves are given by p = p, + a(q — ¢;) -

Now consider the average of some function f(q, p). We can write f(g, p) in terms of its Fourier transform,

F@p) = frnpe®mtmatre) (3.77)
We have, then, A ‘ '
Fla),p(t) = frnn €27 m0H 0] 2milmtom)t (3.78)

We can now perform the time average of f:

e27ri(m+om)T -1

X 15 on
_ li - 27r2(mq)+n10))
(F(@:p)), = fopo + Him =D 7 fin im0t 2ri(m + an) (3.79)

m,n

= foo fag¢Q
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Clearly,
1

1
(f(@.P)) e = /dq dp f(4,p) = foo = (F(a.0)), (3.80)
0 0

so the system is ergodic. However, if & = r/s with r,s € Z and gcd(r, s) = 1 (i.e. r and s are relatively
prime), then exp{2mi(m + an)t} = 1 whenever (m,n) = (kr, —ks) for any k € Z. Thus,

<f(q’p)>t = Z fkr,—ks e2mik(rqo—spg) , (3.81)
k=—o00
which is not the same as <f(q,p)>uCE = f070 .

The situation is depicted in fig. 3.7. If we start with the characteristic function of a disc,

o(g,p,t =0) =0(a® — (g—q)* — (0 —p)*) (3.82)
then it remains the characteristic function of a disc:
o(g.p,t) =0(a® = (g —qo—t)* = (p —py — at)?) (3.83)

For an example of a transition to ergodicity in a simple dynamical Hamiltonian model, see §3.8.

A stronger condition one could impose is the following. Let A and B be subsets of S;. Define the
measiire

V(A) = / 45 X () / 5, = ’Eg) , (3.84)

where X ,(¢) is the characteristic function of A. The measure of a set A is the fraction of the energy
surface Sy, covered by A. This means v(S) = 1, since S, is the entire phase space at energy E. Now
let g be a volume-preserving map on phase space. Given two measurable sets A and B, we say that a
system is mixing if

mixing = lim V(g"A N B) =v(A)v(B) . (3.85)

n—oo

In other words, the fraction of B covered by the n'" iterate of A, i.e. g4, is, as n — oo, simply the fraction
of S5, covered by A. The iterated map ¢" distorts the region A so severely that it eventually spreads out
‘evenly’ over the entire energy hypersurface. Of course by ‘evenly’ we mean ‘with respect to any finite
length scale’, because at the very smallest scales, the phase space density is still locally constant as one
evolves with the dynamics.

Mixing means that

(F(p)) = /du o(p,t) fe) — /d,u flp)d(E — H(‘P))//dﬂ5(E — H(p)) (3.86)
Tr

1@ 3(E -~ H(g)| /Tr[8(E - H(p)]

Physically, we can imagine regions of phase space being successively stretched and folded. During the
stretching process, the volume is preserved, so the successive stretch and fold operations map phase
space back onto itself.
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Figure 3.8: The baker’s transformation is a successive stretching, cutting, and restacking.

An example of a mixing system is the baker’s transformation, depicted in fig. 3.8, and defined by
2q, 5p if 0<g<1
9(q,p) = ( 2)1 N e 1 2 (3.87)
(2¢—-1,3p+3) if 3<qg<1 .

Note that g is invertible and volume-preserving. The baker’s transformation consists of an initial stretch
in which ¢ is expanded by a factor of two and p is contracted by a factor of two, which preserves the
total volume. The system is then mapped back onto the original area by cutting and restacking, which
we can call a “fold’. The inverse transformation is accomplished by stretching first in the vertical (p)
direction and squashing in the horizontal (¢) direction, followed by a slicing and restacking. Explicitly,

1 .

_ 5q, 2p if 0<p<s

9 (a.p) = (f 1) . 2 (3.88)
(§q+§,2p—1) it 3<p<1 .

Another example of a mixing system is Arnold’s ‘cat map”'’

9(e;p) = (la+0p]. la+2p]) . (3.89)

where [z] denotes the fractional part of z. One can write this in matrix form as

M

/
<Z,> :G ;) <Z> mod Z2 . (3.90)

9The cat map gets its name from its initial application, by Arnold, to the image of a cat’s face.
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n=>5 n=3

Figure 3.9: The multiply iterated baker’s transformation. The set A covers half the phase space and its
area is preserved under the map. Initially, the fraction of B covered by A is zero. After many iterations,
the fraction of B covered by g"A approaches 1.

The matrix M is very special because it has integer entries and its determinant is det M = 1. This means
that the inverse also has integer entries. The inverse transformation is then

M71
/
a\ _(2 -1\ [« 2
<p> = <_1 1 ) <p'> mod Z= . (3.91)
Now for something cool. Suppose that our image consists of a set of discrete points located at (n, /%, ny/k),
where the denominator k € Z is fixed, and where n; and n, range over the set {1, ..., k}. Clearly g and

its inverse preserve this set, since the entries of M and M ~! are integers. If there are two possibilities
for each pixel (say off and on, or black and white), then there are 2(k*) possible images, and the cat map
will map us invertibly from one image to another. Therefore it must exhibit Poincaré recurrence! This
phenomenon is demonstrated vividly in fig. 3.10, which shows a k = 150 pixel (square) image of a cat
subjected to the iterated cat map. The image is stretched and folded with each successive application of
the cat map, but after 300 iterations the image is restored! How can this be if the cat map is mixing? The
point is that only the discrete set of points (n,/k, ny/k) is periodic. Points with different denominators
will exhibit a different periodicity, and points with irrational coordinates will in general never return
to their exact initial conditions, although recurrence says they will come arbitrarily close, given enough
iterations. The baker’s transformation is also different in this respect, since the denominator of the p
coordinate is doubled upon each successive iteration.

The student should now contemplate the hierarchy of dynamical systems depicted in fig. 3.13, under-
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1

200 211 240 275 299 300

original 157

Figure 3.10: The Arnold cat map applied to an image of 150 x 150 pixels. After 300 iterations, the image
repeats itself. (Source: Wikipedia)

standing the characteristic features of each successive refinement''.

3.6 AppendixI: Normal matrices and Jordan canonical form

If a matrix A is normal, meaning [A4, AT] = 0, then it may be diagonalized by a unitary transformation.
Indeed, any n x n matrix A is diagonalizable by a unitary transformation if and only if A is normal.
When A is normal, the eigenspaces span, and we may choose (( L || R? ) = §*%, using Gram-Schmidt
in the case of degeneracies.

When A is not normal, while the sum of the dimensions of its eigenspaces generically is equal to its
dimension dim(A4) = n, this is not guaranteed, and it may be less than n. What is true is that any
non-normal complex matrix A can be brought to Jordan canonical form by a similarity transformation
A= Q 1AQ, where Q is invertible and

Ji

b
I

(3.92)
Jb

There is something beyond mixing, called a K-system. A K-system has positive Kolmogorov-Sinai entropy.
For such a system, closed orbits separate exponentially in time, and consequently the Liouvillian L has a Lebesgue
spectrum with denumerably infinite multiplicity.
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Here b is the number of Jordan blocks, where each block J, is of the form
J, = a : (3.93)

Thus each J, is tridiagonal, with diagonal elements all given by )\, and each element directly above
the diagonal equal to one. We denote the right and left eigenvectors of A as || R*)) = Q~'|| R*)) and

(L] = (L) Q, respectively. Each J, has only one right eigenvector, ¢ = 4, ,, whose corresponding
left eigenvector is x§' = ¢, ,, , where n,, = rank(J,). Note n = rank(A) is the sum of the dimensions of

the Jordan blocks, i.e. n = 22:1 n, . When n, = 1, the Jordan block is the 1 x 1 matrix A\, . For a non-
normal matrix A, its eigenvalues )\, may be complex. However, if all the elements of A are real, then
any complex eigenvalues must occur in complex conjugate pairs, because the characteristic polynomial
P(X\) = det()\ — A) satisfies [P(\)]" = P(\).

When )\, # Az, we have (L | RPY = ((L*||R?)) = 0. For eigenspaces with n, = 1, we may choose

(L RPY = (L™ | RPY) = 6°%, but for the nontrivial Jordan blocks with n,, > 1 we have ({ L® | R*)) =
0, as we have seen in the previous paragraph, and therefore (( L* || R*)) = 0. Real symmetric matrices
are all normal, with no Jordan blocks. For complex symmetric matrices, we may have nontrivial Jordan
blocks.

Since (L||R) = (L | R) = 0, we may write

A= P AR (L P QI Q7! (3.94)

ny,=1 nﬁ>1

and raising A to the k£ power yields

AP = P NIR (L P eI . (3.95)

n,=1 nﬁ>1

Note that J, g is upper triangular with all diagonal elements given by /\f . Note that for complex symmet-
ric matrices, the left and right eigenvectors are identical and we may write

=R =wy = (L] =] . [R) =] | (3.96)

with no complex conjugation, i.e. (L[ j)) = (j || R*)) = &5 .

3.6.1 Contrast with singular value decomposition

We now remark upon the difference between the decomposition into Jordan canonical form and the
singular value decomposition (SVD), in which we write an m x n matrix Aas A = UD VT, where U
ism x k, Visn x k (hence VIis k x n), U'TU = VIV =1, ,, and D = diag(dy,....d,) is k x k with
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k < min(m,n) and each d; > 0. The elements d, are the singular values and the rows of U and V" are the
singular vectors. Note that ATA=VD?*VTisn x nand AAT = UD?U" is m x m. If we define

k
=[[(x-4) , (3.97)
j=1
Then
P(\) =det(A — ATA) = X" *R(N) QN =det(A — AAT) = X"FR()) . (3.98)
For any square n x n complex matrix A we therefore have two decompositions, via JCF and SVD, viz.
A=QJQ'=UDVT | (3.99)

where J is the Jordan canonical form of A. When Aisnormal, k = nand U = V = (), i.e. the two
decompositions are equivalent.

3.6.2 Example

Consider the real asymmetric matrix

A2
A= (21“ da > , (3.100)
1

where a € Z is any real number. The characteristic polynomial is F'(\) = det(A — A) = (A —a)? and there
is a single eigenvalue, A = a. The right and left eigenvectors are found to be

im= (1) =G - (3.101)

where the normalization is arbitrary. Note (( L || R )) = 0. The matrix A is brought to JCF by the similarity
transformation 4 = QA Q with

o-(Y o) o oer=(0 L) o d-etae-(5l) (3102

4
Note that
imy=aimy=(y) . (El=(zle=0 1 | (3103

and that (L||R)) =

Adding another row and column to our matrix A, consider the matrix

2¢ —4a? 0
B=|(%+ 0 of |, (3.104)
0
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where both a and b are arbitrary real numbers. Since det(A — B) = (A — a)? (A — b), B thus has two
eigenvalues: \; = a and A\, = b. The decomposition of B is then

B=QLQ '@ Ml RN Lol (3.105)

where (L, = (0 0 1)and |R,) = (0 0 1)". Of course, we could mix up the various elements of
B by applying a general similarity transformation B — B’ = SBS~!, but the JCF of B’ would be the
same.

3.7 Appendix II : Formal Solution of the Master Equation

Recall the master equation P, = —T ; P;. The matrix I';; is real but not necessarily symmetric. For such

a matrix, the left eigenvectors L{ and the right eigenvectors R? are in general not related by a simple
transpose operation:

3.106)
B _ 8 (
LRy = Mg R;
We denote the right and eigenvectors by || R* )) and (( L“ ||, which are column vectors and row vectors,
respectively. Thus I" || R*)) = A, || R*)) and (L | I" = {( L* || A, , the second of which may be written as
T L*) = A\, || L)), where the column vector || L* ) is the transpose of the row vector (( L* || and I'* is
the matrix transpose of I'. The characteristic polynomial is the same in both cases:

FA) =det(A—T)=det(A-1I" (3.107)

which means that the left and right eigenvalues are the same. Note also that [F/())] * = F(\*), hence the
eigenvalues are either real or appear in complex conjugate pairs. Multiplying the eigenvector equation
for L* on the right by Rf and summing over j, and multiplying the eigenvector equation for R on
the left by L{ and summing over 4, and subtracting the two results yields (A, — Ag) (L || RPY) =0,

where the inner product is now (L[| R®)) = 3, L Rf with no complex conjugation on the bra vector.
We may now demand ({ L% || R®)) = 043, Which is our eigenvector normalization condition. As dis-
cussed above in §3.6, in the event that I" contains nontrivial Jordan blocks, its eigenvectors do not span.
However, this is a nongeneric state of affairs, and here we assume that I" contains no nontrivial Jordan
blocks.

We have seen that (L || = (1 1 --- 1) is a left eigenvector of the matrix I" with eigenvalue A = 0,
since ), I';; = 0. We do not know a priori the corresponding right eigenvector, which depends on other
details of ;. Generically, a matrix which is not normal has spanning eigenvectors, i.e. the existence of
nontrivial Jordan blocks is nongeneric. Assuming that the eigenvectors of I" span, then, let’s expand the
probability distribution P,(¢) in the right eigenvectors of I, writing

B(t)=> C,t) Ry (3.108)
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where « € {0,1,...,n — 1}, where n is the rank of I". Then

dj:i:Z%Rgz—njpj:—anangz—ZAacaRg : (3.109)
This allows us to write
% -2, C, —  C,(t)=0C,0)e Pt . (3.110)
Hence, we can write
B(t)=> C,(0)e 'Ry . (3.111)
Let @ = 1 correspond to the left eigenvector (L'|| = (1 1 --- 1). The corresponding eigenvalue

is \; = 1. It is now easy to see that Re(\,) > 0 for all @ > 1, or else the probabilities will become
negative'?. For suppose Re (\,) < 0 for some a. Then ast — 0o, the sum in eqn. 3.111 will be dominated
by the term for which A, has the largest negative real part; all other contributions will be subleading.
But we must have Y, R® = 0 since || R )) must be orthogonal to the left eigenvector ({ L° ||. Therefore,
at least one component of R{' (i.e. for some value of i) must have a negative real part, which means a
negative probability!'®> As we have already proven that an initial nonnegative distribution {P;(t = 0)}
will remain nonnegative under the evolution of the master equation, we conclude that P,(t) — P;* as
t — oo, relaxing to the A = 0 right eigenvector, with Re (\,) > 0 for all a.

3.7.1 Detailed balance

Consider an arbitrary nonnegative real upper triangular matrix 7" with 7;; > O forall 1 < i < j < n.
Let m; be a normalized distribution, i.e. 7, > 0 for all i € {1,...,n} with >, 7, = 1. Now define the
nonnegative matrix

T i<
Wy=qo 9 (3112)
Ty ifi>
and take this to be the matrix of transition rates so that the master equation is as in Eqn. 3.1
aP,
=2 (WP —W,P) . (3.113)

J

Since W,,;/W;, = m,/m;, the matrix W satisfies detailed balance relative to the distribution 7. With
I, =W, fori# jand Fm => W, (with k = i excluded from the sum) as before, we recover the form
of the master equation P, = — >, I}, P; .

How many parameters does it take to describe a general n x n transition matrix W, satisfying detailed
balance? Since there are $n(n—1) freedoms in T and n— 1 freedoms in 7, we conclude that 3 (n—1)(n+2)

12We presume that the eigenvalue A = 0 is nondegenerate.

13Since the probability P,(t) is real, if the eigenvalue with the smallest (i.e. largest negative) real part is complex,
there will be a corresponding complex conjugate eigenvalue, and summing over all eigenvectors will result in a
real value for P,(t).
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parameters are required to specify W;;. But if we drop the constraint of detailed balance, then all the
elements of I;; not lying on the diagonal are independent, corresponding to n(n — 1) parameters. Note
that we may set W, = 0 for all 7.

3.7.2 Example : Poisson processes and radioactive decay

Here we consider two examples where the state labels of the master equation denote a number, corre-
sponding to the discrete population of some group. The master equation is
mn n

dd% => Wy B =Wy B) (3.114)

Thus W,,,,, is the transition rate for the process |m) — |n).

We first consider the Poisson process, for which

if n= 1
= = (3.115)
0 ifn#m+1.
We then have
Lo _ NP, - P) (3.116)
dt - n—1 n) .
The generating function P(z,t) = > >, 2" P, (t) then satisfies
P _ . EEIPY
5 = AMz—1)P = P(zt)=e P(z,0) . (3.117)
If the initial distribution is P,(0) = J,, ,, then
t n
P,(t) = A" —x , (3.118)

which is known as the Poisson distribution. If we define a = At, then from P, = o™ e~%/n! we have

(n*)y =e@ (a%)kea . (3.119)

Thus, (n) = a, (n?) = o? + a, etc.

3.7.3 Radioactive decay

Consider a group of atoms, some of which are in an excited state which can undergo nuclear decay. Let
P, (t) be the probability that n atoms are excited at some time ¢. We then model the decay dynamics by

0 ifn>m
Won=¢my ifn=m-—1 (3.120)
0 ifn<m-—1
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Here, v is the decay rate of an individual atom, which can be determined from quantum mechanics. The
master equation then tells us

dt =n+1)yP, .,y —nyP, . (3.121)

The interpretation here is as follows: let | n ) denote a state in which n atoms are excited. Then P, (t) =

|(n] P(t)>|2. Then P,(t) will increase due to spontaneous transitions from |n+1) to |n), and will
decrease due to spontaneous transitions from |n ) to [n—1).

The average number of particles in the system is N(¢t) = >>° ;n P,(t). Note that

[e.e]

dd—];[ = Zn[(n_‘_l)/ypn—i-l —n'yPn:|
=0 o (3.122)

—fyZ[ (n—1)P —nan}:—’yZnPn:—
n=0

Thus, N(t) = N(0) e~ . The relaxation time is 7 = 7™, and the equilibrium distribution is P;* = 4,
Note that this satisfies detailed balance.

We can go a bit farther here. Let us define

o0

P(z,t)=> 2" P,(t) . (3.123)

n=0

This is sometimes called a generating function. Then

—_vz [+ 1) Py =P,

(3.124)
8P oP
82 —F 0z
Thus,
1 oP oP
875 - (1- )az 0 . (3.125)

We now see that any function f(§) satlsfles the above equation, where { = ¢ — In(1 — 2). Thus, we can
write

P(z,t) = f(yt —In(1 —2)) . (3.126)

Setting ¢ = 0 we have P(z,0) = f(—In(1 — 2)), and inverting this result we obtain f(u) = P(1 —e™*,0),
which entails

P(z,t)=P(1+(z—1)e 7, 0) . (3.127)

The total probability is P(z=1,t) = >, P,, which clearly is conserved: P(1,t) = P(1,0). The average
particle number is

Z" P aP — ' P(,0) = N(0) e . (3.128)
z=1
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3.8 Appendix III: Transition to Ergodicity in a Simple Model

A ball of mass m executes perfect one-dimensional motion along the symmetry axis of a piston. Above
the ball lies a mobile piston head of mass M which slides frictionlessly inside the piston. Both the ball
and piston head execute ballistic motion, with two types of collision possible: (i) the ball may bounce off
the floor, which is assumed to be infinitely massive and fixed in space, and (ii) the ball and piston head
may engage in a one-dimensional elastic collision. The Hamiltonian is
P2 p2
where X is the height of the piston head and z the height of the ball. Another quantity is conserved by
the dynamics: ©(X — x). Le., the ball always is below the piston head.

(a) Choose an arbitrary length scale L, and then energy scale F; = M gL, momentum scale F; = M+/gL,
and time scale 7, = \/L/g. Show that the dimensionless Hamiltonian becomes

=2

A=1p2yx+2 1z |
2r

D=

with r = m/M, and with equations of motion dX/dt = OH /0P, etc. (Here the bar indicates dimension-
less variables: P = P/P,, t = t/7,, etc.) What special dynamical consequences hold for r = 1?

(b) Compute the microcanonical average piston height (X'). The analogous dynamical average is

(X), = hm—/th

When computing microcanonical averages, it is helpful to use the Laplace transform, discussed in §4.2.2
of the notes. (It is possible to compute the microcanonical average by more brute force methods as well.)

(c) Compute the microcanonical average of the rate of collisions between the ball and the floor. Show
that this is given by

<Z§(t —t;)) = {(0() vz — 0T))

The analogous dynamical average is

T
. 1
(7>t:7}1_l>léof/dtz:5(t—ti) ,
0 (2

where {t;} is the set of times at which the ball hits the floor.
(d) How do your results change if you do not enforce the dynamical constraint X > x?

(e) Write a computer program to simulate this system. The only input should be the mass ratio r (set
E = 10 to fix the energy). You also may wish to input the initial conditions, or perhaps to choose the
initial conditions randomly (all satisfying energy conservation, of course!). Have your program compute
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the microcanonical as well as dynamical averages in parts (b) and (c). Plot out the Poincaré section of P
vs. X for those times when the ball hits the floor. Investigate this for several values of r. Just to show
you that this is interesting, I've plotted some of my own numerical results in fig. 3.11.

Solution:

(a) Once we choose a length scale L (arbitrary), we may define £, = M gL, By = M+/gL, V, = /gL,
and 7, = \/L/g as energy, momentum, velocity, and time scales, respectively, the result follows directly.
Rather than write P = P/F, etc., we will drop the bar notation and write

P

o +rx

H=1iP’+X+
(b) What is missing from the Hamiltonian of course is the interaction potential between the ball and
the piston head. We assume that both objects are impenetrable, so the potential energy is infinite when
the two overlap. We further assume that the ball is a point particle (otherwise reset ground level to
minus the diameter of the ball). We can eliminate the interaction potential from H if we enforce that
each time X = x the ball and the piston head undergo an elastic collision. From energy and momentum
conservation, it is easy to derive the elastic collision formulae

1—- 2
— TP

P =
147r +1+r

p

,_2r I
TTtr 14t

p

We can now answer the last question from part (a). When » = 1, we have that P = pand p/ = P,
i.e. the ball and piston simply exchange momenta. The problem is then equivalent to two identical
particles elastically bouncing off the bottom of the piston, and moving through each other as if they
were completely transparent. When the trajectories cross, however, the particles exchange identities.

Averages within the microcanonical ensemble are normally performed with respect to the phase space

distribution
_ d(E-H(p)
Q(QO) - ’
Tr §(E — H(y))
where ¢ = (P, X, p,x), and
Tr F(p) = /dP/dX/dp/de(P,X,p,m)
—0o0 0 —0o0 0

Since X > z is a dynamical constraint, we should define an appropriately restricted microcanonical
average:

Tr [F(cp) 5(E - H(cp))} /fr 5(E - H(p))

(F(0)) e

0o o) o) X
TrF(p) = /dP/dX/dp/dm F(P,X,p,z)
—00 0 —00 0

where
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is the modified trace. Note that the integral over = has an upper limit of X rather than oo, since the
region of phase space with x > X is dynamically inaccessible.

When computing the traces, we shall make use of the following result from the theory of Laplace trans-
forms. The Laplace transform of a function K (F) is
K(B) = / dE K(E) e PF
0

The inverse Laplace transform is given by

c+1i00

d3 ~
K(E) = [$2RH)EE

where the integration contour, which is a line extending from 3 = ¢ — ico to 5§ = ¢ + 700, lies to the right
of any singularities of K () in the complex S-plane. For this problem, all we shall need is the following;:
Et-1 N .

K(E) = W K(B)=p

For a proof, see §4.2.2 of the lecture notes.

We’re now ready to compute the microcanonical average of X. We have

N(E)

<X>:m )

where N(E) = Tr[X §(E — H)] and D(E) = Tr6(E — H) . Let’s first compute D(E). To do this, we
compute the Laplace transform D(f3):
D(B) =Tre #H
00 oo oo X
= /dP e_ﬁp2/2/dp e‘ﬁp2/2r/dX e BX [ dp e P
—o0 —0o0 0

LV P 1_6_BTX>_ vro i
-3 O/dXe ( Br T1+r B3

Similarly for N(B) we have
N(ﬁ) =TrXe P

00 0o 00 X
= /dP e_BPQ/Z/dpe_ﬁpz/zr/dXXe_BX/daz e hre
—00 —00 0 0

AN ox 1—e_BTX>_(2+T)T3/2'2_7T
B O/dXXe (=) -5 F
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Taking the inverse Laplace transform, we then have

Vr 2 C+r)Vr 1 s
D(E)=Y— .7E NE)=-"/Y_ 1
®B)=17 " NE =gk
We then have N(E)
2+r
X)) = = .1
) D(E) <1—|—r> o
The ‘brute force’ evaluation of the integrals isn’t so bad either. We have
0 0 X
D(E) = /dP/dX/dp/dxé( PP+ 4p’+ X +rz—E)
—00 0 0

To evaluate, define P = v/2u, and p = /2r u,,. Then we have dP dp = 2/r du,, du, and %P2 + % p? =
u2 + uz Now convert to 2D polar coordinates with w = u?2 + uz Thus,

o0 o0

w\/F/dw/dX/dwé(w—kX—kmc—E)

0 0
00

:2—7T/dw/dX/d:E OF-—w—-X)0(X+rX —E+w)

NG 1+r 1+r ’

, _
_ w/dw/dX 27r\/_ daq— VT B
E—w

1+

with ¢ = F — w. Similarly,

00 oo X
E):2wﬁ/dw/dXX/d:n5(w+X—|—rm—E)
0 0

0
2 oo
:%/dw/dXX/dw@(E—w—X)@(X—i—TX—E—i-w)
T
0o 0
) E E-w ) E . s
i ™ 247 r
= [a _ T 1o = ) .i,2— . 1-p3
- () = () 5 b
0

(c) Using the general result
5 Z ‘ 33‘ - 33‘ ’

where F(z;) = A, we recover the desired expression. We should be careful not to double count, so to
avoid this difficulty we can evaluate §(t—t;), where ] = ¢,407 is infinitesimally later than ¢,. The point
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MOMENTUM OF PISTON

MOMENTUM OF PISTON

POSITION OF PISTON

Figure 3.11: Poincaré sections for the ball and piston head problem. Each color corresponds to a different
initial condition. When the mass ratio r = m /M exceeds unity, the system apparently becomes ergodic.

here is that when t = ¢ we have p = r v > 0 (i.e. just after hitting the bottom). Similarly, at times ¢ = ¢;
we have p < 0 (i.e. just prior to hitting the bottom). Note v = p/r. Again we write v(E) = N(E)/D(E),
this time with

N(E) = Tr [@(p) r_lpd(x —0M)6(E — H)]

The Laplace transform is

]V(ﬁ) = /dP 6_5P2/2/dp r~ip e‘ﬁpz/%/dX e BX
—0o0 0 0
27
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7 T T T T T T T T T T T T | T T T T ]
r=0.3 A
&= -
= O EREEEE—S——————————__|
< =
1 | 1 1 1 1 | 1 1 1 1 | 1 1 | 1 :

105 2x10° 3x10°% 4x10°%
T | T T T T | T T T T | T T T T :
r=1.2 ]
o) -
=5 ]
= ]
1 | 1 1 1 1 | 1 1 | 1 | 1 i | 1 :

105 2x10° 3x10°% 4x10°

time t

Figure 3.12: Long time running numerical averages X, (t) = t~* fg dt’ X(t') for r = 0.3 (top) and r = 1.2
(bottom), each for three different initial conditions, with £ = 10 in all cases. Note how in the r = 0.3 case
the long time average is dependent on the initial condition, while the » = 1.2 case is ergodic and hence
independent of initial conditions. The dashed black line shows the restricted microcanonical average,
(X pee = (57 * 5
Thus, N(E) = 22 E*/? and

N (E) NG 1+r

=i = 5 (7 )E

(d) When the constraint X > x is removed, we integrate over all phase space. We then have

D(B) =Tre

oo o0 o0 o0

= /dP e_gpz/z/dp e‘ﬁpz/QT/dX e‘ﬁX/dx e Pre — _27;;/F
- —00 0 0
For part (b) we would then have
N(ﬁ) =Tr Xe PH

oo o0 o0 o0

= /dPe_BP2/2/dpe_Bp2/2r/dXXe_BX/dx e Pre — 2myr
0 0

/84

—00 —00
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| [ X0 [&X®) [ e | 0@) | Muee | 7 [ X0) [ (X)) [ (Xee | 0®) | Wiee |
0.3 0.1 6.1743 | 5.8974 | 0.5283 | 0.4505 || 1.2 0.1 4.8509 | 4.8545 | 0.3816 | 0.3812
0.3 1.0 5.7303 | 5.8974 | 0.4170 | 0.4505 || 1.2 1.0 4.8479 | 4.8545 | 0.3811 | 0.3812
0.3 3.0 5.7876 | 5.8974 | 0.4217 | 0.4505 || 1.2 3.0 4.8493 | 4.8545 | 0.3813 | 0.3812
0.3 5.0 5.8231 | 5.8974 | 0.4228 | 0.4505 || 1.2 5.0 4.8482 | 4.8545 | 0.3813 | 0.3812
0.3 7.0 5.8227 | 5.8974 | 0.4228 | 0.4505 || 1.2 7.0 4.8472 | 4.8545 | 0.3808 | 0.3812
0.3 9.0 5.8016 | 5.8974 | 0.4234 | 0.4505 || 1.2 9.0 4.8466 | 4.8545 | 0.3808 | 0.3812
0.3 9.9 6.1539 | 5.8974 | 0.5249 | 0.4505 || 1.2 9.9 4.8444 | 4.8545 | 0.3807 | 0.3812

Table 3.1: Comparison of time averages and microcanonical ensemble averages for » = 0.3 and » = 0.9.
Initial conditions are P(0) = z(0) = 0, with X (0) given in the table and £ = 10. Averages were
performed over a period extending for N}, = 107 bounces.

The respective inverse Laplace transforms are D(E) = 7/ E* and N(E) = 17/ E®. The microcanoni-
cal average of X would thenbe (X) = 1 E. Using the restricted phase space, we obtained a value which
is greater than this by a factor of (2 + r)/(1 + r). That the restricted average gives a larger value makes
good sense, since X is not allowed to descend below x in that case. For part (c), we would obtain the

same result for N (FE) since = 0 in the average. We would then obtain
(’Y> _ 43_\/§r—1/2 E—1/2
Y

The restricted microcanonical average yields a rate which is larger by a factor 1 4 . Again, it makes
good sense that the restricted average should yield a higher rate, since the ball is not allowed to attain a
height greater than the instantaneous value of X.

(e) It is straightforward to simulate the dynamics. So long as 0 < z(t) < X (t), we have

We must stop the evolution when one of two things happens. The first possibility is a bounce at t = ¢,
meaning z(t,) = 0. The momentum p(t) changes discontinuously at the bounce, with p(t;") = —p(t;),
and where p(t;) < 0 necessarily. The second possibility is a collision at ¢t = ., meaning X (t.) = x(t.).
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[r [ xoIN] X)) | Kwee | 00 | e |
1.2 7.0 104 | 4.8054892 | 4.8484848 | 0.37560388 | 0.38118510
1.2 7.0 10° | 4.8436969 | 4.8484848 | 0.38120356 | 0.38118510
1.2 7.0 106 | 4.8479414 | 4.8484848 | 0.38122778 | 0.38118510
1.2 7.0 107 | 4.8471686 | 4.8484848 | 0.38083749 | 0.38118510
1.2 7.0 108 | 4.8485825 | 4.8484848 | 0.38116282 | 0.38118510
1.2 7.0 109 | 4.8486682 | 4.8484848 | 0.38120259 | 0.38118510
1.2 1.0 109 | 4.8485381 | 4.8484848 | 0.38118069 | 0.38118510
1.2 9.9 109 | 4.8484886 | 4.8484848 | 0.38116295 | 0.38118510

Table 3.2: Comparison of time averages and microcanonical ensemble averages for r = 1.2, with N},
ranging from 10% to 10°.

Integrating across the collision, we must conserve both energy and momentum. This means

1—7r 2
Pth)y=—— P(t- — p(t.
() = 15 PU) + 1wt

2r 1—7r
tHy = —— P(t7) — t-
pltd) = 1o Pt = 1 (i)

In the following tables I report on the results of numerical simulations, comparing dynamical averages
with (restricted) phase space averages within the microcanonical ensemble. For r = 0.3 the microcanon-
ical averages poorly approximate the dynamical averages, and the dynamical averages are dependent
on the initial conditions, indicating that the system is not ergodic. For r = 1.2, the agreement between
dynamical and microcanonical averages generally improves with averaging time. Indeed, it has been
shown by N. I. Chernov, Physica D 53, 233 (1991), building on the work of M. P. Wojtkowski, Comm.
Math. Phys. 126, 507 (1990) that this system is ergodic for » > 1. Wojtkowski also showed that this
system is equivalent to the wedge billiard, in which a single point particle of mass m bounces inside a
two-dimensional wedge-shaped region {(x,y) |x > 0, y > xctn ¢} for some fixed angle ¢ = tan™' /7%
To see this, pass to relative (X’) and center-of-mass ()') coordinates,

mP — Mp
r=X-e Pe=3rvm
MX 4+ mz

= :P

Y M+ m Py +p
Then ) )
- M
" 2Mm 2(M+m)+( +m) gy

There are two constraints. One requires X > z, i.e. X > 0. The second requires x > 0, i.e.

=) — X >0

M +m
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ERGODIC

RECURRENT
DYNAMICAL SYSTEM

Figure 3.13: The hierarchy of dynamical systems.

Now definex = X, p, = P,, and rescale y = 4 +m y and p, = {7 J_Viz P, to obtain

1
H:ﬂ(p§+p§)+l\ﬂ9y

with 4 = M " the familiar reduced mass and M = v/ Mm. The constraints are thenx > 0 and y > /

3.9 Appendix IV : Thermalization of Quantum Systems

3.9.1 Quantum dephasing

Thermalization of quantum systems is fundamentally different from that of classical systems. Whereas
time evolution in classical mechanics is in general a nonlinear dynamical system, the Schrédinger equa-
tion for time evolution in quantum mechanics is linear: ROV /0t = HU, where H is a many-body
Hamiltonian. In classical mechanics, the thermal state is constructed by time evolution — this is the con-
tent of the ergodic theorem. In quantum mechanics, as we shall see, the thermal distribution must be
encoded in the eigenstates themselves.

Let us assume an initial condition at t = 0 with [¥(0)) = " C, |¥,), where {| ¥, )} is an orthonormal
eigenbasis for H satisfying H |¥,) = E, |¥,). The expansion coefficients satisfy C,, = (¥, |¥(0)) and
3. 1Co? = 1. Normalization requires (¥(0) | ¥(0)) = > |C,|? = 1.

The time evolution of | V) is then given by

W) = Cpe FallMw,) . (3.129)

The energy is distributed according to the time-independent function

P(E) = (U(t)|6(E — H)| 0(t) Z'C 28(E—-E,) . (3.130)
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Thus, the average energy is time-independent and is given by
(B) = (U(t)| H|U(t) /dEP Z|Ca|2Ea . (3.131)
The root mean square fluctuations of the energy are given by

(AE) s = ((E ~ (B) >1/2 \/Z|C 2E2 - (Z|Ca|2Ea)2 . (3.132)

Typically we assume that the distribution P(E) is narrowly peaked about (£), such that (AE), . <
(E) — By, where E is the ground state energy. Note that P(E) = 0 for & < E), i.e. the eigenspectrum of
H is bounded from below.

Now consider a general quantum observable described by an operator A. We have
(A®) = (W) | A[W() =D CqCaelPeBalllg 5 (3.133)
7/3

where A 5 = (¥, [ A| V). In the limit of large times, we have

1
(A), = Jim / dt (AM) = S ICaP Ane (3.134)
0 «
Note that this implies that all coherence between different eigenstates is lost in the long time limit, due
to dephasing.

3.9.2 Eigenstate thermalization hypothesis

The essential ideas behind the eigenstate thermalization hypothesis (ETH) were described independently
by J. Deutsch (1991) and by M. Srednicki (1994). The argument goes as follows. If the total energy is the
only conserved quantity, and if A is a local, translationally-invariant, few-body operator, then the time
average (.A) is given by its microcanonical value,

_ _ Y0P OF, €1)
*’4>t — ZO; |Ca|2‘Aaa - Za @(Ea c I) <A>E> (3135)

where I = [E,E + AE] is an energy interval of width AE. So once again, time averages are micro
canonical averages.

But how is it that this is the case? The hypothesis of Deutsch and of Srednicki is that thermalization
in isolated and bounded quantum systems occurs at the level of individual eigenstates. That is, for all
eigenstates |¥ ) with £, € I, one has A, = (A) g, - This means that thermal information is encoded in
each eigenstate. This is called the eigenstate thermalzzatzon hypothesis (ETH).



3.9. APPENDIX 1V : THERMALIZATION OF QUANTUM SYSTEMS 171

An equivalent version of the ETH is the following scenario. Suppose we have an infinite or extremely
large quantum system U (the ‘universe’) fixed in an eigenstate |¥ ). Then form the projection operator
P, = |V )(¥,|. Projection operators satisfy P> = P and their eigenspectrum consists of one eigenvalue
1 and the rest of the eigenvalues are zero'*. Now consider a partition of U = W U S, where W > S. We
imagine S to be the ‘system” and W the ‘world’. We can always decompose the state |V, ) in a complete
product basis for W and S, viz.

Ny, Ng

=> > il o) (3.136)

p=1j=1

Here Ny, ¢ is the size of the basis for W/S. The reduced density matrix for S is defined as

Ng

ps=Tr Pa= D (ZQ Q?f) AL (3.137)

3:3'=1
The claim is that pg approximates a thermal density matrix on S, i.e.

1 A
ps ™ - e s (3.138)

where H g is some Hamiltonian on S, and Zg = Tr e=Pls, so that Tr pg = 1 and pg is properly normal-
ized. A number of issues remain to be clarified:

(i) What do we mean by “approximates”?
(i) What do we mean by H s?

(iii) What do we mean by the temperature 7?

We address these in reverse order. The temperature T of an eigenstate |¥,) of a Hamiltonian H is
defined by setting its energy density £, /V}; to the thermal energy density, i.e.

E, 1Tr HePH

Here, H = H v is the full Hamiltonian of the universe U = W U S, and V' = V};. Our intuition is that
H 5 should reflect a restriction of the original Hamiltonian H v to the system S. What should be done,
though, about the interface parts of H v which link S and W? For lattice Hamiltonians, we can simply
but somewhat arbitrarily cut all the bonds coupling S and W. But we could easily imagine some other
prescription, such as halving the coupling strength along all such interface bonds. Indeed, the definition
of Hg is somewhat arbitrary. However, so long as we use pg to compute averages of local operators
which lie sufficiently far from the boundary of S, the precise details of how we truncate H; to Hg are

4More generally, we could project onto a K -dimensional subspace, in which case there would be K eigenvalues
of +1and N — K eigenvalues of 0, where N is the dimension of the entire vector space.
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unimportant. This brings us to the first issue: the approximation of p¢ by its Gibbs form in eqn. 3.138 is
only valid when we consider averages of local operators lying within the bulk of S. This means that we
must only examine operators whose support is confined to regions greater than some distance £ from
0S, where & is a thermal correlation length. This, in turn, requires that Ly >> &, i.e. the region S is very
large on the scale of £;.. How do we define {,.? For a model such as the Ising model, it can be taken to be
the usual correlation length obtained from the spin-spin correlation function (g, o,,),. More generally,
we may choose the largest correlation length from among the correlators of all the independent local
operators in our system. Again, the requirement is that exp(—d,(r)/¢;) < 1, where dy(r) is the shortest
distance from the location of our local operator O, to the boundary of S. At criticality, the exponential is
replaced by a power law (d,(r)/&,) P, where p is a critical exponent. Another implicit assumption here
is that Vg < V.

3.9.3 More precise formulation

More precisely (Srednicki, 1999), ETH is formulated in terms of general matrix elements of local observ-
ables in the energy eigenbasis, viz.'?

A = (m|A|n)=AE)S6,, +e BV f (B,wR (3.140)

mn

where E = 1(E,, + E,) is an average of the energy eigenvalues, w = E,, — E,, is their difference,
R, is a random matrix with (R,,,) = 0 and var(R,,,,) = 1, S(E) is the thermodynamic entropy, with
S(E) ~ log D,, when E lies in the middle of the spectrum (D, is the Hilbert space dimension), and
A(E) and f(F,w) are smooth functions of their arguments. Additionally, one has

AmneR : an:Rmn > fA(E7—w):fA(E’w)

3.141
Amne(c : an:R;knn 9 fA(E7_w):f:1(E7w) ’ ( )

for systems with and without time-reversal symmetry, respectively.

ETH reduces to random matrix theory within a given small energy window. Eqn. 3.140 is to be con-
trasted with the corresponding result for random matrix theory,

(A7) — (A

A = (A

(3.142)
where (A) = TrA and (42) = Tr(A?) so that the averages are over the entire spectrum. ETH thus
reduces to RMT within any small window which contains O(D,,) states.

A consequence of ETH is that the expectation value of an operator in a Gibbs state p = Z~! exp(—3H)
can be replaced by its expectation value in any eigenstate whose energy eigenvalue corresponds to
the peak in g(FE)exp(—pE), where g(F) is the density of states. Such an eigenstate is then called a
representative pure state'®. To see this, note

" 1
Tr(pA) ~ — / dE g(E)e PP A(E) = A(E*) . (3.143)
15See the review article by L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, Adv. Phys., 65, 239 (2016) and
references therein.
16See V. Khemani, A. Chandran, H. Kim, and S. L. Sondhi, Phys. Rev. E 90, 052133 (2014).
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Here it is assumed that the function A(E) in Eqn. 3.140 is a smooth function of F, and that the distribu-
tion g(E) exp(—pFE) has a narrow peak centered at E = E*. For example, if

. 2
g(E) ~ exp <— %) : (3.144)

where the energy variance is extensive, ie. 02 ~ wN with w a constant and N the total number of

particles or the system volume in microscopic units, then E*(8) ~ E, — 802 and the energy density is
* E*

B =5 =e—buw (3.145)
where ¢, is the energy density at the center of the spectrum. Eigenstates of H in the vicinity of energy
density £*(/3) are thus representative pure states of the Gibbs density matrix which reproduce expecta-
tion values of few body operators. Note that we may obtain ¢*(3) from the expression

1

S8 =55 T (HePHY (3.146)

3.9.4 When is the ETH true?

There is no rigorous proof of the ETH. Deutsch showed that the ETH holds for the case of an integrable
Hamiltonian weakly perturbed by a single Gaussian random matrix. Horoi et al. (1995) showed that
nuclear shell model wavefunctions reproduce thermodynamic predictions. Recent numerical work by
M. Rigol and collaborators has verified the applicability of the ETH in small interacting boson systems.
ETH fails for so-called integrable models, where there are a large number of conserved quantities, which
commute with the Hamiltonian. Integrable models are, however, quite special, and as Deutsch showed,
integrability is spoiled by weak perturbations, in which case ETH then applies.

ETH also fails in the case of noninteracting disordered systems which exhibit Anderson localization. Sin-
gle particle energy eigenstates ¢); whose energies ¢; the localized portion of the eigenspectrum decay
exponentially, as |¢j(1~)|2 ~ exp(— |r — r;1/§ (ej)), where r; is some position in space associated with
¥; and (¢;) is the localization length. Within the localized portion of the spectrum, {(¢) is finite. Ase
approaches a mobility edge, £(¢) diverges as a power law. In the delocalized regime, eigenstates are spatially
extended and typically decay at worst as a power law!”. Exponentially localized states are unable to ther-
malize with other distantly removed localized states. Of course, all noninteracting systems will violate
ETH, because they are integrable. The interacting version of this phenomenon, many-body localization
(MBL), is a topic of intense current interest in condensed matter and statistical physics. MBL systems
also exhibit a large number of conserved quantities, but in contrast to the case of integrable systems,
where each conserved quantity is in general expressed in terms of an integral of a local density, in MBL
systems the conserved quantities are themselves local, although emergent. The emergent nature of locally
conserved quantities in MBL systems means that they are not simply expressed in terms of the original
local operators of the system, but rather are arrived at via a sequence of local unitary transformations.

Note again that in contrast to the classical case, time evolution of a quantum state does not create the
thermal state. Rather, it reveals the thermal distribution which is encoded in all eigenstates after sufficient

7Recall that in systems with no disorder, eigenstates exhibit Bloch periodicity in space.
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time for dephasing to occur, so that correlations between all the wavefunction expansion coefficients
{C,} for a # o are all lost.



Chapter 4

Statistical Ensembles

4.1 References

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

— A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

— D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I've come across, but only 40% of the book
treats statistical mechanics.

— C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key con-
cepts and examples. Published by Dover, so you can’t beat the price.

— M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts.

— M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rGl edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

— E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3rd edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated,
it still contains a wealth of information and physical insight.
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4.2 Microcanonical Ensemble (;/CE)

4.2.1 The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space aver-
ages:

ergodicity <= (f(®)), = (f(¥))g (4.1)
where
<f( = hm —/dtf . 4.2)
and
(Fe))s = [aurers(e - i) | [ans(E - i) - @)

Here H(p) = H(q,p) is the Hamiltonian, and where §(z) is the Dirac d-function'. Thus, averages are
taken over a constant energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution o(A,,. .., 4, ) which is a function of conserved quan-
titied A,(¢p) is automatically a stationary (time-independent) solution to Liouville’s equation. Note that
the microcanonical distribution,

op() = 6(E — A (9)) / [ans(e-tite) (@)
is of this form, since H(y) is conserved by the dynamics. Linear and angular momentum conservation
generally are broken by elastic scattering off the walls of the sample.
So averages in the microcanonical ensemble are computed by evaluating the ratio
()= Tr A§(E — H)
Tr 6(E — H)
where Tr means ‘trace’, which entails an integration over all phase space:

Tr Aq,p) = H/ddpdql p) . (4.6)

=N

) (4.5)

Here N is the total number of particles and d is the dimension of physical space in which each particle
moves. The factor of 1/N!, which cancels in the ratio between numerator and denominator, is present for
indistinguishable particles’. The normalization factor (27h) V¢ renders the trace dimensionless. Again,
this cancels between numerator and denominator. These factors may then seem arbitrary in the defini-
tion of the trace, but we’ll see how they in fact are required from quantum mechanical considerations.
So we now adopt the following metric for classical phase space integration:

1 ddp d;
N' 27Th

dy = (4.7)

"We write the Hamiltonian as H (classical or quantum) in order to distinguish it from magnetic field, H.
ZMore on this in chapter 5.
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4.2.2 Density of states

The denominator,
DE)=Tr§(E—-H) , (4.8)

is called the density of states. It has dimensions of inverse energy, such that

E+AE

/ dE’ / dud(E' — H) = / du (4.9)
E

E<H<E+AE
= # of states with energies between F and E + AE

Let us now compute D(FE) for the nonrelativistic ideal gas. The Hamiltonian is

N
P}
H(q,p) = E —m (4.10)

We assume that the gas is enclosed in a region of volume V/, and we’ll do a purely classical calculation,
neglecting discreteness of its quantum spectrum. We must compute

N'/H %hq 5< Z;;’—m> . (4.11)

We shall calculate D(E) in two ways. The first method utilizes the Laplace transform, Z(3):

Z(8) = L[D(E)] = / dE e PED(E) =Tr e PH (4.12)
0
The inverse Laplace transform is then
c+iood5
—r-1 = P BE
D(E) = £7[2(8)] = / D) @13)

where c is such that the integration contour is to the right of any singularities of Z(3) in the complex
B-plane. We then have

N
1 d%:. d%. 2
VA - i i ,—Bp7/2m
f) N!E/(%h)d ‘

~ Nd
d
:V_N /dp e~ PP /2m :V_N m N/Zﬁ—Nd/Z
N! 27h N! \ 2mh?

— OO

(4.14)
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Im g Im 3
s T e i
:' ——Re 3 S Re 3
% i branch’cut *, +
s T N i
Nd even Nd odd

Figure 4.1: Complex integration contours C for inverse Laplace transform £7*[Z(8)] = D(E). When
the product dN is odd, there is a branch cut along the negative Re 3 axis.

The inverse Laplace transform is then

vV m \Y2 rdp E p—Nd/2
e O I e

211
(4.15)

VN /o \Nd/2 E%Nd—l
:ﬁ<2wh2> I'(Nd/2)

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite
semicircle in the left half S-plane. When Nd is even, the function 5~V%4?2 has a simple pole of order
Nd/2 at the origin. When Nd is odd, there is a branch cut extending along the negative Re 3 axis, and
the integration contour must avoid the cut, as shown in fig. 4.1. One can check that this results in the
same expression above, i.e. we may analytically continue from even values of Nd to all positive values
of Nd.

For a general system, the Laplace transform, Z(8) = L[D(E)] also is called the partition function. We
shall again meet up with Z(5) when we discuss the ordinary canonical ensemb]e.

Our final result, then, is

D(E,V,N) =

INd—1
N Nd/2 E2
4 < m > (4.16)

NI \ 27R2 [(Nd/2)
Here we have emphasized that the density of states is a function of E, V, and N. Using Stirling’s

approximation,
InN!=NInN—N+ 3N+ 1ilm@r)+0O(NT) (4.17)

we may define the statistical entropy,

E vV

S(E,V,N) = k,InD(E,V,N) = Nk, qﬁ(N : N) +O(@N) | (4.18)
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ere FE V d E V d m
Z )=z - _ z " 1

Recall k, = 1.3806503 x 10716 erg/K is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale p{* = v2mFE . We then have

Nd
VN (V2mE 1
D(E):W<Tm> E/dMua(u%+u§+...+u§w—1) . (4.20)
Here we have written u = (uy,u,,...,u,,) with M = Nd as a M-dimensional vector. We’ve also used

the rule 6(Ex) = E~'§(x) for 6-functions. We can now write

dMy =M dudn,, (4.21)
M

where df? W 18 the M-dimensional differential solid angle. We now have our answer:’

Nd
VN <\/2m> 1Nd—1

D(E) -

PN (4.22)

N[

=NT £

What remains is for us to compute 2, the total solid angle in M dimensions. We do this by a nifty
mathematical trick. Consider the integral

o (4.23)
= %QM ds S%M_le_s: %QMF(%M) ,
0
where s = 42, and where N
I'(z) = / dtt*"le™! (4.24)

0
is the Gamma function, which satisfies 2 I'(z) = I'(z + 1).* On the other hand, we can compute Z,, in
Cartesian coordinates, writing

0o M

Ty = / duy e | = (vo)™ . (4.25)

— 00

3The factor of 1 preceding {2, in eqn. 4.22 appears because §(u?—1) = £ §(u—1)+4 6(u+1). Since u = |u| > 0,
the second term can be dropped.
“Note that for integer argument, I'(k) = (k — 1)!
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Therefore ,
27TM 2

Thus we obtain {2, = 27, {25 = 47, {2, = 272, etc., the first two of which are familiar.

4.2.3 Arbitrariness in the definition of S(F)

Note that D(FE) has dimensions of inverse energy, so one might ask how we are to take the logarithm
of a dimensionful quantity in eqn. 4.18. We must introduce an energy scale, such as AFE in eqn. 4.9,
and define D(E; AE) = D(E) AE and S(E; AE) = k; In D(F; AE). The definition of statistical entropy
then involves the arbitrary parameter AE, however this only affects S(£) in an additive way. That is,

S(E,V,N;AE,) = S(E,V,N;AE,) + ki ln<§gl> : (4.27)
2

Note that the difference between the two definitions of S' depends only on the ratio AE, /AE,, and is
independent of £, V, and N.

4.2.4 Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion (p) = cp. We then have

0 N
vy Qf i1 —pep | _ VY (T(d) 2
Z(B) = NT N4 (/dpp e~hep ( dhd5d> : (4.28)
0
The statistical entropy is S(E,V,N) = k, In D(E,V,N) = Nk, ¢(%, %), with
E V\ , (E 1% 2,T(d)
¢<N, N> —dln<N> +ln<N> —I—ln< o) > (d+ 1) (4.29)

4.2.5 Discrete systems

For classical systems where the energy levels are discrete, the states of the system | o) are labeled by a
set of discrete quantities {0y, 0, ...}, where each variable o, takes discrete values. The number of ways
of configuring the system at fixed energy FE is then

Q(E,N,\) Za , (4.30)

where the sum is over all possible configurations, and where A is a vector of parameters which enter
into H(o). Here NN labels the total number of particles. For example, if we have N spin-3 particles on a
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lattice which are placed in a magnetic field B,”, so the individual particle energy is ¢; = —u,Bo, , where
o = %1, then in a configuration in which N, particles have o; = +1and N_ = N — N, particles have
o; = —1,the energyis £ = (N_ — N, ) i B. The number of configurations at fixed energy F is

(4.31)

Q(E,N,B):<N> v

N,) NN

We may write N, = 2N(1 & m) where m = (N, — N_)/N € [~1,1] is the ‘magnetization’. Thus
m = —E/Np,B, and it is left as an exercise to the reader to show, using Stirling’s formula, that the

statistical entropy is
I+m I+m 1—-m 1—m
(L yn(5m) () n(5m)] e

S(E,N,B) =k, nQ(E, N, B) = —Nk,

4.2.6 Two systems in thermal contact

Consider two systems in thermal contact, as depicted in fig. 4.2. The two subsystems #1 and #2 are
free to exchange energy, but their respective volumes and particle numbers remain fixed. We assume
the contact is made over a surface, and that the energy associated with that surface is negligible when
compared with the bulk energies ;| and E,. Let the total energy be £ = E,| + E,. Then the density of
states D(FE) for the combined system is

D(B) = / dE, D,(E,) Dy(E — E,) . (4.33)

The probability density for system #1 to have energy F, is then

D, (E)) Dy(E — Ey)
D(E)

P (E,) = (4.34)

Note that P, (E,) is normalized: [dF, P,(E;) = 1. We now ask: what is the most probable value of E,?
We find out by differentiating P, (E,) with respect to E; and setting the result to zero. This requires

1 dP(E) D
0= P(E,) dE, _ 0B, In P (E})

P P (4.35)
= 8—E'1 lnDl(E1)+8—E‘1 lnD2(E—E1)
We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

0%, _ 95,

G5 = 3F (4.36)

This guarantees that
S(E,Ey) = 51(Ey) + S3(E — Ey) (4.37)
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Figure 4.2: Two systems in thermal contact.

is a maximum with respect to the energy F,, at fixed total energy E.

The temperature T is defined as
1 oS

T — <8—E>V’N ; (438)

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the
entropy. When the total entropy S is maximized, we have that 7} = T),. Once again, two systems in
thermal contact and can exchange energy will in equilibrium have equal temperatures.

According to eqns. 4.19 and 4.29, the entropies of nonrelativistic and ultrarelativistic ideal gases in d
space dimensions are given by

E
Sy = sNdk, ln<N> + Nk, ln<%> + const.
(4.39)
E 1%
Sur = Nd kg ln<N> + Nk, IH<N> + const.

Invoking eqn. 4.38, we then have E; = %Nd kg1 and Ey = Ndk,T .

We saw that the probability distribution P, (£, ) is maximized when T} = T;, but how sharp is the peak
in the distribution? Let us write I, = ET 4+ AE,, where EJ is the solution to eqn. 4.35. We then have

1 0%, 5 1 09,
ok, OE7 (AE))” +

lnPl(Eik—l—AEl):lnPl(ET)—l— o %O—Eg
1

(AE)? +... (4.40)

2

where E5 = E — EY. We must now evaluate
2
o5 _ 0 (1y_ Loty 1 (4.41)
dE? ~ QE\T T2\0E ),y T2Cy
where Cy, = (0E/0T) v n 18 the heat capacity. Thus,

P = P e” BBV /2 T2Cy (4.42)

>Properly, we should use H here rather than B, but to obviate any confusion between H and the Hamiltonian
H, we use B instead.
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where
_ Ci, C
Cy = vV (4.43)
Cy,+Cy

The distribution is therefore a Gaussian, and the fluctuations in AE, can now be computed:
((AE)?) =k, T°Cyy = (AE1)pus = T\/k:sCy - (4.44)

The individual heat capacities Cy,; and C\,, scale with the volumes V; and V;, respectively. If V, >V,
then Cy,, > Cy,, in which case C, = Cy,,. Therefore the RMS fluctuations in AE, are proportional to

the square root of the system size, whereas E| itself is extensive. Thus, the ratio (AE}),s/F; o< V~1/2
scales as the inverse square root of the volume. The distribution P, (E)) is thus extremely sharp.
The full distribution function for the energy is
. Tré(E — H)e P 1 _
PE)=(6(6—-H)) = - =—D(E)e E . 4.45
(€) = (3(& - H)) —" 7 D(E)e (4.45)
Thus,
e BlE-TS(E)]
P(€) = (4.46)

fdg/ e—BlE'=TSEN]

where S(£) = ky;InD(E) is the statistical entropy. Let’s write £ = E + §&, where E extremizes the
combination £ — T'S(£), i.e. the solution to 7' S’(E) = 1, where the energy derivative of S is performed
at fixed volume V' and particle number N. We now expand S(E + §€) to second order in §&, obtaining

3 5 (68)°
S(E+08) = S(B) + = — 5 N .. (4.47)
Recall that S”(E) = & (£) = — 75— Thus,
1%
(6€)? 3
E-TSE)=E-TS(E)+ +0((s8)°) . (4.48)

2T C,,

Applying this to both numerator and denominator of eqn. 4.46, we obtain®

P(&) = Nexp [— (%¢)? , (4.49)

2%, T2 C,

where N = (21k,T2C,,)~"/? is a normalization constant which guarantees [d€ P(£) = 1. Once again,

we see that the distribution is a Gaussian centered at (£) = F, and of width (A€)pys = \/kzT? Cy,. This
is a consequence of the Central Limit Theorem.

®In applying eqn. 4.48 to the denominator of eqn. 4.46, we shift £ by F and integrate over the difference
0" = &' — E, retaining terms up to quadratic order in §&’ in the argument of the exponent.
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4.3 The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamil-
tonian flow which is ergodic is one in which time averages can be replaced by phase space averages
using the microcanonical ensemble. What happens, though, if our system is quantum mechanical, as all
systems ultimately are?

4.3.1 The density matrix

First, let us consider that our system S will in general be in contact with a world . We call the union of
S and W the universe, U = W US. Let | w ) denote a quantum mechanical state of W, and let | s ) denote
a quantum mechanical state of S. Then the most general wavefunction we can write is of the form

= Yy.ls)®]s) . (4.50)

Now let us compute the expectation value of some operator A which acts as the identity within W,
meaning (w|A|w') = A¢, ., , where A is the ‘reduced’ operator acting within .S alone. We then have

(ULAIT) =N Wk Uy G (s|Als') =Tr (0 4) (4.51)

ww SS

0 = Z Z \Il;ku,s \I’w,s’ ‘ S,> <S ‘ (452)

w s,

where

is the density matrix for S. The time-dependence of ¢ is easily found:

=SS Uy [S(0) (s(t) | = TR g i (4.53)

w 88

where H is the Hamiltonian for the system S. Thus, we find

8@ N
th— = |H,0| . 4.54
Note that the density matrix evolves according to a slightly different equation than an operator in the

Heisenberg picture, for which

A(t) = et/ gemitit/n m% = [AH]=-[H,A] . (4.55)

For Hamiltonian systems, we found that the phase space distribution (g, p, t) evolved according to the
Liouville equation, i 9p/0t = L p, where the Liouvillian L is the differential operator

(4.56)
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WORLD W

Figure 4.3: A system S in contact with a ‘world” W. The union of the two, universe U = W U S, is said
to be the ‘universe’.

Accordingly, any distribution o(4,,...,4,) which is a function of constants of the motion A,(q,p) is
a stationary solution to the Liouville equation: 0, o(4;,...,4,) = 0. Similarly, any quantum mechan-
ical density matrix which commutes with the Hamiltonian is a stationary solution to eqn. 4.54. The
corresponding microcanonical distribution is ¢, = §(E — H )-

4.3.2 Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather
than continuous, and the density of states (DOS) will be of the form

DE)=Tr§(E-H)=> §E-E) , (4.57)
l

where {El} are the eigenvalues of the Hamiltonian H. In the thermodynamic limit, V' — oo, and the
discrete spectrum of kinetic energies remains discrete for all finite V but must approach the continuum
result. To recover the continuum result, we average the DOS over a window of width AE:

E+AE
D(E):ﬁ / dE' D(E') . (4.58)
E

If we take the limit AE — 0 but with AE > 0E, where §E is the spacing between successive quantized
levels, we recover a smooth function, as shown in fig. 4.4. We will in general drop the bar and refer to
this function as D(E). Note that 6E ~ 1/D(F) = exp|—N¢(e,v)] is (typically) exponentially small in the
size of the system, hence if we took AE V1 which vanishes in the thermodynamic limit, there are
still exponentially many energy levels within an interval of width AE.
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AE
>
E

Figure 4.4: Averaging the quantum mechanical discrete density of states yields a continuous curve.

4.3.3 Coherent states

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-
dimensional harmonic oscillator Hamiltonian may be written

2
H,= 2p_m + %mwg ¢ = hw, (aTa + %) , (4.59)

where a and a' are ladder operators satisfying [a,a'] = 1, which can be taken to be

0 q B 0
a=024+2 —ea—+2—£ , (4.60)

with ¢ = \/h/2mw, .Notethatq=~¢(a+a')andp= % (a —ah).
The ground state satisfies a ¢y(¢) = 0, which yields
Wolq) = (2me2) VA e a/4 (4.61)
0

The normalized coherent state | z ) is defined as

1 1 o0 n
—52|% zaf —51z|? <
z)y=e€ 2 e 0)=e€e 2 — | n . 4.62
‘ > ‘ > nEO /_n!‘ > ( )

The overlap of coherent states is given by

—glnl? o=3lnl o
(21]29) = e 2111 g7 2120 en1%2 (4.63)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states
allow a simple resolution of the identity;,

d% dRez dImz
1= —\z =~

— = (4.64)
27 211 T
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which is straightforward to establish.

To gain some physical intuition about the coherent states, define

(P
7= 2% + ZT (4.65)
and write | z) = | @, P ). One finds (exercise!)
Vo.p(a) = (q] ) = (2mt?) 7/ em PR o/l o~ lam QR (4.66)

hence the coherent state ¢, 5(q) is a wavepacket Gaussianly localized about ¢ = @, but oscillating with
average momentum P.

For example, we can compute

(Q,P|q|Q,P)={(z|l(a+a')|z) =20Rez=Q (4.67)
h h
(QPp|QP)=(z]5;(a—a)|z)=;Imz=P (4.68)
as well as
(QP||Q,P)=(z|(a+d")?|z)=Q" + ¢ (4.69)
K2 K2
(QPP?|Q.P)=—(z];zla—al)?|2) =P+ 5 (4.70)

Thus, the root mean square fluctuations in the coherent state | @), P ) are

h h mhw
A — E = A = — = 0
4 2muw ’ P =50 2 ’

(4.71)

and Aq - Ap = % fi. Thus we learn that the coherent state AwQ’ p(q) is localized in phase space, i.e. in both
position and momentum. If we have a general operator A(q, p), we can then write

(Q,P|A(4,p)|Q.P) = AQ,P) +O(h) (4.72)
where A(Q, P) is formed from fl(q, p) by replacing ¢ — @ and p — P.

Since 2 p p 10 d
2  dRezdImz P
omi ™ ~ 2rh (4.73)
we can write the trace using coherent states as
n 1 7 7 A
TrA:%/dQ/dP(Q,PVHQ,P) . (4.74)

We now can understand the origin of the factor 27h in the denominator of each (g;,p;) integral over
classical phase space in eqn. 4.6.

Note that w, is arbitrary in our discussion. By increasing w, the states become more localized in ¢ and
more plane wave like in p. However, so long as wy, is finite, the width of the coherent state in each
direction is proportional to #'/2, and thus vanishes in the classical limit.
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4.4 Ordinary Canonical Ensemble (OCE)

4.4.1 Canonical distribution and partition function

Consider a system S in contact with a world W, and let their union U = W U S be called the “universe’.
The situation is depicted in fig. 4.3. The volume V and particle number Ny of the system are held fixed,
but the energy is allowed to fluctuate by exchange with the world W. We are interested in the limit
Ny — 00, Ny, — oo, with Ny <« N, with similar relations holding for the respective volumes and
energies. We now ask what is the probability that S is in a state | n ) with energy E,,. This is given by the
ratio

Dy (E, — E,)AE

P, =l
n T ABES0  Dy(E,)AE
. . (4.75)
_ #of states accessible to I given that £, = E,
B total # of states in U
Then
InP,=InDy(E, —E,) —InD,(E)
InD(E 4.76
WDy (E,) — In Dy (B, — B, 22 Dw(E) T (4.76)
oE E=E

8]

The higher order terms are negligible if vol(S) < vol(W). In this case we have In P, = —a — SE,,, with

Oln Dy, (E) 1
3= w = (4.77)
OFE E=E, kT
The constant « is fixed by the requirement that ), P, = 1, and thus we obtain
1 ~
P,= e BnlksT Z(T,V,N)=Tre P = Zn: e EnlksT (4.78)
We define the Helmholtz free energy F(T',V, N) as

F(T,V,N)=—k;TInZ(T,V,N) . (4.79)

We’ve already met Z () in eqn. 4.12 — it is the Laplace transform of the density of states. It is also
called the partition function of the system S. Quantum mechanically, we can write the ordinary canonical
density matrix as

e—BH

Tr e—BH

which is known as the Gibbs distribution. Note that [@, H } = 0, hence the ordinary canonical distribution
is a stationary solution to the evolution equation for the density matrix. Note that the OCE is specified
by three parameters: T, V, and V.

6= (4.80)
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4.4.2 The difference between P(E,) and P,

Let the total energy of the Universe be fixed at E,,. The joint probability density P(Ej, E,, ) for the system
to have energy g and the world to have energy F.; is

P(Esa Ew) = Ds(Es) DW(EW) 5(EU - Es - EW)/DU(EU) ) (4.81)
where .
D(Ey) = [dE, Dy(E) Dy(E, - E.) . @82)

which ensures that [dEg [dE,, P(Eg, Ey,) = 1. The probability density P(Ey) is defined such that P(E) dE
is the (differential) probability for the system to have an energy in the range [Ey, Eg + dE]. The units
of P(E,) are E~!. To obtain P(E,), we simply integrate the joint probability density P(E, E,,) over all
possible values of E., obtaining

DS(ES) DW(EU — ES)

PUE) = =5 (&, ’

(4.83)

as we have in eqn. 4.75. Suppose we wish to know the probability P, that the system is in a particular
state | n ) with energy E,,. Clearly

probability that E; € [E,,, E,, + AFE] P(E,)AE Dy(E,—E,)

P = 1l = = . 4.84
n = A0 #0f S states with E, € |E,, E, + AE]  Dy(E,)AE D, (E,) (4.84)

4.4.3 Additional remarks

The formula of eqn. 4.75 is quite general and holds in the case where N/N,, = O(1), so long as we are
in the thermodynamic limit, where the energy associated with the interface between S and W may be
neglected. In this case, however, one is not licensed to perform the subsequent Taylor expansion, and
the distribution P, is no longer of the Gibbs form. It is also valid for quantum systems’, in which case
we interpret P, = (n|gg|n) as a diagonal element of the density matrix p4. The density of states functions
may then be replaced by

Ey—E,+AE
Dy (E, — E,) AE — ew(Eu=En, AE) — Tr / dE §(E — Hy,)
EU_En
Ey+AE (4.85)
Dy(E,)AE — e5v(Fu . AE) = 'Er/dE §(E — Hy)
E

U

The off-diagonal matrix elements of g5 are negligible in the thermodynamic limit.

’See T.-C. Lu and T. Grover, arXiv 1709.08784.
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4.4.4 Averages within the OCE

To compute averages within the OCE,
> (nlAln) =P
Zj e i

where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we
have

(A) =Tr (0 4) = , (4.86)

1 A s
olp) = e e PAW  z Ty e PH = / du e PHP) (4.87)
with du = % HjV: (d? q d%p. i/ hd) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

[dp A(p) e PH )

A) =Tr (oA 4.88
)= Tr(ed) = = " (4.89)
4.4.5 Entropy and free energy
The Boltzmann entropy is defined by
S =k, Tr(6lnp) = —k, ZP InP, . (4.89)

The Boltzmann entropy and the statistical entropy S = k; In D(E) are identical in the thermodynamic
limit. Since In P, = 5(F — E,,), we have

F  (H)
S =—k; En P, (BF - BEn) =7t 7 (4.90)
which is to say F' = E — T'S, where
Tr fle_ﬁﬁ
E = E P E =—— 491
- Tr e BH ( )

is the average energy. We also see that

Lplue 0y, D ary @)

Z =Tr 6_6g = e PEn — F=
Z Zj e_BEj op B

Thus, F/(T,V, N) is a Legendre transform of E(S, V, N), with
dF = —-SdT — pdV + pdN (4.93)

oF oF oF
S <0T>V,N P <aV>T,N A=Y <6N>T,v (499

which means



4.4. ORDINARY CANONICAL ENSEMBLE (OCE) 191

4.4.6 Fluctuations in the OCE

In the OCE, the energy is not fixed. It therefore fluctuates about its average value E = (H). Note that
_Tr 2 e=fH B (Tr HeBH >2 (4.95)
Tr e=AH Tr e=BH
= (f%) = (11"

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw in §4.2.6:

(OB 1 . 2 (AB)pys  VET2C
I S R I S

For the nonrelativistic ideal gas, we found C|, = %N kg, hence the ratio of RMS fluctuations in the

energy to the energy itself is

(AE)gus > 2

— =1/ (4.97)
< E NRIG Nd

1/2

which scales as N~ "/“ and thus vanishes in the thermodynamic limit.

4.4.7 Thermodynamics revisited

The average energy within the OCE is

E=) E,P, | (4.98)
and therefore
dE =Y E,dP,+» P,dE,=dQ—dW |, (4.99)
where
iQ=> E,dp, , dW=-> P,dE, . (4.100)

Finally, from P, = Z~' e~ Fn/ksT we can write
E, = —kTWZ kTP, | (4.101)
with which we obtain

dQ=> E,dP,=~k,TInZ>» dP, —k,T» InP,dP,

" 4102
:Td(—kBZPnlnPn):TdS (4102
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-

B o} {En s Pn} {B., Pu}

< | >

dW =-> P, dE, dQ =) E,dP,

n

Figure 4.5: Microscopic, statistical interpretation of the First Law of Thermodynamics.

Note also that

~> P,dE, = —ZPH< Z;E; dXZ.>

(4.103)
= — Z P, { ) dX; = Z FdX, |,
so the generalized force F; conjugate to the generalized displacement dX; is
OH
Z . aX <87> . (4.104)

This is the force acting on the system®. In the chapter on thermodynamics, we defined the generalized
force conjugate to X; as y; = —F;.

Thus we see from eqn. 4.99 that there are two ways that the average energy can change; these are
depicted in the sketch of fig. 4.5. Starting from a set of energy levels { £, } and probabilities {P,}, we
can shift the energies to { £}, }. The resulting change in energy (AE), = —W is identified with the work
done on the system. We could also modify the probabilities to { P, } without changing the energies. The
energy change in this case is the heat absorbed by the system: (AE),, = Q. This provides us with a
statistical and microscopic interpretation of the First Law of Thermodynamics.

8In deriving eqn. 4.104, we have used the so-called Feynman-Hellman theorem of quantum mechanics:
d{n|H|n) = (n|dH |n), if |n) is an energy eigenstate.
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4.4.8 Generalized susceptibilities

Suppose our Hamiltonian is of the form
H=H\ =H,-\Q |, (4.105)

where ) is an intensive parameter, such as magnetic field. Then Z(\) = Tr e=* (Hy=XQ) and

1 07 1 A : N
o =B 5T (Q e—ﬁH(A)) =5(Q) . (4.106)
But then from Z = ¢ #F we have
A oF
QANT)=(Q) =~ <5>T : (4.107)

Typically we will take @ to be an extensive quantity. We can now define the susceptibility X as

10Q 1 0%F

Y=V Vox (3108)

The volume factor in the denominator ensures that X is intensive.

It is important to realize that we have assumed here that [ﬁo, Q] = 0, i.e. the ‘bare’ Hamiltonian H,

and the operator Q commute. If they do not commute, then the response functions must be computed
within a proper quantum mechanical formalism, which we shall not discuss here.

Note also that we can imagine an entire family of observables {Q,} satisfying [Q, , Q,,] = 0 and
[Hy, Q] =0, for all k and k. Then for the Hamiltonian

HX) =Hy= > M@y (4.109)
k

we have that

A oF
QuAT) =(Qy) =— <W> (4.110)
k/T{Na}, {\; (#k)}
and we may define an entire matrix of susceptibilities,
2
_10Q, 1 OF (4.111)

WEV N, T TV o oN

4.5 Grand Canonical Ensemble (GCE)

4.5.1 Grand canonical distribution and partition function

Consider once again the situation depicted in fig. 4.3, where a system S is in contact with a world W,
their union U = W U S being called the “universe’. We assume that the system’s volume V7 is fixed, but
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otherwise it is allowed to exchange energy and particle number with W. Hence, the system’s energy E
and particle number Ny will fluctuate. We ask what is the probability that S is in a state | n ) with energy
E, and particle number N,,. This is given by the ratio

P, = lim lim Dyw(Ey, — E,, Ny — N,,) AEAN
" AES0 ANSO Dy (Ey, Ny) AEAN

4.112
_ #of states accessible to W given that £, = E,, and Ny = N, ( )
B total # of states in U
Then
In P, =InDy(E, — E,, Ny = N,,) = In Dy(Ey, Ny)
=In Dy (Ey, Ny) — In Dy(Ey, Ny)
(4.113)
B Oln Dy (E,N) _Nn(‘)lnDW(E,N) L
aE E:EU aN E:EU
N:NU N:NU
and thusIn P, = —a — BE, + BuN, , with
dIn D, (E,N) 1 dIn D, (E,N)
= w7/ = =k, T ——2 "~ 4114
g oF E=by kT 7 : " ON B=Ey ( )
N:NU N:NU

The quantity p has dimensions of energy and is called the chemical potential. Nota bene: Some texts

define the ‘grand canonical Hamiltonian’ K as K = H — uN . Thus, P, = e~ e #(Fa—=#Na) Once again,
the constant « is fixed by the requirement that P, = 1:
L -8, —uN
PTL =—e n—H n)
- (4.115)
=B,V ) = Ze B(En=pNn) — Ty ¢=BK
Thus, the quantum mechanical grand canonical density matrix is given by
o (4.116)
0= = :
Tr e 8K

with K = H — uN. Note that [0, K | = 0. The quantity =(T,V, p) is called the grand partition function. It
stands in relation to a corresponding free energy in the usual way:

QT,V,u) = —k;TIn=Z(T,V, 1) = E =exp(—N/k,T) (4.117)

where (T, V, ) is the grand potential, also known as the Landau free energy. The dimensionless quantity
z = exp(p/kyT) is called the fugacity. Thus, In P, = (2 — E, + uN,,)/k;T .
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If []fl N | =0, the grand potential may be expressed as a sum over contributions from each N sector, viz.

E(T, V) =) N Z(T,V,N) . (4.118)
N

When there is more than one species, we have several chemical potentials {y,}, and accordingly we
define o R
K=H-) uN, , (4.119)

with £ = Tr e=#K as before. To compute averages within the GCE, we use the grand canonical density
matrix o:
S, (n|A|n) e~ P(En—pNn)

(Ay=Tr(pA) = SRR : (4.120)
4.5.2 Entropy and Gibbs-Duhem relation
In the GCE, the Boltzmann entropy is
S=—k,> PP, =k, P, (59 — BE, + 5,uNn>
" " . (4.121)
e
T T ’
which says
Q=E—-TS—uN |, (4.122)
where K )
E=) E,B,=Tr(3H) , N=> N,P,=Tr(gN) . (4.123)
Therefore, 2(T,V, u) is a double Legendre transform of E(S,V, N), with
A2 =-SdTI' —pdV — Ndu (4.124)
which entails
§—_ (@) o p—— <@> . N=-— <@> . (4.125)
orT )y, oV Jr., o Jry

Since 2(T,V, ) is an extensive quantity, we must be able to write 2 = Vw(T, ). We identify the
function w(T, i) as the negative of the pressure:

of? k., T (0= 1 OB, _a(E, —un,) oF

— = — == L nTHn) = [ — = —p(T . 4.126

ov = (av)m E4 v © oV )y, = TPTH) (4120
Therefore, 2 = —pV, and p = p(T, p) is an equation of state. This is consistent with the result from

thermodynamics that G = E — T'S + pV = puN. Taking the differential, we recover the Gibbs-Duhem
relation,

d2=-SdT —pdV — Nduy=—pdV —-Vdp = SdI'—Vdp+ Ndu=0 . (4.127)
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4.5.3 Fluctuations in the GCE

Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle num-
ber. We have

. TrNeBU-uN) 1 9 o
N=(N)= = — — InEF=—- . 4.128
oL Tr e~ B(H-uN) B ou : o ( )
Therefore,
R A . SN
1 ON 19%2  Tr N2e BH-pN) Tr N e PUH—pN) - 2
S = = — — —— :<N2>—<N> , (4.129)
B Ou B ou Tr e=B(H—uN) Tr e~ B(H—pN)
and thus )
N2) — (N k. T (ON k,T
() S

where k., is the isothermal compressibility. Note:

ON AN, T,V)  O(N,T,V)
(o)

% TV B a(lu’?T7 V) B 8(V> Ta /L)
N/V 1 N/V
O(N,T,V) O(N,T,p) O(V,T,p) O(N,T,p) (4.131)

O(N,T,p) o(V,T,p) O(N,T,u) OV,T,p)

_ NPV N
- V2 \dp )y VT

(A]j\;mws: /sz‘;I{T , (4‘132)

which again scales as V' ~!/2. For the nonrelativistic ideal gas #, = 1/p and the ratio is N~'/2. Compare
with the OCE result in eqn. 4.96.

We thus arrive at the result

4.54 Generalized susceptibilities in the GCE

We can appropriate the results from §4.4.8 and apply them, mutatis mutandis, to the GCE. Suppose we
have a family of observables {Q), } satisfying [Q, , Q,,] =0and [H,, Q,] =0and [N,, Q,] = 0 forall
k, k', and a. We define the grand canonical Hamiltonian,

K=Hy—> 1, N,—=> NQy - (4.133)
a k

We then have R
T,V Ap b AMS) = =k T Tr e K/8T (4.134)
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whence
A2 =—SdT —pdV + > N,du, — > Qndx, | (4.135)
a k

where the un-hatted quantities {\V,, @, } are statistical averages within the GCE, viz.

. o1 A on
N, =(N,) =— = =——— 41
This leads to various generalized susceptibilities and cross-susceptibilities,
ON, 0% 0Q, 020 ON, 0Q, 0202 (4.137)
O, — Ougop, ’ oN, NN ’ O\, Opg  Opa0N, '

Note that the mixed second derivatives are independent of order and yield various Maxwell relations.

4.5.5 Gibbs ensemble
Let the system’s particle number IV be fixed, but let it exchange energy and volume with the world W'.
Mutatis mutandis, we have

Dy(E, —E,,V,—V,)AEAV

P = 1 li n 4.1
n T AES0 AV S0 Dy (Ey, Vo) AEAV (4.138)
Then
InP, =Dy (E,—E,, V,—V,) —InDy(E,, V) (4.139)
B d1n Dy, (E, V) dn Dy, (E,V)
=InDy(E;,V,) —InD,(E,,V,) — E, T OE  |v-s, v, v |een, .
V:VU V:VU
and thusIn P, = —a — SE, — SpV,,, where the constants 3 and p are given by
d1n Dy, (E, V) 1 dn Dy, (E,V)
=" ° = =k — 4.140
B aE E:EU kBT ’ p B 8‘/ E:EU ( )
V=V, V=V
The corresponding partition function is
A 1 °
Y(T,p,N) = Tr e AUHAPV) — v / AV e PPV Z(T,V,N) = ¢ BC¢Tp.N) (4.141)
0
0

where V, is a constant which has dimensions of volume. The factor V; ! in front of the integral renders
Y dimensionless. Note that G(V)) = G(V,)) + k,T In(V{/V,), so the difference is not extensive and can
be neglected in the thermodynamic limit. In other words, it doesn’t matter what constant we choose for
V, since it contributes subextensively to G. Moreover, in computing averages, the constant V;, divides
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out in the ratio of numerator and denominator. Like the Helmholtz free energy, the Gibbs free energy
G(T,p, N) is also a double Legendre transform of the energy E(S,V, N), viz.

G=FE-TS+pV
dG = -SdTI' +Vdp+ pdN

oG oG oG

4.6 Statistical Ensembles from Maximum Entropy

(4.142)

which entails

The basic principle: maximize the Boltzmann entropy,

S=-ky» P,InP, | (4.144)

subject to a set of constraints. Constrained extremization using Lagrange’s method of undetermined
multipliers is reviews in the appendix, §4.10.

4.6.1 Microcanonical ensemble

We maximize S subject to the single constraint

C=> P,—1=0 . (4.145)

We implement the constraint C' = 0 with a Lagrange multiplier, A = k, A, writing
S*=8S—-k,;\C (4.146)
and freely extremizing over the distribution { P, } and the Lagrange multiplier . Thus,

§S* = 68 — kyA6C — ky, C 0N

=k, > [P, + 1+ 2|68, —k,Cox =0 (4.147)
We conclude that C' = 0 and that
InP,=—(14+2X) , (4.148)
and we fix A by the normalization condition ) _,, P, = 1. This gives P, = 1/, with
Q=) O(E+AE-E,)O(E,-E) , (4.149)

i.e. the total number of energy states lying in the interval [E, £ + AE].
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4.6.2 Ordinary canonical ensemble
We maximize S subject to the two constraints
C,=> P,-1=0 , Cy=>» E,B,—-E=0
n n

We now have two Lagrange multipliers. We write
2
S =8—ky> NC;
j=1
and we freely extremize over {P,} and {C;}. We therefore have

2
05" =68 —ky > (M + M E,) 0P, —ky > C; ),

Jj=1

2
= [lnPn+1—|—/\1+/\2En}5Pn—szZCj5/\j =0

j=1
Thus, C; = Cy = 0 and
InP,=—(14+X+X\E,)
We define A\, =  and we fix A\; by normalization. This yields
1 A
_ L -sE, N e BE. Ty Bl
P, = 7 e , Z = Zn: e =Tre

4.6.3 Grand canonical ensemble

We maximize S subject to the three constraints
C,=>» PB,-1=0 , Cy=>» E,B,-E=0 , C3=» N,P,-N=0

We now have three Lagrange multipliers. We write
3
S*=8-ky> NC; o,

J
=1

and hence

3
05" =068 —ky Y (M + A E, + A N,) 6B, — ky ¥ C;0),
n 7=1

3
= [lnPn+1+)\1+)\2En+)\3Nn]5Pn—kBZ:le6)\jEO
n 1=

199

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

(4.156)

(4.157)
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Thus, C; = Cy = C3 = 0 and

We define A\, = f and \; = —fu, and we fix A\; by normalization. This yields

n

—
—

p = L -8E,~uN,) . E=Y e PEN) — Ty e~ BH=-pN) (4.159)

4.6.4 Generalized Gibbs ensembles

Suppose we have p constraints of the form (Q p) = @, withk € {1,...,p} and c constraints of the form

(N,) = N, with a € {1,...,c}, in addition to the constraint of overall normalization of the probability
distribution P,,. Then construct the extended function S*, with

1 *
=S (P Py Ay ...,nc,01,...,0p):—;PnlnPn—)\<;Pn—1> (4.160)

P c
_ Z@(ZP,LQM - Qk> - Zna<ZPnNm —Na> ,
k=1 n a=1 n

where ), {6, } and {n, } comprise 14 p+c undetermined Lagrange multipliers. The total number of states
is taken to be Q, i.e. n € {1,...,Q}. Setting the variation §S* = 0, we obtain the following @ +1+p+c
equations:

1 05* P -
=———=—InP, —(14+X\)— E 0,.Q. ., — E N
0 k‘B aPn n ( >‘) p k<Ykn et Na Na,n

195"
0= _1—;&

e (4.161)
0= k_Ba—ek :Qk_zn:Pan,n
0= k—lgja =N, - zn:PnNavn
Thus, the probability distribution is given by
1 > -
P(0.m) =z exp{— k; Oy Qr — ; T N} (4.162)
with ) .
Z0,m) =) exp{— > 0.Qun— Y N N} (4.163)
n k=1 a=1
as well as

Qk = Z Pn(ea TI) Qk,n ) Na = Z Pn(ea TI) Na,n ) (4164)



4.7. IDEAL GAS STATISTICAL MECHANICS 201

where Q; |, = (n[@kln>andNa7n = (n|N,|n).

If for k = 1 we have Q,_, = H, then @1, = E, and we may define ¢, = 8 = 1/k,T and 0, = -3\,
for £ > 2. Similarly we may define n, = —fu,. Further defining the generalized grand canonical
Hamiltonian as

p c
KA =H=Y NQ—Y N, (4.165)
k=2 a=1
we have .
Z(T, A p) =Tre MK =) " e Kn/haT (4.166)
and
P (T A\ p) =2 te KnlksT K —(n|K|n) . (4.167)

Note the correspondence of these results with those of §4.5.4.

4.7 Ideal Gas Statistical Mechanics

The ordinary canonical partition function for the ideal gas was computed in eqn. 4.14. We found

N
1 ddxz‘ ddpi —Bp2/2m
Z(T,V,N):mnl/ e © pi

N ~ Nd N
(e ) ()
N! 2mh N! )\%

—00

(4.168)

where A\ is the thermal wavelength,
Ap =/ 2wh? /mk,T . (4.169)

The physical interpretation of A} is that it is the de Broglie wavelength for a particle of mass m which
has a kinetic energy of k7T

In the GCE, we have

4.170
() () .
= —|—— | =exp| ———
=B Ar

~/ksT  we have the grand potential is

From = =¢
AT, V,p) = —VE,TetksT /X% (4.171)

Since 2 = —pV (see §4.5.2), we have
p(T, 1) = kT A et/ sl (4.172)
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The number density can also be calculated:

N 1 /082

=—=_—|(= = A4t/ ks 4173
! 14 14 <6:u>T,V re ( :

Combined, the last two equations recapitulate the ideal gas law, pV = Nk, T.

4.7.1 Maxwell velocity distribution

The distribution function for momenta is given by

N
9(p) = <% > imi-p) - (4.174)
i=1

Note that g(p) = (6(p; — p)) is the same for every particle, independent of its label i. We compute the

average (A) = Tr (Ae_ﬁﬁ )/ Tr e~BH  Setting i = 1, all the integrals other than that over p, divide out
between numerator and denominator. We then have

_ [, 5(p, — p) el

_ -3/2 —Bp?/2m
[, gy ey (2rmk,T) e . (4.175)

9(p)

Textbooks commonly refer to the velocity distribution f(v), which is related to g(p) by

fv)d =g(p)d®p . (4.176)
Hence,
( ) m i 2 )2k, T
f(v :< > e T/ <kp . (4.177)
2mkT

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, viz.
/ d* g(p) = / dv flv)=1 . (4.178)

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define the
Maxwell speed distribution, f(v), as

. 3/2
f(v) =4nv?f(v) = 47T<2 T]: T> 2 e~ /2heT (4.179)
TRy

~ o ~
Note that f(v) is normalized according to [dv f(v) = 1. It is convenient to represent v in units of
0

vy = v/kgT'/m, in which case
1 1 2 2 —s2/2
fl)=—elw/vg) ¢ls) \/;S € (4.180)

0
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Figure 4.6: Maxwell distribution of speeds ¢(v/vg). The most probable speed is vmax = V2v9. The
average speed is vVavg = 1/8/m v9. The RMS speed is vyms = NEXTY

The distribution ¢(s) is shown in fig. 4.6. Computing averages, we have
T 2
Cp = (s*) = /ds s%p(s) = N 2k/2 B+5 . (4.181)
0
Thus, Cy = 1, C| = /8/m, Cy = 3, etc. The speed averages are

W =i

Note that the average velocity is (v) = 0, but the average speed is (v) = \/8k,T/mm. The speed distribu-
tion is plotted in fig. 4.6.

k/2
kBT) (4.182)

m

4.7.2 Equipartition

The Hamiltonian for ballistic (i.e. massive nonrelativistic) particles is quadratic in the individual com-
ponents of each momentum p,. There are other cases in which a classical degree of freedom appears
quadratically in H as well. For example, an individual normal mode ¢ of a system of coupled oscillators
has the Lagrangian L = 1¢2 — 1 w2 €2, where the dimensions of ¢ are [¢] = M'/2L by convention. The
Hamiltonian for this normal mode is then H = % p?+ % w(z] £2, from which we see that both the kinetic as
well as potential energy terms enter quadratically into the Hamiltonian. The classical rotational kinetic
energy is also quadratic in the angular momentum components.

Let us compute the contribution of a single quadratic degree of freedom in H to the partition func-
tion. We'll call this degree of freedom u — it may be a position or momentum or an angle or an angular
momentum or some other generalized coordinate or conjugate momentum — and we’ll write its contri-
bution to H as H, = $Ku?, where K is some constant. Integrating over u yields the following factor in
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the partition function:

s 1/2
¢(B) = /due_ﬁKUQ/zz (%) , (4.183)

—00

where § = 1/k;T. The contribution to the Helmholtz free energy is then

AF, = —k,TIn¢ = %kBTln<27TkBT> : (4.184)
and therefore the contribution to the internal energy F is
0ln(
AE, = 5 = ShsT . (4.185)

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

To each degree of freedom which enters the Hamiltonian quadratically is associated a contri-
bution 1k,T to the internal energy of the system. This results in a concomitant contribution
of $k, to the heat capacity.

We now see why the internal energy of a classical ideal gas with f degrees of freedom per molecule is
E = $fNk,T, and Cy, = $Nk,. This result also has applications in the theory of solids. The atoms
in a solid possess kinetic energy due to their motion, and potential energy due to the spring-like in-
teratomic potentials which tend to keep the atoms in their preferred crystalline positions. Thus, for
a three-dimensional crystal, there are six quadratic degrees of freedom (three positions and three mo-
menta) per atom, and the classical energy should be £ = 3Nk,T, and the heat capacity C|, = 3Nk;.
As we shall see, quantum mechanics modifies this result considerably at temperatures below the high-
est normal mode (i.e. phonon) frequency, but the high temperature limit is given by the classical value
C\, = 3vR (where v = N/N, is the number of moles) derived here, known as the Dulong-Petit limit.

For a degree of freedom which enters the Hamiltonian as a power, such as H,, = 1K |u|” we have

oo

() =2 fawemmorss 2 TIO) e (4.186)
0

after substituting u(t) = (2t/3K)'/? and integrating over t. We then obtain AE, = k,T/o.

4.8 Selected Examples

4.8.1 Spins in an external magnetic field

Consider a system of N, spins, each of which can be either up (¢ = +1) or down (¢ = —1). The
Hamiltonian for this system is
NS
H=-pH> o; | (4.187)

J=1
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where now we write H for the Hamiltonian, to distinguish it from the external magnetic field H, and 1,
is the magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The
partition function is

z=Y - Ze—ﬁff =N (4.188)
0'1 O—Ns
where ( is the single particle partition function:
H
(=Y erollo/keT = 2005h<':0T> : (4.189)
o==+1 B

The Helmholtz free energy is then

F(T,H,N,) = —k,TInZ = —N,k,TIn |2 cosh</;0]; )] . (4.190)
B
The magnetization is
oF o H
M=— <—> = N, 1o tanh< 0 > . (4.191)
OH )y . ° ke, T
The energy is
=2 (BF) = —N, 1o H tanh HoH (4.192)
0B s70 kT ) ‘

Hence, E = —H M, which we already knew, from the form of H itself.
Each spin here is independent. The probability that a given spin has polarization o is

eﬁ/»‘oHU

0 = Bl | o BuoH (4.193)
The total probability is unity, i.e. P, + P_ = 1, and the average polarization is a weighted average of
o = +1and o = —1 contributions:
H
(0)=P, — P = tanh<“0 > . (4.194)
kT

At low temperatures 7' < yyH /ky, we have P ~ 1 — e~ 240 H/ksT - At high temperatures T > jigH /ky,

the two polarizations are equally likely, and P, ~ 3 (1 + U,fBOJIf[ ) .

The isothermal magnetic susceptibility is defined as

1 (OM 13 of Mot
_ (22 C h . 4.195
=y <aH >T kT 0 \ kT (4.195)

(Typically this is computed per unit volume rather than per particle.) At H = 0, we have X, = p/k,T,
which is known as the Curie law.
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Aside

The energy £ = —HM here is not the same quantity we discussed in our study of thermodynamics.
In fact, the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll
need to invoke a new symbol for the thermodynamic energy, £. Recall that the thermodynamic energy
€ is a function of extensive quantities, meaning & = £(S, M, N). It is obtained from the free energy
F(T, H, N) by a double Legendre transform:

E(S,M,N,) = F(T,H,N,) + TS+ HM . (4.196)

Now from eqn. 4.190 we derive the entropy

S = _or = Nk, In [2cosh<’u0H>

N, o H H
—ﬂtanh@o ) : (4.197)

T knT T

Thus, using eqns. 4.190 and 4.191, we obtain £(S, M, N;) = 0.

The potential confusion here arises from our use of the expression F'(T, H, N;). In thermodynamics, it is
the Gibbs free energy G (7, p, N,) which is a double Legendre transform of the energy: G = £ - TS+ pV.
By analogy, with magnetic systems we should perhaps write G = £ — T'S — HM, but in keeping with
many textbooks we shall use the symbol F' and refer to it as the Helmholtz free energy. The quantity
we’ve called F in eqn. 4.192 is in fact £ = £ — H M, which means £ = 0. The energy £(S, M, N) vanishes
here because the spins are noninteracting.

4.8.2 Negative temperature (!)

Consider again a system of IV, spins, each of which can be either up (+) or down (—). Let N, be the
number of sites with spin o, where o = £1. Clearly N, + N_ = IN;. We now treat this system within the
microcanonical ensemble.

The energy of the system is ¥ = —H M, where H is an external magnetic field, and M = (N, — N_)
is the total magnetization. We now compute S(E) using the ordinary canonical ensemble. The number
of ways of arranging the system with IV, up spins is

N, N!
Q= ° | = . 4.198
<N+> N, IN_! ( )
Using Stirling’s expression In K! = K In K — K + O(In K) for large K, we have
S=kyInQ= (NgInNg — Ng) = (N, InN, —N,)—(N_InN_—-N_)

(4.199)
= —Nsk:B{ajlnaj +(1—2)In(1 - a:)}
in the thermodynamic limit: N; — oo, N, — oo, # = N, /N; constant. Now the magnetization is
M = (N, — N_)ug = (2N — Ny)p , hence if we define the maximum energy E, = Nu,H, then
E M _ Ey—-FE

- =1-2r = =z
E, Ny 2E,

(4.200)
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Figure 4.7: When entropy decreases with increasing energy, the temperature is negative. Typically,
kinetic degrees of freedom prevent this peculiarity from manifesting in physical systems.

We therefore have

- E,—E E,—E E,+E E,+E
S(E,N,) = —N,k, ( 3T, >ln< 3T >+< TN )m( 3, (4.201)
We now have

1 [0S\ 8S dx Nk, (E,—E

T (@)NS_%a_E_ 2B, ln<E0+E ' (4.202)

We see that the temperature is positive for —E; < E < 0 and is negative for 0 < £ < E,.

What has gone wrong? The answer is that nothing has gone wrong — all our calculations are perfectly
correct. This system does exhibit the possibility of negative temperature. It is, however, unphysical in
that we have neglected kinetic degrees of freedom, which result in an entropy function S(£, N;) which
is an increasing function of energy. In this system, S(E, N,) achieves a maximum of S,,,, = Nk In2
at E = 0 (ie. z = 1), and then turns over and starts decreasing. In fact, our results are completely
consistent with eqn. 4.192 : the energy E is an odd function of temperature. Positive energy requires

negative temperature! Another example of this peculiarity is provided in the appendix in §4.11.3.

4.8.3 Adsorption

PROBLEM: A surface containing N, adsorption sites is in equilibrium with a monatomic ideal gas. Atoms
adsorbed on the surface have an energy —A and no kinetic energy. Each adsorption site can accommo-
date at most one atom. Calculate the fraction f of occupied adsorption sites as a function of the gas
density n, the temperature 7', the binding energy A, and physical constants.
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SOLUTION: The grand partition function for the surface is

NS
Esurface = e_qurfacc/kBT = Z <N5> ej(u+A)/kBT = (1 + e'u/kBT EA/kBT)NS . (4.203)
=0 N7
The fraction of occupied sites is
f — <Nsurface> — _L aqurface — eu/kBT . (4204)
Ns Ns o et/kgT + e—A/kgT

Since the surface is in equilibrium with the gas, its fugacity z = exp(u/k,T") and temperature 7" are the
same as in the gas.

For a monatomic ideal gas, the single particle partition function is ( = VA;:?, where A\, = \/27h2 /mk,T
is the thermal wavelength. Thus, the grand partition function, for indistinguishable particles, is

Zgas = €XP (V)\:;?’ e“/kBT> . (4.205)

The gas density is
n — <Nga8> _ _i Ogas _

1% V. ou

A7 et/ ke (4.206)
We can now solve for the fugacity: z = e#/*s” = n)\3.. Thus, the fraction of occupied adsorption sites is

n)\gl
f= n)\‘} AT (4.207)

Interestingly, the solution for f involves the constant .

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas
density tends to zero at fixed 7" and A, we have f — 0. On the other hand, if n — co we have f — 1,
which also makes sense. At fixed n and 7, if the adsorption energy is (—A) — —oo, then once again
f = 1 since every adsorption site wants to be occupied. Conversely, taking (—A) — +o0 results in
n — 0, since the energetic cost of adsorption is infinitely high.

4.8.4 Dipole gas

Consider a gas of polar diatomic molecules, each endowed with a dipole moment d; = i, n;. Here
n; = (sin 0;cos¢;,sinb; sing;, cos 9]-) is the unit orientation vector for the symmetry axis of molecule j,
which points in the direction of the molecule’s dipole moment. The single molecule Hamiltonian is then

N
h=—+= — o -n . 4.208
om 21 " arsnZg  H0E " (4:208)
Without loss of generality we may choose E = Ez, hence the dipole energy functionis u(0) = —puyE cos 6.

Here p = (p,, p,, p.) is the vector of linear momenta and (p Py p¢) are the angular momenta conjugate
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to the Euler angles ¢, 6, and 1. For a symmetric top, the Euler angles (6, ¢) are, respectively, the polar
and azimuthal angles of the symmetry axis, and 7 is the angle of rotations about the symmetry axis. The
inertia tensor in the center-of-mass frame is then diag(/,, I;, I5), and for diatomic molecules I is on the
order of ma2,., where a, is the nuclear diameter. Thus I, is so small that the lowest nonzero quantized
rotation energies o< h?/21; are much larger than k7 in all conceivable applications, and we may forget
about the {v, pu}} degrees of freedom and set I; = I, = I. This results in the rotational kinetic energy
term in the above molecular Hamiltonian and a phase space metric

dxdp, dydp, dzdp, dfdp, dodp,

dp = e S (4.209)
and the single molecule partition function is
2m ™ 00 ood
(T, V,E) = / dp T = 2 / do / ” / T / Do o=6/21 ¢=Br}/20 sin0 = pu(o)
A3, h h
i (4.210)
V. Ik, T/d@ <in g e—~Bu(®) _ 13 ‘IkgT.smh(,uoE/kBT) ’
)\ Ay h poE kT
~ ——
gtrans Crot Cpol
where
14 Ik, T sinh(ugE/k;T)
T, T)=—2 T.E) = b 4211
Ctrans( V) )\3 ) grot( ) 72 ’ Cpol( ) ) IUOE/]CBT ( )

are the contributions to the single molecule partition function from translational, rotational, and polar-
ization energies, respectively. The N-molecule partition function is Z(T,V, N, E) = ¢((T,V, E) /N! and
thus in the thermodynamic limit, using Stirling’s rule,

F(T,V,N,E) = —NkyTlog [((T,V,E)/N| — Nk,T

B 14 2Ik,T sinh(poE/k,T) (4.212)

The average dipole moment per molecule is given by
d) = -—— tnh - E 4.213
@ == (55). - NO{CH (F) 251 u213)

where E = 2.

Let’s work out the physics in the GCE. The grand partition function is given by

o0
E T V /Ly Z ZNZ T ‘/7 Nv E) = eXp(Z Ctrans Crot gpol)
N=0

B 2V \ [ 20k, T\ (sinh(uoE/k,T) (4.214)
_exp{<N)\%>< 72 >< 1Bk T )} 7
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where z = exp(u/k;T') is the fugacity. Thus, the grand potential is
“Q(Ta Vi, ) =—k TlOg (T Vi, ) = _kBTZCtrans Crot <pol

- T( 2V > <2IkBT> <sinh(u0E/kBT)> (4.215)
FTANN h? poE kT '

As a sanity check, we compute (d) within the GCE and make sure we get the same result in the thermo-
dynamic limit. We have the average total dipole moment is

on 9Cpol
D = Ho < Z d; > <6E )T Vi kBT z gtrans grot < OFE >T,V“u : (4216)

The average number of particles is

of?
N=—[ZZ= = 4.217
< o >T V.E 2 Gtrans Srot Cpol ( )

Odlo ~
d = 2 = kT <ﬂ> = Lo ctnh<M0E> — kT E . (4.218)
N OE  Jrv, kT ) o

4.8.5 Elasticity of wool

and therefore

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but
reversibly so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins
by assuming they can exist in one of two states, which we will call A and B, with energies ¢, and ¢
and lengths ¢, and /. The situation is depicted in fig. 4.8. We model these conformational degrees of
freedom by a spin variable 0 = +1 for each molecule, where ¢ = +1 in the A state and 0 = —1 in the B
state. Suppose a chain consisting of IV, monomers is placed under a tension 7. We then have

Nm
= [eA s i1+ & 5%_1] . (4.219)
j=1
Similarly, the length is
Nm
L= [EA 5y i1+ Lo 5%_1} . (4.220)
7j=1

AB A B B AAA B AA

Figure 4.8: The monomers in wool are modeled as existing in one of two states. The low energy unde-
formed state is A, and the higher energy deformed state is B. Applying tension induces more monomers
to enter the B state.
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The Gibbs partition functionis Y = Tr e K/ksT with K = H — 1L :

m

A

K= [gA 0 1+ 0s 1] (4.221)

—_

<

whereé, =¢, — 7¢, and é; = ¢, — 7¢,. At 7 = 0 the A state is preferred for each monomer, but when 7
exceeds 7%, defined by the relation £, = £, the B state is preferred. One finds

* 6B_eA

A

T

(4.222)

Once again, we have a set of N, noninteracting spins. The partition function is Y = (=, where ( is the
single monomer partition function, ( = Tr exp(—/h), where

~

h == é:A 5Uj 1 + é:B 60._ -1 (4.223)
k) J?

is the single “spin” Hamiltonian. Thus,

C=TrePh =B oPn | (4.224)
It is convenient to define the differences

Ae=¢ez—¢, , AM=tl,—l, , Aé=E,—¢E, (4.225)



212 CHAPTER 4. STATISTICAL ENSEMBLES

in which case the partition function Y and Gibbs free energy G are

. N,
Y(T,7,N,) = e MmPés [1 + e—fmﬂ
i (4.226)
G(T,7,N,) = N, &, — N k,T'In [1 e A/ kT
The average length is
5 oG N, AL
L=(L)=—- <E>T,Nm = Nnl,+ B ART ] (4.227)
The polymer behaves as a spring, and for small 7 the spring constant is
_or o ART of Ac
k= 8_L . = W cosh <2kBT> . (4:.228)

The results are shown in fig. 4.9. Note that length increases with temperature for 7 < 7* and decreases
with temperature for 7 > 7*. Note also that k diverges at both low and high temperatures. At low
T, the energy gap Ae dominates and all monomers are in the A state, hence L = N, ¢, At high tem-
peratures k, T dominates and both A and B configurations are equally likely. The mean length is then
L= %Nm(EA + {g).

4.9 Statistical Mechanics of Molecular Gases

4.9.1 Separation of translational and internal degrees of freedom

The states of a noninteracting atom or molecule are labeled by its total momentum p and its internal
quantum numbers, which we will simply write with a collective index «, specifying rotational, vibra-
tional, and electronic degrees of freedom. The single particle Hamiltonian is then

2

h=2_th. | (4.229)
2m
with
- h?k?
h|k,a>:< —|—€a>|k,a> . (4.230)
2m
The partition function is
(=Tre Pl = Z e~ PP /2m Zgj e P (4.231)
P J

Here we have replaced the internal label a with a label j of energy eigenvalues, with g; being the de-
generacy of the internal state with energy ;. To do the p sum, we quantize in a box of dimensions
L, x Ly x --- x L,, using periodic boundary conditions. Then

B <2ﬂ'hnl 2mhng 27Tfmd>

- 4.232
Ll Y L2 Y Y Ld ( )
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where each n, is an integer. Since the differences between neighboring quantized p vectors are very tiny,
we can replace the sum over p by an integral:

d’p
2}; . / R (4.233)

where the volume in momentum space of an elementary rectangle is

21rh)? 2mh)?
Apl---Apd:L(l“')L = ( V) . (4.234)
d

Thus,
A 2okt e kT —d
(=V @i © 57N " gy e=/MT = VAT (T) (4.235)
J
where
§T) =Y gjeciltsT (4.236)
J
is the internal coordinate partition function. The N-particle ordinary canonical partition function is then
1 (v

Using Stirling’s approximation, we find the Helmholtz free energy F' = —k,T'In Z is

F(T,V,N) = —Nk,T , (4.238)

Vv
which entails the ideal gas law pV = Nk,T since dFF = —SdT — pdV + pdN. Making the Legendre
transform to G(T,p, N) = F(T,V,N) + pV, we have

d
G(T,p,N) = Nk, T'ln <’ZZ€> + N(T) (4.239)
B
where
o(T) = —k,Tn€(T) (4.240)

is the internal coordinate contribution to the single particle free energy. Recall that G = pN, which is to
say u(T,p) = G(T,p,N)/N.

G ky T
S=—(+%5) =Nky|In| =) +1+3d
<5T>p,N B[n<p/\d¢p>+ T2

and therefore the heat capacities are

The entropy is

—NJ(T) (4.241)

oS
Cow =T (52) = (ha+ )Nk, ~ NTG(D)
o, N
(4.242)
o8

Cyn=T—== = 3dNk, — NTY"(T)
’ oT )y

and we have C), y — Cy, y = Nk;. Furthermore, any temperature variation in the specific heats must be
due to the internal degrees of freedom.
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4.9.2 The internal coordinate partition function

At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

hint = ]Azrot + ]A7“Vib + ]Azelec (4243)

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of free-
dom. Then

gint(T) = grot(T) ’ gvib(T) ) geloc(T) : (4.244)
Associated with each class of excitation is a characteristic temperature ©. Rotational and vibrational
temperatures of a few common molecules are listed in table tab. 4.1.

4.9.3 Quantum theory of rotations

Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamil-
tonian is then
LI+l N L
ot 21, 21,
R2L(L+1 11

o, o, a1, )t

(4.245)

where i, |, () are the principal axes, with 7, the symmetry axis, and L, ;, . are the components of the
angular momentum vector L about these instantaneous body-fixed principal axes. The components of
L along space-fixed axes {x,y, z} are written as L*¥*. Note that

[LF, L) =nZ [L*, L] + [L*, nf] LY = i€, \nf L +ie, ng LV =0 (4.246)

which is equivalent to the statement that L, = n, - L is a rotational scalar. We can therefore simul-
taneously specify the eigenvalues of {L?, L? L.}, which form a complete set of commuting observ-
ables (CSCO)’. The eigenvalues of L? are mh with m € {—L,..., L}, while those of L. are kh with
ke{—L,...,L}. Thereisa (2L + 1)-fold degeneracy associated with the L* quantum number.

We assume the molecule is prolate, so that /; < I;. We can the define two temperature scales,

h? ~ R
= ; 8 =
21, kyy 2k,

o (4.247)

Prolateness then means © > . We conclude that the rotational partition function for an axisymmetric
molecule is given by

00 L _
Eot(T) = D (2L + 1) e LEADO/T N7 o=k (6-6)/T (4.248)
L=0 k=—L

Note that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed
in space, we can simultaneously specify the components of L along one axis fixed in space and one axis rotating
with a body. See Landau and Lifshitz, Quantum Mechanics, §103.
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| molecule | 6,0t (K) ‘ 0,4, (K) |
H, 854 6100
N, 5.86 3340
H,O 13.7,21.0,39.4 | 2290, 5180, 5400

Table 4.1: Some rotational and vibrational temperatures of common molecules.

In diatomic molecules, I, is extremely small, and © > k,T at all relevant temperatures. Only the k = 0
term contributes to the partition sum, and we have

o0

§ot(T) =D (2L + 1) HEADEOMT (4.249)
L=0

When T' <« ©, only the first few terms contribute, and
Eoi(T) =1+ 3e720/T £ 5760/T (4.250)
rot

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation
formula may be used to evaluate such a series:

Y F, = /dk F(k) + 3 [F(0) ]+ Z [ FEI=(n) — FEI=1(0) (4.251)
k=0 0 ]:1
where B; is the j* Bernoulli number where
By=1 , Bj=-% , By=% , Bi=—-% , By=4% . (4.252)
Thus,
> 1
Z F, = /dg: F(z) 4+ $F(0) — 5F'(0) — =0 F"0)+... . (4.253)

We have F(z) = (27 + 1) e=*@+DO/T for which [dz F(z) = &, hence
0

T 1 16 4 (6
Erot = +3+1—5?+%<?> +... . (4.254)
Recall that o(T) = —k,TIn&(T). We conclude that o, (T) ~ —3k,T e 20/T for T < © and ¢, (T) ~
—k,T'In(T/O) for T' > O©. We have seen that the internal coordinate contribution to the heat capacity
is ACy, = —NT¢"(T). For diatomic molecules, then, this contribution is exponentially suppressed for
T < O, while for high temperatures we have AC, = Nk;. One says that the rotational excitations are
‘frozen out” at temperatures much below ©. Including the first few terms, we have

2
ACy (T < ©) =12 Nk, (g) 20/ 4

L 7OV 16 7OV (4.255)
ACV(T>>@):N]CB{1+E<T> +%<?> —1—}
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Note that C'y, overshoots its limiting value of Nk, and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd L
states are allowed, depending on the total nuclear spin. This is discussed below in §4.9.6.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rota-
tions can be considered classically. We then have

L2 1 L
E(La7 L ,LC) =_2a 4 b, ¢ (4:256)
We then have 1 [dL,dL,dL,dédody
5m03=;;/ia ¢ T (4.257)

where (¢,01) are the Euler angles. Recall ¢ € [0,27], § € [0,7], and ¢ € [0,27]. The factor g,,; ac-
counts for physically indistinguishable orientations of the molecule brought about by rotations, which
can happen when more than one of the nuclei is the same. We then have

2%, T\
ST = (55 VAL LI, (4.258)

This leads to ACy, = 3 Nkj.

49.4 Vibrations

Vibrational frequencies are often given in units of inverse wavelength, such as cm™!, called a wavenum-
ber. To convert to a temperature scale T, we write k,T* = hv = hc/), hence T* = (hc/k,) A™!, and we
multiply by

% =1436K -cm . (4.259)

B
For example, infrared absorption (~ 50 cm™! to 10* cm™!) reveals that the ‘asymmetric stretch’ mode of
the H,O molecule has a vibrational frequency of v = 3756 cm . The corresponding temperature scale
is T" = 5394 K.

Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

2
h= o+ dmeq® = hw(afa+ ) . (4.260)

In general there are many vibrational modes, hence many normal mode frequencies w,. We then must
sum over all of them, resulting in
Ean = [[ €5 (4.261)
e}

For each such normal mode, the contribution is

€= i o~ (nt3)w/kpT _ —hw/2kgT i (E_h’w/kBT>n
n=0 n—0

(4.262)
o—lw/2ky T 1

T 1— e /ksT T 25inh(6)2T)
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where © = hw/k,. Then

o=k, Tln (2 sinh(@/2T)> = 15,0+ kyTln (1—e©/T) (4.263)
The contribution to the heat capacity is
2 e/T 2 —
AC’V:Nk:B(Q) _e?7 [Nk (©/T)? exp(—O/T) (T —0) (4.264)
T) (/T —1)2 Nk, (T — o)

4.9.5 Two-level systems : Schottky anomaly

Consider now a two-level system, with energies ¢, and ¢,. We define A = ¢; — ¢, and assume without
loss of generality that A > 0. The partition function is

(=ePote P =ePo(lyeP) | (4.265)
The free energy is
f=—k,TIn¢ =¢ey—kyTln (1+e 8/kT) (4.266)
The entropy for a given two level system is then
_of ATy, A 1
s——a—T—k:Bln(l—i—e B )+T'76A/kBT+1 (4.267)
and the heat capacity is = 7' (0s/0T), i.e.
A2 eA/kBT
T) = . 4.2
D)= 1 BT ) (4.268)
Thus,
kT T A= 2 4.269
= ——— e B e —
c(T < A) k‘BT26 , c(T> A) T (4.269)

We find that ¢(7") has a characteristic peak at 7% ~ 0.42 A/k,. The heat capacity vanishes in both the
low temperature and high temperature limits. At low temperatures, the gap to the excited state is much
greater than k,7, and it is not possible to populate it and store energy. At high temperatures, both
ground state and excited state are equally populated, and once again there is no way to store energy.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum
over the individual Schottky functions:

C(T) =Y &(A/k;T)=N / dAP(A)E(A/T) (4.270)
0

i

where N is the number of two level systems, ¢(z) = ky 22 €®/(e®+1)?, and where P(A) is the normalized
distribution function, which satisfies the normalization condition

/ dAP(A) =1 . (4.271)
0
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Figure 4.10: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic
gases, (b) a single vibrational mode, and (c) a single two-level system.

N is the total number of two level systems. If P(A) o< A" for A — 0, then the low temperature heat
capacity behaves as C(T) « T'*". Many amorphous or glassy systems contain such a distribution
of two level systems, with r ~ 0 for glasses, leading to a linear low-temperature heat capacity. The
origin of these two-level systems is not always so clear but is generally believed to be associated with
local atomic configurations for which there are two low-lying states which are close in energy. The
paradigmatic example is the mixed crystalline solid (KBr),_, (KCN), which over the range 0.1 <z < 0.6
forms an ‘orientational glass” at low temperatures. The two level systems are associated with different
orientation of the cyanide (CN) dipoles.

4.9.6 Electronic and nuclear excitations

For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear
degrees of freedom. Let’s first consider the electronic degrees of freedom. We assume that k7" is small
compared with energy differences between successive electronic shells. The atomic ground state is then
computed by filling up the hydrogenic orbitals until all the electrons are used up. If the atomic number
is a ‘magic number’ (A = 2 (He), 10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), etc.) then the atom has all shells filled
and L = 0 and S = 0. Otherwise the last shell is partially filled and one or both of L and S will be
nonzero. The atomic ground state configuration /1L is then determined by Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L — S|. If
the shell is more than half-filled, then J = L + S.

The last of Hund's rules distinguishes between the (25+1)(2L+ 1) states which result upon fixing S and
L as per rules #1 and #2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian
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may be written H = AL - S, where A is the Russell-Saunders coupling. If the last shell is less than or
equal to half-filled, then A > 0 and the ground state has J = |L — S|. If the last shell is more than
half-filled, the coupling is inverted, i.e. A < 0, and the ground state has J = L + S 10

The electronic contribution to £ is then

L+S
e = Y, (2T + 1) e 2eLS)/hsT (4.272)
J=|L-S|
where
Ae(L,S,.J) = 34 [J(J +1) =~ L(L+1)—8(S+1)] . (4.273)

Athigh temperatures, kT is larger than the energy difference between the different J multiplets, and we
have ¢ . ~ (2L+1)(2S+1) e P50, where , is the ground state energy. At low temperatures, a particular
value of J is selected — that determined by Hund'’s third rule — and we have & .. ~ (2J + 1) e #. If, in
addition, there is a nonzero nuclear spin I, then we also must include a factor £, = (21 + 1), neglecting
the small hyperfine splittings due to the coupling of nuclear and electronic angular momenta.

For heteronuclear diatomic molecules, i.e. molecules composed from two different atomic nuclei, the in-
ternal partition function simply receives a factor of & - ¢ir - €82)., where the first term is a sum over
molecular electronic states, and the second two terms arise from the spin degeneracies of the two nuclei.
For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry operation, and does
not represent a distinct quantum state. To correctly count the electronic states, we first assume that the
total electronic spin is S = 0. This is generally a very safe assumption. Exchange symmetry now puts re-
strictions on the possible values of the molecular angular momentum L, depending on the total nuclear
angular momentum I, . If I;; is even, then the molecular angular momentum L must also be even.
If the total nuclear angular momentum is odd, then L must be odd. This is so because the molecular
ground state configuration is 'X"."

The total number of nuclear states for the molecule is (2 + 1)?, of which some are even under nuclear
exchange, and some are odd. The number of even states, corresponding to even total nuclear angular
momentum is written as g, where the subscript conventionally stands for the (mercifully short) German
word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is written g,,.. Table 4.2 gives the
values of g, , corresponding to half-odd-integer I and integer .

The final answer for the rotational component of the internal molecular partition function is then

&rot (1) = 9g Cg (T) + 9, Cu(T) (4.274)
where
(T =Y @L+1)e PEDET ¢ (T)= Y 2L+ 1) e HEFD G/ T (4.275)
L even L odd

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those
with the smaller statistical weight are called parahydrogen. For H,, we have I =  hence the ortho state

1See e.g. §72 of Landau and Lifshitz, Quantum Mechanics.
11 bid. §86.



220 CHAPTER 4. STATISTICAL ENSEMBLES

L2 [ 9 | o |
odd I(2I +1) (I+1)(2I+1)
even | (I +1)(21 +1) I(2I+1)

Table 4.2: Number of even (g,) and odd (g,,) total nuclear angular momentum states for a homonuclear
diatomic molecule. [ is the ground state nuclear spin.

has g, = 3 and the para state has g, = 1. In D,, we have I = 1 and the ortho state has g, = 6 while the
para state has g, = 3. In equilibrium, the ratio of ortho to para states is then

N g, G(T) _ 3G,(T) B 9yG(T) _ 26,(T) (4.276)
Nt 96T (M) NG 9, G(T) (T '

Incidentally, how do we derive the results in Tab. 4.2? The total nuclear angular momentum I, is
the quantum mechanical sum of the two individual nuclear angular momenta, each of which are of
magnitude /. From elementary addition of angular momenta, we have

I9I=00102®--- G2 . (4.277)

The right hand side of the above equation lists all the possible multiplets. Thus, I;,, € {0,1,...,2I}.
Now let us count the total number of states with even I, . If 21 is even, which is to say if I is an integer,
we have

1
g =Y {2 @+ =+ n@E+1) (4.278)
n=0

because the degeneracy of each multiplet is 21, + 1. It follows that

geen = (20 +1)? — g =I(2I +1) . (4.279)
On the other hand, if 27 is odd, which is to say [ is a half odd integer, then
-3
=Y {2-en+1}=100+1) . (4.280)
n=0
It follows that
M =20 +1)? g8 = (I +1)(20 +1) . (4.281)

410 AppendixI: Constrained Extremization of Functions

Given F(x,,...,z,) to be extremized subject to k constraints of the form G;(z;,...,x,) = 0 where
j=1,...,k, construct

k
F*(zy,e @i Ay ) = Py, m,) + YN G, 2,) (4.282)
j=1
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which is a function of the (n + k) variables {wl, U S ST )\k}, where the quantities {\,..., . } are
Lagrange undetermined multipliers. We now freely extremize the extended function F™*:

oF™ E?F*
Z 0z, dry + Z

(4.283)
oG
Z( ZA?@ )de+ZG dXj =0
=1 7j=1 7j=1
This results in the (n + k) equations
Aj =1,...
axa Z_: J axg (0=1...;n) (4.284)

Gi=0 (j=1,....k

The interpretation of all this is as follows. The first n equations in 4.284 can be written in vector form as
k
VF+) \VG, =0 . (4.285)
j=1
This says that the (n-component) vector VI is linearly dependent upon the k vectors VG,. Thus, any

movement in the direction of V F' must necessarily entail movement along one or more of the directions
VG,. This would require violating the constraints, since movement along VG, takes us off the level

set G; = 0. Were VI linearly independent of the set {VG,}, this would mean that we could find a
differential displacement dx which has finite overlap with V F' but zero overlap with each VG,. Thus
z + dx would still satisty G, (x + dx) = 0, but I would change by the finite amount dF" = VF(z) - dz.

Put another way, when we extremize F'(x) without constraints, we identify points * € R"™ where the
gradient VI vanishes. However, when we have k constraints of the form G, (x) = 0, the subset

Y={zeR"|Gx)=0Vje{l,. .. k}} (4.286)

is a hypersurface of dimension n — k. Generically we should not expect any of the solutions to VF = 0
to lie within the subspace X. Extremizing F'(z) subject to the k constraints G;(z) = 0 means that we
must find the extrema of F'(x) for x € X' C R". All such extrema satisfy that V F'(x) is perpendicular to
the hypersurface X, i.e. VF(x) must lie in the k-dimensional subspace spanned by the vectors VG, (z).

4.10.1 Example : volume of a cylinder

To see how this formalism works in practice, let’s extremize the volume V' = ma?h of a cylinder of radius
a and height h, subject to the constraint

2
G(a,h) =2ma + % —{=0 . (4.287)
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Here, b and / are constant parameters, each of which has dimensions of length.

Following Lagrange’s method, we define the extended function

V*(a,h,A) =V(a,h) + AG(a,h) (4.288)
and set
o =2mah +27A =0
Oa
ov 9 h
o = T2 =0 (4.289)
ov* h?
8/\ —27T(1+?—€—0
Solving these three equations simultaneously gives
_ 2 _ ot 2 e 32 e A sy

411 Appendix II: Additional Examples of Statistical Ensembles

4.11.1 Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in fig. 4.11. Each dimer contains two spins,
and is described by the Hamiltonian

h=—Joyoy — poH (0, +05) . (4.291)

Here, J is an interaction energy between the spins which comprise the dimer. If J > 0 the interaction is
ferromagnetic, which prefers that the dimer spins are aligned. That is, the lowest energy states are |11)
and || ). If J < 0 the interaction is antiferromagnetic, which prefers that the dimer spins are anti-aligned,
i.e. in configurations |1 ) or | [1)!%

Suppose there are N, dimers. Then the OCE partition function is Z = (s, where ((T, H) is the single
dimer partition function. To obtain ((7', H), we sum over the four possible states of the two spins,
obtaining

P 2uaH
¢ =Tre Mkl =2 //ksT 4 2c//kpT cosh( :OT ) . (4.292)
B

Thus, the free energy is

F(T,H,Ny) = —N,k,TIn2 — Ny k,TIn (4.293)

ke T

o= I/ksT | oJ/kpT cosh<2’u0H>

12Nota bene we are concerned with classical spin configurations only - there is no superposition of states al-
lowed in this model.



4.11. APPENDIX II : ADDITIONAL EXAMPLES OF STATISTICAL ENSEMBLES 223

Figure 4.11: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin
for which o; = +1.

The magnetization is

IkT g (2ol )
F e’/*B% sin (
M- <5_> —ON, - LA (4.294)
0OH TN, e=I/kpT 4 oJ/kpT cosh(%)
B
It is instructive to consider the zero field isothermal susceptibility per spin,
1 M 2 9 J/kgT
0 - Ko e’ . (4.295)

Xp=—— = .
T 72N, 0H |y  kgT el/ksT 4 e=I/ksT

The quantity p2/k,T is simply the Curie susceptibility for noninteracting classical spins. Note that we
correctly recover the Curie result when J = 0, since then the individual spins comprising each dimer
are in fact noninteracting. For the ferromagnetic case, if J > kT, then we obtain

Xp(J > k,T) ~ 205 (4.296)

T B ~ k‘BT : .
This has the following simple interpretation. When J > k.7, the spins of each dimer are effectively
locked in parallel. Thus, each dimer has an effective magnetic moment ;g = 2p,. On the other hand,
there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is

% X (2ﬂ0)2/kBT'

When —J > kT, the spins of each dimer are effectively locked in one of the two antiparallel configu-
rations. We then have

2 2
Xp(—J > by T) o KO o=21/ksT (4.297)
kT
In this case, the individual dimers have essentially zero magnetic moment.

4.11.2 Three state system

Consider a spin-1 particle where o = —1,0, 1. We model this with the single particle Hamiltonian

h=—pHo+A(l-0?) . (4.298)
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We can also interpret this as describing a spin if o = +1 and a vacancy if 0 = 0. The parameter A then
represents the vacancy formation energy. The single particle partition function is

C=TrePh = e B2 L 2cosh(BugH) . (4.299)

With N distinguishable noninteracting spins (e.g. at different sites in a crystalline lattice), we have Z =
¢N and

F=Nf=—k;TInZ =—-Nk;TIn [e_BA +2cosh(BugH)| (4.300)
where f = —k,T'In( is the free energy of a single particle. Note that
i oh i oh
nvzl—Uzza—A N m:M()O':—a—H s (4:301)
are the vacancy number and magnetization, respectively. Thus,
af e—A/kBT
v=_() OA  e=A/FsT 12 cosh(pgH/kyT) ( )
and 9 24ty sinh(jugH /e, T
m:<m>:__f: 2o sin (1o H [k T) (4309
OH e A/ksT 1 2 cosh(puyH/k,T)
At weak fields we can compute
0 2 2
Xp =22 = Mo : (4.304)

T OH |y ksT 24 e A/kgT

We thus obtain a modified Curie law. At temperatures 7' < A/k,, the vacancies are frozen out and we
recover the usual Curie behavior. At high temperatures, where T' > A/k, the low temperature result
is reduced by a factor of 2 which accounts for the fact that one third of the time the particle is in a
nonmagnetic state with o = 0.

4.11.3 Spins and vacancies on a surface

PROBLEM: A collection of spin-3 particles is confined to a surface with N sites. For each site, let o = 0 if
there is a vacancy, 0 = +1 if there is particle present with spin up, and o = —1 if there is a particle present
with spin down. The particles are non-interacting, and the energy for each site is given by ¢ = —Wo?,
where —W < 0 is the binding energy.

(a) Let Q = Ny + N, be the number of spins, and N, be the number of vacancies. The surface mag-
netization is M = N, — N,. Compute, in the microcanonical ensemble, the statistical entropy
S(Q, M).

(b) Let ¢ = Q/N and m = M/N be the dimensionless particle density and magnetization density,
respectively. Assuming that we are in the thermodynamic limit, where N, ), and M all tend to
infinity, but with ¢ and m finite, Find the temperature 7'(¢q, m). Recall Stirling’s formula

In(N!) = NInN — N+ O(InN)
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(c) Show explicitly that 7" can be negative for this system. What does negative 7' mean? What physical
degrees of freedom have been left out that would avoid this strange property?

SOLUTION: There is a constraint on NT’ N,, and Nf
NT+N0—|—N¢:Q+N0:N . (4.305)
The total energy of the systemis £ = —WQ.

(a) The number of states available to the system is

N!

N{ING!N,!

Fixing @ and M, along with the above constraint, is enough to completely determine { N, N, N, }:

N.=3@+M) , Ny=N-Q , N=3@Q-M) , (4.307)
whenee QQ,M) = ol (4.308)
’ 3@Q+ M) [3(Q— M (N - Q)! ‘

The statistical entropy is S = ky In Q2:

S(Q, M) =kyIn(N!) —kyIn [3(Q + M)!] —kyIn [3(Q — M)!] —kzIn [(N —Q)!] .  (4.309)
(b) Now we invoke Stirling’s rule,
In(N')=NInN —N+O(nN) , (4.310)
to obtain

InQQ,M)=NInN - N —3(Q+M)In[3(Q+ M)] +3(Q+ M) (4.311)

~3(Q—-M)In[5(Q — M)] +3(Q — M) — (N = Q) In(N — Q) + (N - Q)

Q+M
= NInN - 3Qmn |1(Q* - M) - %Mln<Q - M>
(4.312)
Combining terms,
InQ(Q,M)=—Ngln [%\/q2 - mﬂ —1INm ln<;]i_—:> —N(1—-¢q)In(1 —q) , (4.313)

where ) = Ngand M = Nm. Note that the entropy S = k;In( is extensive. The statistical
entropy per site is thus

s(qg,m) = —kgqln [%\/qz - m2] — %kBmln<q+—m> —ky(1—¢q¢)In(1—q) . (4.314)

q—m
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The temperature is obtained from the relation

L_(95) _ 1 (0
T \9oE),, W\oq/,

(4.315)
-1 ln(l—q)—i In {l q2—m2}
w w 2
Thus,
W/k
/F (4.316)

r= In[2(1 — ¢)/v/¢* — m?

(c) Wehave 0 < ¢ <1land —g < m < ¢, so T is real (thank heavens!). But it is easy to choose {¢, m}
such that T < 0. For example, when m = 0 we have T' = W/k,In(2¢~! — 2) and T < 0 for all
q € (%, 1} . The reason for this strange state of affairs is that the entropy S is bounded, and is not an
monotonically increasing function of the energy E (or the dimensionless quantity ()). The entropy
is maximized for N 1= N, = N = %, which says m = 0 and ¢ = % Increasing ¢ beyond this
point (with m = 0 fixed) starts to reduce the entropy, and hence (0S/0F) < 0 in this range, which
immediately gives 7' < 0. What we’ve left out are kinetic degrees of freedom, such as vibrations

and rotations, whose energies are unbounded, and which result in an increasing S(£) function.

4114 Fluctuating interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the
denser fluid is on the bottom. Let z = z(x,y) be the height the interface between the fluids, relative to
equilibrium. The potential energy is a sum of gravitational and surface tension terms, with

Uy = / e / 0 Dpg? | Uy = Lo / iz (V) . (4317)
0

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t
so clear how to model it a priori so we will assume a rather general form

/
T = / 4% / &% L(x, o) azg';’t) az(;;’t) . (4.318)

We assume that the (z,y) plane is a rectangle of dimensions L, x L,. We also assume yu(x, ') = p(|z —
x’ ]) We can then Fourier transform

@) = (L, L) P et (4.319)
k

where the wavevectors k are quantized according to

k= R — T (4.320)
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with integer n,, and n,, if we impose periodic boundary conditions (for calculational convenience). The

Lagrangian is then
1

L=35> L 2al* = (920 + 0k2) |=[°] (4.321)
k

where
pp = /d%ﬂ () etk (4.322)

Since z(x, t) is real, we have the relation z_,, = zj, therefore the Fourier coefficients at k and —k are not
independent. The canonical momenta are given by

oL ) . OL .

The Hamiltonian is then

A~ /
H:Z [kaIt‘FPZZk] - L

—Z ['pk| (9 Ap + ok?) ’Zk‘2:| :

where the prime on the k sum indicates that only one of the pair {k, —k} is to be included, for each k.

(4.324)

We may now compute the ordinary canonical partition function:

d2p d Z 2 2 2
7 = k k |pk| /HkkBT —(g Aptok sz‘ /kBT
H/ (2mh)? ©

(%) (st

= —k T21n<2m > , (4.326)

(4.325)

Thus,

where!?

2\ 1/2
0, = <9Ap7+0k> _ (4.327)
H

is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is
appropriate to take y;,, = Ap / |k|, where Ap = p, — p, =~ p,, is the difference between the densities of
water and air.

It is now easy to compute the thermal average

|Zk| /d2zk |Z |2 —(g Aptok?) |z, )% kg T/ /d —(g Ap+ok?) |z, |2 /kgT
(4.328)

gAp + ak:2

3Note that there is no prime on the k sum for F, as we have divided the logarithm of Z by two and replaced
the half sum by the whole sum.
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Note that this result does not depend on 4, i.e. on our choice of kinetic energy. One defines the correlation
function

: d% k .
C(z) = (2(z) 2(0) ) = - 1L STzl ) ek = /(%)2 <gApB+Tak:2> ik
My

S .
kT eflel T

= dq =
Ao 2 2 Ao
) Vet §

where { = \/gAp/o is the correlation length, and where K (z) is the Bessel function of imaginary
argument. The asymptotic behavior of K(z) for small z is K(z) ~ In(2/z), whereas for large z one has
Ky(2) ~ (1/22)'/2 e7*. We see that on large length scales the correlations decay exponentially, but on
small length scales they diverge. This divergence is due to the improper energetics we have assigned
to short wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the
integral, or by insisting that the shortest distance scale is a molecular diameter.

(4.329)
Ko(‘w’/f) )

4.11.5 Dissociation of molecular hydrogen

Consider the reaction

H=p" +e . (4.330)
In equilibrium, we have

pu = pp + He - (4.331)

What is the relationship between the temperature 7" and the fraction = of hydrogen which is dissociated?

Let us assume a fraction z of the hydrogen is dissociated. Then the densities of H, p, and e are then

ng=(1—-x)n , n, = n , ne=2xn . (4.332)
The single particle partition function for each species is
N N
g 14 —Ney kT
(=% <E> e~ New/haT (4.333)

where g is the degeneracy and ¢, the internal energy for a given species. We have ¢, , = 0 for p and
e, and e

.« = —A for H, where A = ¢2/2a, = 13.6eV, the binding energy of hydrogen. Neglecting
hyperfine splittings'*, we have gy = 4, while g, = g, = 2 because each has spin S = % Thus, the
associated grand potentials are

Qu(T,V, ) = —gy VT gy et/ kel
By, V.y) = 0y VT A 0/ (4330

Qu(T,V, 1) = —go Vhy T Ap3 ete/FuT

!“The hyperfine splitting in hydrogen is on the order of (m,/m,,) a* m,c*> ~ 10~¢eV, which is on the order of
0.01 K. Here o = €?/hc is the fine structure constant.
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where

| 2mh?
Ar = 4.335
Toa mykyT ( )

for species a. The corresponding number densities are

n=—|— = g\.° eV Eme)/Fet (4.336)
4 <5N TV !

and the fugacity z = e*/#s7 of a given species is thus given by

z =g 'n 2\ efim/kT (4.337)
We now invoke puy = p1, + p, which says 2y = z, 2, or
g N 2T = (gt AT ) (90 e ATe) (4.338)
which yields
2 ~
(1”” > nid = e~O/keT (4.339)
—x

where Ay = /27h2/m*k,T, with m* = m,m,/my ~ m,. Note that

- 4mm A
Ap=ag | H ) (4.340)
T " my kT

where a; = 0.529 A is the Bohr radius. Thus, we have

2 3/2
( i ) (4m)3Py = <£> e To/T (4.341)
1—2z T,

where T, = A/k, = 1578 x 10°K and v = na}. Consider for example a temperature T = 3000K,
for which 7,,/T = 52.6, and assume that 2 = 1. We then find v = 1.69 x 10~%", corresponding to
a density of n = 1.14 x 10"2cm™3. At this temperature, the fraction of hydrogen molecules in their
first excited (2s) state is 2/ ~ e~ 70/2T = 3.8 x 107'2. This is quite striking: half the hydrogen atoms
are completely dissociated, which requires an energy of A, yet the number in their first excited state,
requiring energy 34, is twelve orders of magnitude smaller. The student should reflect on why this can

be the case.
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Chapter 5

Noninteracting Quantum Systems

5.1 References

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

— A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

— D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I've come across, but only 40% of the book
treats statistical mechanics.

— C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key con-
cepts and examples. Published by Dover, so you can’t beat the price.

— R. K. Pathria, Statistical Mechanics (2"! edition, Butterworth-Heinemann, 1996)
This popular graduate level text contains many detailed derivations which are helpful for the
student.

— M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rGl edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

— E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3 edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated,
it still contains a wealth of information and physical insight.
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5.2 Statistical Mechanics of Noninteracting Quantum Systems

5.2.1 Bose and Fermi systems in the grand canonical ensemble

A noninteracting many-particle quantum Hamiltonian may be written as'

H=> e,n, . (5.1)

where 7, is the number of particles in the quantum state o with energy ¢,. This form is called the
second quantized representation of the Hamiltonian. The number eigenbasis is therefore also an energy
eigenbasis. Any eigenstate of H may be labeled by the integer eigenvalues of the 72, number operators,
and written as | ny, n,, ... ). We then have

i) =mng|f) (5.2)

and
H

)= ngeq|ii) . (5.3)

The eigenvalues n,, take on different possible values depending on whether the constituent particles are
bosons or fermions, viz.
bosons : n, € {0,1,2,3,...}

5.4
fermions : n,, € {0, 1} 64

In other words, for bosons, the occupation numbers are nonnegative integers. For fermions, the occupa-
tion numbers are either 0 or 1 due to the Pauli principle, which says that at most one fermion can occupy
any single particle quantum state. There is no Pauli principle for bosons.

The N-particle partition function 7 is then
Zy = Z e B2ranata Sy S on (5.5)
{na}

where the sum is over all allowed values of the set {n,,}, which depends on the statistics of the particles.
Bosons satisfy Bose-Einstein (BE) statistics, in which n, € {0, 1, 2, ...}. Fermions satisfy Fermi-Dirac
(FD) statistics, in which n,, € {0, 1}.

The OCE partition sum is difficult to perform, owing to the constraint ) __ n, = N on the total number
of particles. This constraint is relaxed in the GCE, where

== Zeﬁ“NZN
N

= Z e B Yo Nafa ePr 2ala — H (Z e—ﬁ(ea—,u) na>

{n(X } @

(5.6)

!For a review of the formalism of second quantization, see the appendix in §5.8.
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Note that the grand partition function = takes the form of a product over contributions from the indi-
vidual single particle states.

We now perform the single particle sums:

- 1
—Ble=p)n _
z_;)e = oh=n (bosons)
" (5.7)
Z e Plemmn — 1 4 ¢=Ble—n) (fermions)
n=0
Therefore we have’
1
—BE _
- H 1 — e (ca=n)/kgT
N (5.8)
QBE = ijT Z 1n<1 — e_(ea_/’l‘)/kBT)
for Bose-Einstein statistics and
= _ H (1 i 6—(aa—u)/kBT>
“ (5.9)
0P =k, Ty 1n<1 n e—@a—ﬂ)/kBT)
for Fermi-Dirac statistics. We can combine these expressions into one, writing
(T Vo) = £k, T Y 1n(1 - e—<€a—ﬂ>/kBT> , (5.10)

where we take the upper sign for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics.
Note that the average occupancy of single particle state a is

e 1 1

fd B/F = -
3 ne (T, /L) e(e_lu‘)/kBT - 1

eCa=m/kpT 1 (5.11)

() = %5

67

Thus nZ" (T, 1) is the average occupation of single particle states of energy ¢ for bosons (B) and fermions
(F) at temperature 7" and chemical potential 1. The total particle number is then

1
e(ea_ﬂ)/kBT F 1

NI, Vo) =)

«

(5.12)

We will henceforth write n, (1, I') = (1) for the thermodynamic average of this occupancy.

ZNote that convergence of the partition sum for bosons requires exp(( — €4)/k,T) < 1, which is to say that
1 < ming g, for all a.
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5.2.2 Quantum statistics and the Maxwell-Boltzmann limit

Consider a system composed of N noninteracting particles. The Hamiltonian is
A~ N ~
H=> h; . (5.13)
j=1

The single particle Hamiltonian / has eigenstates |a) with corresponding energy eigenvalues ¢,,. What
is the partition function? Is it

ZLS Pttt (N .19
Qg QN

where ( is the single particle partition function, { = Y e« . For systems where the individual parti-
cles are distinguishable, such as spins on a lattice which have fixed positions, this is indeed correct. But
for particles free to move in a gas, this equation is wrong. The reason is that for indistinguishable parti-
cles the many particle quantum mechanical states are specified by a collection of occupation numbers n,,,
which tell us how many particles are in the single-particle state |« ). The energy is £ = ) n, ¢, and
the total number of particlesis N = > n,, . Thatis, each collection of occupation numbers {n,, } labels a
unique many particle state | {n,,} ). In the product ¢V, the collection {n,, } occurs many times. We have
therefore overcounted the contribution to Z,; due to this state. By what factor have we overcounted? It is
easy to see that the overcounting factor is

N!
[lana!

which is the number of ways we can rearrange the labels «; to arrive at the same collection {n,,}. This
follows from the multinomial theorem,

K N
N! n, n n
(3] “EX - Sama e e 61
o=

ny Ny Nk

degree of overcounting =

Thus, the correct expression for 7 is

ZN = Z e_/B Z(y na€(¥ 5N7Z(X n(¥

{na}
o ! —B(eq. 4 Eq+ o F €0 ) (5.16)
— ZZ Z 5 e 17 fay N
Qg an ’

In the high temperature limit, almost all the n,, are either 0 or 1, hence Z, ~ ¢V /N!. This is the classical
Maxwell-Boltzmann limit of quantum statistical mechanics. We now see the origin of the 1/N! term which
is so important in the thermodynamics of entropy of mixing.

Finally, starting with the expressions for the grand partition function for Bose-Einstein or Fermi-Dirac
particles, and working in the low density limit where n, (4, 7) < 1, we have ¢, — p > k;T, and
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consequently

O°F = £k, T Zln<1 T e—(sa—u)/kBT)

(5.17)
~ _kBTZ e—(Ea—p)/kBT = QMB

This is the Maxwell-Boltzmann limit of quantum statistical mechanics. The occupation number average
in the Maxwell-Boltzmann limit is then

(i) = e~ Eamm/hsT (5.18)

5.2.3 Entropy and counting states

Suppose we are to partition N particles among J possible distinct single particle states. How many
ways (2 are there of accomplishing this task? The answer depends on the statistics of the particles. If the
particles are fermions, the answer is easy: Q., = (]‘\77) For bosons, the number of possible partitions can
be evaluated via the following argument. Imagine that we line up all the N particles in a row, and we
place J — 1 barriers among the particles, as shown below in fig. 5.1. The number of partitions is then the
total number of ways of }]31 acing the N particles among these IV 4 J — 1 objects (particles plus barriers),
hence we have Q,, = +J 1 . For Maxwell-Boltzmann statistics, we take 2,,, = JV/N! Note that
Q,,5 is not necessarily an mteger so Maxwell-Boltzmann statistics does not represent any actual state
counting. Rather, it manifests itself as a common limit of the Bose and Fermi distributions, as we have
seen and shall see again shortly.

® ¢ 6 O ¢ O 6 ¢ &6 ¢ O 6 ¢ O ¢ ¢ o o

Figure 5.1: Partitioning N bosons into J possible states (N = 14 and J = 5 shown). The N black dots
represent bosons, while the J — 1 white dots represent markers separating the different single particle
populations. Here ny = 3, ny =1, n3 =4, n4 = 2, and ns = 4.

The entropy in each case is simply S = k;InQ. We assume N > 1 and J > 1, with n = N//J finite.
Then using Stirling’s approximation, In(K!) = KIn K — K + O(In K'), we have

SY8 = —Jkynlnn
5% = —Jkg[nlnn — (14 n)In(1 +n)| (5.19)

S = —Jkg[nlnn+ (1 —n)In(l —n)|

In the Maxwell-Boltzmann limit, n < 1, and all three expressions agree. Note that
aSMB B aSBE B 1 8SFD B -1
< N >J——k‘B (1—|—lnn) , < N >J—k7Bln(n —1—1) , ( N >J—k‘Bln(n —1) . (5.20)

Now let’s imagine grouping the single particle spectrum into intervals of J consecutive energy states.
If J is finite and the spectrum is continuous and we are in the thermodynamic limit, then these states
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will all be degenerate. Therefore, using « as a label for the energies, we have that the grand potential
2=FE—TS — uN is given in each case by

oM = JZ _(5(1 —u)ny, +kyTn,ln na]

2% = JZ _(Ea —p)n, +kyTny,Inn, —k,T(1+n,)In(1+ na)} (5.21)

27 = JZ _(Ea —p)ng + kT n,Inn, + kT (1 —n,)In(1 — na)}

Now - lo and behold! - treating {2 as a function of the distribution {n,} and extremizing in each case,

subject to the constraint of total particle number N = J )" n,, one obtains the Maxwell-Boltzmann,
Bose-Einstein, and Fermi-Dirac distributions, respectively:

nMB — e(u—aa)/kBT

1) o 3 _1
S (Q ~ A Jz;na,> —0 = n; = [eCa—m/kT 1]
(6% na

(5.22)
= [eCam/ksT 4 1] -1

Aslong as J is finite, so the states in each block all remain degenerate, the results are independent of J.

5.2.4 Single particle density of states

The single particle density of states per unit volume g(e) is defined as

. (5.23)

The concept of density of states is an important one and the student should develop some facility with

it. Note that the dimensions of g(¢) and [g(c)] = E~'L~¢, where E stands for energy and L for length.
We may now write

o0

(T, V, ) = £VE,T / de g(e) 1n(1 ¥ e—@—M)/’fBT) (5.24)
For particles with a dispersion ¢(k), with p = hk, we have
d% g, ki1
—g[—— §(c — e(k)) = d ) 2
9(€) / Gy O &l ) (2r)d de/dk (5:25)

where g = 25+1 is the spin degeneracy, and where we assume that (k) is both isotropic and a mono-
tonically increasing function of k. Thus, we have

g dk g . dk g dk
Ga—1(€) = e ; Ja—a(€) = or k e ; Ja—3(€) = B k? = (5.26)
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In order to obtain g(¢) as a function of the energy ¢ one must invert the dispersion relation ¢ = (k) to
obtain k£ = k(e). A quick way to derive the result in eqn. 5.25 is to write

A% g0
9(e)de =8 550 = (27r)d

Klak . (5.27)

For a general isotropic power law dispersion (k) = A |k|?, this yields

de

)i A Y75 10%) . (5.28)

e(k) = Ak° = g(e) =

For a spin-S particle with ballistic dispersion e(k) = h?k*/2m, we have g = 25 + 1 and

g m \? d—2)/2
g(e):F(d/2)<2ﬂh2> @=2/29() | (5.29)

where O(¢) is the step function, which takes the value 0 for ¢ < 0 and 1 for € > 0. The appearance of
©(e) simply says that all the single particle energy eigenvalues are nonnegative.

Note that we are assuming a box of volume V but we are ignoring the quantization of kinetic energy,
and assuming that the difference between successive quantized single particle energy eigenvalues is
negligible so that g(¢) can be replaced by the average in the above expression. Note that

1

B/F —
e (T7 :u) - e(a_”)/kBT ¥ 1

(5.30)

This result is valid independent of the form of g(¢). The average total number of particles is then

ng" (T, )

1
B/F _
N (T V [L /dgg 6(5 ;U')/k T - 1 s (531)

which does depend on g(¢).

5.3 Quantum Ideal Gases : Low Density Expansions

5.3.1 Expansion in powers of the fugacity

From eqn. 5.31, we have that the number density n = N/V is

(T, 2) = / dsT Zc , (532)

—00

where z = exp(u/kyT') is the fugacity and

C\(T) = (17! / de g(e) eI/ kT (533)
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Note that [C}] = V=1 for all j. From {2 = —pV and our expression above for (T, V, 1), we have

p(T,2) = T kT / de g(e) 1n(1 Tz e—f/'fBT) =k TY j'Ci(T) 2. (5.34)
S j=1

5.3.2 Virial expansion of the equation of state

Eqns. 5.32 and 5.34 express n(T, z) and p(T, z) as power series in the fugacity z, with T-dependent
coefficients. In principal, we can eliminate z using eqn. 5.32, writing z = z(7',n) as a power series in
the number density n, and substitute this into eqn. 5.34 to obtain an equation of state p = p(T',n) of the
form

(T, n) :nkBT<1+BQ(T)n+Bg(T)n2—l—...) . (5.35)

Note that the low density limit n — 0 yields the ideal gas law independent of the density of states g(¢).
This follows from expanding n(T, z) and p(T), z) to lowest order in z, yielding n = C; z + O(z?) and
p = kT C, 2z + O(2%). Dividing the second of these equations by the first yields p = nk,T + O(n?),
which is the ideal gas law. Note that z = n/C; + O(n?) can formally be written as a power series in n.

There is a wonderful Mathematica function called InverseSeries which tells us the following. If

n(z) = Ciz 4+ Cy2? + 0328 + C 2t + O(2°) (5.36)
then
n  Cyn? (203 —-CC)n®  (5C3 —50,C,C4 + CLC)) n? 5
_n _ 5.37
and

y(z) = Dyz + D222 + D323 + D4z4 + (’)(25)
Dyn  (CyDy—CyDy)n? (C}Dy—2C,CoDy — C,C3D; +2C3Dy) n?
= + 3 + 5
¢ & Cy

+ o (5.38)

The order n* term is already very cumbersome and is omitted in the last line above.

Unfortunately, there is no general analytic expression for the virial coefficients B,(T’) in terms of the

expansion coefficients (7). However our work is made somewhat easier by appealing to a method of

Lagrange. We regard the series

— p(T,TL) _ - k
7(T,n) = T - ;Bkn (5.39)

as a power series in a complex variable n. We then have

Bk:y{d_n 7(n) :74 dz n'(z)7(z) :—lj{d—zﬂ(z)i[n(z)]_k 7 (5.40)

2mi nktl 2mi [n(2)] k+1 k
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where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
z7'(2) = n(z), we obtain®

B, = %}{d_z 7' (2) [n(z)] —k_ %}{d_zl [n(z)]_(k_l)

271 2 z

- L (14 2 22 - o
kO ) 2mi 2k C, C,
Expanding by hand to order 22 isn’t so difficult, and we obtain

1+£z+cz—|— 1_k—l—(k—l)ﬁ 4+ (k—1) kG Cy 22+ 0(2°) (5.42)

oN o B o 202 () ' '
Plugging this into eqn. 5.41, we may read off
C. c: 20
B =1 By=——2 By=—2--_23 4

It is easy to see that, in general, B} = (=1)7 _le, where the superscripts denote Fermi (F) or Bose (B)
statistics.

We remark that the equation of state for classical (and quantum) interacting systems also can be expanded
in terms of virial coefficients. Consider, for example, the van der Waals equation of state,

<p + “{/f) (V — Nb) = Nk, T . (5.44)

This may be recast as

kT
= M g2

1—bn (5.45)
= nkyT + (bkpT — a) n® + kT b*n® + k,THnt + ...,

where n = N/V. Thus, for the van der Waals system, we have B, = b — T and B, = b*~1 forall k > 3.

5.3.3 Ballistic dispersion

For the ballistic dispersion ¢(p) = p?/2m we computed the density of states in eqn. 5.29. One finds

C,(T) = (£1)~ 1gA_ /dtt“l = (L1712 g (5.46)

3Since there is no term proportional to In z in the Laurent expansion of 7(z)[n(z)] " there is no residue arising
from integrating its derivative around the unit circle.
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where A\ = \/27h? /mk,T is the thermal wavelength. We then have

By(T) = 72 (5) g1 5

547
By(T) = (2—(d+1) _ 3_(g+1)) 2g 2\ (5.47)
Note that B, (T") is negative for bosons and positive for fermions. This is because bosons have a tendency
to bunch and under certain circumstances may exhibit a phenomenon known as Bose-Einstein conden-
sation (BEC). Fermions, on the other hand, obey the Pauli principle, which results in an extra positive
correction to the pressure in the low density limit.

We may also write

n(T,z) = +g \p" Li%(j:z) (5.48)
and
p(T,2) = +gk, T \;° Lig,,(+2) (5.49)
where -
n
Li,(2) = ;::1 ~ (5.50)

is the polylogarithm function*. Note that Li,(z) obeys a recursion relation in its index, viz.

z % Lij(z) = Li,_;(2) (5.51)

and that -
((s) =Liy(1) =) ni (5.52)

n=1

is the Riemann zeta function.

To evaluate Li,(z) for |z| < 1, we use the series expansion in eqn. 5.50. For |z| > 1, use’

< \ (2m)¥ By, [In(—2)]"¥
Li,(2) = —1)7(1—2"% J 5.53
where B,;isa Bernoulli number, with By =1, B, = %, B, = —%, B = % , etc. For intermediate values
of z, where |In z| < 27, one has®
Li(z) =T(1—s)(—Inz)*" + kz_o w (Inz)F . (5.54)

where s ¢ {1,2,3,...}.

4Several texts, such as those by Pathria and by Reichl, write g,(z) for Li,(z). I adopt the latter notation since
we are already using the symbol g for the density of states function g(¢) and for the internal degeneracy g.

>See the Wikipedia entry on “Polylogarithm.”

®See Digital Library of Mathematical Functions §25.12.12.
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5.4 Photon Statistics

5.4.1 Thermodynamics of the photon gas

There exists a certain class of particles, including photons and certain elementary excitations in solids
such as phonons (i.e. lattice vibrations) and magnons (i.e. spin waves) which obey bosonic statistics
but with zero chemical potential. This is because their overall number is not conserved (under typical
conditions) — photons can be emitted and absorbed by the atoms in the wall of a container, phonon and
magnon number is also not conserved due to various processes, efc. In such cases, the free energy attains
its minimum value with respect to particle number when

o= (%)TV =0 . (5.55)

The number distribution, from eqn. 5.11, is then
1

The grand partition function for a system of particles with = 0 is
AT, V) =Vk,T / deg(e) In (1 —e~/FsT) (5.57)

where g(¢) is the density of states per unit volume.

Suppose a particle with ¢ = 0 exhibits a power law dispersion ¢(k) = A|k|”. We can compute the
density of states g(¢), viz.

g, kT 892, d_q

9€) = ond jak ~ \@mioaiw )7 ©6) (5:58)
Recall that 2, = 27%/2 /T(d/2) is the total solid angle in d dimensions. The step function ©(e) enforces
that the energy spectrum is bounded from below by € = 0, i.e. there are no negative energy states. For a
general power law density of states g(¢) = Cc" "1 ©(g) and p = 0, we have

% o1
n(T) = C / de i = O () ()" (5.59)
and - :
p(T) = -C / de " Mog(1 —e=/*sT) = O ¢(r+ 1) T(r) (k7). (5.60)
0

To work out the above integrals, first change variables to ¢t = ¢/k, T, then expand in powers of exp(—t),
integrate over ¢, and express the sums in terms of Riemann zeta (see eqn. 5.52). Dividing these two
equations, we obtain the equation of state

S G (5.61)

¢(r)
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To find the entropy, we use Gibbs-Duhem:

du=0=—sdl'+vdp — s:vj—; , (5.62)

where s is the entro er particle and v = n~! is the volume per particle. In d space dimensions,
Py per p perp P

¢(r+1)
s(T) = (r+1 kg . (5.63

The entropy per particle is constant. The internal energy is

OlnZ= 0
S = = 5.64
and hence the energy per particle is
E ~ r¢(r+1)

e= oy =IPV= 0 k,T . (5.65)

For the photon gas, we have ¢(k) = hck, whence 0 = 1,7 = d, A = hc, and

2g /2
g(e) = <m> 71Ok . (5.66)

In d = 3 dimensions the degeneracy is g = 2, which is the number of independent polarization states.
Thus, for the photon gas in d = 3 dimensions, we have g = 2 and C = 1/72h3¢?, and

_ 2¢(3) (kgT)3 p(T) = 2¢(4) (kT)* _ (5.67)

n(T) w2 (he)3 ’ w2 (he)3

It turns out that ¢((3) = 1.20206 and ¢(4) = 7*/90. We also have hc/k;, = 0.2290cm - K, and thus
kT /hc = 4.3755 T[K] cm . We then obtain

p=0.90039nk, T ,  n(T)=20.286 x T3[K3]ecm™® . (5.68)

5.4.2 Classical arguments for the photon gas

A number of thermodynamic properties of the photon gas can be determined from purely classical
arguments. Here we recapitulate a few important ones.

1. Suppose our photon gas is confined to a rectangular box of dimensions L, x L, x L,. Suppose fur-
ther that the dimensions are all expanded by a factor A\!/3, i.e. the volume is isotropically expanded
by a factor of A. The cavity modes of the electromagnetic radiation have quantized wavevectors,
even within classical electromagnetic theory, given by

2 2 2
k:< My 2Ty ””Z) . (5.69)

L, L, L

T Y z
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Since the energy for a given mode is ¢(k) = Jic|k|, we see that the energy changes by a factor A~'/3

under an adiabatic volume expansion V' — AV, where the distribution of different electromagnetic
mode occupancies remains fixed. Thus,

v (aV>S - <8A >S R 70
Thus,
OF E
== (av)s EVA G

as we found in eqn. 5.64. Since £ = E(T', V) is extensive, we must have p = p(7T’) alone.

2. Since p = p(T") alone, we have

3p

OF\ _ (0E
ov )y \ov ),
_ ([ 9p

—T<a—T>V‘p ’

where the second line follows the Maxwell relation (%)p = (g—p) .~ after invoking the First Law

dE =TdS — pdV. Thus,

(5.72)

d
78 gy — pT)=AT* | (5.73)
ar
where A is a constant. Thus, we recover the temperature dependence found microscopically in

eqn. 5.60.

3. Given an energy density E/V, the differential energy flux emitted in a direction 6 relative to a

surface normal is

. E df?
d]e—c-v-COSQ-E ) (5.74)

where df? is the differential solid angle. Thus, the power emitted per unit area is

7'('/2 2

dP  cE : _ b _ il
d—A_W/dH/dQSSln@ COSG—W—Zcp(T):UT ; (5.75)
0 0

where ¢ = 3cA, with p(T) = AT* as we found above. From quantum statistical mechanical
considerations, we have

2k s W

is Stefan’s constant.
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5.4.3 Surface temperature of the earth

We derived the result P = oT* - A where ¢ = 5.67 x 1078 W/m?K* for the power emitted by an
electromagnetic ‘black body’. Let’s apply this result to the earth-sun system. We'll need three lengths:
the radius of the sun R, = 6.96 x 10® m, the radius of the earth R, = 6.38 x 10° m, and the radius of the
earth’s orbit a, = 1.50 x 10* m. Let’s assume that the earth has achieved a steady state temperature of
T,. We balance the total power incident upon the earth with the power radiated by the earth. The power
incident upon the earth is

TR2 R? R?
Pidont = —= - 0T - 4nR2 = =9 . 10T . 5.77
incident 471_&(2) 0l TG CL% Tolg ( )
The power radiated by the earth is

Pradiated = O-Te4 ' 47TR(23 . (578)

Setting Pincidont =P radiated” W€ obtain

R\l

T, = <2§>> T, . (5.79)

Thus, we find T, = 0.048177,,, and with T, = 5780K, we obtain 7, = 278.4K. The mean surface
temperature of the earth is 7, = 287K, which is only about 10K higher. The difference is due to the fact
that the earth is not a perfect blackbody, i.e. an object which absorbs all incident radiation upon it and
emits radiation according to Stefan’s law. As you know, the earth’s atmosphere retraps a fraction of the
emitted radiation — a phenomenon known as the greenhouse effect.

5.4.4 Distribution of blackbody radiation

Recall that the frequency of an electromagnetic wave of wavevector k is v = ¢/\ = ck /2. Therefore the
number of photons N (v, T) per unit frequency in thermodynamic equilibrium is (recall there are two
polarization states)

2V d% Vv k? dk

We therefore have
&1V V2

N(V, T) = 63 . ehll/kBT 1 (581)
Since a photon of frequency v carries energy hv, the energy per unit frequency £(v) is
h 3
g, )=V . (5.82)

S kT
Note what happens if Planck’s constant & vanishes, as it does in the classical (Maxwell-Boltzmann) limit.
The denominator can then be written

hv
kT

ekl _ 1 = + O(h?) (5.83)
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Figure 5.2: Spectral density p. (v, T) for blackbody radiation at three temperatures.

and

T
gMB(V7T) = lim 5(”) =V. %y2

Jim 3 (5.84)

In classical electromagnetic theory, then, the total energy integrated over all frequencies diverges. This
is known as the ultraviolet catastrophe, since the divergence comes from the large v part of the integral,
which in the optical spectrum is the ultraviolet portion. With quantization, the Bose-Einstein factor
imposes an effective ultraviolet cutoff k,7/h on the frequency integral, and the total energy, as we

found above, is finite:
o0

72 4
E(T) = /dl/ 5(1/) =3pV=V. 1_5 (l(fi];z;;

(5.85)
0

We can define the spectral density p,(v) of the radiation as

_EWw,T) 15 h (w/k,T)?
P D) =TTy = W Ry T T 1 (586)

so that p_(v,T) dv is the fraction of the electromagnetic energy, under equilibrium conditions, between
o0

frequencies v and v + dv, i.e. [dvp.(v,T) = 1. In fig. 5.2 we plot this for three different temperatures.
0

The maximum occurs at a frequency v* = s k;T'/h, where

d s3 s
T\ 1) = 0 = =3 - s =2.82144 . (5.87)

Thus v* = 58.8 GHz - T[K].
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5.4.5 What if the sun emitted ferromagnetic spin waves?

We saw in eqn. 5.74 that the power emitted per unit surface area by a blackbody is 7. The power law
here follows from the ultrarelativistic dispersion ¢ = hck of the photons. Suppose that we replace this
dispersion with the general form ¢ = (k). Now consider a large box in equilibrium at temperature 7'.
The energy current incident on a differential area dA of surface normal to 2 is

1 9e(k) 1
B ok, W/kT _q

AP = dA - / % O(cos 0) - = (k) - (5.89)

Let us assume an isotropic power law dispersion of the form (k) = C'k®. Then after a straightforward
calculation we obtain
AP _ 5rovza (5.89)
dA ’ '

where

gkz k 2&71
5=(2+27)I@2+ 27 <6> | (5.90)

One can check that for g = 2, C' = k¢, and o = 1 that this result reduces to that of eqn. 5.76. For the case
of ferromagnetic spin waves, a = 2, in which case P = 573 A. What would be the surface temperature
of the earth if the photon dispersion were ¢ = Ck*? Generalizing the results from §5.4.3, we find

R\ (1+e)
T, = (2 5) T, . (5.91)

With R /2a, = 2.32 x 1073, assuming the same value for 7;, = 5780K, and with o = 2, we obtain
T, = 101 K.

5.5 Lattice Vibrations : Einstein and Debye Models

Crystalline solids support propagating waves called phonons, which are quantized vibrations of the
lattice. Recall that the quantum mechanical harmonic oscillator Hamiltonian, H = % + $mwiq?, may

be written as H = fiwy(ala + 3), where a and a' are ‘ladder operators’ satisfying commutation relations
[a,af] =1
a,a .

5.5.1 One-dimensional chain

Consider the linear chain of masses and springs depicted in fig. 5.3. We assume that our system consists
of N mass points on a large ring of circumference L. In equilibrium, the masses are spaced evenly by a
distance b = L/N. That is, 20 = nb is the equilibrium position of particle n. We define u,, = x,, — 22 to

n =
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Figure 5.3: A linear chain of masses and springs. The black circles represent the equilibrium positions
of the masses. The displacement of mass n relative to its equilibrium value is u,,.

be the difference between the position of mass n and The Hamiltonian is then

H= Z[—Jr 1k n+1—xn—a)2}

(5.92)
_Z [——i— 56 (Upyq —un)z] + INK(b—a)?
where a is the unstretched length of each spring, m is the mass of each mass point,  is the force constant
of each spring, and N is the total number of mass points. If b # a the springs are under tension in
equilibrium, but as we see this only leads to an additive constant in the Hamiltonian, and hence does
not enter the equations of motion.

The classical equations of motion are

. OH Dn
’un = — = —
dp, m
. (5.93)
. 0H ( n 2u,)
Pp=—f5—=~r(u Uy — 2u
n 8’LLn n+1 n—1 n
Taking the time derivative of the first equation and substituting into the second yields
. K
iy, = — (tppq + Uy — 2u,) . (5.94)
We now write )

u = — d,e*ne 5.95
where periodicity uy,, = u, requires that the k values are quantized so that ¢*N® = 1, i.e. k = 2mj/Na
where j € {0,1,..., N—1}. The inverse of this discrete Fourier transform is

1 —ikna
— U, € . 5.96
VPR o0

Note that 4, is in general complex, but that 4} = @_,. In terms of the 4,, the equations of motion take
the form

i, . (5.97)

TN

ly, = —Eﬁ (1 —cos(ka)) @y, = —w
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Thus, each 4, is a normal mode, and the normal mode frequencies are

oy = 2 \/g sin (1ka)| . (598)

The density of states for this band of phonon excitations is

w/a
g(e) = / % 0(e — hwy,) = 7%1((]2 - 52)_1/2 OE)e(J —¢) (5.99)
—7/a

where J = 2h\/k/m is the phonon bandwidth. The step functions require 0 < ¢ < J; outside this range
there are no phonon energy levels and the density of states accordingly vanishes.

The entire theory can be quantized, taking [p,, ,u,,| = —ihd,,,. We then define
pu= = Y he Be= e S pae (5.100)
n \/N - ? \/N ~ n )

in which case [ﬁk , ﬁk,] = —ihd,,;,. Note that 112 = U_; and 152 = p_j,- We then define the ladder operator

(L NP e\ (5.101)
= \omhw, ) PET "\ Ton ) R '
f

and its Hermitean conjugate a;, in terms of which the Hamiltonian is
H=> hw,(afa, +3) . (5.102)
k

which is a sum over independent harmonic oscillator modes. Note that the sum over £ is restricted to
k € [— z E}, an interval of width 27“, known as the first Brillouin zone for the one-dimensional lattice.

a’a

The state at wavevector k + 2 is equivalent to that at k, as we see from eqn. 5.96.

5.5.2 General theory of lattice vibrations

The most general model of a harmonic solid is described by a Hamiltonian of the form

2
2 pz(R) 1 a ap , 8 ,
H_; 2M; +5;§RZR,“Z'(R)% (R-R)u;(R) (5.103)

where the dynamical matrix is

2
aB _ o°U
@i (R — R)

= 5.104
oug(R) oul) (R) (5109

where U is the potential energy of interaction among all the atoms. Here we have simply expanded the
potential to second order in the local displacements u$*(R). The lattice sites R are elements of a Bravais
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Figure 5.4: A crystal structure with an underlying square Bravais lattice and a three element basis.

lattice. The indices i and j specify basis elements with respect to this lattice, and the indices « and /5 range
over {1,...,d}, the number of possible directions in space. The subject of crystallography is beyond the
scope of these notes, but, very briefly, a Bravais lattice in d dimensions is specified by a set of d linearly
independent primitive direct lattice vectors a,, such that any point in the Bravais lattice may be written as
a sum over the primitive vectors with integer coefficients: R = Zle n, a,. The set of all such vectors
{R} is called the direct lattice. The direct lattice is closed under the operation of vector addition: if R and
R’ are points in a Bravais lattice, then sois R + R'.

A crystal is a periodic arrangement of lattice sites. The fundamental repeating unit is called the unit cell.
Not every crystal is a Bravais lattice, however. Indeed, Bravais lattices are special crystals in which there
is only one atom per unit cell. Consider, for example, the structure in fig. 5.4. The blue dots form a square
Bravais lattice with primitive direct lattice vectors a; = a @ and a, = a y, where a is the lattice constant,
which is the distance between any neighboring pair of blue dots. The red squares and green triangles,
along with the blue dots, form a basis for the crystal structure which label each sublattice. Our crystal in
tig. 5.4 is formally classified as a square Bravais lattice with a three element basis. To specify an arbitrary site
in the crystal, we must specify both a direct lattice vector R as well as a basis index j € {1,...,7}, so
that the location is R + n;. The vectors {n;} are the basis vectors for our crystal structure. We see that a
general crystal structure consists of a repeating unit, known as a unit cell. The centers (or corners, if one
prefers) of the unit cells form a Bravais lattice. Within a given unit cell, the individual sublattice sites are
located at positions 7, with respect to the unit cell position R.

Upon diagonalization, the Hamiltonian of eqn. 5.103 takes the form

=3 1o, (k) (AL (k) Ay (k) + 5) (5.105)
k,a
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Figure 5.5: Upper panel: phonon spectrum in elemental rhodium (Rh) at 7" = 297 K measured by high
precision inelastic neutron scattering (INS) by A. Eichler et al., Phys. Rev. B 57, 324 (1998). Note the three
acoustic branches and no optical branches, corresponding to d = 3 and r = 1. Lower panel: phonon
spectrum in gallium arsenide (GaAs) at 7' = 12K, comparing theoretical lattice-dynamical calculations
with INS results of D. Strauch and B. Dorner, J. Phys.: Condens. Matter 2, 1457 (1990). Note the three
acoustic branches and three optical branches, corresponding to d = 3 and r = 2. The Greek letters along
the z-axis indicate points of high symmetry in the Brillouin zone.

where
[A,(k), Al(K')] = 04, Ot - (5.106)

The eigenfrequencies are solutions to the eigenvalue equation

ST 0 (k) el (k) = mywP(k)eld) (k) (5.107)
j7B

where m, is the mass of the it! basis ion and

o2 (k) =" @ (R)e (5.108)

is the (discrete) Fourier transform of the dynamical matrix. Here, k lies within the first Brillouin zone,
which is the unit cell of the reciprocal lattice of points G satisfying ¢!“® = 1 for all G and R. The
reciprocal lattice is also a Bravais lattice, with primitive reciprocal lattice vectors b,;, such that any point
on the reciprocal lattice may be written G = Zle p; b, with p, € Z. One also has that a; - b, = 27d,,.
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The index a ranges from 1 to d - r and labels the mode of oscillation at wavevector k. The vector el(-z) (k) is
the polarization vector for the a*™ phonon branch. In solids, along directions of of high symmetry, phonon
modes can be classified as longitudinal or transverse excitations.

For a crystalline lattice with an r-element basis, there are then d - » phonon modes for each wavevector k
lying in the first Brillouin zone. If we impose periodic boundary conditions, then the k points within the
first Brillouin zone are themselves quantized, as in the d = 1 case where we found k = 27n/N. There
are N distinct k points in the first Brillouin zone — one for every direct lattice site. The total number
of modes is than d - r - N, which is the total number of translational degrees of freedom in our system:
rN total atoms (N unit cells each with an r atom basis) each free to vibrate in d dimensions. Of the d - r
branches of phonon excitations, d of them will be acoustic modes whose frequency vanishes as k — 0. The
remaining d(r — 1) branches are optical modes and oscillate at finite frequencies. Basically, in an acoustic
mode, for k close to the (Brillouin) zone center k = 0, all the atoms in each unit cell move together in the
same direction at any moment of time. In an optical mode, the different basis atoms move in different
directions.

There is no number conservation law for phonons — they may be freely created or destroyed in anhar-
monic processes, where two photons with wavevectors k and g can combine into a single phonon with
wavevector k + g, and vice versa. Therefore the chemical potential for phonons is 1 = 0. We define the
density of states g,(w) per unit cell for the " phonon mode to be

27r)d

BZ

d,
go(w) = % Zk: §(w —w, (k) VO/(d i §(w—wy(k)) (5.109)

where N is the number of unit cells, V), is the unit cell volume of the direct lattice, and the k sum

and integral are over the first Brillouin zone only. Note that w here has dimensions of frequency. The
o0

functions g, (w) is normalized to unity: [dw g,(w) = 1. The total phonon density of states per unit cell
0

is given by g(w) = 307, 9,(w).

The grand potential for the phonon gas is

QT.V) = kT[] Z ~Bwa (k) (n (k) +3)

k,a ng(k)=0

—k TZIn[Qsmh (h;c(;f))

(5.110)

= Nk,T [ dw g(w) In [2 sinh <2k‘BT>
0

Note that V' = NV, since there are N unit cells, each of volume V,. The entropy is given by S = — (g—g) v
and thus the heat capacity is

Cy = = Nk /dwg <2k¢ T> CSCh2<QZwT> (5.111)
B

1 .

"Note the dimensions of g(w) are (frequency) . By contrast, the dimensions of g(¢) in eqn. 5.29 are (energy)~
(volume)~!. The difference lies in the a factor of V, - h, where V), is the unit cell volume.
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Note that as 7' — oo we have csch(hw/2k,T) — 2k, T /hw, and therefore

lim Cy (T') Nk‘B/dw g(w) =rdNky . (5.112)

T—o00

This is the classical Dulong-Petit limit of 3k, per quadratic degree of freedom; there are 7N atoms
moving in d dimensions, hence d - rN positions and an equal number of momenta, resulting in a high
temperature limit of C, = rdNk,.

5.5.3 Einstein and Debye models

HIstorically, two models of lattice vibrations have received wide attention. First is the so-called Einstein
model, in which there is no dispersion to the individual phonon modes. We take g,(w) ~ d(w — w,), in

which case )
_ hwa 2 hwa
Cy(T) = Nk:Bza: <2kBT> csch <2kBT> : (5.113)

Atlow temperatures, the contribution from each branch vanishes exponentially, since csch?(fiw, /2k,T) =~
4exp(—hw,/kyT) — 0. Real solids don’t behave this way:.

A more realistic model. due to Debye, accounts for the low-lying acoustic phonon branches. Since the
acoustic phonon dispersion vanishes linearly with |k| as k — 0, there is no temperature at which the
acoustic phonons ‘freeze out” exponentially, as in the case of Einstein phonons. Indeed, the Einstein
model is appropriate in describing the d (r—1) optical phonon branches, though it fails miserably for the
acoustic branches.

In the vicinity of the zone center k = 0 (also called I in crystallographic notation) the d acoustic modes
obey a linear dispersion, with w,(k) = ¢, (k) k. This results in an acoustic phonon density of states in
d = 3 dimensions of

N Vow 3V o
2/471 30 wp —w) = 328 % O(wp, —w) (5.114)

where ¢ is an average acoustic phonon velocity (i.e. speed of sound) defined by

Z / = Cg (5.115)

and wy, is a cutoff known as the Debye frequency. The cutoff is necessary because the phonon branch does
not extend forever, but only to the boundaries of the Brillouin zone. Thus, w;, should roughly be equal to
the energy of a zone boundary phonon. Alternatively, we can define w;, by the normalization condition

o0

/dwgy(w) =3 = w,=(672/V) 3¢ . (5.116)
0

This allows us to write j(w) = (9w?/wl) O(wy, — w).



5.5. LATTICE VIBRATIONS : EINSTEIN AND DEBYE MODELS 253

The specific heat due to the acoustic phonons is then

w

D
INk hw \? hiw
T) = B d 2 h2
utn) = g o (5 ) e (57 )
0

(5.117)
27\’
= 9Nk, <—> 9(6,/2T) |
Oy
where O, = hw, /ky is the Debye temperature and
r 3
o(z) = / dt t* csch?t = {””4; 20 z =0 (5.118)
) T T—00 .
Therefore,
2riNk, (T/6p)? T
Cy(T) =437 70 (T/8p)” T <6 (5.119)
3Nky T> 0

Thus, the heat capacity due to acoustic phonons obeys the Dulong-Petit rule in that Cy, (T — o) =
3Nk, corresponding to the three acoustic degrees of freedom per unit cell. The remaining contribution
of 3(r — 1) Nk, to the high temperature heat capacity comes from the optical modes not considered in
the Debye model. The low temperature T behavior of the heat capacity of crystalline solids is a generic
feature, and its detailed description is a triumph of the Debye model.

5.5.4 Melting and the Lindemann criterion
Atomic fluctuations in a crystal

For the one-dimensional chain, eqn. 5.101 gives

1/2
&k:z’< h > (a, —a'}) . (5.120)

2mwk

Therefore the RMS fluctuations at each site are given by
02) = & Yl = 5 30— (a(h) + ) G121)
"N 4 FEZRTN —~ muwy, 2 '

where n(k,T) = [exp(hw,,/k;T) — 1] ! is the Bose occupancy function.

Let us now generalize this expression to the case of a d-dimensional solid. The appropriate expression
for the RMS position fluctuations of the i*® basis atom in each unit cell is

dr
(ui (R)) = % Zk: ; m (ng(k) +3) . (5.122)
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Element || Ag | Al | Au C |Cd| C | Cu | Fe | Mn
e, (K) 227 | 433 | 162 | 2250 | 210 | 606 | 347 | 477 | 409
Tmeir (K) || 962 | 660 | 1064 | 3500 | 321 | 1857 | 1083 | 1535 | 1245
Element Ni | Pb Pt Si Sn Ta Ti W Zn
e, (K) 477 | 105 | 237 | 645 | 199 | 246 | 420 | 383 | 329
Tmes (K) || 1453 | 327 | 1772 | 1410 | 232 | 2996 | 1660 | 3410 | 420

Table 5.1: Debye temperatures (at 77 = 0) and melting points for some common elements (carbon is
assumed to be diamond and not graphite). (Source: the internet!)

Here we sum over all wavevectors k in the first Brilliouin zone, and over all normal modes a. There are
dr normal modes per unit cell i.e. d branches of the phonon dispersion w, (k). (For the one-dimensional
chain with d = 1 and r = 1 there was only one such branch to consider). Note also the quantity M, (k),

which has units of mass and is defined in terms of the polarization vectors el(-g) (k) as

1 N
R :;\egg(k)\? . (5.123)

The dimensions of the polarization vector are [mass] ~!/2

on the normal modes is

, since the generalized orthonormality condition

S mel (k) el (k) = 5 (5.124)
L
where m, is the mass of the ion of species i within the unit cell (¢ € {1,...,r}). For our purposes we

cheat a little and replace M, (k) by an appropriately averaged quantity which we call m; ; this ‘effective
mass’ is then independent of the mode index a as well as the wavevector k, greatly simplifying the
calculations. We may then write

T 0 1 1
(u?}%/dwg(w)m'w.{em/kBT_l—i—i} , (5.125)

i
0

where we have dropped the site label R since translational invariance guarantees that the fluctua-
tions are the same from one unit cell to the next. Note that the fluctuations (u?) can be divided into
a temperature-dependent part (u?),, and a temperature-independent quantum contribution (u? )
where

qu”’

hoT g(w) 1
2y _
(ui ) = s /dw W helkeT _ |

° (5.126)
h 9(w)
2 —
(ui >qu - 27,—”‘Z /dw W
0
Let’s evaluate these contributions within the Debye model, where we replace g(w) by
d2 d—1
i) =Y oW, —w) . (5.127)

wi
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We then find
2h (k,T\?
()= e (320 ) Faltso /)
, (5.128)
e
AT g -1 2m, wy
where
y d—2 A2 /(4 _ 9
Fd(x):/dss—: =2 20 (5.129)
e’ — C(d-1) T — 00

We can now extract from these expressions several important conclusions:

1) The T = 0 contribution to the the fluctuations, (u? ), diverges in d = 1 dimensions. Therefore
there are no one-dimensional quantum solids.

2) The thermal contribution to the fluctuations, (u?),,, diverges for any 7' > 0 whenever d < 2.
This is because the integrand of F,(z) goes as s%~3 as s — 0. Therefore, there are no two-dimensional
classical solids.

3) Both the above conclusions are valid in the thermodynamic limit. Finite size imposes a cutoff
on the frequency integrals, because there is a smallest wavevector &, ~ 2m/L, where L is the
(finite) linear dimension of the system. This leads to a low frequency cutoff w,_;, = 27¢/L, where
¢ is the appropriately averaged acoustic phonon velocity from eqn. 5.115, which mitigates any
divergences.

Lindemann melting criterion

An old phenomenological theory of melting due to Lindemann says that a crystalline solid melts when
the RMS fluctuations in the atomic positions exceeds a certain fraction z* of the lattice constant a. We
therefore define the ratios

o _(ui)y o h? Tt
Lith = =d '<mia2k]3 ’ @g ’F(QD/T)

s (ud)g 4 12 1
vau a? 2d—1) \m;a’ky) O,

(5.130)

SN

with z; = \/:L"?th +al = \/<u )/a.
Let’s now work through an example of a three-dimensional solid. We'll assume a single element basis

(r = 1). We have that h?/k, = 48.4K - amu - A?. According to table 5.1, the melting temperature always
exceeds the Debye temperature, and often by a great amount. We therefore assume 7' >> ©,,, which puts
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us in the small x limit of F,(x) by inverting eqn. 5.131. We obtain

X

o~ ©O* AT 4T\ O~
2 _ 2 _ 2 0 = - . 131
“ g ) Lth o, o, = T < > (5.131)

where L09K
o = . (5.132)
m[amu] - a2[A7]

2

The total position fluctuation is of course the sum z* = ZL'Z%th + 27 e
copper, with m = 56 amu and a = 2.87 A. The Debye temperature is ©, = 347K. From this we find
T, = 0.026, which says that at 7' = 0 the RMS fluctuations of the atomic positions are not quite three
percent of the lattice spacing (i.e. the distance between neighboring copper atoms). At room temperature,
T = 293K, one finds x,, = 0.048, which is about twice as large as the quantum contribution. How big
are the atomic position fluctuations at the melting point? According to our table, 7, ,, = 1083K for
copper, and from our formulae we obtain x = 0.096. The Lindemann criterion says that solids melt

when z(T') ~ 0.1.

Consider for example the case of

melt

We were very lucky to hit the magic number z_ ;. = 0.1 with copper. Let’s try another example. Lead
has M = 208amu and a = 4.95A. The Debye temperature is ©,, = 105K (‘soft phonons’), and the
melting point is T ;. = 327K. From these data we obtain z(7T" = 0) = 0.014, 2(293K) = 0.050 and

melt

z(T = 327K) = 0.053. Same ballpark.

We can turn the analysis around and predict a melting temperature based on the Lindemann criterion
(T, ) = «* = 0.1. We obtain

@D 2 @D
We call T} the Lindemann temperature. Most treatments of the Lindemann criterion ignore the quantum
correction, which gives the —1 contribution inside the above parentheses. But if we are more careful and
include it, we see that it may be possible to have T}, < 0. This occurs for any crystal where O, < ©* /z*2.
In this case we might expect the crystalline solid to be unstable to a liquid phase even at 7' = 0 owing to

quantum fluctuations.

This is indeed the case for “He, which at atmospheric pressure condenses into a liquid at 7, = 4.2 K and
remains in the liquid state down to absolute zero. At p = 1atm, it never solidifies! Why? The number
density of liquid *He at p = latm and 7' = 0K is 2.2 x 10?2cm 3. Let’s say the helium atoms want
to form a crystalline lattice. We don’t know a priori what the lattice structure will be, so let’s for the
sake of simplicity assume a simple cubic lattice. From the number density we obtain a lattice spacing
of a = 3.57 A. OK now what do we take for the Debye temperature? Theoretically this should depend
on the microscopic force constants which enter the small oscillations problem (i.e. the spring constants
between pairs of helium atoms in equilibrium). We’ll use the expression we derived for the Debye
frequency, w, = (672/V,)/3¢, where V), is the unit cell volume. We'll take ¢ = 238 m/s, which is the
speed of sound in liquid helium at 7" = 0. This gives ©, = 19.8 K. We find 6* = 2.13K, and if we take
z* = 0.1 this gives ©*/2*? = 213 K, which significantly exceeds 6,,. Thus, the solid should melt because
the RMS fluctuations in the atomic positions at absolute zero are huge: =, = (0*/ 0,)"? = 0.33. By
applying pressure, one can get “He to crystallize above p, = 25atm at 7 = 0. Under pressure, the unit
cell volume V,, decreases and the phonon velocity ¢ increases, so the Debye temperature increases.
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It is important to recognize that the Lindemann criterion does not provide us with a theory of melting
per se. Rather it provides us with a heuristic allowing us to predict roughly when a solid should melt.

5.5.5 Goldstone bosons

The vanishing of the acoustic phonon dispersion at k = 0 is a consequence of Goldstone’s theorem which
says that associated with every broken generator of a continuous symmetry there is an associated bosonic
gapless excitation (i.e. one whose frequency w vanishes in the long wavelength limit). In the case of
phonons, the ‘broken generators” are the symmetries under spatial translation in the z, y, and z direc-
tions. The crystal selects a particular location for its center-of-mass, which breaks this symmetry. There
are, accordingly, three gapless acoustic phonons.

Magnetic materials support another branch of elementary excitations known as spin waves, or magnons.
In isotropic magnets, there is a global symmetry associated with rotations in internal spin space, de-
scribed by the group SU(2). If the system spontaneously magnetizes, meaning there is long-ranged fer-
romagnetic order (111 - - - ), or long-ranged antiferromagnetic order (1)1} - - - ), then global spin rotation
symmetry is broken. Typically a particular direction is chosen for the magnetic moment (or staggered
moment, in the case of an antiferromagnet). Symmetry under rotations about this axis is then pre-
served, but rotations which do not preserve the selected axis are ‘broken’. In the most straightforward
case, that of the antiferromagnet, there are two such rotations for SU(2), and concomitantly two gapless
magnon branches, with linearly vanishing dispersions w,(k). The situation is more subtle in the case
of ferromagnets, because the total magnetization is conserved by the dynamics (unlike the total stag-
gered magnetization in the case of antiferromagnets). Another wrinkle arises if there are long-ranged
interactions present.

For our purposes, we can safely ignore the deep physical reasons underlying the gaplessness of Gold-
stone bosons and simply posit a gapless dispersion relation of the form w(k) = A |k|?. The density of
states for this excitation branch is then g(w) = C wlo 1 O(w, — w), where C is a constant and w, is
the cutoff, which is the bandwidth for this excitation branch.® Normalizing the density of states for this

branch results in the identification w, = (d/oC)7% .

The heat capacity is then found to be

T i B V hw \ d . (20N
— Nk do! =1 h? = = Nk, [ = 2T 134
Cy BC/dww (k‘BT> csc T - ky 5 ¢(©/2T) | (5.134)
0
where © = hw,/ky and

roag o [(o)d)ade z—0
= [dtt° h°t = 5.135
o(x) 0/ csc {2_d/gr(2 +4¢2+9) w ’ ( )

which is a generalization of our earlier results. Once again, we recover Dulong-Petit for k,T > hw,,
with C, (T > hw,/ky) = Nky.

81f w(k) = Ak?, then C = 2107 2 =1 A" 7 g /T(d/2).
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In an isotropic ferromagnet, i.e.a ferromagnetic material where there is full SU(2) symmetry in internal
‘spin’ space, the magnons have a k? dispersion. Thus, a bulk three-dimensional isotropic ferromagnet
will exhibit a heat capacity due to spin waves which behaves as 7°/? at low temperatures. For suffi-
ciently low temperatures this will overwhelm the phonon contribution, which behaves as T3.

5.6 The Ideal Bose Gas

5.6.1 General formulation for noninteracting systems

Recall that the grand partition function for noninteracting bosons is given by

1

== H < i eﬁ(u—%)%) — H (1 — eﬁ(ﬂ—aa)>_ , (5.136)

@ n,=0 @

In order for the sum to converge to the RHS above, we must have p < ¢, for all single-particle states
|a). The density of particles is then

ne(T, )
——

1 (00 1 1 1
nTp) =~y <5>TV 7D i e e /dE 9) T =1 (5137)

“ o
where g(¢) = V™'Y d(e — ¢,) is the density of single particle states per unit volume. We assume that
g(e) = 0 for e < ¢q; typically g, = 0, as is the case for any dispersion of the form (k) = A|k|", for
example. However, in the presence of a magnetic field, we could have ¢(k,0) = A|k|" — gugHo, in
which case e, = —guy|H|.

Clearly n(T', u) is an increasing function of both 7" and p. At fixed T', the maximum possible value for
n(T, ), called the critical density n.(T), is achieved for u = ¢, i.e.

_ 9(e)
€o

The above integral converges provided g(s,) = 0, assuming g(¢) is continuous’. If g(s,) > 0, the integral
diverges, and n.(7') = oo. In this latter case, one can always invert the equation for n(7’, ;) to obtain
the chemical potential x(7,n). In the former case, where the n.(T') is finite, we have a problem — what
happens if n > n (1) ?

In the former case, where n.(7T') is finite, we can equivalently restate the problem in terms of a critical
temperature T, (n), defined by the equation n (7)) = n. For T' < T, we apparently can no longer invert to

"Well, that isn’t quite true. For example, if g(¢) ~ 1/In(1/¢) as ¢ — 07, then lim._,o+ g(¢) = 0 yet the integral
has a very weak InIn(1/7n) divergence, where 1 is the lower cutoff. But for any power law density of states g(¢) o< &”
with r > 0, the integral converges.
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Figure 5.6: The Bose distribution n(T, u) = 1/[e€=#/ksT — 1] vs. € at fixed p = —1 (k, = 1).

obtain x(T,n), so clearly something has gone wrong. The remedy is to recognize that the single particle
energy levels are discrete, and separate out the contribution from the lowest energy state ¢,. I.e. we write

Tlo n/
1 g0 ! g9(e)
n(T,p) = V B 1 +/d€ B —1 (5.139)
o

where g, is the degeneracy of the single particle state with energy ¢,. We assume that n is finite, which
means that IV, = n,V is extensive. We say that the particles have condensed into the one-body state | 1, )
with energy ¢, . The quantity n,, is the condensate number density. The remaining particles, with number
density n/, are said to comprise the overcondensate. With the total density n fixed, we have n = n, +n’.
Note that n, finite means that y is infinitesimally close to ¢:

g goksT
=eqg—kgTIn[1+ == ) =gy — >~ . 5.140
/’[/ EO B n( + nQv) EO TLOV ( )

Note also that if ¢, — 4 is finite, then n o< V! is infinitesimal.

Thus, for T' < T,(n), we have u = ¢, with ny, > 0, and

g(e)
€o

For T' > T,(n), we have n, = 0 and

7 g(€)

€o
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The equation relating 7, and n is

_ 9(e)
n= /ds ey (5.143)

€o

For another take on ideal Bose gas condensation see the appendix in §5.9.

5.6.2 Ballistic dispersion

We already derived, in §5.3.3, expressions for n (T, z) and p(T), z) for the ideal Bose gas (IBG) with ballistic
dispersion (p) = p?/2m, We found

n(T, z) = g)\;d Li,(2)
’ (5.144)
p(T7 Z) = ngT)\T_“d Lig+1(z)7

where A\ = \/27h?/mk,T is the thermal wavelength, and where g is the internal (e.g. spin) degeneracy
of each single particle energy level. Here z = exp(u/kgT) is the fugacity and Li (z) = Y °_, 2/m® is
the polylogarithm function. For bosons with a spectrum bounded below by ¢, = 0, the fugacity takes
values on the interval z € [0, 1]'’. Note that Lis(z = 1) = ((s), which is Riemann’s zeta function; ¢(s) is
finite for s > 1.

Clearly n(T,z) =g /\,Ed Li, /2(,2) is an increasing function of z for fixed 7. In fig. 5.7 we plot the function
Li,(z) versus z for three different values of s. We note that the maximum value Li (z = 1) is finite if s > 1.
Thus, for d > 2, there is a maximum density n,,. (T) = g((d/2) /\,Ed which is an increasing function of
temperature 7. Put another way;, if we fix the density n, then there is a critical temperature T, below which
there is no solution to the equation n = n(T), z). The critical temperature 7,(n) is then determined by the
relation

_ kT \? o2 2/d
n=gC()A"* =g¢(4) (77;7312) — k.= % (ﬁ) . (5.145)
2

What happens for 7' < T..?

As shown above in §5.6, we must separate out the contribution from the lowest energy single particle
mode, which for ballistic dispersion lies at ¢, = 0. Thus writing

1 1 1 1
_VZ—1_1+V Z; o1 eealkgT _ 1

(eq>0)

(5.146)

n

where we have taken g = 1. Now V! is of course very small, since V is thermodynamically large, but if
i — 0then z~! — 1 is also very small and their ratio can be finite, as we have seen. Indeed, if the density
of k = 0 bosons ny is finite, then their total number N, satisfies

1
No = Vg =~ = 2z (5.147)

—1_1 :1+N0_1

107t s easy to see that the chemical potential for noninteracting bosons can never exceed the minimum value &,
of the single particle dispersion.
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Figure 5.7: The polylogarithm function Lis(z) versus z for s = 3, s = 3, and s = 5. Note that Li (1) =
((s) diverges for s < 1.

The chemical potential is given by
k,T
Ny
In other words, the chemical potential is infinitesimally negative, because N, is assumed to be ther-

modynamically large. According to eqn. 5.10, the contribution to the pressure from the k = 0 states
is

p=kThhz=—k,Tn(1+N;')~

0 . (5.148)

kT ke, T

In(l—2) = v In(1+ Ny) — 0" . (5.149)

Py =
So the k = 0 bosons, which we identify as the condensate, contribute nothing to the pressure.

Having separated out the £k = 0 mode, we can now replace the remaining sum over « by the usual
integral over k. We then have
T<T, : n=ng+gl(H\* . p=gC(¢+1) kT A (5.150)

and
n = gLig(z) M4, p= gLi%H(z) kT AT (5.151)

The condensate fraction ny/n is unity at 7' = 0, when all particles are in the condensate with k = 0, and
decreases with increasing 7" until 7' = T, at which point it vanishes. Explicitly, we have

(1) . 84(8) T\
OT_l_ n)\g _1_<T(n)> ’ (6.152)

C

Energy and heat capacity

Let us compute the internal energy E for the ideal Bose gas. We have

0 on on
75 P =Q+B 5 =0T 55 =0Q+T1S (5.153)
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and therefore

0
E:Q—I—TS—I—,uN:,uN—I—%(ﬁQ)
0 —d-

This expression is valid at all temperatures, both above and below 7. Note that the condensate particles
do not contribute to E, because the k = 0 condensate particles carry no energy.

(5.154)

We now investigate the heat capacity Cy, y = (%%) vy - Since we have been working in the GCE, it is
very important to note that IV is held constant when computing C', ;. We'll also restrict our attention to
the case d = 3 since the ideal Bose gas does not condense at finite 7" for d < 2 and d > 3 is unphysical.
While we're at it, we'll also set g = 1.

The number of particles is

N, 3/2) VAL (T <T,
N — OZ,C(./) 7 (T<T,) (5.155)
VAr L13/2(Z) (T>1,) ,
and the energy is
V..
E=3k,T pes Ligjo(2) = 50V . (5.156)
ForT < T, wehave z = 1 and
OF V
Cyn = <—> =15¢(5/2) =k, - (5.157)
: or )y y 4 PER
The molar heat capacity is therefore
C
ey n(Tin) = N, - % = L¢(5/2)(n N7 'R . (5.158)
For T > T, we have
. V. dT . V dz
dE\V = P kT Li5 5 (2) N T +3 kT Lig (2) N L (5.159)
T T
where we have invoked eqn. 5.51. Taking the differential of IV, we have
. Vo dr . V dz
dN|, = %Lls/z(z) NT + Li; 5(2) pE (5.160)
We set dN = 0, which fixes dz in terms of dT, resulting in
SLisjp(2) 2 Ligpu(z
cyn(T,2) = 3R -| 2 2(7) 2 Hya(2) : (5.161)

‘ Li3/2(2) Li1/2(z)

To obtain ¢y, (7', n), we must then invert the relation

(T, z) = Ap" Lig o (2) (5.162)
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Figure 5.8: Molar heat capacity of the ideal Bose gas (units of R). Note the cusp at 7' = T.

in order to obtain z(7',n), and then insert this into eqn. 5.161. The results are shown in fig. 5.8. There
are several noteworthy features of this plot. First of all, by dimensional analysis the function ¢y, ; (7', n)
is R times a function of the dimensionless ratio 7/7,(n) o T'n~2/3. Second, the high temperature limit

is %R, which is the classical value. Finally, there is a cusp at T' = T,(n). For another example, see §5.10.

Entropy

Working along similar lines, it is left as an exercise to the reader to obtain the following formulae for the
entropy per particle of the ideal Bose gas in d dimensions:

S(T<T.,V,N) d d g
N, = (G +1)<5+1) AL
i 5.163
S(T > T,,V,N) iy, (2) (5.163)
< :(%l—i—l)Qi—lnz ,
Nky Li,(z

with n = N/V. In the second equation above, one must invert n\% = gLi, /2(2) to obtain z(T, n). Note
that the above equations agree at 7' = T, , where z = 1.

Let us contrast these results with those for the classical nonrelativistic ideal gas, for which

1 [gV N See(T,V,N)
LT, V,N) = —| = = —_—
eV, N) N!<)\§€> Nkg

=log(n\$/g) +9+1 . (5.164)
For the ideal Bose gas in the Maxwell-Boltzmann limit, where z — 0 and Liy(z) = 2 + 27522 + ..., we
have z = n\% /g, and the classical and quantum entropies agree to lowest nontrivial order in the dimen-
sionless quantity nA3.. Butas T' — 07, the classical entropy per particle s(7,n) diverges logarithmically
toward negative infinity. On the other hand, in the low temperature (condensed) phase of the ideal Bose
gas, we have z = 1 and s(T',n) n~1T%2 which vanishes as T' — 0.
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Figure 5.9: Phase diagrams for the ideal Bose gas. Left panel: (p,v) plane. The solid blue curves are
isotherms, and the green hatched region denotes v < v.(T), where the system is partially condensed.
Right panel: (p, T) plane. The solid red curve is the coexistence curve p.(7"), along which Bose conden-
sation occurs. No distinct thermodynamic phase exists in the yellow hatched region above p = p.(T').

5.6.3 Isotherms for the ideal Bose gas

Let a be some length scale and define

27 h? 21 h?
ve=d> ,  py=— . T,= (5.165)
mad® ma?k,
Then we have 3/ /2
v, T . p T .
? = <Ta> L13/2(Z) +'Ua no s p—a = <Ta> L15/2(Z) s (5166)

where v = V/N is the volume per particle'! and n, is the condensate number density; n, vanishes for
T > T,, where z = 1. One identifies a critical volume v,(T") by setting z = 1 and n, = 0, leading to
v(T) = v, (T/T,)*?. Forv < v (T), we set z = 1 in eqn. 5.166 to find a relation between v, T', and n,,.
For v > v,(T'), we set ny = 0 in eqn. 5.166 to relate v, T', and z. Note that the pressure is independent
of volume for T' < T,. The isotherms in the (p,v) plane are then flat for v < v,. This resembles the
coexistence region familiar from our study of the thermodynamics of the liquid-gas transition. The
situation is depicted in fig. 5.9. In the (T,p) plane, we identify p.(T) = p,(T/T,)?/? as the critical
temperature at which condensation starts to occur.

Recall the Gibbs-Duhem equation, dyy = —sdT + v dp . Along a coexistence curve, we have the Clausius-
Clapeyron relation,
dp 89 — 81 4
— = = 5.167
(dT)Coex vo—v; TAv ( )

where ¢ = T (s, — s;) is the latent heat per mole, and Av = v, — v,. For ideal gas Bose condensation, the
coexistence curve resembles the red curve in the right hand panel of fig. 5.9. There is no meaning to the

Note that in the thermodynamics chapter we used v to denote the molar volume, N, V/N.
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shaded region where p > p.(T). Nevertheless, it is tempting to associate the curve p = p.(T") with the
coexistence of the k = 0 condensate and the remaining uncondensed (k # 0) bosons.

The entropy in the coexistence region is given by

gL (082 s s _ 366/2) _ M
— N(@T)V 0B/ kav Az’ = 2k (1 n) . (5.168)

All the entropy is thus carried by the uncondensed bosons, and the condensate carries zero entropy:.
The Clausius-Clapeyron relation can then be interpreted as describing a phase equilibrium between the
condensate, for which s, = v, = 0, and the uncondensed bosons, for which s’ = s(T') and v' = v,(T).
So this identification forces us to conclude that the specific volume of the condensate is zero. This is
certainly false in an interacting Bose gas!

While one can identify, by analogy, a ‘latent heat’ / = T As = T's in the Clapeyron equation, it is impor-
tant to understand that there is no distinct thermodynamic phase associated with the region in which
p > p.(T'). Ideal Bose gas condensation is a second order transition, and not a first order transition.

5.6.4 Properties of liquid “He
The A-transition

Helium has two stable isotopes. 4He is a boson, consisting of two protons, two neutrons, and two
electrons (hence an even number of fermions). *He is a fermion, with one less neutron than *He. Each
“He atom can be regarded as a tiny hard sphere of mass m = 6.65 x 1072* g and diameter a = 2.65 A.
The gas-liquid transition is first order, as usual. However, as one continues to cool, a second transition
setsinat 7' = T\, = 2.17K (at p = latm). The A-transition, so named for the A-shaped anomaly in the

Normal Liquid

Pressure (MPa)
[ ]

1 { Superfiuid

0 1 2 3 4 5 6
Temperature (K)

Figure 5.10: Phase diagram of He. All phase boundaries are first order transition lines, with the excep-
tion of the normal liquid-superfluid transition, which is second order. (Source: University of Helsinki)
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specific heat in the vicinity of the transition, as shown in fig. 5.11, is continuous (i.e. second order). A
sketch of the low temperature phase diagram is shown in fig. 5.10. At atmospheric pressure, helium
liquefies at 7} = 4.2K.

If we pretend that *He is a noninteracting Bose gas, then from a density of n = 2.2 x 10?2cm~3, we

obtain a Bose-Einstein condensation temperature 7,(n) = % (n/¢(3/ 2))2/ ? = 3.16K, which is in the

right ballpark. The specific heat C,,(T) is found to be singular at ' = T),, with

C

L(T)=A|T —T\(p)| " . (5.169)

« is an example of a critical exponent. We shall study the physics of critical phenomena later on in this
course. For the ideal nonrelativistic Bose gas, the cusp singularity found in fig. 5.8 for for C\, y(T)
corresponds to o = —1. Perhaps surprisingly, for C,, \(T') one finds instead a = 1 (see the calculation
in §5.11). The observed behavior of C,(T') in “He is very nearly logarithmic in |T' — T|. In fact, both
theory (renormalization group on the O(2) model) and experiment concur that a is almost zero but
in fact slightly negative, with a = —0.0127 & 0.0003 in the best experiments (Lipa et al., 2003). The X
transition is most definitely not an ideal Bose gas condensation. Theoretically, in the parlance of critical
phenomena, IBG condensation and the A-transition in “He lie in different universality classes'?. Unlike
the IBG, the condensed phase in “He is a distinct thermodynamic phase, known as a superfluid. Note
that C,(T' < T,) for the IBG is not even defined, since for 7' < T, we have p = p(7T') and therefore dp = 0
requires d1' = 0.

Fountain effect in superfluid ‘He

At temperatures T < T, liquid “He has a superfluid component which is a type of Bose condensate.
In fact, there is an important difference between condensate fraction N,_,/N and superfluid density,
which is denoted by the symbol p,. In 4He, for example, at 7' = 0 the condensate fraction is only about
8%, while the superfluid fraction p,/p = 1. The distinction between N, and p, is very interesting but lies
beyond the scope of this course.

One aspect of the superfluid state is its complete absence of viscosity. For this reason, superfluids can
flow through tiny cracks called microleaks that will not pass normal fluid. Consider then a porous plug
which permits the passage of superfluid but not of normal fluid. The key feature of the superfluid
component is that it has zero energy density. Therefore even though there is a transfer of particles across
the plug, there is no energy exchange, and therefore a temperature gradient across the plug can be
maintained”. In the U-tube experiment depicted in fig. 5.12, this results in a height difference between
the two arms of the U-tube.

The elementary excitations in the superfluid state are sound waves called phonons. They are compres-
sional waves, just like longitudinal phonons in a solid, but here in a liquid. Their dispersion is acoustic,
given by w(k) = ck where ¢ = 238m/s.'* The have no internal degrees of freedom, hence g = 1. Like

12BG condensation is in the universality class of the spherical model. The A-transition is in the universality
class of the XY model.

13Recall that two bodies in thermal equilibrium will have identical temperatures if they are free to exchange energy.

4The phonon velocity c is slightly temperature dependent.
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Figure 5.11: Specific heat of liquid 4He in the vicinity of the A-transition. Data from M. ]J. Buckingham
and W. M. Fairbank, in Progress in Low Temperature Physics, C. J. Gortner, ed. (North-Holland, 1961).
Inset at upper right: more recent data of J. A. Lipa et al., Phys. Rev. B 68, 174518 (2003) performed in
zero gravity earth orbit, to within AT = 2nK of the transition.

phonons in a solid, the phonons in liquid helium are not conserved. Hence their chemical potential
vanishes and these excitations are described by photon statistics. Appealing to the quantum thermody-
namics of phonons, we may compute the height difference Ah in the U-tube.

Clearly Ah = Ap/pg. so we must find p(T’) for the helium. In the grand canonical ensemble, we have

d% —hek/kxT
p:—Q/V:—kBT/W].H(l—e /B)
=— (ks T)* 4—7T/Oociu u? In(l —e ™) = 7r_2 (ka1 o
— (he)? 8n3 90 (he)3
0
Let’s assume 7' = 1 K. We'll need the density of liquid helium, p = 148 kg/m?. We thus obtain
dh  2n° </<;BT>3 ky,
dT — 45 \ hc ) pg
€/ P9 , (5.171)
_ 2 (1.38 x 10723 J/K) (1K) (138 x107#J/K) 39 em /K
~ 45 \ (1.055 x 10731 - 5)(238m/s) (148 kg/m3)(9.8 m/s2) — ’

a very noticeable effect!
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Figure 5.12: The fountain effect. In each case, a temperature gradient is maintained across a porous
plug through which only superfluid can flow. This results in a pressure gradient which can result in a
fountain or an elevated column in a U-tube.

Andronikashvili experiment, superfluid density, and condensate fraction

At temperatures below T}, the superfluid component of liquid *He has zero viscosity. This entails sev-
eral remarkable properties. For example, the superfluid can climb the walls of an open vessel in which
it is contained and leak out, seemingly defying gravity, as depicted in panels (a), (b), and (c) of fig. 5.13.
Panel (d) depicts the famous Andronikashvili experiment (1946) in which a set of metallic plates is im-
mersed in a vat of liquid “He and used as a torsional oscillator. The restoring torque of a torsional fiber
twisted by an angle 6 is 7 = — K6, where K is the torsion elastic modulus. If the fiber is connected to
an element of inertial moment 7, then 76 = — K6 and the frequency of oscillations (neglecting damping)
is w = y/K/I. In Andronikashvili’s experiment, I = I,,, + Ty, , where I, is the moment of inertia
of the apparatus and I}y, that of the *He which is dragged along due to frictional forces exerted on the
fluid by the plates. In viscous liquids there is a length scale {(w)  +/v/w, where v is the viscosity such
that if the distance between the plates is less than {(w), then all the normal fluid between the plates is
dragged along with the apparatus as it oscillates. Any superfluid, however, remains decoupled from
the oscillation of the plates. Thus,

’[HO(T) ~ %WR4hoﬁpn (T) ’ (5172)

where p, (T') is the mass density of the normal component (with p, (7" > T,) = p, the total helium
mass density), and R and h g are the radius and height of the helium liquid between the plates. The
experimental results are sketched in panel (e) of fig. 5.13. As the temperature 7" decreases below T}, the
moment of inertia Iy, (7") decreases in proportion to the normal fluid fraction. At 7" = 0, 100% of the
helium is in the superfluid state and there is no contribution from the fluid to the moment of inertia I.

The many-body wavefunction

It is important to apprehend that there is a difference between superfluid fraction p,/p, which is measured
in the Andronikashvili experiment, and condensate fraction f, = N,_,/N, which can be measured in
scattering experiments. Theoretically, f, is a property of the many-body ground state wavefunction.
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Figure 5.13: Strange properties of superfluid “He: (a)-(c) Driven by van der Waals forces, superfluid
“He can climb walls and a container of superfluid can empty itself. (d) Andronikashvili’s experiment
(1946), in which a set of metallic disks immersed in a fluid is used as a torsional oscillator. Below T,

the period of the oscillations depends on temperature. (e) Normal and superfluid density fractions as a
function of temperature.

The ground state wavefunction of an N-particle system of point particles with no internal degrees of
freedom is written as Wy (x,,...,x,). For bosons, ¥ is completely symmetric under any permutation
of the labels x; — T, 0 for all i, where 0 € Sy is an element of the NV object permutation group. The
wavefunction is also assumed to be normalized, i.e.

N
/Hd%,. Wy, ep)P =1 . (5.173)
i=1
The condensate fraction f, can be expressed in terms of ¥, as the following integral:
NO : 3] (ZIZ, ZIZ/)
=—= 1 5.174
fo N \x—alrgl—mo n ’ ( )

where n,(z, ') is the off-diagonal one-body density matrix in the ground state'® and n is the total “‘He

15Gee S. Moroni and M. Boninsegni, J. Low Temp. Phys. 136, 129 (2004).
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number density

N
ny(z, ') = /Hd?’xi Vi(x, @y, ..., 2N) Vo(x Xy, ..., xy) - (5.175)
i=2
Theoretically, an estimate of f; requires an accurately approximated ground state wavefunction ¥, . The
simplest trial wavefunctions for *He are of the Jastrow pair product form,

N
U (g, ey) = [ flz; —al) (5.176)
i<k

where the pair function f(r) is roughly constant for » > d, and rapidly decays to zero for r < d, with
d =~ 4.2 A the diameter of a helium atom. Its precise functional form is then determined by minimiz-
ing the energy E = (H). Accurate numerical work requires much more sophisticated techniques, such
as Diffusion Monte Carlo or, at finite temperature, Path Integral Monte Carlo. Moroni and Boninsegni
(2004) obtained f, = 0.069 + 0.005 and an equilibrium density of p, = 0.02186 A7%. In dilute atomic
gases, discussed in the next section, the interactions are weak, f, ~ 1, and tthe condensate may be im-
aged experimentally. In *He f, can be ascertained experimentally from deep inelastic neutron scattering,
and at the lowest temperatures under saturated vapor pressure measurements values from f;, ~ 0.06 to

fo = 0.14 have been reported.

5.6.5 Bose condensation in optical traps

The 2001 Nobel Prize in Physics was awarded to Weiman, Cornell, and Ketterle for the experimental
observation of Bose condensation in dilute atomic gases. The experimental techniques required to trap
and cool such systems are a true tour de force, and we shall not enter into a discussion of the details

here!®.

The optical trapping of neutral bosonic atoms, such as 3"Rb, results in a confining potential V (r) which

is quadratic in the atomic positions. Thus, the single particle Hamiltonian for a given atom is written

. k2
H= V74 gm(uta® + ey’ +ef ) (5177)

where w, , 5 are the angular frequencies of the trap. This is an anisotropic three-dimensional harmonic
oscillator, the solution of which is separable into a product of one-dimensional harmonic oscillator wave-
functions. The eigenspectrum is then given by a sum of one-dimensional spectra, viz.

By, = (11 + ) oy + (ng + 3) fwy + (ng + 3) fws (5.178)
According to eqn. 5.12, the number of particles in the system is

[e.e] (e} [e.e]
N — Z Z Z [y_l erihwy [k T gnohw, [kpT onghws /kpT _ 1]

n,;=0 ny=0 ny=0

o0
=, 1 1 1
= — Y \T = oo kg T )\ ] _ g Fha/hgT )\ T o khay/bT )

16Many reliable descriptions may be found on the web. Check Wikipedia, for example.

-1

(5.179)
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where we've defined y = e#/ksT ¢=hw1/2kpT g=hw, 2k T o=hwy [2kgT ¢ [0 1]

Let’s assume that the trap is approximately anisotropic, which entails that the frequency ratios w, /w,
etc. are all numbers on the order of one. Let us further assume that kT > fw, 5 5. Then

1 k. T/khw, k< ES(T
T S\ iy RS E) (5:180)
1 — ¢ "hwi/hs 1 k> k*(T)
where k*(T) = kT /hio > 1, with@ = (w; w, w3)1/3 . We then have
E*+1 3Kk
y kT y
N(T,y) ~ 2 181
(T,y) 1_y+<m>k§j:1k3 : (5.181)

where the first term on the RHS is due to £ > £* and the second term from k£ < k* in the previous sum.
Since k* > 1 and since the sum of inverse cubes is convergent, we may safely extend the limit on the
above sum to infinity. To help make more sense of the first term, write Ny = (y~' — 1) " for the number
of particles in the (n,,n4,n3) = (0,0,0) state. Then y = N,/(N, + 1), which is true always. The issue
vis-a-vis Bose-Einstein condensation is whether N, > 1. At any rate, we now see that we can write

e (kTN
N~Ny (L+ N ™+ ( h‘i_u > Lis(y) . (5.182)
As for the first term, we have
_k* 0 N, k*
No(1+ Ny = N (5.183)

Thus, as in the case of IBG condensation of ballistic particles, we identify the critical temperature by the
condition y = Ny/(Ny + 1) = 1, and we have

ho [ N \/3 7 1/

where 7 = @/27. We see that kT, > hw if the number of particles in the trap is large: N >> 1. In this
regime, we have

3
T<T, N:N0+<(3)<k;§>
o (5.185)
T>T, Nz(ifw)Lig(y)

It is interesting to note that BEC can also occur in two-dimensional traps, which is to say traps which are
very anisotropic, with oblate equipotential surfaces V(r) = ;. This happens when hw; > k;T > w; 5.

We then have 1o
(=2 _ k@ . <6;T_];7> (5.186)
B
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with & = (w; wy) 2 The particle number then obeys a set of equations like those in eqns. 5.185, mutatis
mutandis'’.

For extremely prolate traps, with w3 < w; 5, the situation is different because Li, (y) diverges for y = 1.

We then have
kT

hws
Here we have simply replaced y by the equivalent expression N,/(N, + 1). If our criterion for conden-
sation is that N, = alNV, where « is some fractional value, then we have

N:N0+

In(1+Ny) . (5.187)

hws N
5.7 The Ideal Fermi Gas
5.7.1 Grand potential and particle number
The grand potential of the ideal Fermi gas is, per eqn. 5.10,
QT V,p) = ~Vk,TY In (1 + et/kT e—fa/’fBT)
o0 (5.189)
= VT / de g(e) In (1 + ew—a)/’fBT)
The average number of particles in a state with energy ¢ is
1
F _
ng (T, pn) = gy i (5.190)
hence the total number of particles is
- (T ) = _ 9
N(T,V,p) = V/ds gle)n (T, p) = V/d&? ey (5.191)
5.7.2 The Fermi distribution
We define the function )
fr(A) = AT (5.192)

known as the Fermi distribution (with T" implicit). In the ' — oo limit, f7(A) — % for all finite values
of A. AsT — 0, f;(A) approaches a step function ©(—A). The average number of particles in a state of

2

VExplicitly, one replaces ¢(3) with ¢(2) = =, Liy(y) with Li,(y), and (k,T/h&)’ with (k,T/ho)>.
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Figure 5.14: The Fermi distribution, f(c — p) = 1/[e~#/%sT 4 1]. Here we have set k; = 1 and taken
uw=2,withT = 2—10 (blue), T = % (green), and 7' = 2 (red). In the 7" — 0 limit, f;._,,(¢ — p) approaches a
step function O(p — ¢).

energy ¢ in a system at temperature 7" and chemical potential y is f; (e — i) = n (T, ). In fig. 5.14 we
plot f.(e — p) versus ¢ for three representative temperatures. Oftentimes we will drop the subscript and
write the Fermi distribution simply as f(e — p1), with an implicit 7-dependence.

5.7.3 T = 0 and the Fermi surface

AtT =0, we have n (T = 0, u) = ©(p — ), which says that all single particle energy states up to e = p
are filled, and all energy states above ¢ = p are empty. We call ;(T" = 0) the Fermi energy: e = p(T' = 0).
If the single particle dispersion (k) depends only on the wavevector k, then the locus of points in k-
space for which ¢(k) = ¢, is called the Fermi surface. Thus, a Fermi surface is a (d — 1)-dimensional level
set of the function £(k), labeled by the value ey,. For isotropic systems, e(k) = (k) is a function only
of the wavevector magnitude £ = |k|, and the Fermi surface is a sphere in d = 3 or a circle in d = 2.
The radius of this circle is the Fermi wavevector, ky. When there is internal (e.g. spin) degree of freedom,
there is a Fermi surface and Fermi wavevector (for isotropic systems) for each polarization state of the
internal degree of freedom.

Let’s compute the Fermi wavevector ky and Fermi energy e for the IFG with a ballistic dispersion
e(k) = h%k?/2m. The number density is

ddk g2, ki
=8 [y Ok =) = G o
and thus
nY =ghp/m . P =gki/ar . = gkif6n® (5.194)

where 2, = 27%2/T(d/2) is the area of the unit sphere in d space dimensions. Note that the form of
n(ky) is independent of the dispersion relation, so long as it remains isotropic. Inverting the above
expressions, we obtain ky(n) = 27 (dn/g 2,)"/¢:

BV =g WY = (/) BT = (6nPn/g) (5:195)
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The Fermi energy in each case, for ballistic dispersion, is given by

R2E2 2722 [ dn N
= = 5.196
AL s (g 0d> , (5.196)
and so
242, 2 2 2 2.\ 2/3
(d=1) T h*n (d=2) 2mh“n (d=3) h 6m°n
Ep 2e7m ) Ep o , Ep 5 . (5.197)

Another useful result for the ballistic dispersion, which follows from the above, is that the density of
states at the Fermi level is given by

g2, mki2 d n
— L, =—._ 5.198

That g(ep) must be a numerical factor multiplied by n /ey is obvious on dimensional grounds.

For the electron gas, we have g = 2. In a metal, one typically has kp ~ 0.5 A" t0 247", and Ep ~
1eV — 10eV. Due to the effects of the crystalline lattice, electrons in a solid behave as if they have an
effective mass m* which is typically on the order of the electron mass but very often about an order of
magnitude smaller, particularly in semiconductors.

Nonisotropic dispersions (k) are more interesting in that they give rise to non-spherical Fermi surfaces.
The simplest example is that of a two-dimensional ‘tight-binding” model of electrons hopping on a
square lattice, as may be appropriate in certain layered materials. The dispersion relation is then

e(ky, k,) = =2t cos(k,a) — 2t cos(kya) (5.199)
where k, and k, are confined to the interval [—Z, Z]. The quantity ¢ has dimensions of energy and is
known as the hopping integral. The Fermi surface is the set of points (k,, k,) which satisfies e(k,, k,) =
ep. When e achieves its minimum value of e® = —4¢t, the Fermi surface collapses to a point at
(ks k,) = (0,0). For energies just above this minimum value, we can expand the dispersion in a power
series, writing

e(ky, k) = —At +ta® (kI + k) — 5 ta (ky + k) +... . (5.200)

If we only work to quadratic order in k, and k,, the dispersion is isotropic, and the Fermi surface is a
circle, with k% = (e +4t)/ta®. As the energy increases further, the continuous O(2) rotational invariance
is broken down to the discrete group of rotations of the square, C,,. The Fermi surfaces distort and
eventually, at ey = 0, the Fermi surface is itself a square. As e, increases further, the square turns back
into a circle, but centered about the point (Z,Z). Note that everything is periodic in k, and k, modulo
21 The Fermi surfaces for this model are depicted in the upper right panel of fig. 5.15.

Fermi surfaces in three dimensions can be very interesting indeed, and of great importance in under-
standing the electronic properties of solids. Two examples are shown in the bottom panels of fig. 5.15.
The electronic configuration of cesium (Cs) is [Xe] 6s!. The 6s electrons ‘hop’ from site to site on a
body centered cubic (BCC) lattice, a generalization of the simple two-dimensional square lattice hop-
ping model discussed above. The elementary unit cell in k space, known as the first Brillouin zone, turns
out to be a dodecahedron. In yttrium, the electronic structure is [Kr] 552 4d*, and there are two electronic
energy bands at the Fermi level, meaning two Fermi surfaces. Yttrium forms a hexagonal close packed
(HCP) crystal structure, and its first Brillouin zone is shaped like a hexagonal pillbox.
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Figure 5.15: Fermi surfaces for two and three-dimensional structures. The wavevector k ranges over
the first Brillouin zone in each case. Upper left: free particles in two dimensions. Upper right: ‘tight
binding’ electrons on a square lattice. Lower left: Fermi surface for cesium, which is predominantly
composed of electrons in the 6s orbital shell. Lower right: the Fermi surface of yttrium has two parts.
One part (yellow) is predominantly due to 5s electrons, while the other (pink) is due to 4d electrons.
(Source: www.phys.ufl.edu/fermisurface/)

Spin-split Fermi surfaces

Consider an electron gas in an external magnetic field H. The single particle Hamiltonian is then'®

~ p2
H=—+puHo |, (5.201)

2m
where pi, is the Bohr magneton, u, = eh/2me = 5.788 x 107%eV/G. It is convenient to keep in mind
the ratio u,/k, = 6.717 x 107> K/G. where m is the electron mass. What happens at T = 0 to a

noninteracting electron gas in a magnetic field?

Electrons of each spin polarization form their own Fermi surfaces. That is, there is an up spin Fermi
surface, with Fermi wavevector kFT, and a down spin Fermi surface, with Fermi wavevector k 1 The
individual Fermi energies, on the other hand, must be equal, hence

h2k2 h2 k2
i + pugH = a
2m 2m

—uH (5.202)

18Sorry about the notational resemblance between the Hamiltonian A and the magnetic field H. The Hamilto-
nian is adorned with a stylish hat to obviate any potential confusion.



276 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

which says ool
e
Be, — b =5 (5.203)
The total density is
kl%T k%¢ 3 3 2

Clearly the down spin Fermi surface grows and the up spin Fermi surface shrinks with increasing H.
Eventually, the minority spin Fermi surface vanishes altogether. This happens for the up spins when
ks = 0. Solving for the critical field, we obtain

H =" (6n2n)"* . (5.205)

¢~ 2

In real magnetic solids, like cobalt and nickel, the spin-split Fermi surfaces are not spheres, just like the
case of the (spin degenerate) Fermi surfaces for Cs and Y shown in fig. 5.15.

5.74 The Sommerfeld expansion

In dealing with the ideal Fermi gas, we will repeatedly encounter integrals of the form
I(T.0 = [ de fle = ) olc) (5.20)

—00

The Sommerfeld expansion provides a systematic way of expanding these expressions in powers of T’
and is an important analytical tool in analyzing the low temperature properties of the ideal Fermi gas
(IFG).

We start by defining
D(e) E/da' o(e") (5.207)
so that ¢(¢) = @'(¢). We then have
[e.e] d@ [ee) /
2t = [de fle - ) = [aF @ Bute) (5.208)

where we assume &(—o0) = 0. Next, we invoke Taylor’s theorem, to write

o0

D+ <) Z Z— d—@ — exp <e %) D) (5.209)

This last expression involving the exponential of a differential operator may appear overly formal but it
proves extremely useful. Since
1 e/ kT

fe) = =17 T 1) (5.210)
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Figure 5.16: Deformation of the complex integration contour in eqn. 5.212.

we define
. ood evD
(T = 1) 5.211
o) = [0 = 20 G.211)

with v = ¢/k,T, where D = k,T % is a dimensionless differential operator. The integral can now be

done using the methods of complex integration:'

[e.9]

J evD > R evD
= 27i
/ RSV Ry ”ZI SleFner )
e v=(2n+1)in (5.212)
i~ ) 2miD et D
= —2mi ZDeQnH)WD = —% =xD cscwD
n=0
Thus, B
IZ(T,p) = wDcsc(nD)P(p) (5.213)

which is to be understood as the differential operator 7D csc(w D) acting on the function @(1). Appealing
once more to Taylor’s theorem, we have

7D cse(nD) =1+ %2 (ks T)? dd—; + %3 (k,T)* dd—; +o (5.214)
Thus,
00 " ) )
7.0 = [de e = w o) = [deole) + T (TP ) + o5 (BT 6" (0 4. . (5215)

Note that writing v = (2n+ 1)ir + e wehave e’ = —1Fe— 12+ ... ,s0 (e’ +1)(e " + 1) = —e? +... We
then expand e*? = e@"+1)"D (1 4+ D + . .) to find the residue: Res = —D (1D,
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If ¢(¢) is a polynomial function of its argument, then each derivative effectively reduces the order of
the polynomial by one degree, and the dimensionless parameter of the expansion is (k,T'/u)?. This
procedure is known as the Sommerfeld expansion. We introduce the notation Z(T, 1) because the function
Z(T, ;1) may contain nonanalytic terms which are invisible in the Taylor series expansion Z(T', 11), as we
will see below.

Chemical potential shift

As our first application of the Sommerfeld expansion formalism, let us compute p(n,T) for the ideal
Fermi gas. The number density n(T, p1) is

oo W )
n :/d&? g(e) fle — ) :/d&? gle) + % (ks T)2 g (p) + ... . (5.216)

Let us write u = e + 61, where e, = (T = 0,n) is the Fermi energy, which is the chemical potential at
T = 0. We then have

eptou )
n = /d&?g(&?) + % (ks T)? ¢’ (ep + Op) + . ..

- (5.217)

EF 9

v

= [degte) + gter) u+ T (TP o o) o
from which we derive
s g (ep)

o =—— (k. T7)2 2 o) . 5.218
1 5 (ksT) () (T7) ( )

Note that ¢’/g = (In g)’. For a ballistic dispersion, assuming g = 2,

3 27.2
g(e) = 2/—dk 5(c— A7) mEC) (5.219)
Thus, g(¢) < /2 and (Ing)’ = 171, 50
72 (k,T)?

where ep(n) = %(377271)2/3.
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Specific heat

The energy of the electron gas is

/deg efle—pn /deg (k: T)? %(ug(,u))—l—... (5.221)
¥ 7T2 7T2
Z/dE g(e)e+glep)ep op + 3 (ksT)?ep g'(e) + 3 (ksT)? glep) + ...

€r
where ¢, = f de g(e) e is the ground state energy density (i.e. ground state energy per unit volume).

Thus, to order T2

2
Con= (28 —Tv2rgen) =vaT | (5.222)
N=\aT ),y 3

where y(n) = %2 k2 g(ep(n)) . Note that the molar heat capacity is

2 2
—%'CVZ%R'MZ%CZBT)R : (5.223)
n F

where in the last expression on the RHS we have assumed a ballistic dispersion, for which

glep) _ gmkyp 672 3
n 2m?h? gk} 2ep

(5.224)

The molar heat capacity in eqn. 5.223 is to be compared with the classical ideal gas value of 2 R. Relative
to the classical ideal gas, the IFG value is reduced by a fraction of (72/3) x (k;T'/ep ), which in most metals
is very small and even at room temperature is only on the order of 10~2. Most of the heat capacity of
metals at room temperature is due to the energy stored in lattice vibrations.

A niftier way to derive the heat capacity”: Starting with eqn. 5.218 for u(T) — e = §u(T), note that
g(ep) = dn/dep , so we may write dp = —%(kBT)z(dg/dn) + O(T*). Next, use the Maxwell relation
(0S/ON )y, = —(0p/0T) y y to arrive at

Js _ 7 2 39(%) 3
<%>T =3 kT o +0(1°) (5.225)

where s = S/V is the entropy per unit volume. Now use S(T' = 0) = 0 and integrate with respect to the
density n to arrive at S(T,V, N) = V4T, where (n) is defined above.

21 thank my colleague Tarun Grover for this observation.
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Nonanalytic terms

As we’ve seen, the Sommerfeld expansion is an expansion in powers of 7. Consider the case where
¢(e) = ©(e). We then have

I(T, ) = / de f(e—p) = p+ kT (1 + e #/ksT) (5.226)
0

By contrast, the Sommerfeld expansion, assuming p # 0, yields I(7, 1) = p, and is missing the second
term above. This is because exp(—su/kgT’) is nonanalytic in 7' and cannot appear in any order of a
Taylor expansion about 7" = 0. As a second example, consider the case ¢(¢) = ¢ O(e). The Sommerfeld

expansion yields
2

I(T.p) = jp + (T (5.227)
while the exact result is
1,2 2 2 200(—1)j —ju/kT
I(T, p) = 5%+~ (k) + (K, T)* D R (5.228)
j=1

which follows from the polylogarithm identity

Liy(2) + Liy(1/2) = — 1 [In(=2)]* - 5 (5.229)
Again we see that the Sommerfeld expansion terminates at a finite order in 7', and is missing nonanalytic
terms in the 7 — 0 limit*'. This is a generic state of affairs for the case where ¢(¢) is a finite order
polynomial in €.

5.7.5 Magnetic susceptibility
Pauli paramagnetism

Magnetism has two origins: (i) orbital currents of charged particles, and (ii) intrinsic magnetic moment.
The intrinsic magnetic moment m of a particle is related to its quantum mechanical spin according to
m = guyS/h, where piy = gh/over2me is the magneton. Here ¢ is the particle’s g-factor, 4, its magnetic
moment, and S is the vector of quantum mechanical spin operators satisfying [S*, S°] = ihe, gy 97, e
SU(2) commutation relations. The Hamiltonian for a single particle is then

- 1 q \2 1 e \2 g
ji g (p——A> “H-m-= (p+—A> Iy Ho | (5.230)
2m* c 2m* c 2
where in the last line we’ve restricted our attention to the electron, for which ¢ = —e. The g-factor for an

electron is g = 2 at tree level, and when radiative corrections are accounted for using quantum electro-
dynamics (QED) one finds g = 2.0023193043617(15). For our purposes we can take g = 2, although we

ZOnce again I thank my colleague Tarun Grover for pointing this out to me.
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can always absorb the small difference into the definition of x,, writing p, — fi, = geh/4mec. We've cho-
sen the 2-axis in spin space to point in the direction of the magnetic field, and we wrote the eigenvalues
of S* as $ho, where o = 1. The quantity m* is the effective mass of the electron, which we mentioned
earlier. An important distinction is that it is m* which enters into the kinetic energy term p?/2m*, but it
is the electron mass m itself (m = 511keV) which enters into the definition of the Bohr magneton. We
shall discuss the consequences of this further below.

In the absence of orbital magnetic coupling, the single particle dispersion is
h2 k2
2m*
At T = 0, we have the results of §5.7.3. At finite 7', we once again use the Sommerfeld expansion. We
then have

e (k) = ‘i Ho . (5.231)

0= / de gy(e) 1 — 1) + / de g,(¢) (e — )

— 4 [de {ote ~ ) + gle + )} 5o - ) (5.232)
_ / de {g(e) + (i H)? g"(2) + ... } f(e = )

We now invoke the Sommerfeld expension to find the temperature dependence:
/: 2
_ i 2 1 ~ 2
n= [deg@)+ T (BT () + (R o () ..

o (5.233)

€F 7T2
= /dE g(e) +glep) op + 3 (ksT)* g’ (ep) + (i H)* g (ep) + - ..

Note that the density of states for spin species o is g, (¢) = % g(e — ji, o) , where g(e) is the total density
of states per unit volume, for both spin species, in the absence of a magnetic field. We conclude that the
chemical potential shift in an external field is

s _ g'(ex)
Su(T,n,H) = _{F (k,T)* + (MBH)Z} WFF) +... . (5.234)

We next compute the difference n; — n in the densities of up and down spin electrons:

=3 /df {g(fs —peH) —g(e + ﬂBH)} fle—p) (5:235)

= —figH - 7D csc(nD) g(u) + O(H?)
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Figure 5.17: Fermi distributions in the presence of an external Zeeman-coupled magnetic field.

We needn’t go beyond the trivial lowest order term in the Sommerfeld expansion, because H is already
assumed to be small. Thus, the magnetization density is

M = —fiy(ny —n)) = figglep) H . (5.236)
in which the magnetic susceptibility is
oM 9
= == = . 237

This is called the Pauli paramagnetic susceptibility.

Landau diamagnetism

When orbital effects are included, the single particle energy levels are given by

21.2

e(n,k,,0) = (n+1) i Ho . (5.238)

Here n is a Landau level index, and w, = eH/m*c is the cyclotron frequency. Note that

ﬂBH gehH m*c g m*

(5.239)

hw, dme heH 4 m
Accordingly, we define the ratio » = (g/2) x (m*/m). We can then write
L 12K
e(n,k,,0) = (n+ 3 + 3r0) s (5.240)
The grand potential is then given by
Q=—""11_k T/ f: Z In [1 + eH/kpT o= (nt3+5r0)hwe/kT e—thE/zm*kBT] ‘ (5.241)

n=0o0=%1
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A few words are in order here regarding the prefactor. In the presence of a uniform magnetic field, the
energy levels of a two-dimensional ballistic charged particle collapse into Landau levels. The number
of states per Landau level scales with the area of the system, and is equal to the number of flux quanta
through the system: N, = HA/¢,, where ¢, = hc/e is the Dirac flux quantum. Note that

HA \%4
“2 L, kT =hw, - — (5.242)
%o ? A%
hence we can write
AT,V H) =hw. Y Y Q((n+ 5+ 3r0)hw, —p) (5.243)
n=0o0=+1
where -
1% dk .
Q) = 57 / = 1n[1 + e~¢/kaT o= h2k2/2m ’CBT} : (5.244)
T

We now invoke the Euler-MacLaurin formula,

Y F(n)= / dr F(z)+1F0) - L F(0)+... (5.245)
n=0 0

resulting in

2= Z /d&? Qe — p) (e — 3(1 + or)hw,) (5.246)

+y [%MCQ(%Q +or)hw, — 1) — & (hw)2 Q' (3(1 + or)hw, — ) + . }

We next expand in powers of the magnetic field H to obtain

o0

QT,V,u, H) = Q/ds Qe —pw+ (37 — &) (hw)* Q' (—p) + ... . (5.247)
0

Thus, the magnetic susceptibility is

2
=2y ) { - 2 Q)

2 2
g m ~2 2
B <Z‘3m*2>'“3'”“7“ |

where £ is the isothermal compressibility?. In most metals we have m* ~ m and the term in brackets is
positive (recall g =~ 2). In semiconductors, however, we can have m* < m; for example in GaAs we have

(5.248)

ZWe've used —2Q' (1) = -+ 55 = n’kp.

<=

8 2
02
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m* = 0.067m . Thus, semiconductors can have a diamagnetic response. If we take g = 2 and m* = m, we
see that the orbital currents give rise to a diamagnetic contribution to the magnetic susceptibility which
is exactly —% times as large as the contribution arising from Zeeman coupling. The net result is then
paramagnetic (X > 0) and £ as large as the Pauli susceptibility. The orbital currents can be understood
within the context of Lenz’s law.

Exercise : Show that — 2 Q'(—p) = n’k .

5.7.6 White dwarf stars

We follow the nice discussion of this material in R. K. Pathria, Statistical Mechanics. As a model, con-
sider a mass M ~ 1033 g of helium at nuclear densities of p ~ 107 g/cm?® and temperature T' ~ 107 K.
This temperature is much larger than the ionization energy of He, hence we may safely assume that all
helium atoms are ionized. If there are N electrons, then the number of « particles (i.e. *He nuclei) must
be 3 N. The mass of the « particle is m,, ~ 4m,. The total stellar mass M is almost completely due to o
particle cores.

The electron density is then
N 2. M / 4dm P

= = P _ ~ 10 cm ™3 5.249
"V Vv 2m, o (5.249)

since M = N -m.+ 1N - 4m,. From the number density n we find for the electrons

kp = (372n)Y/3 = 2.14 x 10'° cm ™!
pp = hkp = 2.26 x 107" gcm/s (5.250)
me = (9.1 x 10728 g)(3 x 101 m/s) = 2.7 x 107" gem/s

Since p. ~ mc, we conclude that the electrons are relativistic. The Fermi temperature will then be
Ty ~ mc? ~ 105eV ~ 1012K. Thus, T <« T; which says that the electron gas is degenerate and may
be considered to be at T ~ 0. So we need to understand the ground state properties of the relativistic
electron gas.

The kinetic energy is given by
e(p) = VP22 + m2ct —me® . (5.251)

The velocity is

2
poO___pC (5.252)

op  \/p2c2 + m2ct
The pressure in the ground state is
Pr
1 pc
_1 _ 2
po = 3n{p-v) = m dpp”  —F————

(5.253)

Op

4 5
/ do sinh*0 = ——_ (sinh(405) — 8sinh(205) + 1205)
0

3772 h3 9672h3
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Figure 5.18: Mass-radius relationship for white dwarf stars. (Source: Wikipedia).

where we use the substitution

c+v

p=mcsinhf® |, ov=ctanhf — 9:%ln<
c—v

Note that pp, = hikp = i(37%n)'/3, and that

Now in equilibrium the pressure p is balanced by gravitational pressure. We have

dEy = —poydV = —po(R) - 4T R*dR

This must be balanced by gravity:
GM?
R2

where v depends on the radial mass distribution. Equilibrium then implies

dE, =7+ dR

v GM?

To find the relation R = R(M ), we must solve

v gM?*  mid . :
R T 06.2 (sinh(46p) — 8sinh(260p) + 126y)

285

(5.254)

(5.255)

(5.256)

(5.257)

(5.258)

(5.259)
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Note that
96 5
=26 0
Sinh(40;) — 8sinh(205) + 120, — 4 158 fr =0 (5.260)
% efr 0, —
Thus, we may write
9 n? or _m
oy gM*® ) TEatm (? Rm, 0p =0
po(R) = - “pr = e (o a A3 (5.261)
1272 (? R mp> Op — o0
In the limit #, — 0, we solve for R(M) and find
= = (9m)** —— 352 x M~YV3 (5.262)
K Gmd/® m M1/3
In the opposite limit 0, — oo, the R factors divide out and we obtain
9 (3m\'/?(he\? 1
M=M,=—|—= — = . 5.263
=) (8) 5 629

To find the R dependence, we must go beyond the lowest order expansion of eqn. 5.260, in which case

we find ”
9 \/3 /B MO\Y3 M O\/3
= (?) (%) <m—p) b <E> | (5264

The value M, is the limiting size for a white dwarf. It is called the Chandrasekhar limit.

5.8 Appendix I: Second Quantization

5.8.1 Basis states and creation/annihilation operators

Second quantization is a convenient scheme to label basis states of a many particle quantum system. We
are ultimately interested in solutions of the many-body Schrodinger equation,

where the Hamiltonian is
N FL2 N
1= (- g V2 venla@) + S ule; — )
; < 2m ) Z% ! (5.266)
=T+V+U |,

where 7 is the kinetic energy, V the one-body potential energy, and U the two-body potential energy.
To the coordinate labels {x, ...z, } we may also append labels for internal degrees of freedom, such as



5.8. APPENDIX I : SECOND QUANTIZATION 287

spin polarization, denoted {(;,...,{y}. Since []fl ,0] = 0 for all permutations o € Sy, the many-body
wavefunctions may be chosen to transform according to irreducible representations of the symmetric
group Sy. Thus, for any o € Sy,

1
\Il(ma(l)""’ma(N)) = {sgn(o_)}\ll(mlv"'va) ) (5267)

where the upper choice is for Bose-Einstein statistics and the lower sign for Fermi-Dirac statistics. Here

x; may include not only the spatial coordinates of particle j, but its internal quantum number(s) as well,

such as (.

A convenient basis for the many body states is obtained from the single-particle eigenstates {|o)} of
some single-particle Hamiltonian H,, , with (x| o) = ¢, (x) and H, |a) = ¢,, |a). The basis may be taken
as orthonormal, i.e. { ‘ o) =46, Now define

(@) 0q_ (@N) (5.268)

\Ilal,...,aN (:El’ e 7wN) \/m Z {Sgn } o'(l)

Here n,, is the number of times the index a appears among the set {¢,...,ay}. For BE statistics,
ng, € {0,1,2,...}, whereas for FD statistics, n, € {0,1}. Note that the above states are normalized*’:

2 1 d,
/ xq- /d:z:N‘\If oy (xq,- .-,mN)‘ —m Z {sgn } /d y%% , (’D%(J)( i)

JMES N

== > H =1 (5.269)

a (o'% O'GS ] 1

Note that

D Pa @) e (xy) = per{p (z))}

o€Sy
© (5.270)
Z sgn(a) (pac(l)( ) (pa (wN - det{(pa )} )
oESN
which stand for permanent and determinant, respectively. We may now write
\I’al___aN(wl,...,a:N):<£I}1,'~,iI}N‘Ozl'”OzN> s (5.271)

where

1 1
‘O‘l"'aN>:mU§N{sgn(a)}|a0<1)>®|a0(2)>®”'®‘0‘“(1v>> : (5.272)

Note that |O‘a(1) QN ) = (£1)? | g --- oy ), where by (+1)7 we mean 1 in the case of BE statistics
and sgn (o) in the case of FD statistics.

#In the normalization integrals, each [d% implicitly includes a sum ). over any internal indices that may be
present.
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We may express | o - - - ) as a product of creation operators acting on a vacuum | 0) in Fock space. For
bosons,

bl,)"e

|O‘1"'0‘N>=1;[( ia!|0>5|{na}> , (5.273)

with
oo bg] =0 L.l =0, (b, bl =0, (5.274)

where [ e, o] is the commutator. For fermions,

|0z1~-ozN>:c(Txch2---CLN‘O>E‘{na}> , (5.275)

with
{cq, cﬁ} =0 , {CL, CTB} =0 , {cq, CE} =003 (5.276)

where {e, o} is the anticommutator.

5.8.2 Second quantized operators

Now con31der the action of permutatlon-symmetrlc first quantlzed operators such as the kinetic energy

T=-1 ZZ L V2 =3 i and the potential energy U = qu u(z; —x;) = ZZNQ i;;. For a one-body
operator such as T, we have
. —-1/2 1/2
(al...aN|T|a’1...a’]V>:/ddx /d (Hn ) (5.277)
N
Y DT @) @) Yo, @) e (@)
LIS k=1
N
= Z (£1)" (Hna!n/a!) Z H o /ddxl cpzi(azl)tl ‘Pa;(i)(a:l)
TESN « i=1
(%)

One may verify that any permutation-symmetric one-body operator such as 7" is faithfully represented
by the second quantized expression,

T=Y (alt|B)vlv, (5.278)
a,B

where ¢, is bl, or ¢, as the application determines, and
(alt]8) = [d ei(@) i) pp(a) = toy (5.279)
Similarly,

V=) (alie|B) i, (5.280)
a,B
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where
(o] b | B) /dmwa ot () (@) = 025 (5.281)

Two-body operators such as U are represented as

U=1>" (apli|yd) vl ¢hvsw, | (5.282)
a,B,7,0
where

(aBli]26) = [ [a% ¢ (@) ¢yl @) @) 2, @) = g (5.283)

The general form for an n-body operator is then

A | X
R = m Z <a1... an|r|51-.. ﬁ”>¢l‘nwlnw5n¢ﬁl (5.284)

/31...,3:

where

(o an 718y 8,) = [t [ oy ot (@) @) (e ,) 5, (@), 1)

(5.285)
If the particles have no internal degrees of freedom, then the operators 7(x, ..., x,) are just functions
of the spatial coordinates {x,}. If there are (discrete) internal degrees of freedom, then (x4, ..., z,,) also

has operator content in the internal Hilbert space as well.

Finally, if the Hamiltonian H, = S>>~ | h(x;, p;, p;) is noninteracting (with  a set of operators acting on
internal degrees of freedom, such as spin), consisting solely of one-body operators, then

ﬁO = Z €a T/JIY ¢a ) (5286)

where {¢,} is the spectrum of the single particle Hamiltonian 5.

5.9 Appendix II:Ideal Bose Gas Condensation

We begin with the grand canonical Hamiltonian K = H — pIV for the ideal Bose gas,

K = Ze—:k— bhb, —\/_Z (v b, + T by) - (5.287)

Here bz is the creation operator for a boson in a state of wavevector k, hence [bk , bz,] = Opp- The
dispersion relation is given by the function ¢,,, which is the energy of a particle with wavevector k. We
must have ¢, — 1 > 0 for all k, lest the spectrum of K be unbounded from below. The fields {v,, 7, }
break a global O(2) symmetry.



290 CHAPTER 5. NONINTERACTING QUANTUM SYSTEMS

Students who have not taken a course in solid state physics can skip the following paragraph, and be
aware that NV = V/v, is the total volume of the system in units of a fundamental "unit cell” volume. The
thermodynamic limit is then N — co. Note that NV is not the boson particle number, which we’ll call IV,

Solid state physics boilerplate : We presume a setting in which the real space Hamiltonian is defined
by some boson hopping model on a Bravais lattice. The wavevectors k are then restricted to the first
Brillouin zone, {2, and assuming periodic boundary conditions are quantized according to the condition
exp (z‘Nl k - al) = 1foralll € {1,...,d}, where a, is the I*h fundamental direct lattice vector and N, is
the size of the system in the a,; direction; d is the dimension of space. The total number of unit cells is
N = [[, N,. Thus, quantization entails k = }_,(27n,/N,) b;, where b, is the I'" elementary reciprocal
lattice vector (a, - b, = 276;,,) and n, ranges over NN, distinct integers such that the allowed k points form
a discrete approximation to €.

To solve, we first shift the boson creation and annihilation operators, writing

2
K= Z w) BLB, — NZ |”k| (5.288)
— i
where
N N
B, =b, — VNve Bl =t} — VN (5.289)
€ — I € — I
Note that [Bk, B,i,] = 0, SO the above transformation is canonical. The Landau free energy (2 =
—kzTIn =, where = = Tr e K/keT jg given by
0= Nk:BT/dz-: g(e) In (1 — era/bTy _ N~ Lkl ‘”’“‘ (5.290)
S

where g(¢) is the density of energy states per unit cell,

d
g(e) = %Zk:é(s — &) = /(;lﬂ];d Se—ep) - (5.291)
Q

Note that
1 8(2 vy,

1
— (b =
/_N<k> Nal/k €y —

In the condensed phase, 1, is nonzero.

Uy, = (5.292)

The Landau free energy (grand potential) is a function £2(7', N, i1, v, 7). We now make a Legendre trans-
formation,
Y(T,N, 0, 9) = T, N, 11,v,7) + N Y _ (v, + Otly) - (5.293)
k

Note that
oY ofn

o7, = or, + Ny, =0 (5.294)
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by the definition of ;.. Similarly, 0Y/0v,, = 0. We now have

Y(T,N, b, 9) = Nk;BT/da g(e) In (1= eP=/ETY 4 N> (ep, — ) [ > (5.295)
v k

Therefore, the boson particle number per unit cell is given by the dimensionless density,

_ Ny _1oY 24 / —9(5)
"TNT Nou %:WU /T _ 1 (5296)

—00
and the condensate amplitude at wavevector k is

1 9Y
Vg = Nov, (e — WUy - (5.297)

Recall that v, acts as an external field. Let the dispersion ¢, be minimized at k = K . Without loss of
generality, we may assume this minimum value is e ;r = 0. We see that if v, = 0 then one of two must
be true:

(i) ¢, =0forall k

(ii) pu = eg , in which case vf can be nonzero.

Thus, for v = 7 = 0 and p > 0, we have the usual equation of state,

n(T, 1) = / g9 (5.298)
e—m/kpT _ |

which relates the intensive variables n, T, and . When p = 0, the equation of state becomes

USS (7)

n(T, = 0) Z\szﬁ / i, (5.299)

a/k T _1q

—0o0

where now the sum is over only those K for which €, = 0. Typically this set has only one member,
K = 0, but it is quite possible, due to symmetry reasons, that there are more such K values. This last
equation of state is one which relates the intensive variables n, T, and n,, where ng = > | KP is the
dimensionless condensate density. If the integral n (") in eqn. 5.299 is finite, then for n > n,(T) we
must have n, > 0. Note that, for any 7', n. (T") diverges logarithmically whenever g(0) is finite. This
means that eqn. 5.298 can always be inverted to yield a finite x(n,T’), no matter how large the value of
n, in which case there is no condensation and n, = 0. If g(¢) x ¢* with a > 0, the integral converges and
n+ (T) is finite and monotonically increasing for all 7. Thus, for fixed dimensionless number n, there
will be a critical temperature T, for which n = n_ (T,). For T' < T, eqn. 5.298 has no solution for any p
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and we must appeal to eqn. 5.299. The condensate density, given by ny(n,T’) = n —n- (T'), is then finite
for T' < T., and vanishes for 7" > T, .

In the condensed phase, the phase of the order parameter ¢ inherits its phase from the external field v,
which is taken to zero, in the same way the magnetization in the symmetry-broken phase of an Ising
ferromagnet inherits its direction from an applied field h which is taken to zero. The important feature
is that in both cases the applied field is taken to zero after the approach to the thermodynamic limit.

510 Appendix III : Example Bose Condensation Problem

PROBLEM: A three-dimensional gas of noninteracting bosonic particles obeys the dispersion relation
12
e(k) = Alk|

(a) Obtain an expression for the density n(7’, z) where z = exp(u/k,T) is the fugacity. Simplify your
expression as best you can, adimensionalizing any integral or infinite sum which may appear. You
may find it convenient to define

o0

1
) / dt ——— et Z = (5.300)

0

Note Li, (z)(1) = ¢(v), the Riemann zeta function.

(b) Find the critical temperature for Bose condensation, T¢.(n). Your expression should only include
the density n, the constant A, physical constants, and numerical factors (which may be expressed
in terms of integrals or infinite sums).

(c) What is the condensate density n, when T' = 3 1.,

(d) Do you expect the second virial coefficient to be positive or negative? Explain your reasoning.
y p p g p y g
(You don’t have to do any calculation.)

SOLUTION: We work in the grand canonical ensemble, using Bose-Einstein statistics.

(a) The density for Bose-Einstein particles are given by

n(T, z) —/ % !
) (2m)3 2t exp(AkY/2 Jk,T) — 1
1 (kTN T 5 120 ( k,T
_P< A > /dsz—les—l_ w2 ( A > Lig(2)
0

where we have changed integration variables from k to s = AkY/2?/k,T, and we have defined the
functions Li, (z) as above, in eqn. 5.300. Note Li, (1) = ((v), the Riemann zeta function.

(5.301)
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(b) Bose condensation sets in for z = 1, i.e. u = 0. Thus, the critical temperature 7., and the density n

are related by
120¢(6) [ ke \°
= — 5.302
n= O (B, (5:302
or o
A 2n
Tc(n) = — | =——= . 5.303
= () 309
(c) For T < T, we have
B 1204(6) (k,TY T\
n=mng,+ = < 1 =ng+ T n o, (5.304)
where n is the condensate density. Thus, at 7" = % T,
ny(T =1T,) = Bn. (5.305)
(d) The virial expansion of the equation of state is
p= nk:BT(l + Bo(T)n+ B3(T)n? + ... ) . (5.306)

We expect By(T") < 0 for noninteracting bosons, reflecting the tendency of the bosons to condense.
(Correspondingly, for noninteracting fermions we expect By(T") > 0.)

For the curious, we compute By(T') by eliminating the fugacity z from the equations for n(T), z)
and p(T, z). First, we find p(T', z) :

p(T,z) = —k T/ I In (1 — z exp(—AKY? Jk T))
’ P ) (2m)3 B
12 T T
= —]{;]:2T <k‘j4T> /ds sSIn(l—ze®) = (;];B <klj4 > Li,(2).
0
Expanding in powers of the fugacity, we have
120 [ k,T\° PL
L_g kBT6{Z+Z_2+£_|_ } ‘
kT w2 \ A 27 37T
Solving for z(n) using the first equation, we obtain, to order n2,
w2 ASn 1 m2A%n O\ 3
= <120 (k:BT)6> T 26 (120 (k:BT)6> +0m) (5:309)

Plugging this into the equation for p(7, z), we obtain the first nontrivial term in the virial expan-

sion, with .
72 A
By(T) = — 5.310
2(T) =~ 15360 (szT> ’ (5:310)

which is negative, as expected. Note that the ideal gas law is recovered for T — oo, for fixed n.
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511 Appendix IV :C), y for the Ideal Bose Gas

The phase diagram for the ideal Bose gas in the (7', p) plane was considered in §5.6.3 and in fig. 5.9. Let’s
compute the behavior of c, ~(T,p, N) and explore how it behaves as one approaches the critical curve
p = p(T) = ¢(5/2) kyT/\3.. We found that when the fugacity z = exp(u/k,T) is larger than one, then
the density and pressure are given by

n(z,T) =Lign(2) Az, p(2,T) = Lig(2) kyT AL (5.311)

The energy is E = 3pV/, as we obtained in eqn. 5.156.

To obtain C’p7 ~- We first set dp = 0, which is of course equivalent to setting dInp = 0:

Lig 5 (2) dln 2 5 Lis 5(2)
S | 5 T __2sp\E) 312
We wish to evaluate 9 P oV
E 14 5
_ (9F ov _2 (9 ) 5.313
o = (22 )W e aT)va o ( aT)va (5.313)
Thus, we need
(8_V> B <8N/n> _ N <alnn>
ar ), v or )y 1\ 0T )y (5.314)
_ﬁ Li1/2(Z) <81DZ> N § B ﬁ 5Li5/2(2) Lil/2(2) B § .
T Lig/z(z) olT), 2 T 2Li§/2(2) 2
We therefore have
NGy 2R Lisp(3) fLisp() L) 3 (5.315)
PN= TN T 1 Lig y(2) Lig/z(z) 5( )

where R = N, k; is the gas constant.

As we approach the critical line p = p.(T'), the fugacity approaches unity: z — 1. In this limit we have
Liz 5(z = 1) = ((3/2) and Lij (2 — 1) = ((5/2), but Li; 5(z — 1) is divergent. We write z = exp(—e),
with

p Li5/2(2) o
R R AR (5.316)
allows us to write 1
_ p
TG (1 - W) ' (5317)

Here we have appealed to the expansion in eqn. 5.54, which also gives

ey p(T) —p
Li; jp(e7) = ﬁ{m} +.o . (5.318)
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Thus, from eqn. 5.314, we have that ¢, \ diverges as we approach p = p,(T") from below as

257 (2(5/2) (pJ(T)—p\
epn(Top) = = 45/2(3/2)< pC(T)> +o. . (5.319)

Equivalently, we can consider approaching the curve T' = T, (p) from the right. In both cases we have

ey n(Top) o |p—p(D) 7 e, n(Top) o |T = Tu(p)] % (5.320)

In other words, the critical exponent is & = 3. and unlike cy y(T,n) which has a cusp at T' = T;(n) yet

remains finite, the specific heat at constant pressure diverges”*.

T thank Andre Vieira for prompting me to clarify the differences between ¢y, y(T,n) and ¢, 5(T,p) in this
context.
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Chapter 6

Classical Interacting Systems

6.1 References

— M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts.

— L. E. Reichl, A Modern Course in Statistical Physics (2nd edition, Wiley, 1998)
A comprehensive graduate level text with an emphasis on nonequilibrium phenomena.

— M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rGl edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

— E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3 edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics. Though dated,
it still contains a wealth of information and physical insight.

— J.-P Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, 1990)
An advanced, detailed discussion of liquid state physics.
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6.2 Ising Model

6.2.1 Hamiltonian

The simplest model of an interacting system consists of a lattice £ of N sites, each of which hosts a spin

o; which may be either up (0, = +1) or down (o; = —1). The Hamiltonian is
(i) ¢

The energy J accounts for an interaction between sites i and j, here taken to be nearest neighbors on L.
When J = 0, the model describes /N noninteracting spins. The geometry is then irrelevant, and as we
saw in §4.8.1, for each spin we have (o;) = 1, tanh(p,H/k,T).

In zero external field (i.e. H = 0), energetic considerations dictate that the interaction term on each
link (ij) prefers neighboring spins to be ferromagnetically aligned in a [11) or |]]) configuration (i.e.
0,0; = +1) when J > 0, and antiferromagnetically aligned in a | 1) or [{1) configuration (i.e. 0;0; = —1)
when J < 0.

This model is not exactly solvable in general. In one dimension, the solution is quite straightforward.
In two dimensions, Onsager’s solution of the model (with H = 0) is among the most celebrated results
in statistical physics. In higher dimensions the system has been studied by numerical simulations (the
Monte Carlo method), by series expansions, and by field theoretic calculations (renormalization group),
but no exact solutions exist.

One important aspect of interacting systems is the emergence of correlations. We define the correlation
matrix of the Ising model C;;(T, H) = (0, 0,;), which is the average of the product o, ajl. When J = 0 the
system is noninteracting, and the average of the product is the product of the averages for all i # j, i.e.
Cy;(T, H) = m;m,, where m; = (0,). Thus the connected correlator,

Cij(T7H) = <0i0j> - <Uz'><‘7j> ) (6.2)

which is the average of the product minus the product of the averages, vanishes identically for J = 0
whenever i # j.

When J # 0, however, there are nontrivial correlations between different sites. Consider, for example,
the case H = 0. In this case the model has what we call a Z, symmetry, which means that for any
spin configuration & = {oy,...,0y}, the energy E(o) is invariant under reversing the direction of
all the spins. Le. if e0 = {—0y,...,—0y}, we have E(ea) = E(o) for each of the 2V possible spin
configurations o. This means that (5;) = Oforalli. AtT = 0 there are two ground states, |{) = |11 ---)
and |}) = |ll] ---), each with energy £, = — N/, where N, is the number of nearest neighbor
links on £?. The (ergodic) zero temperature density matrixis py = 5|1 )(ft|+3 |4 )({|, and we compute

averages by (O) = Tr(p,O). Thus (0;) = 0 and éij(T, H=0) =1

'The correlation matrix C;; (T, H) is defined for arbitrary sites i and j. In the thermodynamic limit, it is inde-
pendent of the system size V.

20n a lattice with coordination number z and with periodic boundary conditions, N, 1zN.

inks — 2
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6.2.2 Spontaneous symmetry breaking

In quantum mechanics, the eigenstates of a Hamiltonian f, which commutes with all the generators
of a symmetry group G may be classified according to the representations of that group. Typically this
entails the appearance of degeneracies in the eigenspectrum, with degenerate states transforming into
each other under the group operations, as we saw above. Adding a perturbation V' to the Hamiltonian
which breaks G down to a subgroup H will accordingly split these degeneracies, and the new multiplets
of H = H, + V are characterized by representations of the lower symmetry group H.

In quantum field theory, or in the thermodynamic limit of a classical system, as a consequence of the
infinite number of degrees of freedom, symmetries may be spontaneously broken. This means that even
if the Hamiltonian H (or action S) for the field theory is invariant under a group G of symmetry trans-
formations, the ground state or thermodynamic density matrix may not be invariant under the full
symmetry group G. The presence or absence of spontaneous symmetry breaking (SSB), and its detailed
manifestations, will in general depend on the couplings, or the temperature in the case of quantum sta-
tistical mechanics. SSB is usually associated with the presence of a local order parameter which transforms
nontrivially under some group operations, and whose whose quantum statistical average vanishes in
a fully symmetric phase, but takes nonzero values in symmetry-broken phase®. The parade example is
the Ising model, [ = — ", <jJi;0,0;, where each o, = +1, the subscript i indexes a physical location
in space, such as a site R, on a particular lattice. The model is explicitly Z, symmetric under o; — €o;
forall i, where e € {+1, —1}, yet if the interaction matrix J;; = J(R; — R;) is short-ranged and the space
dimension d is greater than one, there is a critical temperature T, below which SSB sets in, and the system
develops a spontaneous magnetization m = (o;). You know how in quantum mechanics, the eigen-
states of a particle moving in one-dimensional double-well potential V' (x) = V(—z) can be classified by
their parity eigenvalues P, and the lowest two energy states are respectively symmetric (P = +1) and
antisymmetric (P = —1), and are delocalized among both wells. For a quantum field theory, however,
with (Euclidean) Lagrangian density £, = (V)2 + V(¢), ford > 1 and T < T,, the system actually
picks the left or the right well, so that (¢(r)) # 0. Another example is the spontaneously broken O(2)
invariance of superfluids, where the boson annihilation operator /() develops a spontaneous average
(¢(r)) = \/no €, where ny is the condensate density and 6 the condensate phase.

But this is an obvious swindle, because, as we have seen, (o;) = 0 in zero external field, due to the
Zy symmetry of the model. Rather, we may understand the phenomenon of spontaneous symmetry
breaking in either of the following ways:

o First, rather than defining the order parameter of the Ising model, for example, to be the expected
value m = (o;) of the local spin*, consider instead the behavior of the correlator C;; = (0;0;) in
the limit d;; = |R;, — R;[ — oo. In a disordered phase, there is no correlation between infinitely
far separated spins, hence limg, o0 €y = 0. In the ordered phase, this is no longer true, and we

define the spontaneous magnetization m from the long distance correlator: m? = limd”_wo(o'i o)

In this formulation, SSB is associated with the emergence of long-ranged order in the correlators of

3While SSB is generally associated with the existence of a phase transitions, not all phase transitions involve
SSB. Exceptions include the Kosterlitz-Thouless transition, and also those topological phases which have no local
order parameter.

“We assume translational invariance, which means (o) is independent of the site index i.
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operators which transform nontrivially under the symmetry group.

e Second, we could impose an external field which explicitly breaks the symmetry, such as a Zeeman
term V = —uyH Y, 0; in the Ising model. We compute the magnetization per site m(T, N, H) =
(0;) as a function of temperature 7T, the external field H, and the system volume (i.e. number of
sites) N. The order parameter m(T") in zero field is then defined as

m(T) = flng%) A}gnoom(T, N,H) . (6.3)

The order of limits here is crucially important. The thermodynamic limit NV — oo is taken first,
which means that the energy difference between |{}) and ||} ) diverges, being proportional to N,
thus infinitely suppressing the || ) state if # > 0 (and the |{}) state if I < 0). The magnitude of
the order parameter will be independent on the way in which we take H — 0, but its sign will
depend on whether H — 07 or H — 0, with sgn(m) = sgn (H). Physically, the direction in
which a system orders can be decided by the presence of small stray fields or impurities.

Note that in both formulations, SSB is necessarily associated with the existence of a local operator O,
which is identified as the order parameter field. In the first scheme, the correlations (O, (Qj> exhibit long-
ranged order in the symmetry-broken phase. In the second scheme, O; is the operator to which the local
external field H; couples. We will discuss the mean field theory of phase transitions and spontaneous
symmetry breaking in chapter 7.

6.2.3 Ising model in one dimension

Consider a one-dimensional ring of L sites. The ordinary canonical partition function is then

L
Zoee(T, L, H) = Tr e PH = 3" T ?7onontr efofion (6.4)
{o,} n=1

where o, .| = 0, owing to periodic (ring) boundary conditions (PBC). We can replace the factor e#on

in the above expression with e’#0f(7n+7.:1)/2 since the product over n yields the same result. We then
obtain Z = Tr (RL ), where Ris a 2 x 2 matrix with entries

R,

BJ oBugH -BJ
Joo! H(o+0')/2 e erro €
_ BIoo! ugH(o+o)/ :< o EBJE_BMOH> , 6.5)

called the transfer matrix. Expressed in terms of the Pauli matrices, we have’
R = ¢ cosh(BugH) I + e P X + P sinh(BugH) Z (6.6)
where I, X, and Z are the 2 x 2 identity, Pauli X, and Pauli Z matrices.

Since the trace of a matrix is invariant under a similarity transformation, we have

Z(T,L,H) =k + AL 6.7)

>Take care not to confuse Pauli Z with the partition function!
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where )\ are the eigenvalues of R, viz.

Ay (T, H) = P/ cosh(BugH) £ \/ezﬁJ sinh?(Bu H) +e=207 . (6.8)

When H = 0, we have A\, = 2cosh(3J) and A_ = 2sinh(3J). In the thermodynamic limit, L — oo, and
the larger Al term dominates exponentially. We them have

F(T,L,H) = —Lk,TIn X\, (T, H) . (6.9)

From the free energy, we can compute the magnetization,

L\ fsinh®(BpuoH) + =18
and the zero field isothermal susceptibility,
2
=10 6.11)

=L oH|, , kT

Note that in the noninteracting limit J — 0 we recover the familiar result for a free spin. The effect of the
interactions at low temperature is to vastly increase the susceptibility. Rather than a set of independent
single spins, the system effectively behaves as if it were composed of large blocks of spins, where the
block size ¢ is the correlation length, to be derived below.

The physical properties of the system are often elucidated by evaluation of various correlation functions.
Accordingly, we define C(n) = (0, 0,,,1), Where

Tr (Jl Rolcr2 e RcrnonJrl On+1 RonJrlonJrz e RoLol) . Tr (Z R"Z RL_n)

Tr (RE) B Tr (RY) ’

(010p41) = (6.12)

with 0 < n < L, and where Z is the Pauli matrix. To compute this ratio, we decompose R in terms of its
eigenvectors, writing R = A |[+)(+| + A_ |—)(—|. Then

 MZZ Mz Z+ (AT e NETY Z4 7

c
(n) A+ AL ’

(6.13)

with Z,,y = (| Z | /') being the matrix elements of Z in the eigenbasis of R.

Zero external field

Consider H = 0, where R = ¢?/ + ¢7#7 X. Then |+) = - (|1) £ |1)), i.e. the eigenvectors of R are

(

Sl

b= (6.14)

-

N———
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which entails 7, = Z__ = 0, while Z,_ = Z_, = 1. The corresponding eigenvalues are given by
A, = 2cosh(BJ) and A_ = 2sinh(B.J) . The correlation function is then found to be

L=ln| \In| | ylnl yL=In]
ALl AN
A+ AE

B tanh™(8.J) + tanh >~ 1"l(3.7)
B 1 + tanh®(8.J)

C(n)=(o,0,,,) =
(6.15)
~ tanh™(3J) for L — oo

This result is also valid for n < 0, provided |n| < L. We see that we may write C'(n) = e~I"l/¢(T), where

the correlation length is
1

1) = In ctnh(J/k,T)

Note that {(T") growsas T' — 0 as { ~ % 027/ T

(6.16)

Chain with free ends

When the chain has free ends, i.e. open boundary conditions (OBC), there are (L —1) links and the
partition function is

Zose(T, L H) = 3 (RE7), o = S {0 s (@) v (0)) + AT 0 (0) v (o)} (617)

o0’ o,0’

where ¢, (0) = (o |+ ). When H = 0, we make use of eqn. 6.14 to obtain

1 - 1 — —
RFl =2 G D (2cosh 57)" "+ 2 <_11 11> (2sinh g7)" 7" (6.18)

and therefore Zgc = 2 cosh?~1(5.J). There’s a simple trick to obtain the zero field partition function
which amounts to a change of variables. We define v,, = o, for il <n < L. Thus, v; = 0,04, V2 = 0405,
etc. Note that each v; takes the values +1. The Hamiltonian for the chain is

L-1 L-1
Hoge=—J Y 0,0, ==Y v, . (6.19)
n=1 n=1

The state of the system is defined by the L Ising variables {0, v,, ..., v, ;}. Note that o; doesn’t
appear in the Hamiltonian. Thus, the interacting model is recast as L —1 noninteracting Ising spins, and
the partition function is

Zos (T, L, H) = Tr e #Hosc = ZZ Z eBIehIva L PIvE

o N V-1

-1
= Z (Z eﬁ‘]”> = 2L cosh'=1(8.7)

(6.20)
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6.2.4 Domain walls

We have just seen how in one dimension, the Ising model never achieves long-ranged spin order. That is,
the spin-spin correlation function decays asymptotically as an exponential function of the distance with
a correlation length £(7") which is finite for all > 0. Only for 7" = 0 does the correlation length diverge. At
T = 0, there are two ground states, |f}) and ||} ). To choose between these ground states, we can specify
a boundary condition at the ends of our one-dimensional chain, where we demand that the spins are
up. Equivalently, we can apply a magnetic field H of order 1/L, which vanishes in the thermodynamic
limit, but which at zero temperature will select the ‘all up” ground state. At finite temperature, there is
always a finite probability for any consecutive pair of sites (n, n+1) to be in a high energy state, i.c. either
|11) or [{1). Such a configuration is called a domain wall, and in one-dimensional systems domain walls
live on individual links. Relative to the configurations |11) and |} ), a domain wall costs energy 2.J.
For a system with M = 2L domain walls, the free energy in the thermodynamic limit is

F=2MJ—k,Tn <AZ> =L {2J:1: + kBT[xlnx +(1-2)n(l - :c)]} , (6.21)

Minimizing the free energy with respect to z, one finds z = 1/(e?’ kT 4 1), so the equilibrium con-
centration of domain walls is finite, meaning there can be no long-ranged spin order. In one dimension,
entropy wins and there is always a thermodynamically large number of domain walls in equilibrium.
And since the correlation length for 7' > 0 is finite, any boundary conditions imposed at spatial infinity
will have no thermodynamic consequences since they will only be ‘felt” over a finite range.

As we shall discuss in the following chapter, this consideration is true for any system with sufficiently
short-ranged interactions and a discrete global symmetry. Another example is the g-state Potts model,

H=- - . .
Iy e Z 0y (6.22)
(i) i
Here, the spin variables o, take values in the set {1,2,..., ¢} on each site. The equivalent of an external

magnetic field in the Ising case is a field h which prefers a particular value of o (¢ = 1 in the above
Hamiltonian). See the appendix in §6.6 for a transfer matrix solution of the one-dimensional Potts model.

6.2.5 Ising model in two dimensions : Peierls” argument

What about higher dimensions? A nifty argument due to R. Peierls shows that there will be a finite
temperature phase transition for the Ising model on the square lattice®. Consider the Ising model, in
zero magnetic field, ona N = L, x L, square lattice, with L, , — oo in the thermodynamic limit. Along
the perimeter of the system we impose the boundary condition o; = +1. Any configuration of the spins
may then be represented uniquely in the following manner. Start with a configuration in which all spins
are up. Next, draw a set of closed loops on the lattice. By definition, the loops cannot share any links
along their boundaries, i.e. each link on the lattice is associated with at most one such loop. Now flip all
the spins inside each loop from up to down. Identify each such loop configuration with a label I". The

®Here we modify slightly the discussion in chapter 5 of the book by L. Peliti.
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Figure 6.1: Clusters and boundaries for the square lattice Ising model. Left panel: a configuration I’
where the central spin is up. Right panel: a configuration C, o I" where the interior spins of a new loop
7 containing the central spin have been flipped.

partition function is
Z=Tre Pl =3 "e20r (6.23)
r

where L is the total perimeter of the loop configuration I". The domain walls are now loops, rather
than individual links, but as in the one-dimensional case, each link of each domain wall contributes an
energy +2.J relative to the ground state.

Now we wish to compute the average magnetization of the central site (assume L, , are both odd, so
there is a unique central site). This is given by the difference P, (0) — P_(0), where P,(0) = <6UO ’ u> is
the probability that the central spin has spin polarization p. If P, (0) > P_(0), then the magnetization
per site m = P, (0) — P_(0) is finite in the thermodynamic limit, and the system is ordered. Clearly

1 _
P (0) =~ > e (6.24)
res,

where the restriction on the sum indicates that only those configurations where the central spin is up
(0y = +1) are to be included. (see fig. 6.1a). Similarly,

1 _
P(0)=~ ~Z e 2y (6.25)
rex_
where only configurations in which o, = —1 are included in the sum, where ¥, = {F I oy = :I:}. That

is, ¥ (X_) is the set of configurations I" in which the central spin is always up (down). Consider now
the construction in fig. 6.1b. Any loop configuration I' € ¥_ may be associated with a unique loop
configuration I' € X by reversing all the spins within the loop of I" which contains the origin. Note
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that the map from Ito I'is many-to-one. That is, we can write I = Cﬁf o I', where Cﬁf overturns the
spins within the loop v, with the conditions that (i) v contains the origin, and (ii) none of the links in the
perimeter of v coincide with any of the links from the constituent loops of I". Let us denote this set of
loops as Y-

Tr={y : 0€imt(y)andyn I =0} . (6.26)
Then .
m=P.(0) = P_(0) = > e (1 -y e—%’%) . (6.27)
FEZ+ YET,
—2BJL

If we can prove that Z’YGTF e v < 1, then we will have established that m > 0. Let us ask: how
many loops v are there in 1} with perimeter L? We cannot answer this question exactly, but we can
derive a rigorous upper bound for this number, which, following Peliti, we call g(L). We claim that

2 L\ L _;
g(L) < —-3 <Z> _ﬂ'3 . (6.28)
To establish this bound, consider any site on such a loop . Initially we have 4 possible directions to
proceed to the next site, but thereafter there are only 3 possibilities for each subsequent step, since the
loop cannot run into itself. This gives 4 - 3L~ possibilities. But we are clearly overcounting, since any
point on the loop could have been chosen as the initial point, and moreover we could have started by
proceeding either clockwise or counterclockwise. So we are justified in dividing this by 2L. We are
still overcounting, because we have not accounted for the constraint that v is a closed loop, nor that
yN I = (. We won't bother trying to improve our estimate to account for these constraints. However,
we are clearly undercounting due to the fact that a given loop can be translated in space so long as the
origin remains within it. To account for this, we multiply by the area of a square of side length L /4,
which is the maximum area that can be enclosed by a loop of perimeter L. We therefore arrive at eqn.
6.28. Finally, we note that the smallest possible value of L is L = 4, corresponding to a square enclosing
the central site alone. Therefore

S el < L f:k eyt 2220 (6.29)
12 12(1—a2)2 7 '
YETL k=2
where z = 3727, Note that we have accounted for the fact that the perimeter L of each loop v must
be an even integer. The sum is smaller than unity provided z < z, = 0.869756. .., hence the system is
ordered provided
kT 2
<
J In(3/z,)
which establishes a rigorous lower bound for the critical temperature. The exact result is k,T,./J =
2/sinh™!(1) = 2.26918... Peierls’ argument has been generalized to higher dimensional lattices as
well”.

—1.61531 | (6.30)

With a little more work we can derive a bound for the magnetization. We have shown that

1 1
P_(0) = 7 Z e 2ILr Z e 2Ly <. 7 Z e Plr =P (0) . (6.31)
res, Ve, res,

’See. e.g.]. L. Lebowitz and A. E. Mazel, J. Stat. Phys. 90,1051 (1998).
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Thus,
1=P,(0)+ P_(0) < (1+r) P, (0) (6.32)

and therefore

1—r

1+7r

a , (6.33)

m =P, (0)—P_(0) > (1—7)P(0) >

where r(T') is given in eqn. 6.29.

6.2.6 Importance of interaction range

We showed that the one-dimensional Ising model has no finite temperature phase transition, and is
disordered at any finite temperature 7', but in two dimensions on the square lattice there is a finite
critical temperature 7, below which there is long-ranged order. Consider now the construction depicted
in fig. 6.2, where the sites of a two-dimensional square lattice are mapped onto those of a linear chain®.
Clearly we can elicit a one-to-one mapping between the sites of a two-dimensional square lattice and
those of a one-dimensional chain. That is, the two-dimensional square lattice Ising model may be written
as a one-dimensional Ising model, i.e.

square linear
lattice chain

H=-7Y 0,0i==> Jowo,0, (6.34)

How can this be consistent with the results we have just proven?

The fly in the ointment here is that the interaction along the chain J, , is long-ranged. This is apparent
from inspecting the site labels in fig. 6.2. Note that site n = 15 is linked to sites n’ = 14 and n’ = 16,
but also to sites n’ = —6 and n’ = —28. With each turn of the concentric spirals in the figure, the ranged
of the interaction increases. To complicate matters further, the interactions are no longer translationally
invariant, i.e. J , # J(n — n'). But it is the long-ranged nature of the interactions on our contrived
one-dimensional chain which spoils our previous energy-entropy argument, because now the domain
walls themselves interact via a long-ranged potential. Consider for example the linear chain with J,

nn’

J|n —n'|~%, where a > 0. Let us compute the energy of a domain wall configuration where o,, = +1 if
n > 0and o, = —1if n < 0. The domain wall energy is then
[e.e] [e.e]
2J
A= —_— . 6.35
Sy (639
m=0n=1
Here we have written one of the sums in terms of m = —n’. For asymptotically large m and n, we can

write R = (m,n) and we obtain an integral over the upper right quadrant of the plane:

w/2 w/4

r 2J _ d¢ s dR
=9 a/2 ‘ .
/dR R/d¢ R (cos ¢ + sin ¢)® /Cosa¢ Ra—1 (6.36)
! 0 —7/4 1

8 A corresponding mapping can be found between a cubic lattice and the linear chain as well.
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Figure 6.2: A two-dimensional square lattice mapped onto a one-dimensional chain.

The ¢ integral is convergent, but the R integral diverges for o < 2. For a finite system, the upper
bound on the R integral becomes the system size L. For a@ > 2 the domain wall energy is finite in the
thermodynamic limit L — oo. In this case, entropy again wins. Le. the entropy associated with a single
domain wall is k;In L, and therefore ' = E — k,T is always lowered by having a finite density of
domain walls. For o < 2, the energy of a single domain wall scales as L?~?. It was first proven by F. J.
Dyson in 1969 that this model has a finite temperature phase transition provided 1 < o < 2. There is no
transition for a < 1 or o > 2. The case o = 2 is special, and is discussed as a special case in the beautiful
renormalization group analysis by J. M. Kosterlitz in Phys. Rev. Lett. 37, 1577 (1976).

6.2.7 High temperature expansion

Consider once again the ferromagnetic Ising model in zero field (H = 0), but on an arbitrary lattice. The
partition function is

Z = Tr 260 %% — (cosh B.1) Vinke Ty { [[a+zo aj)} : (6.37)
(i5)
where = tanh 3J and Ny, is the number of links (i.e. bonds). For regular lattices, N}, ,. = %ZN ,

where N is the number of lattice sites and z is the lattice coordination number, i.e. the number of nearest
neighbors for each site. We have used

etf) if oo’ = +1

e B ifoo = -1 (6.38)

ePloo’ — cosh 8J - {1 + o0’ tanhﬂJ} = {

We expand eqn. 6.37 in powers of z, resulting in a sum of 2™inks terms, each of which can be represented
graphically in terms of so-called lattice animals. A lattice animal is a distinct (including reflections and
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diagram I’ L, gr remarks
° 0 1 empty lattice
4 N N translations
: 6 2N 2 rotations, N translations
j ; 8 2N 2 rotations, N translations
.L. 8 N N translations
¢4 8 4N 4 rotations, N translations
lude five invalid (1)
8 |L(N2—5N) | T
2 equivalent squares I:D (4)

Figure 6.3: HTE diagrams on the square lattice and their multiplicities.

rotations) arrangement of adjacent plaquettes on a lattice. In order that the trace not vanish, only such
configurations and their compositions are permitted. This is because each o, for every given site i must
occur an even number of times in order for a given term in the sum not to vanish. For all such terms,
the trace is 2V. Let {I'} represent a collection of lattice animals, and g, the multiplicity of I". Then

Z =2V (cosh B.J) M 3" g (tanh )T (6.39)
r

where L is the total number of sites in the diagram I, and g, is the multiplicity of I". Since = vanishes
as T' — oo, this procedure is known as the high temperature expansion (HTE).

For the square lattice, he enumeration of all lattice animals with up to order eight is given in fig. 6.3.
For the diagram represented as a single elementary plaquette, there are N possible locations for the
lower left vertex. For the 2 x 1 plaquette animal, one has ¢ = 2NN, because there are two inequivalent
orientations as well as N translations. For two disjoint elementary squares, one has g = 1N (N — 5),
which arises from subtracting 5V ‘illegal’ configurations involving double lines (remember each link
in the partition sum appears only once!), shown in the figure, and finally dividing by two because the
individual squares are identical. Note that V(N — 5) is always even for any integer value of N. Thus, to
lowest interesting order on the square lattice,

7 =2 (cosh B) "N {14 Nat 4+ 2Na® + (7 - 3)Na® + IN%S + 0(')} (6.40)
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The free energy is therefore

F=—k,TIn2+ Nk,TIn(1 — 22) — Nk,T |2 + 225 + 325 + O(xw)]
(6.41)
= Nk,Tln2— Nk:BT{aj2 +320 4+ 220+ 228+ (9(3:10)},

again with 2 = tanh $.J. Here we have substituted cosh?3J = 1/(1 — x?) to write the final result as a
power series in x. Notice that the O(NN?) factor in Z has cancelled upon taking the logarithm, so the free
energy is properly extensive.

For the one-dimensional chain or ring, the high temperature expansion yields
Zoge(T,N) =2NcoshN 187 | Z,uo(T,N) = 2¥(cosh™BJ + sinh™BJ) | (6.42)

in agreement with the transfer matrix calculations. Notice how for OBC there is only one lattice animal
which contributes, i.e. the empty lattice. For PBC there are two contributing animals, the empty lattice
and the entire ring. In higher dimensions, where there is a finite temperature phase transition, one
typically computes the specific heat ¢(T") and tries to extract its singular behavior in the vicinity of T,
where ¢(T) ~ A(T — T,)~“. Since z(T') = tanh(J/k,T) is analytic in T', we have ¢(z) ~ A" (x — x,)™%,
where z, = z(T,). One assumes z, is the singularity closest to the origin and corresponds to the radius
of convergence of the high temperature expansion. If we write

_ AN 6.43

o =Y e~ (1= 1) (649
then according to the binomial theorem we should expect
1 1-—

In_ _ 2 [1 - O‘} . (6.44)
a,_1 T n

Thus, by plotting a,,/a,,_, versus 1/n, one extracts 1/z, as the intercept, and (o — 1)/z, as the slope.

High temperature expansion for correlation functions

Can we also derive a high temperature expansion for the spin-spin correlation function C};, = (0, 0;) ?

Yes we can. We have

Tr [ak o, P 2otia) Uj:| v
B (6.45)

Tr [eﬁJZW) %4 Uj] Z

Ckl =

Recall our analysis of the partition function Z. We concluded that in order for the trace not to vanish,
the spin variable o, on each site i must occur an even number of times in the expansion of the product.
Similar considerations hold for Y;,, except now due to the presence of o, and o, those variables now
must occur an odd number of times when expanding the product. It is clear that the only nonvanishing
diagrams will be those in which there is a finite string connecting sites k£ and [, in addition to the usual
closed HTE loops. See fig. 6.4 for an instructive sketch. One then expands both Y}, as well as Z in
powers of x = tanh 3J, taking the ratio to obtain the correlator C},. At high temperatures (z — 0),
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Figure 6.4: HTE diagrams for the numerator Y}, of the correlation function Cj,;. The blue path connecting
sites k and [ is the string. The remaining red paths are all closed loops.

both numerator and denominator are dominated by the configurations I" with the shortest possible
total perimeter. For Z, this means the trivial path I" = {0}, while for Y}, this means finding the shortest
length path from % to [. (If there is no straight line path from & to [, there will in general be several such
minimizing paths.) Note, however, that the presence of the string between sites k£ and | complicates
the analysis of g, for the closed loops, since none of the links of I" can intersect the string. It is worth
stressing that this does not mean that the string and the closed loops cannot intersect at isolated sites,
but only that they share no common links; see once again fig. 6.4.

6.3 Nonideal Classical Gases

Let’s switch gears now and return to the study of continuous classical systems described by a Hamilto-
nian H ({z;},{p;})- In the next chapter, we will see how the critical properties of classical fluids can in
fact be modeled by an appropriate lattice gas Ising model, and we’ll derive methods for describing the
liquid-gas phase transition in such a model.

6.3.1 The configuration integral

Consider the ordinary canonical partition function for a nonideal system of identical point particles
interacting via a central two-body potential u(r). We work in the ordinary canonical ensemble. The
N-particle partition function is

ddp th
2(T,V.N) = 1 / H A [l

e (6.46)

_ /de o (- g Sl )

1<j
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Here, we have assumed a many body Hamiltonian of the form

N o2
7 -\ Pi .
H= 2 om —l—;u(\wl zj]) (6.47)

in which massive nonrelativistic particles interact via a two-body central potential. As before, \;; =
V/2mh? /mkyT is the thermal wavelength. We can now write

Z(T,V,N) =AM Qn(T V) (6.48)
where the configuration integral Q 5 (T, V') is given by
1
QN(T.V) = 5 / A%, - - / oy [Je ) . (6.49)
i<j

There are no general methods for evaluating the configurational integral exactly.

6.3.2 One-dimensional Tonks gas

The Tonks gas is a one-dimensional generalization of the hard sphere gas. Consider a one-dimensional
gas of indistinguishable particles of mass m interacting via the potential

(e — o) = o ifjz—2|<a (6.50)
1o iflz—2>a '

Thus, the Tonks gas may be considered to be a gas of hard rods. The above potential guarantees that the
portion of configuration space in which any rods overlap is forbidden in this model. Let the gas be placed
in a finite volume L. The hard sphere nature of the particles means that no particle can get within a
distance 1a of the ends at z = 0 and « = L. That is, there is a one-body potential v(z) acting as well,
where
oo ifz < %a
v(x) =<0 if %a <z<L-— %a (6.51)

00 ifx>L—%a

The configuration integral of the 1D Tonks gas is given by

L L
1
QN(TvL):M/dl’l"'/dmNX(mlv"'va) ) (652)
0 0

where X = e¢~U/ksT is zero if any two ‘rods’ (of length a) overlap, or if any rod overlaps with either

boundary at z = 0 and = L, and X = 1 otherwise. Note that X does not depend on the temperature.
Due to permutation symmetry, we may integrate over the subspace where z; < z, < --- < xy and



312 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

then multiply the result by N!. Clearly z; must lie to the right of z; ; + a as well as to the left of

Y;=L—-Na+(j— 1)a. Note that since Y; —a=Y,_ ;. Thus, the conﬁguratlonal integral is

YNl

1
a/2  z,+a Ty 1+a a/2 z,+a Ty_ota
Y; Y, Yy_k
1 k
d951 dx2~ dwN 2(YN2 xN2 :"':k— dry - [ dry_ k(YNk wN—k)
a/2 r;ta Ty _gta a/2  mta Ty g ta
:m(n—% ) =77 (L —Na)
The partition function is Z(T, L, N) = Az" Q5 (T, L), and so the free energy is
L
F:—k‘BTan:—Nk:BT{—ln/\T—l—l—l—ln (N—a>} , (6.54)

where we have used Stirling’s rule to write In N! =~ NIn N — N. The pressure is

OF kT nk,T

G_L_%—a_l—na

p=— , (6.55)

where n = N/L is the one-dimensional density. Note that the pressure diverges as n approaches 1/a.
The usual one-dimensional ideal gas law, pL = Nk, T, is replaced by pL o = Nk T, where L 4 = L—Na
is the ‘free’ volume obtained by subtracting the total “excluded volume” Na from the original volume L.
Note the similarity here to the van der Waals equation of state, (p+av~2)(v—b) = RT, wherev = N,V/N
is the molar volume. Defining @ = a/N? and b = b/N,, we have

p4an? = B2 (6.56)

where n = N, /v is the number density. The term involving the constant a is due to the long-ranged
attraction of atoms due to their mutual polarizability. The term involving b is an excluded volume
effect. The Tonks gas models only the latter.

6.3.3 Mayer cluster expansion

Let us return to the general problem of computing the configuration integral. Consider the function
~Puij, where u;; = u(|x; — ;). We assume that at very short distances there is a strong repulsion

between partlcles, ie. u;; — ocoasr; = |z, —x;| = 0,and thatu,; — 0asr,; — oo. Thus, ¢~ P vanishes
as r;; — 0 and approaches unity as r,; — oo. For our purposes, it will prove useful to define the function

fry=ePu 1 | (6.57)
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Figure 6.5: Bottom panel: Lennard-Jones potential u(r) = 4e (z7'? — 27%), with z = /o and € = 1. Note

the weak attractive tail and the strong repulsive core. Top panel: Mayer function f(r, T) = e~ *(")/ksT _1
for kxT' = 0.8 € (blue), kg1 = 1.5 € (green), and kg7 = 5¢ (red).

called the Mayer function after Josef Mayer. We may now write

QAn(T.V) = % /dd331 e /dde H (1+71;) - (6.58)

1<j

A typical potential we might consider is the semi-phenomenological Lennard-Jones potential,

ur =ae{ ()= (9} (659

This accounts for a long-distance attraction due to mutually induced electric dipole fluctuations, and
a strong short-ranged repulsion, phenomenologically modelled with a r~!2 potential, which mimics a
hard core due to overlap of the atomic electron distributions. Setting «/(r) = 0 we obtain r* = 2!/6 o ~
1.12246 o at the minimum, where u(r*) = —e. In contrast to the Boltzmann weight e~ Pulr) the Mayer
function f(r) vanishes as » — oo, behaving as f(r) ~ —pu(r). The Mayer function also depends on
temperature. Sketches of u(r) and f(r) for the Lennard-Jones model are shown in fig. 6.5.

The Lennard-Jones potential’ is realistic for certain simple fluids, but it leads to a configuration integral
which is in general impossible to evaluate. Indeed, even a potential as simple as that of the hard sphere
gas is intractable in more than one space dimension. We can however make progress by deriving a

“Disambiguation footnote: Take care not to confuse Philipp Lenard (Hungarian-German, cathode ray tubes,
Nazi), Alfred-Marie Liénard (French, Liénard-Wiechert potentials, not a Nazi), John Lennard-Jones (British,
molecular structure, also not a Nazi), and Lynyrd Skynyrd (American, “Free Bird”). I thank my colleague Oleg
Shpyrko for setting me straight on this.
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(f1,4 f4,7 f4,9 f7,9) (f2,5 f2,6) (f3,10) (fs,u)
|}

1 4 5 2 6
Z *—o—o 4 ®
8 1"
*—o e O o
9 7 3 10 12 13 14

Figure 6.6: Diagrammatic interpretation of a term involving a product of eight Mayer functions.

series expansion for the equation of state in powers of the particle density. This is known as the virial
expansion. As was the case when we investigated noninteracting quantum statistics, it is convenient to
work in the grand canonical ensemble and to derive series expansions for the density n(7’, z) and the
pressure p(T, z) in terms of the fugacity z, then solve for z(7,n) to obtain p(7T',n). These expansions in
terms of fugacity have a nifty diagrammatic interpretation, due to Mayer.

We begin by expanding the product in eqn. 6.58 as

[TO+£) =14 Ffis+ D fijfut-- (6.60)
< B

As there are $N(N — 1) possible pairings, there are 2V (N=1)/2 terms in the expansion of the above
product. Each such term may be represented by a graph, as shown in fig. 6.6. For each such term,
we draw a connection between dots representing different particles ¢ and j if the factor f;; appears in
the term under consideration. The contribution for any given graph may be written as a product over
contributions from each of its disconnected component clusters. For example, in the case of the term in
tig. 6.6, the contribution to the configurational integral would be

| U R R
AQ = N /dwld%d%dwgf1,4f4,7f4,9f7,9

X /dd% dd% ddx6 fas fog % /dd% dd‘”lo f310 X /ddﬂfs ddf’«"n fs 11

We will refer to a given product of Mayer functions which arises from this expansion as a term.

(6.61)

The particular labels we assign to each vertex of a given graph don’t affect the overall value of the graph.
Now a given unlabeled graph consists of a certain number of connected subgraphs. For a system with
N particles, we may then write

N=> mn, |, (6.62)
v

where v ranges over all possible connected subgraphs, and

m., = number of connected subgraphs of type v in the unlabeled graph

n., = number of vertices in the connected subgraph v

Note that the single vertex e counts as a connected subgraph, with n, = 1. We now ask: how many ways
are there of assigning the IV labels to the IV vertices of a given unlabeled graph? One might first thing the
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Figure 6.7: Different assignations of labels to vertices may not result in a distinct term in the expansion
of the configuration integral.

answer is simply N!, however this is too big, because different assignments of the labels to the vertices
may not result in a distinct graph. To see this, consider the examples in fig. 6.7. In the first example, an
unlabeled graph with four vertices consists of two identical connected subgraphs. Given any assignment
of labels to the vertices, then, we can simply exchange the two subgraphs and get the same term. So we
should divide N! by the product [], m,!. But even this is not enough, because within each connected
subgraph v there may be permutations which leave the integrand unchanged, as shown in the second
and third examples in fig. 6.7. We define the symmetry factor s, as the number of permutations of
the labels which leaves a given connected subgraphs v invariant. Examples of symmetry factors are
shown in fig. 6.8. Consider, for example, the third subgraph in the top row. Clearly one can rotate
the figure about its horizontal symmetry axis to obtain a new labeling which represents the same term.
This twofold axis is the only symmetry the diagram possesses, hence s, = 2. For the first diagram in
the second row, one can rotate either of the triangles about the horizontal symmetry axis. One can also
rotate the figur e in the plane by 180° so as to exchange the two triangles. Thus, there are 2 x 2 x 2 = 8
symmetry operations which result in the same term, and s, = 8. Finally, the last subgraph in the second
row consists of five vertices each of which is connected to the other four. Therefore any permutation of

the labels results in the same term, and s, = 5! = 120. In addition to dividing by the product [], m,!,

we must then also divide by [, so7

We can now write the partition function as

/\—Nd . . v My
= anwls .H(/dxl...d%HfU> ON S,
Y

1< (6.63)
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Figure 6.8: The symmetry factor s, for a connected subgraph v is the number of permutations of its
indices which leaves the term [ ;;c,, fij invariant.

where the product [[]_; f;; is over all links in the subgraph ~. The final Kronecker delta enforces the
constraint N =} m, n,. We have defined the dimensionless cluster integrals b, as

by(T) = — / dA‘”jl . / "”_IHf” , (6.64)

1<J

where we assume the limit V' — oco. Since f;; = f (Je;, — @, ]) the product [ ; J;; is invariant under
simultaneous translation of all the coordinate vectors by any Constant vector, and hence the integral over
the n, position variables contains exactly one factor of the volume, which yields factor of V' within the
round brackets in the second line of eqn. 6.63. Thus, each cluster integral is intensive'’, scaling as V0.

If we compute the grand partition function, then the fixed N constraint is relaxed, and we can do the
sums:

_ mn 1 (Vb (T)\™
:(T,V,M)ZZ@B”)Z ”Hm( ;5 )>
N Myt T

{m,}
o L e (6.65)
2™ _ n
I o (P ) o)
v m,=0 v T Y
where z = exp(fSp) is the fugacity. Thus, since 2 = —k,T'In =,
QT,V, ) Vk T , (6.66)

19We assume that the long-ranged behavior of f(r) ~ —Bu(r) is integrable.
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and we can write

p =k TAF" " 2" by (T)
ol
= )\;d Z n, 2" by (T)
ol

where b, = 1. As in the case of ideal quantum gas statistical mechanics, we can systematically invert the
relation n = n(z,T) to obtain z = z(n,T'), and then insert this into the equation for p(z,T’) to obtain the
equation of state p = p(n,T’). This yields the virial expansion of the equation of state,

(6.67)

p:nkBT{1+B2(T)n+B3(T)n2+...} . (6.68)

It is useful to define the dimensionless quantities v = nA% and m = p\4/k, T, as well as the dimension-
less cluster integral sums

by =D by Ok, (6.69)
gl
which is the sum of all cluster integrals b, with n., = k vertices, multiplied by )\;(k_l)d. Then

=> kb2t w(2) =) by . (6.70)

k=1 k=1

The virial expansion of the dimensionless equation of state is then
v)=> By 6.71)

k=1

We may again apply the Lagrange method introduced in §5.3.2 for the quantum virial coefficients, writ-

ing
dv (v dz V'(z)m(z dz d B
%= 7{ 2mi y1£+3 - f{ 2mi # =2 ¢ 5 7(2) V()] - (6.72)

where the contour encloses the origin in the complex plane. Integrating by parts, and using the relation
7'(2) = v(2) /2, we obtain'!

7{ , 7{ dz 1 _k
By, = k 2772 k: 2wl 2

dz 1 1-k
:E < <1+2b2z+3b3z ST ) :

(6.73)

where the contour is a small circle enclosing the origin. Working out the first two virial coefficients, we
find
By=-by, ,  By=4b3—2b; . (6.74)

The dimensionful virial coefficients in eqn. 6.68 are then given by B, = B, /\(k l)d.

"Since there is no term proportional to Inw in the Laurent expansion of m(w)[n(w)] " there is no residue
arising from integrating its derivative around the unit circle.
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Lowest order expansion

We have 4
T
b1 = [ St £ o) = [ 100 675
and
d
/ 3:1/ : f |-’E1 —5132|) (|5131 - ac3|)
ddr’ (6.76)
— [ S 1016 =20
and
= %/ f ’331—332\) (’331—333\) f(’%—wg’)
ddr’ (6.77)
4[5 / S T I6) (=)
Thus we have by, = b_ and by = by + ba = 2b%2 + ba . From eqn. 6.74 we now have
By(T') = —by(T) = —b_(T)
(6.78)

B3(T') = [4b3(T') — 2b3(T)] = —20,(T)

Note that b, does not contribute to B3, even though the graph A has three vertices, and only b, appears.
This is because the virial coefficients B; involve only cluster integrals b, for one-particle irreducible clus-
ters, i.e. those clusters which remain connected and don’t fall into multiple pieces if any of its vertices is
removed, as depicted in fig. 6.9.

Cookbook recipe
Just follow these simple steps:

e The pressure and number density are written as sums over unlabeled connected clusters v, viz.

p=kgT )‘:;d Z 2" by(T)

v
= \p" Z n, 2" by (T)
B!

(6.79)

where z = exp(fu) is the fugacity.

e To compute the dimensionless cluster integral b, (T'), first draw the connected cluster v with unia-
beled vertices.
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Figure 6.9: Connected versus irreducible clusters. Clusters (a) through (d) are irreducible in that they
remain connected if any component site and its connecting links are removed. Cluster (e) is connected,
but is reducible. Its integral b, is proportional to a product over its irreducible components, each shown
in a unique color, and occurring with various multiplicities. The open circles denote articulation points.
Removal of an articulation point and all the links connected to it results in a disconnected diagram.
Removal of any of the closed circles and its associated links does not result in a disconnected diagram.

e Next, assign labels 1, 2, ..., n, to the vertices, where n., is the total number of vertices in the
cluster . It doesn’t matter how you assign the labels.

e Write down the product []]_ ; fij- The factor f,; appears in the product if there is a link in your

(now labeled) cluster between sites ¢ and j.

e The symmetry factor s, is the number of elements of the symmetric group S"’y which leave the

.
product [[/_; f;; invariant. The identity permutation leaves the product invariant, so s, > 1.

e The dimensionless cluster integral b, (T’) is given by

1 dde' ddxn -1 i
by(T) = P T.ll o / )\J Hfij ) (6.80)
v T T i<j
Due to translation invariance, b, (1) V9. One can therefore set ,, = 0, eliminate the volume

S
factor from the denominator, and perform the integral over the remaining n., —1 coordinates.

e This procedure generates expansions for p(7’, z) and n(T’, z) in powers of the fugacity z = exp(Su).
To obtain something useful like p(T, n), we mut invert the equation n = n(7T, z) to find z = z(T, n),
and then substitute into the equation p = p(7, z) to obtain p = p(T, 2(T, n)) = p(T,n). The result
is the virial expansion,

p:nkBT{1+B2(T)n—|—B3(T)n2+...} : (6.81)
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where

B(T) = —(k— )AL S b (1) (6.82)

'yEFk

with I, the set of all one-particle irreducible (1PI) k-site clusters. A 1PI cluster remains connected
if any of its sites and all that site’s connecting links are removed.

6.3.4 Examples
Hard sphere gas in three dimensions

The hard sphere potential is given by

if r <
u(r) = {OO nr=a (6.83)
0 ifr>a .
Here a is the diameter of the spheres. The corresponding Mayer function is then temperature indepen-
dent, and given by
-1 ifr<a
= - 6.84
fr) {0 ifr>a . (6.84)
We can change variables to obtain
ddr
by(T) = /Ag flr) = —2na® X% . (6.85)

The calculation of b is more challenging. We have

/ /)\3 f(p (\r—p]) . (6.86)

We must first compute the volume of overlap for spheres of radius a (recall a is the diameter of the
constituent hard sphere particles) centered at 0 and at p:

V= /d £(ir = pl)

(6.87)
:2/dz7ra—z —4§a3—7mp+12p .

p/2

We then integrate over region |p| < a, to obtain

by = —§ '47“\:?6/@ P {4?”“3 —7ma’p+ 5 Pg} =% “6/\_ : (6.88)
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Figure 6.10: The overlap of hard sphere Mayer functions. The shaded volume is V.

Thus, we have

By(T) = ~Nhby(T) = 2a® | By(T) = —20$by(T) = ' a® (6.89)
and the equation of state is then
p=nk,T {1 + 2P 4 5 afn? O(n3)} . (6.90)
Weakly attractive tail
Suppose
if r <
u(ry =4 = (6.91)
—uy(r) ifr>a .

Then the corresponding Mayer function is

fr) = {_1 ifr<a (6.92)

B — 1 ifr>a

Thus,
3 7
by(T) = 1 / 1) = —Fathgd 4 2mag / dr [eﬁ%m - 1] . (6.93)
T
Thus, the second virial coefficient is
3 2r 3 2m 2
By(T) = —Npby(T) ~ 2 — - T/drr w(r) (6.94)
B

where we have assumed k7" < uy(r). We see that the second virial coefficient changes sign at some
temperature 7}, from a negative low temperature value to a positive high temperature value.
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Spherical potential well

Consider an attractive spherical well potential with an infinitely repulsive core,

oo ifr<a
u(r)=4q —€ ifa<r<R (6.95)
0 ifr>R

Then the corresponding Mayer function is

-1 ifr<a
flr)= efe—1 ifa<r<R (6.96)
0 ifr >R

Writing s = R/a, we have

By(T) = M by(T) =~ [ ¥ 1)

1

= {(_1) A3 (P - 1) - A3 (6P - 1)} (6.97)

= ga {1 o)

To find the temperature T, where B,(T") changes sign, we set B,(7},) = 0 and obtain

83
kT = e/ ln<s3 — 1> . (6.98)

Recall in our study of the thermodynamics of the Joule-Thompson effect in §2.10.7 that the throttling
process is isenthalpic. The temperature change, when a gas is pushed (or escapes) through a porous plug
from a high pressure region to a low pressure one is

Py
AT = / dp <8—T> , (6.99)
op )y
Py
oT 1 oV

Appealing to the virial expansion, and working to lowest order in corrections to the ideal gas law, we
have

where

(6.100)

N N2
P=7 kT + 2 kT By(T) + ... (6.101)
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Figure 6.11: An attractive spherical well with a repulsive core u(r) and its associated Mayer function

f(r).

and we compute (g;) by seting

Nk.T Nk 2N?2 N2

0=dp=— Vg dV + VB dT — 3 kT By(T)dV + 72 d(kBTB2(T)) 4+ (6.102)
Dividing by dT’, we find
oV 0B,
T <8_T>p -V =N|T T B, (6.103)

The temperature where (%—2)  changes sign is called the inversion temperature T. To find the inversion

point, we set T* B5(T*) = By(T™), i.e.

dIn B,
dnT |, 1 . (6.104)
If we approximate B, (T') ~ A — %, then the inversion temperature follows simply:
B B . 2B

Hard spheres with a hard wall

Consider a hard sphere gas in three dimensions in the presence of a hard wall at z = 0. The gas is
confined to the region z > 0. The total potential energy is now

Wz, ..., xy) = Z —1—2 (x; —x;) (6.106)
) 1<j
where
if <41
o) =v(z) =4 1 S (6.107)
0 if z> 5& s

and u(r) is given in eqn. 6.83. The grand potential is written as a series in the total particle number N,
and is given by

E=ePP=14¢ / d¥r e=Pv) 4 Le? / dr / d! e Pu(2) g=Bu(e") —=Bulr—r") o (6.108)
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Figure 6.12: In the presence of a hard wall, the Mayer sphere is cut off on the side closest to the wall.

The resulting density n(z) vanishes for z < $a since the center of each sphere must be at least one radius

(%a) away from the wall. Between z = %a and z = %a there is a density enhancement. If the calculation

were carried out to higher order, n(z) would exhibit damped spatial oscillations with wavelength A ~ a.

where ¢ = 2\, with 2 = e#/#s the fugacity. Taking the logarithm, and invoking the Taylor series
In(1+6) =6 — 362 + £6° — ..., we obtain

—ﬁQ — g/d?),r + %62/d37‘ / d3,r/ [e—ﬁu(’l‘—’l‘,) _ 1] + ... (6109)
2>5 z>5 2/>3%

The volume is V = f d3r. Dividing by V, we have, in the thermodynamic limit,
2>0

_g =fp=¢&+ %gzé/dgr /d?’r' [6_5“("_’”,) — 1] +...
sSa oS (6.110)
== 3+ 0(E)
The number density is

nzg%wng—%ﬁ€+0@%, (6.111)

and inverting to obtain £(n) and then substituting into the pressure equation, we obtain the lowest order
virial expansion for the equation of state,

p=k,T {n +2maPn + .. } . (6.112)

As expected, the presence of the wall does not affect a bulk property such as the equation of state.

Next, let us compute the number density n(z), given by

n(z) = ( Z S(r—mr)) . (6.113)
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Due to translational invariance in the (z,y) plane, we know that the density must be a function of z
alone. The presence of the wall at = = 0 breaks translational symmetry in the z direction. The number
density is

N

n(z) =Tr |:eﬁ(ﬂf\7—f{) Z 5(7, _ ,,,.2)] /Tr 6B(HN_H)

i=1

_ E—l {ge—ﬁv(z) + 52 e—ﬁv(z)/d&r,/ e—ﬁv(z’) e_ﬁu(r_r’) + o } (6114)
_ ge—ﬁv(z) + 52 e—Bv(z)/d?,,r,/ e—ﬁv(z’) [e_ﬁu(r—r/) _ 1:| o

Note that the term in square brackets in the last line is the Mayer function f(r — r/) = e~ #4("=") _ 1,
Consider the function

0 ifz<daors <ia
e ) B fp Yy = {0 iflr—1|>a (6.115)

—1 ifz>%aand 2’ > jaand |r — 1’| <a

Now consider the integral of the above function with respect to r’. Clearly the result depends on the
value of z. If z > 3a, then there is no excluded region in 7’ and the integral is (—1) times the full Mayer
sphere volume, i.e. —37a’. If z < }a the integral vanishes due to the e=#*(*) factor. For z infinitesimally
larger than a, the integral is (—1) times half the Mayer sphere volume, i.e. —27a®. For z € [%, 3] the

integral interpolates between —27a® and —3ma®. Explicitly, one finds by elementary integration,

0 if z < %a
[ O fr—ry = {36+ 5G] dee e<i<de G110
—%77&3 if z > %a

After substituting £ = n + %77@3712 + O(n?) to relate ¢ to the bulk density n = n__, we obtain the desired
result:

0 if 2 < ia
n(z) =q¢n+ [1 - 32— +35(2- %)3] 2radn? ifja<z<3a (6.117)
n if 2> 2a

A sketch is provided in the right hand panel of fig. 6.12. Note that the density n(z) vanishes identically

for z < 3 due to the exclusion of the hard spheres by the wall. For z between a and 2, there is a density

enhancement, the origin of which has a simple physical interpretation. Since the wall excludes particles
from the region z < 1, there is an empty slab of thickness 3z coating the interior of the wall. There are
then no particles in this region to exclude neighbors to their right, hence the density builds up just on
the other side of this slab. The effect vanishes to the order of the calculation past z = %a, wheren(z) =n
returns to its bulk value. Had we calculated to higher order, we’d have found damped oscillations with

spatial period A ~ a.
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6.4 Liquid State Physics

6.4.1 The many-particle distribution function

The virial expansion is typically applied to low-density systems. When the density is high, i.e. when
na3 ~ 1, where a is a typical molecular or atomic length scale, the virial expansion is impractical. There
are to many terms to compute, and to make progress one must use sophisticated resummation tech-
niques to investigate the high density regime.

To elucidate the physics of liquids, it is useful to consider the properties of various correlation functions.
These objects are derived from the general N-body Boltzmann distribution for identical particles,

1 Z;,l E_BHN({pi}7{mi}) OCE
QN(ml’ C oI PL ’pN) TN x {5—1 ePuN e_BHN({pi}7{mi}) GCE , (6119)
where
N  4d
d z; d
Zy=Tre" Hy — =~ / pj BHy ({p;}Ax;})
(6.119)

eBuN

= — Tr PN o—BH _ Z "z dpJ o~ BHy ({p:} {z;})

are the respective canonical and grand canonical partition functions. Note that the definition of the trace
(Tr) includes a factor 1/N'! in order to account for particle indistinguishability, and that ¢, is normalized
according to

dx ddp
/ o(xy,....,xy,P,---,Py) =1 . (6.120)
We assume a Hamiltonian of the form

> p?
22— Wz, ..., zy). (6.121)
=1

The quantity

d, d%, A%y dy
d

on(®y, ..., 2N, P, -, Dy) 1 W (6.122)

is the propability of finding N particles in the system, with particle #1 lying within d*, of z; and having
momentum within d%; of p;, etc. Note Tr g5, = 1. If we compute averages of quantities which only
depend on the positions {z;} and not on the momenta {p, }, then we may integrate out the momenta to
obtain, in the OCE,

N d

d*p
P(wl7 /H hd QN w17 '7wN7p17"'7pN)
(6.123)

1w, ...
_QN N' B (mlv 7mN) s
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where W is the total potential energy,

W(azl,...,a:N):Zv(mi)—i—Zu(aci—mj)—l— Z w(x; —x;, T; —Ty) + ..., (6.124)

7 1<j 1<j<k

and Q@ is the configuration integral,

Qn(T,V) = % / d, - / Ay e BV @1omy) (6.125)

We will, for the most part, consider only two-body central potentials as contributing to W, which is to
say we will only retain the middle term on the RHS. Note that P(z,...,x,) is invariant under any
permutation of the particle labels, and is normalized according to [ H;VZI d Pz, my) = 1.

6.4.2 Averages over the distribution

To compute an average, one integrates over the distribution:

(F(xq,...,2y)) = /ddwlu'/ddwN Plxy,...,xy)F(xy, ..., zy) . (6.126)
The overall N-particle probability density is normalized according to [d%y P(zq,...,xy) = 1.

The average local density is
ny(r) = <Z(5(r —x;)) = N/ddx2 - -/dde P(r,xy,...,zy) . (6.127)

Note that the local density obeys the sum rule [d% n,(r) = N. In a translationally invariant system,
n,=n= % is a constant independent of position. The boundaries of a system will in general break
translational invariance, so in order to maintain the notion of a translationally invariant system of finite
total volume, one must impose periodic boundary conditions.

The two-particle density matrix ny(r;, r,) is defined by
ny(ry,m3) = <Z 6(ry — ;) 6(ry — -’Eg)>
7 (6.128)
= N(N — 1)/ddw3~'/ddwN P(r{,ry, @3, ..., xy)

As in the case of the one-particle density matrix, i.e. the local density n,(r), the two-particle density
matrix also satisfies a sum rule:

/ddrl/ddrz ny(ry,m9) = N(N —1) . (6.129)

Generalizing further, one defines the k-particle density matrix as

n(rys. . m) = 2/5(7°1 -y ) - 6(ry, — wik) )

v (6.130)
N! 4 ;
:m dTpyy o [ dy P(ry, o P Ty Ty)
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where the prime on the sum indicates that all the indices i, ... ,1%, are distinct. The corresponding sum
rule is then

/ddrl.../ddrk ng(ry, ..., 1) = (NL—'k)' . (6.131)

The average potential energy can be expressed in terms of the distribution functions. Assuming only
two-body interactions, we have

(W) = <Zu(f'3z - w])>

i<j

/ddr /ddr2 u(ry —ry) Zé —x;) w])> (6.132)

/ddr /ddr2 u(r n;:1,7*2)

As the separations 7;; = |r; — r;| get large, we expect the correlations to vanish, in which case

(2

nk(rl,...,rk):<'Z/5(r1—mi1)...5(rk—m :) Z . .<5(rk_mik)>
!
— ﬁ . % ny(ry) - -nq(ry) (6.133)

= <1—%> (1—%)---(1—%>n1(r1)--'n1(rk)

The k-particle distribution function is defined as the ratio

o)
gn(ry,..., 1) = —=& . (6.134)
R g ny(ry) - ny(ry)
For large separations, then,
k-1 .
J
gy, om) —— 1 <1 — N) . (6.135)
T35 7200 i

For isotropic systems, the two-particle distribution function g,(r;,r,) depends only on the magnitude
|ry — 75|. As a function of this scalar separation, the function is known as the radial distribution function:

1
g(r)zgz(r):m<25(r—mi)5( S Vn2<25 —z ;) . (6.136)
i#] i#]
The radial distribution function is of great importance in the physics of liquids because

o thermodynamic properties of the system can be related to g(r)

e g(r) is directly measurable by scattering experiments
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Figure 6.13: Pair distribution functions for hard spheres of diameter a at filling fraction n = Fan = 0.49
(left) and for liquid Argon at T = 85K (right). Molecular dynamics data for hard spheres (points) is
compared with the result of the Percus-Yevick approximation. Reproduced (without permission) from
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, fig 5.5. Experimental data on liquid argon
are from the neutron scattering work of J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973). The data (points)
are compared with molecular dynamics calculations by Verlet (1967) for a Lennard-Jones fluid.

For example, in an isotropic system the average potential energy is given by

(W) = %/ddrl/ddr2 u(ry — 1) no(ry,m2)

N2 (6.137)
= %”2/ddr1/dd’”2 u(ry — "“2)9(|7°1 - "“2|) = W/dd’“ u(r) g(r)
For a three-dimensional system, the average internal (i.e. potential) energy per particle is
<Nm = 27m/dr r2g(ryu(r) . (6.138)

0

Intuitively, f(r) dr = 47r? n g(r) dr is the average number of particles lying at a radial distance between
r and r + dr from a given reference particle. The total potential energy of interaction with the reference
particle is then f(r) u(r) dr. Now integrate over all r and divide by two to avoid double-counting. This
recovers eqn. 6.138.

In the OCE, g(r) obeys the sum rule
Vv Vv
/ddrg(r):m-N(N—l):V—N , (6.139)

hence

n / d% [g(r)—1] =-1  (OCE) . (6.140)
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Figure 6.14: Monte Carlo pair distribution functions for liquid water. From A. K. Soper, Chem Phys.
202, 295 (1996).

The function h(r) = g(r) — 1 is called the pair correlation function.

In the grand canonical formulation, we have

(N(N —1))

TSE V-V

(6.141)
=/ v/ ) —nkTkp—1 (GCE) |,

where £ is the isothermal compressibility. Note that in an ideal gas we have h(r) = 0 and k. = k% =
1/nkyT. Self-condensed systems, such as liquids and solids far from criticality, are nearly incompress-
ible, hence 0 < nk,T ki < 1, and therefore n [d% h(r) ~ —1. For incompressible systems, where ., = 0,
this becomes an equality.

As we shall see below in §6.4.4, the function h(r), or rather its Fourier transform h(k), is directly mea-
sured in a scattering experiment. The question then arises as to which result applies: the OCE result
from eqn. 6.140 or the GCE result from eqn. 6.141. The answer is that under almost all experimental
conditions it is the GCE result which applies. The reason for this is that the scattering experiment typ-
ically illuminates only a subset of the entire system. This subsystem is in particle equilibrium with the
remainder of the system, hence it is appropriate to use the grand canonical ensemble. The OCE results
would only apply if the scattering experiment were to measure the entire system.
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6.4.3 Virial equation of state
The virial of a mechanical system is defined to be

G=> =z, F, | (6.142)

where F; is the total force acting on particle . If we average G over time, we obtain

zll_lggof/dtZa: - F,

(6.143)

S hm —/dthm = —3Nk,T

Here, we have made use of
1

d
2 F=ma; &= —mal + - (ma; @) (6.144)

as well as ergodicity and equipartition of kinetic energy. We have also assumed three space dimensions.
In a bounded system, there are two contributions to the force F;. One contribution is from the surfaces
which enclose the system. This is given by'”

surfacos: ZZB Fsurf ——3pV . (6145)

The remaining contribution is due to the interparticle forces. Thus,

N 1
=V~ T <Z“’ R AN (6.146)

kB

Invoking the definition of g(r), we have

p=nk;T ¢1—

; k T ‘S (6.147)

As an alternate derivation, consider the First Law of Thermodynamics,

A2 = —SdT —pdV — Ndu (6.148)

12To derive this expression, note that F'"f) is directed inward and vanishes away from the surface. Each
Cartesian direction o = (z,y, z) then contributes —FS L where L, is the corresponding linear dimension.

But F™ = pA,, where A, is the area of the corresponding face and p. is the pressure. Summing over the three
possibilities for o, one obtains eqn. 6.145.
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332
from which we derive
ofn oF
__ (Y7 —_ (2= 6.149
y (aV>Tu (37), . (61%9)
Now let V — 3V, where / is a scale parameter. Then
on 1 0
b= v = T3V or (T, €3V7 1) (6.150)
=1
Now
5(T, 63V, p) = Z%eB“N)\}?’N/d?’ /dwNe Wiy, ay)
N=0""" :
OO ZJ"VV eV (6.151)
-y L' (eﬁu )\;3) €3N/d3wl N _/dsz o BW (L, .. bxy)
N=0""" 1% 1%
Thus,
1 anty) kT 1 0Z(63V)
PRV e | T3V ET o |
kT 1 < 1 1474
BT LSS L)) [y [y o) lgN_ Bzwi.%l (6152
~ N=0 v v i i
1 /0W
=nksT = 5557 ),
Finally, from W = ZKJ u(lx;;) we have
27TN2
< > <Zw z)) = =0 [ drrig(r)u(r) (6.153)
0
(6.154)

o0

%m’ﬂ/dr 3 g(r) o/ (r)

0
Note that the density n enters the equation of state explicitly on the RHS of the above equation, but also

and hence
p =nkyT —
implicitly through the pair distribution function g(r), which has implicit dependence on both n and T’

6.4.4 Correlations and scattering
Consider the scattering of a light or particle beam (i.e. photons or neutrons) from a liquid. We label the

states of the beam particles by their wavevector k and we assume a general dispersion ;.. For photons,
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Figure 6.15: In a scattering experiment, a beam of particles interacts with a sample and the beam parti-
cles scatter off the sample particles. A momentum hq and energy 7w are transferred to the beam particle
during such a collision. If w = 0, the scattering is said to be elastic. For w # 0, the scattering is inelastic.

e, = he|k|, while for neutrons ¢, = h?k?/2m,. We assume a single scattering process with the liquid,
during which the total momentum and energy of the liquid plus beam are conserved. We write

K=k+q e = € +hw (6.155)

where k' is the final state of the scattered beam particle. Thus, the fluid transfers momentum Ap = hq
and energy /w to the beam.

Now consider the scattering process between an initial state |, k) and a final state | j, k' ), where these
states describe both the beam and the liquid. According to Fermi’s Golden Rule, the scattering rate is

2m . .
pk%jk,:f|<3,k’|V|z,k>\25(Ej—Ei+hw) , (6.156)

7

where V is the scattering potential and E is the initial internal energy of the liquid. Note that overall
energy conservation requires E; + €., = E; + ¢, and therefore E; = E; — hw. If r is the position of the
beam particle and {x;} are the positions of the liquid particles, then

N
V) =Y v(r—=z) . (6.157)
1=1
For elastic scattering, the differential scattering cross section do is defined to be

do(§2) = rate at which particles scattered into solid angle df?

6.158
incident flux ( )

For inelastic scattering,

Po(0),w) = rate at which particles scattered into solid angle df2 and energy change within £ dw

incident flux ]
(6.159)
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The inelastic differential scattering cross section (per unit frequency per unit solid angle) is

620' h gek/
= P, Ty 6.160
00w 4m vy 2 Pl (6.160)

2

where g(e) = [£-% (g % §(c — €,,) is the density of states for the beam particles, and P, = Z~!e¢#F: is the
Boltzmann we1ght

Consider now the matrix element

N
K V1K) =G 3 [abe®me e
=1 (6.161)
N .
Aq) <j|ze—zq.:l:l‘i> ,
1=1
where we have assumed that the incident and scattered beams are plane waves. We then have
Po 9y [0(a) NS gy [ 2
020w 2 ,v?’ V2 ZB ZK” DT ][ 0(E; - B+ hw)
: k ’; =1 (6.162)
_ 9\k+q 2 g
where S(q, w) is the dynamic structure factor,
g, 27ThZP Z| ﬂzemz V2 6(E; — E; + hw) (6.163)
Note that for an arbitrary operator A4,
. . 1 T 7 —F . +hw 7 . . . .
ST LA 008, — Bt ) = 5o 3 [ae B (i 41| 5) (5] A1)
j I “oo
1 i - -
= 2eh Z/d’fe“‘W\A* [3) (gl et AT M) (6.164)
I~
Lh/dteiwthT(O)A(t)m
Thus,
/dtezwt ZP< |Zezqml(0 qul’()">
. (6.165)

N/dt zwt Zezqwl(o zqml,()> ,

Ly
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where the angular brackets in the last line denote a thermal expectation value of a quantum mechanical
operator. If we integrate over all frequencies, we obtain the equal time correlator,

oo

5@ =[5 S(a.w) = 5 S ()

EA o (6.166)
=Nogot+1+ n/ddr e~tar [g(r) — 1]

known as the static structure factor'>. Note that S(g = 0) = N, since all the phases '@ =;) are then
unity. As ¢ — oo, the phases oscillate rapidly with changes in the distances |z; — z,|, and average out
to zero. However, the ‘diagonal’ terms in the sum, i.e. those with ¢ = j, always contribute a total of 1 to

S(q). Therefore in the ¢ — oo limit we have S(¢ — c0) = 1.

In general, the detectors used in a scattering experiment are sensitive to the energy of the scattered
beam particles, although there is always a finite experimental resolution, both in g and w. This means
that what is measured is actually something like

Seas@0) = [ [a Fla— ) Gl - w) S (6:167)
where F' and G are essentially Gaussian functions of their argument, with width given by the experi-
mental resolution. If one integrates over all frequencies w, i.e. if one simply counts scattered particles as

a function of g but without any discrimination of their energies, then one measures the static structure
factor S(q). Elastic scattering is determined by S(gq,w = 0), i.e. at no energy transfer.

6.4.5 Correlation and response

Suppose an external potential v(x) is also present. Then

1 1 _ @ T — v
P(m17 RN wN) = QN[U] . me BW (@, ..., N)6 B2 iv(z;) , (6168)
where )
Qnl) = 4 / %, - / duy e AW o) g B 2iv(@) (6.169)
The Helmholtz free energy is then
1 _
F=—2h (ATdN QN[U]) . (6.170)
Now consider the functional derivative
OF 1 1 0Qy
=—— . — 171
5or) ~ B Qy Su(r) (6171)

3We may write 6, o = + (27)? 6(q).
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Figure 6.16: Comparison of the static structure factor for liquid Argon as determined by neutron scat-
tering work of J. L. Yarnell et al., Phys. Rev. A 7, 2130 (1973) with molecular dynamics calculations by

Verlet (1967) for a Lennard-Jones fluid.

Using

> vl;) = /ddrv(r) Zé(r -z;) (6.172)

hence -
—51)(1,4) = /ddxl . /dde P(ml ) mN) ZZ:(;(T — ml) = nl(fr‘) , (6173)
which is the local density at .

Next, consider the response function,

n_ Omy(r) §2F[v]
X 1) = 506 = Fole) do(r?)
1 1 6Qy 0Qy 1 1 5Q (6.174)

= Bny(r)ny(r') = Bny(r)o(r —7') — Bng(r,r’)

In an isotropic system, X(r, ') = X(r — 7') is a function of the coordinate separation, and

~k,Tx(r—7'") = —n*+nd(r —7') +n’g(|r — 7)) (6.175)

=n*h(|r —7'|) + nd(r —r')
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Taking the Fourier transform,

~ksTX(q) =n+n’h(g) =nS(q) . (6.176)
We may also write
K ~ -
é =1+nh(0) = —nk,Tx(0) (6.177)

ie. kp = —X(0).

What does this all mean? Suppose we have an isotropic system which is subjected to a weak, spatially
inhomogeneous potential v(r). We expect that the density n(r) in the presence of the inhomogeneous
potential to itself be inhomogeneous. The first corrections to the v = 0 value n = ng are linear in v, and
given by

on(r) = /ddr’ X(r, ") v(r')

(6.178)

= —fnov(r) — ﬁn%/ddr’ h(r —r)v(r')
Note that if v(r) > 0 it becomes energetically more costly for a particle to be at . Accordingly, the
density response is negative, and proportional to the ratio v(r)/k; T — this is the first term in the above
equation. If there were no correlations between the particles, then = 0 and this would be the entire
story. However, the particles in general are correlated. Consider, for example, the case of hard spheres
of diameter a, and let there be a repulsive potential at » = 0. This means that it is less likely for a particle
to be centered anywhere within a distance a of the origin. But then it will be more likely to find a particle
in the next ‘shell” of radial thickness a.

6.4.6 Ornstein-Zernike theory

The direct correlation function c(r) is defined by the equation
h(r) = c(r) + n/d?’r’ h(r —r')e(r') (6.179)

where h(r) = g(r) — 1 and we assume an isotropic system. This is called the Ornstein-Zernike equation.
The first term, c¢(r), accounts for local correlations, which are then propagated in the second term to
account for long-ranged correlations.

The OZ equation is an integral equation, but it becomes a simple algebraic one upon Fourier transform-
ing:

h(q) = &(q) +nh(q)é(q) | (6.180)
the solution of which is )
~ N C q
h(q) = T nela ne@ (6.181)
The static structure factor is then
A 1
S(q)=1+nh(q) = ——— . (6.182)
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In the grand canonical ensemble, we can write

1+nh(0) 1 1 ) K9,
_ _ . . _q1_fr 1
T nk,T nk,T 1—n¢(0) né(0) kp o (6.183)

where % = 1/nk,T is the ideal gas isothermal compressibility.

At this point, we have merely substituted one unknown function, h(r), for another, namely c(r). To
close the system, we need to relate ¢(r) to h(r) again in some way. There are various approximation
schemes which do just this.

Ornstein-Zernike approximation at long wavelengths

Let’s expand the direct correlation function ¢(g) in powers of the wavevector g, viz.
éq) =¢0) +egq® vegqt+.. (6.184)

Here we have assumed spatial isotropy. Then

1
1-nél@)=—=——=1-—né0)—ncyg*>+ ...
9=50 ) =ney (6.185)
=PRP 4+ PR+ O(qY)
where
R>= —ncy= 27m/dr rhe(r) (6.186)
0
and oy o
5_2:1—716(0) :1—477710{0 drr e(r) ' (6.187)
R? 2mn [y dr v e(r)

The quantity R(T) tells us something about the effective range of the interactions, while {(T') is the
correlation length. As we approach a critical point, the correlation length diverges as a power law:

ET) ~ AT —T.|7" . (6.188)

The susceptibility is given by

B nBR™2
R RNCIE)

X(q) = —nBS(q) = (6.189)

In the Ornstein-Zernike approximation, one drops the O(q?) terms in the denominator and retains only the
long wavelength behavior. in the direct correlation function. Thus,

nBR™2
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We now apply the inverse Fourier transform back to real space to obtain X°%(r). In d = 1 dimension the
result can be obtained exactly:

oz n dg el ng —|=|/€
2 () — dq _ . 6.191
Xa=1 () ke TR / or €21 ¢2 2k, TR2C (6.191)

In higher dimensions d > 1 we can obtain the result asymptotically in two limits:

e Take r — oo with £ fixed. Then

NPy = Oy S e (43 (6.192)
a ()= =Can: kT R2 (=12 r/€ ’ '

where the C; are dimensionless constants.

e Take £ — oo with r fixed; this is the limit 7" — T, at fixed r. In dimensions d > 2 we obtain

Chn e /¢ d—3

In d = 2 dimensions we obtain

XOZ, (1) =~ —5%22 -ln<§> e T/ {1 + O(ﬁ)} : (6.194)

where the C/, are dimensionless constants.

At criticality, £ — oo, and clearly our results in d = 1 and d = 2 dimensions are nonsensical, as they are
divergent. To correct this behavior, M. E. Fisher in 1963 suggested that the OZ correlation functions in
the r < & limit be replaced by

&n e~ /¢

~—-C'n- . 6.195
X(’T‘) an kBTR2 rd—2+n 7’ ( )

a result known as anomalous scaling. Here, 1) is the anomalous scaling exponent.

Recall that the isothermal compressibility is given by k. = —X(0). Near criticality, the integral in X(0) is
dominated by the r < £ part, since { — oco. Thus, using Fisher’s anomalous scaling,

op = —X(0) = — /ddr X(r)
e (6.196)

€ 2— —(2=n)v
NA/ddr 7“1—2+77NBg "~CIT-T,| e

where A, B, and C' are temperature-dependent constants which are nonsingular at 7' = 7. Thus, since
kp o< [T —T,|~7, we conclude
y=@-nv | (6.197)

a result known as hyperscaling.



340 CHAPTER 6. CLASSICAL INTERACTING SYSTEMS

6.5 Coulomb Systems : Plasmas and the Electron Gas

6.5.1 Electrostatic potential

Coulomb systems are particularly interesting in statistical mechanics because of their long-ranged forces,
which result in the phenomenon of screening. Long-ranged forces wreak havoc with the Mayer cluster
expansion, since the Mayer function is no longer integrable. Thus, the virial expansion fails, and new
techniques need to be applied to reveal the physics of plasmas.

The potential energy of a Coulomb system is

_1 / d / &4 p(ryulr — 1) p(r') (6.198)
where p(r) is the charge density and u(r), which has the dimensions of (energy)/(charge)?, satisfies
Viu(r — ') = —4wé(r — 1) . (6.199)
Thus,
2|z -2 ,d=1
u(r) =9 —2Injr—7'| ,d=2 (6.200)
lr — /|71 d=3

For discete particles, the charge density p(r) is given by
=Y ad(r—=z) | (6.201)

where ¢ is the charge of the i*! particle. We will assume two types of charges: ¢ = +e, with e > 0. The
electric potential is

= / d% u(r — ') p(r') = Z g u(r—wz;) . (6.202)

This satisfies the Poisson equation, V2¢(r) = —4mp(r) . The total potential energy can be written as

/ d% ¢ (r) qu z;) (6.203)

where it is understood that we omit self-interaction terms.

6.5.2 Debye-Hiickel theory

We now write the grand partition function:

—_ —-N_d
E(T, Vg, i Z Z N R AT N—eﬁﬂ A
N,=0N_=0 (6.204)

. /ddf’l /ddr _BU(rl ’ ""TNcoc)
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where N, = N, + N_. We adopt a mean field approach, known as Debye-Hiickel theory, writing

p(r) =p(r) +dp(r) . o(r)=o(r)+d¢(r) . (6.205)
We then have

U= [ [ptr) + 5p(r)] - [3(r) + 59(r)]

these two terms are the same

=& [ () plr)+ § [ b o) sptr) + § [t ptr) s9(r) +5 [ abap(r) d0(0)

ignore fluctuation term (6206)
= [ty otr) + [t o)ty 4 [t sptr)so(r)
= ~Uy+ [ i) ) + (cts)?
where U, = %fddr o(r) p(r), and we where have used 6p = p — p. Thus we have
= = eVo/keT oxp <z+)\jrd /ddr+ e‘ed_’(r+)/kBT> exp (z_)\:d /ddr_ e ‘Z’(T)/kBT> (6.207)
whence
T, Vg i) = —Upy — kg T2y AT /d expl— €2 kBTz_A:d/ddr exp(+ <20 (6.208)
k,T kT
where )
. 2mh N M+
AL = <mik‘BT> , Zy = exp<kBT> . (6.209)
Note that since ¢(r) = [dér’ r’) p(r') is a linear functional of p(r), we have
3U, _
— =p(r) . (6.210)
sor) ")
We next demand that the free energy {2 is extremized with respect to the mean field ¢(r), viz.
i L ed(r) —d eo(r)
= m =—p(r)+eX "z, exp<— kT —eA’%z_ exp|+ kT . (6.211)
At r — oo, we assume charge neutrality and ¢(oo) = 0. Thus
)\jrd 2z, =n (00) = A2 =n_(c0)=n, (6.212)

where n_ is the ionic density of either species at infinity. Therefore,

p(r) = —2en_, sinh<e]i(;)> , (6.213)
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where we have dropped the bars on ¢ and j for convenience. We now invoke Poisson’s equation,
V2p = 8men,, sinh(Beg) — 4mpoy (6.214)

where p,, is an externally imposed charge density.

If ep < k,T, we can expand the sinh function and obtain
V2¢ = H2D (b - 47Tpoxt ’ (6215)

where

2\1/2 1/2
Ky = (8””006 ) LA, = ( T ) . (6.216)

k,T 8mn €2

The quantity A, is known as the Debye screening length. Consider, for example, a point charge () located
at the origin. We then solve Poisson’s equation in the weak field limit,

V2% = kK2 ¢ —4mQo(r) . (6.217)
Fourier transforming, we obtain

47 Q

T +r

~@*d(q) =KL P(q) —4mQ = ¢(q) (6.218)

Transforming back to real space, we obtain, in three dimensions, the Yukawa potential,

o(r) = / (dgq Qe _ Q. emor (6.219)

2m)3 @+ K 7

This solution must break down sufficiently close to r = 0, since the assumption e¢(r) < kT is no longer
valid there. However, for larger r, the Yukawa form is increasingly accurate.

For another example, consider an electrolyte held between two conducting plates, one at potential ¢(z =
0) = 0 and the other at potential ¢(x = L) = V, where & is normal to the plane of the plates. Again
assuming a weak field e¢ < kT, we solve V2¢ = k2 ¢ and obtain

¢(x) = Ae™¥ 4+ Be "0 | (6.220)
We fix the constants A and B by invoking the boundary conditions, which results in

sinh(kyx)

p(z) =V - Snh(r, L) (6.221)

Debye-Hiickel theory is valid provided n, A3 > 1, so that the statistical assumption of many charges
in a screening volume is justified.
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6.5.3 The electron gas : Thomas-Fermi screening

Assuming kT < ey, thermal fluctuations are unimportant and we may assume 7' = 0. In the same

spirit as the Debye-Hiickel approach, we assume a slowly varying mean electrostatic potential ¢(r).
Locally, we can write

h2 k2

Ep = E

—ed(r) . (6.222)

2m
Thus, the Fermi wavevector £y, is spatially varying, according to the relation

2m 1/2
kp(r) = [ﬁ <5F + eqﬁ(r))} . (6.223)
The local electron number density is
3 3/2
n(r) = k; (Z) =Ny <1 + —e(b(r)) : (6.224)

In the presence of a uniform compensating positive background charge p, = en,, Poisson’s equation
takes the form

ed(r)\"?
V2p = dmen,, - (1 + = ) — 1| —Ampa(r) - (6.225)
F
If ep < e, we may expand in powers of the ratio, obtaining
9 67N e 9
V26 = T = K ¢ — Ampeg (1) (6.226)
F

Here, k. is the Thomas-Fermi wavevector,

2\ 1/2
oy = (6”2006 > . (6.227)
F

Thomas-Fermi theory is valid provided n, A2, > 1, where A\, = k1, so that the statistical assumption
of many electrons in a screening volume is justified.

One important application of Thomas-Fermi screening is to the theory of metals. In a metal, the outer,
valence electrons of each atom are stripped away from the positively charged ionic core and enter into
itinerant, plane-wave-like states. These states disperse with some (k) function (that is periodic in the
Brillouin zone, i.e. under k — k + G, where G is a reciprocal lattice vector), and at 7" = 0 this energy band
is filled up to the Fermi level ¢, as Fermi statistics dictates. (In some cases, there may be several bands
at the Fermi level, as we saw in the case of yttrium.) The set of ionic cores then acts as a neutralizing
positive background. In a perfect crystal, the ionic cores are distributed periodically, and the positive
background is approximately uniform. A charged impurity in a metal, such as a zinc atom in a copper
matrix, has a different nuclear charge and a different valency than the host. The charge of the ionic core,
when valence electrons are stripped away, differs from that of the host ions, and therefore the impu-
rity acts as a local charge impurity. For example, copper has an electronic configuration of [Ar] 3d'° 4s!.
The 4s electron forms an energy band which contains the Fermi surface. Zinc has a configuration of
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[Ar] 3d'% 4s?, and in a Cu matrix the Zn gives up its two 4s electrons into the 4s conduction band, leav-
ing behind a charge +2 ionic core. The Cu cores have charge +1 since each copper atom contributed only
one 4s electron to the conduction band. The conduction band electrons neutralize the uniform positive
background of the Cu ion cores. What is left is an extra Q = +e nuclear charge at the Zn site, and one
extra 4s conduction band electron. The () = +e impurity is, however, screened by the electrons, and at
distances greater than an atomic radius the potential that a given electron sees due to the Zn core is of
the Yukawa form,

o(r) = Q. e "rE" (6.228)

T

We should take care, however, that the dispersion (k) for the conduction band in a metal is not neces-
sarily of the free electron form e(k) = h%k?/2m. To linear order in the potential, however, the change in
the local electronic density is

on(r) =ep(r)gleg) (6.229)

where g(ey,) is the density of states at the Fermi energy. Thus, in a metal, we should write

V2 = (—4r)(—edn) = drwe’g(ep) ¢ = K2 ¢ (6.230)

Kop = £/4T€2 g(ep) . (6.231)

The value of g(e) will depend on the form of the dispersion. For ballistic bands with an effective mass
m*, the formula in eqn. 6.226 still applies.

where

The Thomas-Fermi atom

Consider an ion formed of a nucleus of charge +Ze and an electron cloud of charge —Ne. The net ionic
charge is then (Z — N)e. Since we will be interested in atomic scales, we can no longer assume a weak
tield limit and we must retain the full nonlinear screening theory, for which

/
Vo) = dre- OV (oo com))”* —anzeotr) (6232

We assume an isotropic solution. It is then convenient to define

ep +ed(r) = = X(r/ry) (6.233)

where r is yet to be determined. As r — 0 we expect X — 1 since the nuclear charge is then unscreened.
We then have

2 2
v {Z o)} = 5 Z ) (6234

thus we arrive at the Thomas-Fermi equation,

X"(t) = % X32(t) (6.235)
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= T - - X unstable

Figure 6.17: The Thomas-Fermi atom consists of a nuclear charge +Ze surrounded by N electrons
distributed in a cloud. The electric potential ¢(r) felt by any electron at position 7 is screened by the
electrons within this radius, resulting in a self-consistent potential ¢(r) = ¢ + (Ze?/r) X(r /7).

with r = tr, provided we take

h2 3T 2/3
S =0.885771/3 6.236
o 2me2 <4\/7> ag ( )

where a; = miig = 0.529 A is the Bohr radius. The TF equation is subject to the following boundary
conditions:

e At short distances, the nucleus is unscreened, i.e. X(0) = 1.

e For positive ions, with N < Z, there is perfect screening at the ionic boundary R = t* ), where
X(t*) = 0. This requires

Ze? Ze? . (Z—N)e
FE = —V(Z5 = —ﬁ X(R/TO) + R—T‘O X/(R/TO) r = T T . (6237)
This requires
* (1% N

For an atom, with N = Z, the asymptotic solution to the TF equation is a power law, and by inspection
is found to be X(t) ~ C't~3, where C is a constant. The constant follows from the TF equation, which
yields 12C = C3/2, hence C' = 144. Thus, a neutral TF atom has a density with a power law tail, with
p ~r~ % TFions with N > Z are unstable.
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6.6 Appendix: Potts Model in One Dimension

6.6.1 Hamiltonian

The Potts model is defined by the Hamiltonian

H=-7) e Z 0pr - (6.239)
(i) i
Here, the spin variables o, take values in the set {1,2,...,q} on each site. The equivalent of an ex-

ternal magnetic field in the Ising case is a field h which prefers a particular value of o (¢ = 1 in the
above Hamiltonian). Once again, it is not possible to compute the partition function on general lattices,
however in one dimension we may once again find Z using the transfer matrix method.

6.6.2 Transfer matrix

On a ring of N sites, we have

Z=Tre Pt = Z M1 0010y L PMoya oy (RN) ; (6.240)
{on}

where the ¢ x ¢ transfer matrix R is given by

(PU+h) ifo=0¢' =1
e’ ifo=0#1
R, = 0ol 3o 03000010 — L 812 if 5 = 1and o’ # 1 (6.241)
ePh/2 ifeo#1land o’ =1
1 ifo#A1land o’ # land o # o’
In matrix form,
BU+h)  Bh/2 Bh/2 oBh/2
eBh/2 BT 1 . 1
ePh/2 1 P e 1
R=| | L . (6.242)
ePh/2 1 1 e @B 1
ePh/2 1 1 e 1 e8I
The matrix R has ¢ eigenvalues A s with j = 1,...,q. The partition function for the Potts chain is then
Z=> Ay . (6.243)

J=1
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We can actually find the eigenvalues of R analytically. To this end, consider the vectors

1 ePh/?
0 o1z | 1
o= . = (g— 1+ : . (6.244)
0 1
Then R may be written as
R= (e’ 1)1+ (g—1+™)[¥) (W |+ (77 —1)(” —1)| o) (o] , (6.245)

where I is the ¢ x ¢ identity matrix. When h = 0, we have a simpler form,
R= (" = 1)I+q|y)(¢] . (6.246)
From this we can read off the eigenvalues:

)\1:GBJ+(]—1

6.247
N=e -1 je{2,..q ( )

since |1 ) is an eigenvector with eigenvalue A\ = ¢’/ 4+ ¢ — 1, and any vector orthogonal to |¢) has
eigenvalue \ = ¢?/ — 1. The partition function is then

Z = +q-1)" 1 (-1 - 1)V (6.248)
In the thermodynamic limit N' — oo, only the ), eigenvalue contributes, and we have
F(T,N,h =0) = —Nk,Tln (/%" 4 ¢—1)  for N o0 . (6.249)

When h is nonzero, the calculation becomes somewhat more tedious, but still relatively easy. The prob-
lem is that |1 ) and | ¢ ) are not orthogonal, so we define

1—(¢|p)?
where
eBh 1/2
r=(o|Y)= <m> . (6.251)

Now we have (X | ) =0, with (X|X) =1and (¢ |¢) = 1, with

(@) =V1i=—2[x)+z|y) . (6.252)
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and the transfer matrix is then
R= (" = 1)1+ (¢—1+e™) |v)(¢]

+ (e —1) (P —1) [(1—:132)|X><X|—|—:L"2|¢>(1/)|+:L"\/1—:L"2 (|X><¢|+|¢><XI>]

— (B _
—(e 1)]I+ — 1+

eBh
(g—1+e") + (77 — 1) (" —1) <7>] | ) (2| (6.253)

e =)@ 1) () U]

—1)ePh\M?
e e - 1) (5D (ol +le)d)

which in the two-dimensional subspace spanned by | X ) and | ) is of the form

a ¢
R= (C b) . (6.254)
Recall that for any 2 x 2 Hermitian matrix,
. —_ (agtas ay — 10y
M=qal+a 1= <a1+ia2 ao—a3> ) (6.255)

the characteristic polynomial is

P(\) =det (\[— M) = (A —ag)* —a} —a3 — a3 , (6.256)

Ay =agEty/ai+ad+d} . (6.257)

For the transfer matrix of eqn. 6.253, we obtain, after a little work,

and hence the eigenvalues are

Mg =€ =14 dlg— 144 (M - 1) (M 1) (6.258)

i%\/[q— 1+ efh  (eB) — 1) (ePh — 1)]2—4(q— 1)(ef —1)(efh —1)

There are g — 2 other eigenvalues, however, associated with the (¢—2)-dimensional subspace orthogonal
to | X) and | ¢ ). Clearly all these eigenvalues are given by

N=el -1 Gje{3,..qt . (6.259)

The partition function is then
Z=X 4+ +@q-2))\ |, (6.260)

and in the thermodynamic limit N — oo the maximum eigenvalue \; dominates. Note that we recover
the correct limit as h — 0.
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7.2 The van der Waals system

7.2.1 Equation of state

Recall the van der Waals equation of state,

a
<p + W) (v—=b)=RT (7.1)
where v = N, V/N is the molar volume. Solving for p(v, T'), we have
RT a
_ _a 7.2

Let us fix the temperature 7' and examine the function p(v). Clearly p(v) is a decreasing function of
volume for v just above the minimum allowed value v = b, as well as for v — oco. But is p(v) a monotonic
function for all v € [b, 00]?

We can answer this by computing the derivative,

op\ _ 2a RT
G5 &

Setting this expression to zero for finite v, we obtain the equation'

2a _ ud
bRT  (u—1)2

(7.4)

where u = v/b is dimensionless. It is easy to see that the function f(u) = u?/(u — 1)? has a unique
minimum for u > 1. Setting f'(u*) = 0 yields u* = 3, and so f,;, = f(3) = Z. Thus, for T > T, =
8a/27bR, the LHS of eqn. 7.4 lies below the minimum value of the RHS, and there is no solution. This
means that p(v, T > T,) is a monotonically decreasing function of v.

At T = T, there is a saddle-node bifurcation. Setting v, = bu* = 3b and evaluating p. = p(v., T,), we
have that the location of the critical point for the van der Waals system is’

_a _ 8a
27h2 ’ ¢ 27bR

Pe (7.5)

For T' < T, there are two solutions to eqn. 7.4, corresponding to a local minimum and a local maximum
of the function p(v). The locus of points in the (v, p) plane for which (dp/0v),. = 0 is obtained by setting
eqn. 7.3 to zero and solving for 7', then substituting this into eqn. 7.2. The result is

. a  2ab
pr(v)=—5-—

Sy (7.6)

IThere is always a solution to (9p/dv), = 0 at v = co.

2Equivalently, one can obtain the location of the saddle-node bifurcation in the local extrema of p(T,v) by
setting (9p/0v)r = 0 and (8%p/dv?)r = 0. This yields two equations for the two unknowns (7%, v.). Invoking the
van der Waals equation of state then yields p. = p(T, v).
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AV]

pressure p/p,

—_—
IIII|IIII|IIII|IIII

molar volume v/v,

Figure 7.1: Pressure versus molar volume for the van der Waals gas at temperatures in equal intervals
from T = 1.10T¢. (red) to T' = 0.85 T (blue). The purple curve is p* ().

Expressed in terms of dimensionless quantities p = p/p. and v = v/v,, this equation becomes

3 2

)= (7.7)

Along the curve p = p*(v), the isothermal compressibility, ,, = —v~!(dv/dp),, diverges, heralding
a thermodynamic instability. To understand better, let us compute the free energy of the van der Waals
system, F' = E — T'S. Regarding the energy F, we showed back in chapter 2 that

Oe dp a
=) =7 X)) —p=2= 7.
(), =7 () »=3 79
which entails a
e(T,v) = LfRT — - (7.9)

where ¢ = E /v is the molar internal energy. The first term is the molar energy of an ideal gas, where f is
the number of molecular freedoms, which is the appropriate low density limit. The molar specific heat

is then ¢, = (0¢/9T) = 3fR, which means that the molar entropy is

s(T,v) = / ZT’ % = LHfRIn(T/T,) + s,(v) . (7.10)

We then write f = ¢ — T's, and we fix the function s, (v) by demanding that p = —(8f/8v)... This yields
51(v) = RIn(v — b) + s,, where s, is a constant. Thus®,

F(T,v) = HRT (1 - ln(T/TC)> . % ~ RTIn(v—b) —Ts, . (7.11)
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gas a <Lri'oki§r) b (%) p. (bar) | T, (K) | v, (I/mol)
Acetone 14.09 0.0994 52.82 505.1 0.2982
Argon 1.363 0.03219 | 48.72 150.9 0.0966
Carbon dioxide 3.640 0.04267 | 7404 304.0 0.1280
Ethanol 12.18 0.08407 | 63.83 516.3 0.2522
Freon 10.78 0.0998 40.09 384.9 0.2994
Helium 0.03457 0.0237 2.279 5.198 0.0711
Hydrogen 0.2476 0.02661 | 12.95 33.16 0.0798
Mercury 8.200 0.01696 1055 1723 0.0509
Methane 2.283 0.04278 | 46.20 190.2 0.1283
Nitrogen 1.408 0.03913 | 34.06 128.2 0.1174
Oxygen 1.378 0.03183 | 50.37 154.3 0.0955
Water 5.536 0.03049 | 220.6 647.0 0.0915

Table 7.1: van der Waals parameters for some common gases. (Source: Wikipedia)

We know that under equilibrium conditions, f is driven to a minimum by spontaneous processes. Now
suppose that (9°f /0v?) . < 0 over some range of v at a given temperature T'. This would mean that one
mole of the system at volume v and temperature 7" could lower its energy by rearranging into two half-
moles, with respective molar volumes v + ¢v, each at temperature T'. The total volume and temperature
thus remain fixed, but the free energy changes by an amount A f = 3 (92f/0v?),(6v)* < 0. This means
that the system is unstable — it can lower its energy by dividing up into two subsystems each with
different densities (i.e. molar volumes). Note that the onset of stability occurs when

o0*f

v

__op
T_ ov

-1y, (7.12)

T Ukp

which is to say when £, = co. As we saw, this occurs at p = p*(v), given in eqn. 7.6.

However, this condition, (82f / 81}2)T < 0, is in fact too strong. That is, the system can be unstable even

at molar volumes where (9f/9v?),, > 0. The reason is shown graphically in fig. 7.2. At the fixed
temperature 7, for any molar volume v between vy ;4 = v; and v,,, = v,, the system can lower its free
energy by phase separating into regions of different molar volumes. In general we can write

v=(1—-x)v; +zvy |, (7.13)
so v = v; when z = 0 and v = v, when = = 1. The free energy upon phase separation is simply
f=0-a)fitxf, , (7.14)

where f; = f(v;,T). This function is given by the straight black line connecting the points at volumes
v; and v, in fig. 7.2.

3Don’t confuse the molar free energy (f) with the number of molecular degrees of freedom (f)!
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Figure 7.2: The molar free energy f(7,v) of the van der Waals system at 7' = 0.85 7. The dot-dashed
black line shows the Maxwell construction connecting molar volumes v » on opposite sides of the coex-
istence curve.

The two equations which give us v; and v, are

g — g — f(Tv U2) — f(Tv Ul) . (715)
v vy, T v vy, T (U2 - Ul)
Equivalently, in terms of the pressure, p = —(9f/ Z?v)T , these equations are equivalent to
1
p(T0) = p(Tvy) = —— [dop(T0) 7.16)
U2 ™1
U1

This procedure is known as the Maxwell construction, and is depicted graphically in fig. 7.4. When
the Maxwell construction is enforced, the isotherms resemble the curves in fig. 7.3. In this figure, all
points within the purple shaded region have 9%f /9v? < 0, hence this region is unstable to infinitesimal
fluctuations. The boundary of this region is called the spinodal, and the spontaneous phase separation
into two phases is a process known as spinodal decomposition. The dot-dashed orange curve, called the
coexistence curve, marks the instability boundary for nucleation. In a nucleation process, an energy barrier
must be overcome in order to achieve the lower free energy state. There is no energy barrier for spinodal
decomposition — it is a spontaneous process.

Suppose we follow along an isotherm starting from the high molar volume (gas) phase. If 7' > T, the
volume v decreases continuously as the pressure p increases. If T' < T, then at the instant the isotherm
first intersects the orange boundary curve in fig. 7.3, there is a discontinuous change in the molar volume
from high (gas) to low (liquid). This discontinuous change is the hallmark of a first order phase transition.
Note that the volume discontinuity, Av = w_ (T, — T)/2. This is an example of a critical behavior in
which the order parameter ¢, which in this case may be taken to be the difference ¢ = v; — v, behaves as
apower law in |7 — 1|, where T, is the critical temperature. In this case, we have ¢(T') o (T, — T)i, where
g = % is the exponent, and where (7T, — T') is defined to be T, — T'if T' < T, and 0 otherwise. Recall
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pressure p/p,
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0.5 1 1.5 2 2.0 3
molar volume v/v,_

Figure 7.3: Pressure-volume isotherms for the van der Waals system, as in fig. 7.1, but corrected to
account for the Maxwell construction. The boundary of the purple shaded region is the spinodal line
p*(v). The boundary of the orange shaded region is the stability boundary with respect to phase sepa-
ration, and is called the coexistence curve.

the isothermal compressibility is k;, = —v™!(9v/ 8p)T. This is finite along the coexistence curve — it
diverges only along the spinodal. It therefore diverges at the critical point, which lies at the intersection
of the spinodal and the coexistence curve.

It is convenient to express the equation of state and the coexistence curve in terms of dimensionless
variables. Writing
D v

- T
p=— , v=— , T=— |, (7.17)
pC UC TC
the dimensionless van der Waals equation of state takes the form
8T 3
p = - = 7.18
P=3—1 (7.18)

7.2.2 Analytic form of the coexistence curve near the critical point

We write v, = v, + w, and vg = v + wg. One of our equations is p(v, + w,T) = p(v. + wg, T'). Taylor
expanding in powers of w, and w¢, we have

0= pv(vcv T) (wG - wL) + %pvv(vca T) (w% - wE) + %pvvv(vm T) (w% - wi) + ... ) (719)

where
Op 9%p Pp 0%p

=P =P fe. 7.20
Po=%y » Pw=5332 » P =53 o BT =505 0 O (7.20)
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Figure 7.4: Maxwell construction in the (v, p) plane. The system is absolutely unstable between volumes
vg and ve. For v € [v,,v4] of v € [ve, v¢], the solution is unstable with respect to phase separation. Source:
Wikipedia.

The second equation we write as

e

[ w b+ w.7) = $wg = w) (ploc + . T) +ploc + w6, 7)) 7.21)

Wy
Expanding in powers of w; and w, this becomes
p(’UC,T) (wG - wL) + %pv(UoT) (wé - ZUE) + %pvv(vch) (w?G’ - wf)

+ 2_14pvvv(vc7T) (wé - wé) + 1_%()pvvvv(vc7T) (wg - wE) T+

1 ) 5 5 (7.22)
= 5(wg — ’wL){QP(UuT) + Py (v, T) (wg + W) + 5 Doy (v, T) (W + wi)
4 Do (06 T) (wh +00) + 3 Py (Ve T) (w0 + ) + . }
Subtracting the LHS from the RHS, we find that we can then divide by % (wg — w}), resulting in
0= pvv(vc’ T) + %pvvv(vo T) (wG + wL) + % Pyvov (Ucv T) (3?,0(23 + 4wGwL + 3ZUE) + O(w?G’,L) . (723)
We now define w, = wg £ w, . In terms of these variables, eqns. 7.19 and 7.23 become
0= py (Ve T) + 3 Py (v, T) 01 + § Py (v, T) (Wl + 3w2) +O(wl)
(7.24)

0= pyy(ve, T) + %pvvv(UmT) wy + %pvvvv(UC’T) (w—zl- + %w%) + O(w?t)
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We now write T' = T, + © and evaluate w, as expansions in ©. Note that p, (v, T.) = p,, (v, T.) = 0,

since the critical point is an inflection point in the (v, p) plane. Thus, we have p, (v., T) = p2r 6+ 0(6?),
where p%. = p, (v, T.). We can then see that w_ oc /=6, while w, o< © as ©® — 0~, and we have

0= por O + 57 Py w2 + O(67)

(7.25)
0 = Pz O + 5 Py W + 15 Py 0> + O(0?)
Thus,
24 p0 \M/?
w_=< Op”T> V=6 +
b o (7.26)
6 pO7 POy — 1000, PO,
— U VVVU VvUVU VU () .
o ( 5 (P000)? "
We then have
6p0. \/? 3 5
w, = < va) m_i_ < vapvmw pmw pva)@ + 0(83/2)
]9vvv 5 (])UUU) (7,2;7)

6p2T 1/2 3va pvvvv 5pvvv pva 3/2

Close to the critical point, the dimensionless equation of state may be written as © = 7 (e, t), where
p=14+7 , v=14¢ , T=1+t |, (7.28)
where 7(0,0) = 0. Equivalently,

— — T-T,
_ PP , Ezv Ue . t= S (7.29)
Pe Ve T.

Here 7, ¢, and ¢ are, respectively, the dimensionless deviations of pressure, molar volume, and tempera-
ture from their critical point values. For the van der Waals equation of state in eqn. 7.18, we have

s(1+t) 3
243 (1+¢)? (7.30)
=4t — 6te + 9e°t — 36 — Pt + et + Blett — Ped + .

(e, t) =

Expressed in these dimensionless quantities, eqns. 7.27 take the form

67T8 1/2 37T8 ﬂ-eoeee B 57Teee 7TS€
Le= x(wo t) (=0 + < BECDE t)t+0(<—t>3/2) : (7.31)

€EE

For the van der Waals system , we have

=6 , 7°,=18 , 72 =-9 =126 (7.32)

EEEE
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Figure 7.5: Universality of the liquid-gas transition for eight different atomic and molecular fluids,
from E. A. Guggenheim, J. Chem. Phys. 13, 253 (1945). Dimensionless temperature T = T/T. versus
dimensionless number density 7 = n/n. = v./v is shown. The van der Waals / mean field theory
gives An = Nijiquid — gas < (—t)/2, while experiments show a result closer to An o (—t)'/3. Here
t=T-1= (T —T.)/T. is the dimensionless temperature deviation with respect to the critical point.
(Image adapted from Matthew Schwartz’s Harvard lecture notes, adapted from Guggenheim 1945.)

where the derivatives are evaluated at critical point, where ¢ = t = 7 = 0. Thus, for van der Waals,
Qo=F2vV—t—Ht+... . (7.33)

We identify the difference Av = v| — v as the order parameter for the transition which occurs at 7' = T..
We see that the order parameter behaves as a power law for 7" just below the critical point, with Av
(—t)? and B = %, which is the order parameter critical exponent.

The spinodal boundary for the vdW system is then given by the solution to

0
O_W = —6t 4 18et — %62 — %ezt +213 4+ ... . (7.34)
€

For the spinodal, is easy to see that the lowest order nontrivial solution is € = $%\/ —t. For the coexis-

tence curve, we found ¢, o = F2v/—t.

Fig. 7.5 shows the universality of the liquid-gas transition for eight different fluids: Ne, Ar, Kr, Xe, Ny,
O3, CO, and CH4. The experimental coexistence curve expressed in dimensionless variables n = 1/v
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and T = T/T, is fairly well-fit to the curve®
iLe(t) =111 -1)"+ 51 -1) (7.35)

which shows that the critical exponent 5 is much closer to 5 = % than to the vdW value V4V = % The
van der Waals equation is in essence a mean field theory of the liquid-gas transition.

7.2.3 History of the van der Waals equation

“

The van der Waals equation of state first appears in van der Waals’ 1873 PhD thesis®, “Over de Continuiteit
van den Gas - en Vloeistoftoestand” (“On the continuity of the gas and liquid state”). In his Nobel lecture®,
van der Waals writes of how he was inspired by Rudolf Clausius’ 1857 treatise on the nature of heat,
where it is posited that a gas in fact consists of microscopic particles whizzing around at high velocities.
van der Waals reasoned that liquids, which result when gases are compressed, also consist of “small
moving particles”: "Thus I conceived the idea that there is no essential difference between the gaseous and the
liquid state of matter...”

Clausius’ treatise showed how his kinetic theory of heat was consistent with Boyle’s law for gases (pV =
constant at fixed temperature). van der Waals pondered why this might fail for the non-dilute liquid
phase, and he reasoned that there were two principal differences: inter-particle attraction and excluded
volume. These considerations prompted him to posit his famous equation,

RT a

_ _a 7.
v—>b w2 (7.36)

p

The first term on the RHS accounts for excluded volume effects, and the second for mutual attractions.

In the limiting case of p — oo, the molar volume approaches v = b. On physical grounds, one might
expect b = v/, where v, = N, w, is N, times the volume w, of a single molecule, and the packing fraction
is ( = Nw/V = v,/v, which is the ratio of the total molecular volume to the total system volume. In
three dimensions, the maximum possible packing fraction is for fcc and hcp lattices, each of which have
coordination number 12, with (.. = 3L\/§ = 0.74078. Dense random packing results in (;,,, = 0.634.
Expanding the vdW equation of state in inverse powers of v yields

__RT a RT _3
p—7+<b—ﬁ>-v—2+(’)(v ) s (737)

and we read of the second virial coefficient B, = (b - %) /N,. For hard spheres, a = 0, and the result
B, = 4w, from the Mayer cluster expansion corresponds to by, .. = 4v,, which is larger than the result

from even the loosest regular sphere packing, i.e. that for a cubic lattice, with (_,, = .

4See M. Schwartz, https://scholar.harvard.edu/files/schwartz/files/9-phases.pdf.

5Johannes Diderik van der Waals, the eldest of ten children, was the son of a carpenter. As a child he received
only a primary school education. He worked for a living until age 25, and was able to enroll in a three-year
industrial evening school for working class youth. Afterward he continued his studies independently, in his spare
time, working as a teacher. By the time he obtained his PhD, he was 36 years old. He received the Nobel Prize for
Physics in 1910.

See http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf


https://scholar.harvard.edu/files/schwartz/files/9-phases.pdf
http://www.nobelprize.org/nobel_prizes/physics/laureates/1910/waals-lecture.pdf
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The law of corresponding states

Another of van der Waals’ great achievements was his articulation of the law of corresponding states. Recall
that the van der Waals equation of state, when written in terms of dimensionless quantities p = p/p,,
v =v/v.,and T = T/T,, takes the form of eqn. 7.18. Thus, while the a and b parameters are specific to
each fluid — see Tab. 7.1 — when written in terms of these scaled dimensionless variables, the equation
of state and all its consequent properties (i.e. the liquid-gas phase transition) are universal.

The van der Waals equation is best viewed as semi-phenomenological. Interaction and excluded volume
effects surely are present, but the van der Waals equation itself only captures them in a very approximate
way. It is applicable to gases, where it successfully predicts features that are not present in ideal systems
(e.g. throttling). It is of only qualitative and pedagogical use in the study of fluids, the essential physics
of which lies in the behavior of quantities like the pair distribution function g(r). As we saw in chapter
6, any adequate first principles derivation of g(r) - a function which can be measured in scattering
experiments - involves rather complicated approximation schemes to close the BBGKY hierarchy. Else
one must resort to numerical simulations such as the Monte Carlo method. Nevertheless, the lessons
learned from the van der Waals system are invaluable and they provide us with a first glimpse of what is
going on in the vicinity of a phase transition, and how nonanalytic behavior, such as v — v, o (T, — T)?
with noninteger exponent 5 may result due to singularities in the free energy at the critical point.

7.3 Fluids, Magnets, and the Ising Model

7.3.1 Lattice gas description of a fluid

The usual description of a fluid follows from a continuum Hamiltonian of the form

. N 52
Ap,z)=Y % +3 ulz; —x;) (7.38)
i=1

1<j

The potential u(r) is typically central, depending only on the magnitude |r|, and short-ranged. Now
consider a discretized version of the fluid, in which we divide up space into cells (cubes, say), each of
which can accommodate at most one fluid particle (due to excluded volume effects). That is, each cube
has a volume on the order of a®, where a is the diameter of the fluid particles. In a given cube i we set
the occupancy n; = 1 if a fluid particle is present and n; = 0 if there is no fluid particle present. We then
have that the potential energy is

1<J R#R/

where Vi, = v(R — R'), where R, is the position at the center of cube k. The grand partition function
is then approximated as

E(T,V,p) =) <H5"R> eXp<—%/3 > Var anR/> 7 (7.40)

{ng} R RAR/
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Figure 7.6: The lattice gas model. An occupied cell corresponds to n = 1 (¢ = +1), and a vacant cell to
n=0(c=-1).

where ¢ = ¢## A% a?, and where a is the side length of each cube (chosen to be on the order of the hard
sphere diameter). The )\;d factor arises from the integration over the momenta. Note ), np = N is the
total number of fluid particles, so

HgnR — gN — eﬁuN A;Nd CZNd ) (741)
R

Thus, we can write a lattice Hamiltonian,

ﬁ: % Z VRR’anR’ —k:BTln£ZnR
R#R’ R

) (7.42)
:—§ZJRR/O-RO'R/—HZO'R+EO s
R+R/ R
where o0 = 2np — 1is a spin variable taking the possible values {—1,+1}, and
/
JRR/ - —%VRR/ 3 H = %kBTlng - %Z VRR/ 5 EO = % Z VRR/ 3 (7.4:3)
R R£R'

where the prime on the sum indicates that R = R is to be excluded. For the Lennard-Jones system,
Ver = V(R — R') < 01is due to the attractive tail of the potential, hence J is positive, which prefers
alignment of the spins o, and op,. This interaction is therefore ferromagnetic. The spin Hamiltonian in
eqn. 7.42 is known as the Ising model.



7.3. FLUIDS, MAGNETS, AND THE ISING MODEL 361

7.3.2 Phase diagrams and critical exponents

The physics of the liquid-gas transition in fact has a great deal in common with that of the transition
between a magnetized and unmagnetized state of a magnetic system. The correspondences are’

p+— H , vE—mo,

where m is the magnetization density, defined here to be the total magnetization M divided by the
number of lattice sites N:

m = % = %Z<JR> . (7.44)
R

Sketches of the phase diagrams are reproduced in fig. 7.7. Of particular interest is the critical point, which
occurs at (T, p.) in the fluid system and (7, H,) in the magnetic system, with H, = 0 by symmetry.

C

In the fluid, the coexistence curve in the (p,T") plane separates high density (liquid) and low density
(vapor) phases. The specific volume v (or the density n = v~!) jumps discontinuously across the coex-
istence curve. In the magnet, the coexistence curve in the (H,T") plane separates positive magnetization
and negative magnetization phases. The magnetization density m jumps discontinuously across the
coexistence curve. For T' > T, the latter system is a paramagnet, in which the magnetization varies
smoothly as a function of H. This behavior is most apparent in the bottom panel of the figure, where
v(p) and m(H) curves are shown.

For T' < T, the fluid exists in a two phase region, which is spatially inhomogeneous, supporting local re-
gions of high and low density. There is no stable homogeneous thermodynamic phase for (7', v) within
the two phase region shown in the middle left panel. Similarly, for the magnet, there is no stable ho-
mogeneous thermodynamic phase at fixed temperature 7' and magnetization m if (7', m) lies within the
coexistence region. Rather, the system consists of blobs where the spin is predominantly up, and blobs
where the spin is predominantly down.

Note also the analogy between the isothermal compressibility «,. and the isothermal susceptibility X

1 /0ov om
S (R ) R -

with /{T(Tc,pc) = oo and XT(TC,HC) = 0o0.

The order parameter for a second order phase transition is a quantity which vanishes in the disordered
phase and is finite in the ordered phase. For the fluid, the order parameter can be chosen to be ¥
(Vyap — Vyy), the difference in the specific volumes of the vapor and liquid phases. In the vicinity of the
critical point, the system exhibits power law behavior in many physical quantities, viz.

m(T7 Hc) ~ (TC_T)ﬁ- ) X(T7 Hc) ~ ‘T_Tc’_ﬂy ) CM(T7 Hc) ~ ‘T_Tc‘_a ) m(TcﬂH) ~ i‘H‘l/é
(7.46)

’H is more properly analogous to u. However, since 1 = u(p,T), H can also be regarded as analogous to p.
Note also that Bp = 2\, for the ideal gas, in which case £ = z(a/\;)? is proportional to p/k,T.

8Note the distinction between the number of lattice sites N and the number of occupied cells N. According to
our definitions, N = (M + N).
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Figure 7.7: Comparison of the liquid-gas phase diagram with that of the Ising ferromagnet.

The quantities «, 3, v, and 0 are the critical exponents associated with the transition. These exponents
satisfy certain equalities, such as the Rushbrooke and Griffiths relations:

a+28+~ =2 (Rushbrooke) ) B+~ =066 (Griffiths) . (7.47)

Originally such relations were derived as inequalities, and only after the advent of scaling and renor-
malization group theories it was realized that they held as equalities.

In addition to the exponents ¢, 3, v, and d, one defines the correlation length exponent v from the behavior
of the two-point correlation function C(r,T") = (¢»(0) ¢(r)), where ¢ (r) is a local operator, such as the



7.3. FLUIDS, MAGNETS, AND THE ISING MODEL 363

local density in a fluid or the local spin polarization in a magnet’. In the limit 7' — 7., one has
Clr,T,h) =D o(r/&(T), H/g (T)) (7.48)

where 7 is the anomalous exponent, ¢(r/&, H/E,,) is a scaling function, §(T') o< |T — T,.|™" is the correlation
length, and &,,(T) o |T — T,|», with A = /35, is a field scale. As we have seen, for the lattice gas system
the effective magnetic field H is a proxy for the pressure or the chemical potential. Along with the new
exponents 1 and v come additional exponent relations,

2—nv=r , dv=2—a (hyperscaling) . (7.49)

Thus there are three relations among the six critical exponents «, 3, v, 6, , and v, which entails that
there are three independent values among the six.

7.3.3 Gibbs-Duhem relation for magnetic systems

Homogeneity of E(S, M, N) means E =TS + HM + uN, by Euler’s theorem. After invoking the First
Law dEE=TdS + HdM + uN S, we have

SdT'+ MdH+ Ndp=0 . (7.50)
Now consider two magnetic phases in coexistence. We must have dy; = dpu,, hence
dpy = —s;dl' —mydH = —sodT —mydH = dp, (7.51)

where m = M/N is the magnetization per site and s = S/N is the specific entropy. Thus, we obtain the
Clapeyron equation for magnetic systems,

dH 51— Sy
il =1 =2 7.52
< dr >CO€X my — My ( > )

Thus, if m; # my and (dH/dT) = 0, then we must have s; = s,, which says that there is no latent
heat associated with the transition. This absence of latent heat is a consequence of the symmetry which
guarantees that G(T, H,N) = G(T,—H, N).

Recall our discussion in §2.12.2 of the Clausius-Clapeyron relation for liquid-gas systems. From G =
E—-TS+pV = G(T,p, N), the differential of the Gibbs free energy per particle, 4 = G/N, is given by
du = —sdT + vdp, where v = V/N is the volume per particle!’. This leads to the Clapeyron relation,

dp 89 — 81 14
- = = 7.53
<dT>Coex Vg — U T Av 7 ( )

which determines the slope of the coexistence curve in the (7', p) plane.

The local ‘order parameter field” ¢(r) may carry vector or tensor indices. In general, it transforms as the
fundamental representation of the global symmetry group G.
10Tn §2.12.2 we considered, equivalently, the differential of the molar free energy g = N,

1, with v the molar
volume.
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7.3.4 Order-disorder transitions

Another application of the Ising model lies in the theory of order-disorder transitions in alloys. Exam-
ples include CuzAu, CuZn, and other compounds. In CuZn, the Cu and Zn atoms occupy sites of a
body centered cubic (BCC) lattice, forming an alloy known as -brass. Below T, ~ 740K, the atoms
are ordered, with the Cu preferentially occupying one simple cubic sublattice and the Zn preferentially
occupying the other.

The energy is a sum of pairwise interactions, with a given link contributing ¢, ,, €5, Or €, 5, depending
on whether it is an A-A, B-B, or A-B/B-A link. Here A and B represent Cu and Zn, respectively. Thus,
we can write the energy of the link (ij) as

Eij=¢na pr PJA +eps PP PJB + €an (PZ.A PyB + PP P]{*) , (7.54)
where

1 if site 7 contains Cu 1 if site 7 contains Zn

Pz'A:%(l—FUi):{ ; PzB:%(l—Ui):{

0 if site 7 contains Zn 0 if site 7 contains Cu

The Hamiltonian is then
H= ZEij = Z {%(EAA +€pp — 2€AB) 0,05+ %(EAA - EBB) (0; +0;) + %(EAA +épp + 2€AB)}
(ig) (ig)
(i) '

where the exchange constant J and the magnetic field H are given by
J = %(QEAB - 6AA - 6BB) ’ H = %(EBB - €AA) 3 (756)

and Ey = 1Nz(e,, + pp + 26,55), where N is the total number of lattice sites and z = 8 is the lattice
coordination number, which is the number of nearest neighbors of any given site.

Note that

26,5 > €pp +Esy = J >0 (ferromagnetic) 7.57)
26,5 <€pp+tegy = J <0 (antiferromagnetic) '

The antiferromagnetic case is depicted in fig. 7.8.

7.4 Mean Field Theory

7.4.1 The mean field Ansatz

Consider the Ising model Hamiltonian,

H=-J]) oio;-H» o; , (7.58)
(i) i
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Figure 7.8: Order-disorder transition on the square lattice. Below T" = T¢, order develops spontaneously
on the two v/2 x /2 sublattices. There is perfect sublattice order at 7" = 0 (left panel).

where the first sum on the RHS is over all links of the lattice. Each spin can be either ‘up’ (¢ = +1)
or ‘down’ (¢ = —1). We further assume that the spins are located on a Bravais lattice!! and that the
coupling J;; = J(|R; — R;|), where R; is the position of the i*" spin.

On each site ¢ we decompose o, into a contribution from its thermodynamic average and a fluctuation:

We will write (0;) = m, the local magnetization (dimensionless), and assume that m is independent of
position i. Then
0;0; = (m+do;) (m +do;)
=m? +m (0o, + 60 ;) + 60, 60 (7.60)

The last term on the RHS of the second equation above is quadratic in the fluctuations, and we assume
this to be negligibly small. This neglect of the fluctuations is the mean field Ansatz, and results in the mean
field Hamiltonian

I;TMF = %Nz,]m2 — (H + sz) Zai , (7.61)

where N is the total number of lattice sites. The first term is a constant, although the value of m is yet
to be determined. The Boltzmann weights are then completely determined by the second term, which
is just what we would write down for a Hamiltonian of noninteracting spins in an effective ‘mean field”

Hyg=H-+zJm . (7.62)

[$)

In other words, H g = H,,; + H,, where the external field is applied field H; = H, and the ‘internal

tield” is H;, = zJm. The internal field accounts for the interaction with the average values of all other

1A Bravais lattice is one in which any site is equivalent to any other site through an appropriate discrete
translation. Examples of Bravais lattices include the linear chain, square, triangular, simple cubic, face-centered
cubic, etc. lattices. The honeycomb lattice is not a Bravais lattice, because there are two sets of inequivalent sites —
those in the center of a Y and those in the center of an upside down Y.
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spins coupled to a spin at a given site, hence it is often called the ‘mean field’. Since the spins are
noninteracting, we have

m

BH,g _ ,—BH, H
e :tanh<+7zm> (7.63)

- eBHeH —|— e_BHeff

It is a simple matter to solve for the free energy, given the noninteracting Hamiltonian H, ;. The partition
function is

) N
7 — Ty e B — 6—%5N2Jm2 <Z€B(H+2Jm)a> _ oBF (7.64)
We now define dimensionless variables:
_F kT _H
f:NzJ , 0= oy , h_zJ , (7.65)
and obtain the dimensionless free energy
h
Fm,0.h) = im? — 0 In cosh<%> — 92 . (7.66)
Differentiating with respect to m gives the mean field equation,
m+h
m = tanh(T) ) (7.67)

which is equivalent to the self-consistency requirement, m = (0;). In terms of the dimensionless vari-
ables ¢ and h, the physics is universal, and independent of details such as the magnitude of .J, the value
of z, and Boltzmann’s constant.

7.4.2 Zero external field

When h = 0 the mean field equation becomes m = tanh(m/#). This nonlinear equation can be solved
graphically, as in the top panel of fig. 7.9. The RHS in a tanh function which gets steeper with decreasing
dimensionless temperature 6. If, at m = 0, the slope of tanh(m/#) is smaller than unity, then the curve
y = tanh(m/h) will intersect y = m only at m = 0. However, if the slope is larger than unity, there
will be three such intersections. Since the slope is 1/6, we identify §, = 1 as the mean field transition
temperature.

The mean field free energies are plotted in the bottom panel of fig. 7.9. It is possible to make analytical
progress by assuming m is small and Taylor expanding the free energy f(m, #) in powers of m when we
are very close to the critical point, i.e. when |§ — 6| < 1. Then we have

m m?
£(m,0) = =02+ tm? — 6 In cosh (5) = fo+ 30— 0)m’ + =+ (7.68)
with f, = —01n2. Note that the sign of the quadratic term is positive for § > 6, and negative for § < ..
Thus, the shape of the free energy f(m,0) as a function of m qualitatively changes at § = 6, = 1, the
mean field transition temperature, also known as the (dimensionless) critical temperature. Within our
mean field theory, the predicted critical temperatureis T, = zJ0, = zJ.
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Figure 7.9: Results for h = 0. Upper panels: graphical solution to self-consistency equation m =
tanh(m/6) at temperatures # = 0.65 (blue) and 6 = 1.5 (dark red). Lower panel: mean field free energy,
with energy shifted by 6 1n 2 so that f(m = 0,0) = 0.

In the high temperature phase, # > 6, and there is a unique minimum to f(6,m) lying at m = 0. This is
the disordered phase, where the order parameter m vanishes. By contrast, in the low temperature phase
6 < 0., there are three solutions to the mean field equations. One solution is always at m = 0. The other
two solutions must be related by the Z, symmetry of the free energy (m — —m with h = 0). For 6 > 6,
the free energy f(m,#) has a single minimum at m = 0. Below 6, the curvature at m = 0 reverses, and
m = 0 becomes a local maximum. There are then two equivalent minima symmetrically displaced on
either side of m = 0. Differentiating with respect to m, we find these additional local minima to lie at
m? = 3(6. — 0) + O((A6)?). Thus, we find for |§ — 0 | < 1,

m(0,h=0)==+V3 (6, —0)/> | (7.69)

where the + subscript indicates that this solution is only for §, — # > 0. As the blue curve in fig. 7.9
shows, these nonzero solutions for m in the low temperature phase lie at a lower value of the free energy
fthanm = 0.

Again, for § > 6, the only solution is m = 0. The high temperature phase is thus one where the Z, (i.e.
m — —m) symmetry is unbroken. In the low temperature phase, the magnetization m is nonzero, and
takes on one of two possible values which are degenerate in free energy. The degeneracy is guaranteed
by the Z, symmetry present when h = 0. But the system must somehow choose! This is the phenomenon
of spontaneous symmetry breaking (SSB). The exponent with which m(6) vanishes as § — 6 is denoted as
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B. That is, m(6,h = 0) « (6, — 9)_5F with 3 = 1 for our mean field theory.

Specific heat

We can now expand the free energy f (6, h = 0). We find

—60In2 if 0 > 6
JO.h=0)=4""" ) N (7.70)
—0Iln2—3(6.—60)*+O((6, — 0)*) if6 <9,
Thus, if we compute the heat capacity, we find in the vicinity of 6 = 6,
0*f 0 ifo>6
— 9L — ¢ 7.71
v 067 {g if < 6, 770

Thus, the specific heat is discontinuous at 6 = .. We emphasize that our results here are only valid for
|0 — 6,.| < 1. The general result valid for all § (within our mean field theory) is'?

m?2(0) — m*(9)
0

“1+m2(0) @.72)

() =5

With this expression one can check both limits # — 0 and 6 — 6. As # — 0 the magnetization saturates
and one has m?(#) ~ 1 — 4e~2/?. The numerator then vanishes as e~%/?, which overwhelms the denom-
inator that itself vanishes as 2. As a result, ¢;,(§ — 0) = 0, as expected. As § — m? = 3(0, —0) + ...,
invoking m? ~ 3(m? = 3(0, — 0) + ... — 0) we recover ¢, (f;) = 3. In the theory of critical phenomena,
cy(0) < |0 —0.]~* as @ — 6. We see that mean field theory yields o = 0.

7.4.3 Finite external field

Let us first assume h < |# — 1| < 1, i.e. that we are very close to the critical point (6., h,) = (1,0). The

mean field solution for m(6, h) then be small, and we may expand the free energy from eqn. 7.66 in m
and h, viz.

m* hm

1203 6 (7.73)
=fo+5(0—0)m*+ 5m* —hm+...

f(m,0,h) = -0 In2+ (1 -0~ Yym? +

Note that we have only gone to linear order in h. Setting 0 f/dm = 0, we obtain

ImP+0—-0) m—h=0 . (7.74)

12To obtain this result, one writes f = f(6,m(6)) and then differentiates twice with respect to ¢, using the chain
rule. Along the way, any naked (i.e. undifferentiated) term proportional to 9f/0m may be dropped, since this
vanishes at any 6 by the mean field equation.
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Figure 7.10: f(m.0,h) for h = 0.1. Upper panels: graphical solution to the self-consistency equation
m = tanh((m + h)/@) at temperatures § = 0.65 (blue), § = 0.9 (dark green), and 6§ = 1.5 (dark red).
Lower panel: mean field free energy, with energy shifted by #1n2 so that f(m = 0,0) = 0.

If 0 > 0. then we have a solution m = h/(# — 0,). The m? term can be ignored because it is higher order
in h, and we have assumed h < |§ — 6,| < 1. This is known as the Curie-Weiss law'®. The magnetic

susceptibility behaves as

om 1
= —= — -

) x |0 — 6] , (7.75)
where the magnetization critical exponent v is v = 1. If § < 6, then while there is still a solution at
m = h/(0 — 6,), it lies at a local maximum of the free energy, as shown in fig. 7.10. The minimum of the

free energy occurs close to the h = 0 solution m = m () = /3 (0, — 0), and writing m = m, + ém we

X(6)

C

13Pierre Curie was a pioneer in the fields of crystallography, magnetism, and radiation physics. In 1880, Pierre
and his older brother Jacques discovered piezoelectricity. He was 21 years old at the time. It was in 1895 that
Pierre made the first systematic studies of the effects of temperature on magnetic materials, and he formulated
what is known as Curie’s Law, X = C/T, where C is a constant. Curie married Marie Sklodowska in the same year.
Their research turned toward radiation, recently discovered by Becquerel and Rontgen. In 1898, Pierre and Marie
Curie discovered radium. They shared the 1903 Nobel Prize in Physics with Becquerel. Marie went on to win
the 1911 Nobel Prize in Chemistry and was the first person ever awarded two Nobel Prizes. Their daughter Irene
Joliot Curie shared the 1935 Prize in Chemistry (with her husband), also for work on radioactivity. Pierre Curie
met an untimely and unfortunate end in the Spring of 1906. Walking across the Place Dauphine, he slipped and
fell under a heavy horse-drawn wagon carrying military uniforms. His skull was crushed by one of the wagon
wheels, killing him instantly. Later on that year, Pierre-Ernest Weiss proposed a modification of Curie’s Law to
account for ferromagnetism. This became known as the Curie-Weiss law, X = C/(T — T,).
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2D Ising 3D Ising binary
Exponent | MFT | (exact) (numerical) | liquid (3D)

o 0 0 0.11008(1) 0.113(5)
I6] 1/2 1/8 0.326419(3) 0.316(8)
v 1 7/4 | 1.237075(10) | 1.240(7)
5 15 4.78984(1) -
n 0 1/3 0.036298(2) 0.016(7)
v 1/2 1 0.629971(4) 0.625(5)

Table 7.2: Critical exponents from mean field theory as compared with exact results for the two-
dimensional Ising model, numerical results for the three-dimensional Ising model, and experiments
on the liquid-gas transition in the binary fluids triethylamine and water (« : D. Beysens and A. Bourgou,
Phys. Rev. A 19, 2407 (1979)), isobutyric acid and water (3 : S. C. Greer, Phys. Rev. A 14, 1770 (1976)),
and 3-methylpentane-nitroethane (v, n, v : R. F. Chang et al., Phys. Rev. Lett. 37, 1481 (1976)).

find dm to linear order in h as dm(0,h) = h/2(0, — 0). Thus,

m(0,h) = V30, —0)/% + 5 h (7.76)

(ec - 9)

Once again, we find that X(6) diverges as |# — 6.|77 with v = 1. The exponent 7 on either side of the
transition is the same.

Finally, we can set § = ., and examine m(h). We find, from eqn. 7.74,
m(0 = 0,,h) = (3h)'/3 « B/ | (7.77)

where ¢ is a new critical exponent. Mean field theory gives 6 = 3. Note that at § = §, = 1 we have
m = tanh(m + h), and inverting we find

m
—m= et — . 7.78
m=-—om e ; (7.78)

h(m,0 =0.) = %ln<

which is consistent with what we just found for m(h,0 = 6,).

How well does mean field theory do in describing the phase transition of the Ising model? In table
7.2 we compare our mean field results for the exponents «, (3, 7, and § with exact values for the two-
dimensional Ising model, numerical work on the three-dimensional Ising model, and experiments on
the liquid-gas transition in CO,. The first thing to note is that the exponents are dependent on the
dimension of space, and this is something that mean field theory completely misses. In fact, it turns
out that the mean field exponents are exact provided d > d,,, where d,, is the upper critical dimension of
the theory. For the Ising model, d,, = 4, and above four dimensions (which is of course unphysical) the
mean field exponents are in fact exact. We see that all in all the MFT results compare better with the
three dimensional exponent values than with the two-dimensional ones — this makes sense since MFT
does better in higher dimensions. The reason for this is that higher dimensions means more nearest
neighbors, which effectively reduces the relative importance of the fluctuations we neglected to include.
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Metastable states at h #~ 0

Consider the free energy f(m, 0, h) in eqn. 7.66, now for general  not restricted to the immediate vicinity
of .. When 6 < 6. and h is sufficiently small — just how small we are about to find out — the free energy as
a function of m has one local maximum and two local minima, one of which is the thermodynamically
stable state (i.e. the one for which mh > 0), and the other (with mh < 0) is metastable. Consider the
case h > 0. As the temperature is raised, the metastable local minimum at m < 0 eventually vanishes,
annihilating with the local maximum in a saddle-node bifurcation. To find where this happens, one sets
df /om = 0 and 9%f /Om? = 0 simultaneously. From eqn. 7.66, we have

of m+h *f 1, o(m+h
a—m =m — tanh(T> s W =1-46 SeCh <T> . (779)

Thus h = Qtanh_l(m) — m, and using sech?z = 1 — tanh?z, we have m?2 = 1 — 6 and

B (0) = VI— 6 — gm(ii_i\/_ Vi:g) (7.80)

The solutions lie at b = £h*(#). For§ < 6, = 1and h € [~h*(0), +h*(6)], there are three solutions to the
mean field equation. Equivalently we could in principle invert the above expression to obtain §*(h). For
6 > 6*(h), there is only a single global minimum in the free energy f(m) and there is no local minimum.
Note 6*(h = 0) = 1. Note that we could in principle invert the above relation to obtain 6*(h), but alas
this is not analytically possible.

7.4.4 Magnetization dynamics

Dissipative processes drive physical systems to minimum energy states. We can crudely model the
dissipative dynamics of a magnet by writing the phenomenological equation

1 dm of <m+h>

= ——L —tanh

rdt — om

(7.81)

where I has the dimensions of frequency. We may define s = I't to be a dimensionless rescaled time.
Under these dynamics, the free energy is never increasing:

2
d_f_ﬁd_m__<ﬁ> <0 . (7.82)

ds Om ds om

Clearly the fixed point of these dynamics, where 7 = 0, is a solution to the mean field equation % = 0.
The time dependent m(s) thus evolves until it reaches the first fixed point encountered, which is to say
the first local extremum of the function f(m). This extremum could be a global minimum, but it could
also be a local minimum or even an inflection point'*.

The phase flow for the equation 7 = — f’(m) is shown in fig. 7.11. As we have seen, for any value
of h there is a temperature 6* below which the free energy f(m) has two local minima and one local

Since f(s) is never increasing, the extremum cannot be a local maximum.
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Figure 7.11: Dissipative magnetization dynamics 7 = — f/(m). Bottom panel shows h*(¢) from eqn.

7.80. For (0, h) within the blue shaded region, the free energy f(m) has a global minimum plus a local
minimum and a local maximum. Otherwise f(m) has only a single global minimum. Top panels show
an imperfect bifurcation in the magnetization dynamics at 4 = 0.0215 , for which §* = 0.90. Tempera-
tures shown: 6 = 0.65 (blue), = 6*(h) = 0.90 (green), and 6 = 1.2. The rightmost stable fixed point
corresponds to the global minimum of the free energy. The bottom of the middle two upper panels
shows h = 0, where both of the attractive fixed points and the repulsive fixed point coalesce into a sin-
gle attractive fixed point (supercritical pitchfork bifurcation).

maximum. When h = 0 the minima are degenerate, but at finite ~ one of the minima is a global min-
imum. Thus, for § < 6*(h) there are three solutions to the mean field equations. In the language of
dynamical systems, under the dynamics of eqn. 7.81, minima of f(m) correspond to attractive fixed
points and maxima to repulsive fixed points. If i > 0, the rightmost of these fixed points corresponds to
the global minimum of the free energy. As 6 is increased, this fixed point evolves smoothly. At § = 6%,
the (metastable) local minimum and the local maximum coalesce and annihilate in a saddle-note bifur-
cation. However at i = 0 all three fixed points coalesce at § = §, and the bifurcation is a supercritical
pitchfork. As a function of ¢ at finite h, the dynamics are said to exhibit an imperfect bifurcation, which is
a deformed supercritical pitchfork.

The solution set for the mean field equation is simply expressed by inverting the tanh function to obtain
h(0,m). One readily finds
h(o,m) =2 ln<1+—m> Cm (7.83)
2 1-m
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Figure 7.12: Top panel : hysteresis as a function of ramping the dimensionless magnetic field h at
§ = 0.40. Dark red arrows below the curve follow evolution of the magnetization on slow increase of h.
Dark grey arrows above the curve follow evolution of the magnetization on slow decrease of /. Bottom
panel : solution set for m(6, h) as a function of h at temperatures § = 0.40 (blue), § = 6. = 1.0 (dark
green), and ¢ = 1.25 (red).

As we see in the bottom panel of fig. 7.12, m(h) becomes multivalued for h € [ — h*(0), +h*(#)], where
h*(9) is given in eqn. 7.80. Now imagine that # < 6. and we slowly ramp the field  from a large
negative value to a large positive value, and then slowly back down to its original value. On the time
scale of the magnetization dynamics, we can regard h(s) as a constant. (Remember the time variable is
s here.) Thus, m(s) will flow to the nearest stable fixed point. Initially the system starts with m = —1
and h large and negative, and there is only one fixed point, at m* ~ —1. As h slowly increases, the
fixed point value m* also slowly increases. As h exceeds —h*(f), a saddle-node bifurcation occurs, and
two new fixed points are created at positive m, one stable and one unstable. The global minimum of
the free energy still lies at the fixed point with m* < 0. However, when h crosses h = 0, the global
minimum of the free energy lies at the most positive fixed point m*. The dynamics, however, keep the
system stuck in what is a metastable phase. This persists until h = +h*(), at which point another
saddle-note bifurcation occurs, and the attractive fixed point at m* < 0 annihilates with the repulsive
fixed point. The dynamics then act quickly to drive m to the only remaining fixed point. This process
is depicted in the top panel of fig. 7.12. As one can see from the figure, the the system follows a stable
fixed point until the fixed point disappears, even though that fixed point may not always correspond to a
global minimum of the free energy. The resulting m(h) curve is then not reversible as a function of time,
and it possesses a characteristic shape known as a hysteresis loop. Etymologically, the word hysteresis
derives from the Greek voTepnois, which means ‘lagging behind” (and not from to7opia, which means
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‘inquiry’). Systems which are hysteretic exhibit a history-dependence to their status, which is not uniquely
determined by external conditions. Hysteresis may be exhibited with respect to changes in applied
magnetic field, changes in temperature, or changes in other externally determined parameters.

7.4.5 Beyond nearest neighbors

Up to this point we have assumed nearest-neighbor interactions on a lattice of coordination number z.
Suppose, instead, that we had started with the more general model,

——%ZJ 0,0, HZU ) (7.84)
i#]

where J;; = J(|R; — Rj|) is the coupling between spins on sites i and j'°. In the top equation above,
each pair (ij) is counted once in the interaction term; this may be replaced by a sum over all i and j if
we include a factor of £.'° The resulting mean field Hamiltonian is then

Hyyo = 3NJ(0)m? — (H + J(0 Z o . (7.85)

Here, .J(q) is the lattice Fourier transform of the interaction function .J(R):'”

=> J(R)e R (7.86)
R

For nearest neighbor interactions only, one has J (0) = zJ, where z is the lattice coordination number,
i.e. the number of nearest neighbors of any given site. The scaled free energy is as in eqn. 7.66, with

= F/NJ(0), 8 = k,T/J(0), and h = H/.J(0). The analysis proceeds precisely as before, and we
conclude 0, = 1, ie. k,TM = J(0). For example, on the simple cubic lattice there are six nearest
neighbors and twelve next-nearest neighbors. Thus, if J is the nearest neighbor coupling and J' the
next-nearest neighbor coupling, we have .J(0) = 6.J + 12.J".

7.4.6 Ising model with long-ranged forces

Consider an Ising model where J;; = J/N for all i and j, so that there is a very weak interaction between
every pair of spins. The Hamiltonian is then

X J 2
H:—W<Zai> —sz:o'k : (7.87)

%

"“Note that we may write 3 -, A;; as >, _; A,; provided A = A" is symmetric. Clearly 4;; = 0,0, is sym-
metric under interchange of indices ¢ and j. Each version of the sum counts all unique pairs (3, j) = (j,) exactly
once.

16The self-interaction terms with i = j contribute a constant to H and may be either included or excluded.
However, this property only pertains to the o; = +1 model. For higher spin versions of the Ising model, say
where S; € {—1,0,+1}, then 57 is not constant and we should explicitly exclude the self-interaction terms.

7The sum in the discrete Fourier transform is over all ‘direct Bravais lattice vectors’ and the wavevector ¢ may
be restricted to the ‘first Brillouin zone’. These terms are familiar from elementary solid state physics.
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The partition function is

2
Z = {Tr}exp [gj\i <Z 0-> + BH Z O'i] . (7.88)

%

We now invoke the Gaussian integral,

/ dz e~ =T — ,/ /Ao (7.89)

BJ 2 _ NBJ 1/2 r —lNBsz—i-BJmZ.J.
exp[2N<Za-> =\ 5 /dme 2 , (7.90)

and we can write the partition function as

NBJ 12 o~ ANBIm? B(H+Jm)o NN 2 —NA(m)/6
Z = < ) /d (Z > _<ﬁ> /dme , (7.91)

where § = k,T/J, h = H/J, and

Thus,

A(m) = %m2 —6ln {2 cosh <h+Tm>] . (7.92)

Since N — oo, we can perform the integral using the method of steepest descents. Thus, we must set

A “+h
A Lo = = tann (LF . (7.93)
dm|, . 0
Expanding about m = m*, we write
A(m) = A(m*) + %A”(m*) (m —m*)? + %A"’(m*) (m—m*)>+... . (7.94)

Writing v = m — m* and performing the integration, we obtain

NA//(m*) 9 NA///(m*)

1/2 o
= N e_NA(m*)/G/dV exp Ve — v
27 26 66
—oo (7.95)
_ L _Namye, -1
e 1 0)
The corresponding free energy per site
F=E Ay + L AT mt) + O(NY) (7.96)
NJ 2N ’ '

where m* is the solution to the mean field equation which minimizes A(m). Mean field theory is exact
for this model!
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7.5 Landau Theory of Phase Transitions

Landau’s theory of phase transitions is based on an expansion of the free energy of a thermodynamic
system in terms of an order parameter, which is nonzero in an ordered phase and zero in a disordered
phase. For example, the magnetization M of a ferromagnet in zero external field but at finite temperature
typically vanishes for temperatures 1" > T, where T; is the critical temperature, also called the Curie
temperature in a ferromagnet. A low order expansion in powers of the order parameter is appropriate
sufficiently close to the phase transition, i.e. at temperatures such that the order parameter, if nonzero,
is still small.

7.5.1 Quartic free energy with Ising symmetry

The simplest example is the quartic free energy,
f(m,0,h=0) = fo+ zam” + zbm™ .
0,h=0 Lam? + Lom? (7.97)

where fo = fo(6), a = a(f), and b = b(#). Here, 6 is a dimensionless measure of the temperature'®. We
assume b > 0, which is necessary if the free energy is to be bounded from below .

The equation of state, which relates the intensive quantities m and 6 at h = 0, is then

af

o = 0=am+ bm? (7.98)

has three solutions in the complex m plane: (i) m = 0, (i) m = y/—a/b, and (iii) m = —/—a/b. The
latter two solutions lie along the (physical) real axis provided a < 0. We assume that there exists a
unique temperature 6. where a(f.) = 0. Minimizing f, we find

a?

a<0 (0<b) = fO)=fo—7 (7.99)

a>0 (0>0.) : fO)=/f
Thus a(#) changes sign at # = ., where the free energy is continuous, since a(f.) = 0. The specific heat,
however, is discontinuous across the transition, with
2

a?\ 0. [d(0.)]
9:(,6(4_1;) T (0 (7.100)

+ - o
(:(9C ) - (:(9C ) = —0, 202

The presence of a magnetic field h breaks the Z, symmetry of m — —m. The free energy becomes

f(m,0,h) = fo+ Sam?+ tbm* —hm | (7.101)

18For example in an Ising ferromagnet we might define § = k,T/.J(0), as before.
1t is always the case that f is bounded from below, on physical grounds. Were b negative, we’d have to
consider higher order terms in the Landau expansion.
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Figure 7.13: Phase diagram for the quartic Landau free energy f = fo + tam? + tbm* — hm, with b > 0.
There is a first order line at » = 0 extending from a = —oo and terminating in a critical point at a = 0.

For |h| < h*(a) (dashed red line) there are three solutions to the mean field equation, corresponding to
one global minimum, one local minimum, and one local maximum. Insets show behavior of the free

energy f(m).

and the mean field equation is

bm*4+am—h=0 . (7.102)

This is a cubic equation for m with real coefficients, and as such it can either have three real solutions
or one real solution and two complex solutions related by complex conjugation. Clearly we must have
a < 0 in order to have three real roots, since bm?® + am is monotonically increasing otherwise. The
boundary between these two classes of solution sets occurs when two roots coincide, which means
f"(m) = 0as well as f’(m) = 0. Simultaneously solving these two equations, we find

* 2 (_a)3/2
or, equivalently,
a*(h) = 3b”ﬂmw? (7.104)

e

If, for fixed h, we have a < a*(h), then there will be three real solutions to the mean field equation
f'(m) = 0, one of which is a global minimum (the one for which m - h > 0). For a > a*(h) there is only
a single global minimum, at which m also has the same sign as h. If we solve the mean field equation
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perturbatively in h/a, we find

h_ b

a at

1/2 1/2 (7.105)
h 307 +0h*  (a<0)

m(a,h) = h? 4+ O(h?) (a > 0)

_  ld]
bt/2 " 2lal ~ 8|al5/2

7.5.2 Cubic terms in Landau theory : first order transitions

Next, consider a free energy with a cubic term,
f=rfo+ %am2 — %ym3 + %bm4 , (7.106)

with b > 0 for stability. Without loss of generality, we may assume y > 0 (else send m — —m). Note that
we no longer have m — —m (i.e. Z,) symmetry. The cubic term favors positive m. What is the phase
diagram in the (a,y) plane?

Extremizing the free energy with respect to m, we obtain

0
of =0 =am—ym?+bm> . (7.107)
om
This cubic equation factorizes into a linear and quadratic piece, and hence may be solved simply. The
three solutions are m = 0 and

_ - Y Yy _a
m=my =k <2b) - (7.108)

We now see that for y? < 4ab there is only one real solution, at m = 0, while for y? > 4ab there are three
real solutions. Which solution has lowest free energy? To find out, we compare the energy f(0) with
f(m_)?. Thus, we set

f(m)=f(0) = %am2 — %ym?’ + %bm4 =0 , (7.109)
and we now have two quadratic equations to solve simultaneously:
0=a—ym+bm?> 0=1a—3ym+im*>=0 . (7.110)

Eliminating the quadratic term gives m = 3a/y. Finally, substituting m = m__gives us a relation between
a, b, and y:

y?=3ab . (7.111)
Thus, we have the following:
y?
a > 1 : lrealrootm =0
y? 2y
" >a > o 3 real roots; minimum at m = 0 (7.112)
292 2
g—yb >a : 3real roots; minimum atm = 2% + <2%> - %

20We needn’t waste our time considering the m = m_ solution, since the cubic term prefers positive m.
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Figure 7.14: Behavior of the quartic free energy f(m) = am? — 3ym3 + 1bm*. A: y? < 4dab ; B:

dab < y? < %ab ;Cand D: 42 > %ab. The thick black line denotes a line of first order transitions, where
the order parameter is discontinuous across the transition.

The solution m = 0 lies at a local minimum of the free energy for a > 0 and at a local maximum for
a < 0. Over the range y? /4b > a > 29/ /9b, then, there is a global minimum at m = 0, a local minimum
at m = m_, and a local maximum at m = m_, with m, > m_ > 0. For y2/9b > a > 0, there is a
local minimum at a = 0, a global minimum at m = m_, and a local maximum at m = m_, again with
m, >m_ > 0. For a <0, there is a local maximum at m = 0, a local minimum at m = m_, and a global
minimum at m = m_, withm_, >0 > m_. See fig. 7.14.

With y = 0, we have a second order transition at a = 0. With y # 0, there is a discontinuous (first order)
transition at a, = 2y%/9b > 0 and m, = 2y/3b. This occurs before a reaches the value a = 0 where the
curvature at m = 0 turns negative. If we write a = o(T — T})), then the expected second order transition
at T = Ty is preempted by a first order transition at T, = T}, + 2y°/9ab.

7.5.3 Order parameter dynamics

Suppose we now impose some dynamics on the system, of the simple relaxational type

dm of

— =1 = 7.113

dt om ( )
where I' is a phenomenological kinetic coefficient. Assuming y > 0 and b > 0, it is convenient to
adimensionalize by writing

3
Il
Sl

y2
5" , t= s . (7.114)

b
I'y?

IS
e
Il
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Figure 7.15: Fixed points for p(u) = 3ru® — 2u® + u* and flow under the dynamics & = —¢'(u).
Solid curves represent stable fixed points and dashed curves unstable fixed points. Magenta arrows
show behavior under slowly increasing control parameter » and dark blue arrows show behavior under
slowly decreasing r. For u > 0 there is a hysteresis loop. The thick black curve shows the equilibrium
thermodynamic value of u(r), i.e. that value which minimizes the free energy ¢(u). There is a first order

phase transition at r = Z, where the thermodynamic value of u jumps from u = 0 to u = 2.
Then we obtain J 5
U ¥
where the dimensionless free energy function is
p(u) = $ru? — L’ 4+ 2ot (7.116)

We see that there is a single control parameter, r. The fixed points of the dynamics are then the stationary
points of ¢(u), where ¢/ (u) = 0, with ¢ (u) = u (r — u+u?). The solutions to ¢'(u) = 0 are then given by

12 (7.117)

u* =0 , u*z%:l:(%—r)
For r > 1 there is one fixed point at u = 0, which is attractive under the dynamics @ = —¢'(u) since
¢"(0) = r. Atr = 1 there occurs a saddle-node bifurcation and a pair of fixed points is generated, one
stable and one unstable. As we see from fig. 7.13, the interior fixed point is always unstable and the
two exterior fixed points are always stable. At r = 0 there is a transcritical bifurcation where two fixed
points of opposite stability collide and bounce off one another (metaphorically speaking).
At the saddle-node bifurcation, r = i and u = %, and we find p(u = %; r = %) = 1}@, which is positive.
Thus, the thermodynamic state of the system remains at u = 0 until the value of ¢(u, ) crosses zero. This
2

occurs when ¢(u) = 0 and ¢/(u) = 0, the simultaneous solution of which yields r = 2 and u = 2.

Suppose we slowly ramp the control parameter r up and down as a function of the dimensionless time s.
Under the dynamics of eqn. 7.115, u(s) flows to the first stable fixed point encountered — this is always
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the case for a dynamical system with a one-dimensional phase space. Then as r is further varied, u
follows the position of whatever locally stable fixed point it initially encountered. Thus, u(r(s)) evolves
smoothly until a bifurcation is encountered. The situation is depicted by the arrows in fig. 7.15. The
equilibrium thermodynamic value for u(r) is discontinuous; there is a first order phase transition at
r = %, as we've already seen. As r is increased, u(r) follows a trajectory indicated by the magenta
arrows. For an negative initial value of u, the evolution as a function of r will be reversible. However,
if u(0) is initially positive, then the system exhibits hysteresis, as shown. Starting with a large positive
value of r, u(s) quickly evolves to v = 07, which means a positive infinitesimal value. Then as r is
decreased, the system remains at u = 0T even through the first order transition, because u = 0 is an
attractive fixed point. However, once 7 begins to go negative, the u = 0 fixed point becomes repulsive,
and u(s) quickly flows to the stable fixed point u, = 3 + (3 — r)l/ ?. Further decreasing r, the system
remains on this branch. If  is later increased, then u(s) remains on the upper branch past r = 0, until
the u, fixed point annihilates with the unstable fixed pointat u_ = 3 — (3 — ) 1/2
quickly flows down to u = 0" again.

, at which time u(s)

7.5.4 Sixth order Landau theory : tricritical point

Finally, consider a model with Z, symmetry, with the Landau free energy
f=rfo+ %am2 + ibm4 + %cm6 ) (7.118)
with ¢ > 0 for stability. We seek the phase diagram in the (a, b) plane. Extremizing f with respect to m,

of _ 0=m(a+bm?+emt) | (7.119)
om
which is a quintic with five solutions over the complex m plane. One solution is obviously m = 0. The

other four are

b b\ a
m =+ —— =+ — ] —= . (7.120)
2c 2c c

For each + symbol in the above equation, there are two options, hence four roots in all.
If @ > 0 and b > 0, then four of the roots are imaginary and there is a unique minimum at m = 0.

For a < 0, there are only three solutions to f'(m) = 0 for real m, since the — choice for the =+ sign under
the radical leads to imaginary roots. One of the solutions is m = 0. The other two are

mzi\/—%—l—\/(%f—% . (7.121)

The most interesting situationis ¢ > 0 and b < 0. If a > 0 and b < —2/ac, all five roots are real. There
must be three minima, separated by two local maxima. Clearly if m* is a solution, then so is —m*. Thus,
the only question is whether the outer minima are of lower energy than the minimum at m = 0. We
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Figure 7.16: Behavior of the sextic free energy f(m) = 2am + 1bm* + tem® Aia > 0Oand b > 0; B:
a<0andb>0;Ca<0andb<0; Da>0andb<——\/_ Ea>0and— \/@<b<—2\/@;

F:a > 0and —2y/ac < b < 0. The thick dashed line is a line of second order transmons, which meets the
thick solid line of first order transitions at the tricritical point, (a,b) = (0,0).

assess this by demanding f(m*) = f(0), where m* is the position of the largest root (i.e. the rightmost
minimum). This gives a second quadratic equation,

0=1a+ 3bm*+ tem® | (7.122)
which together with equation 7.119 gives b = ——= \/_ Thus, we have the following, for fixed a > 0:

b > 2\/_ : 1realrootm =0
—2v/ac > b > — \/_ : 5 real roots; minimum at m = 0 (7.123)

b b2
_% Vac >b : 5real roots; minima at m = j:\/—% * \/m

The point (a,b) = (0,0), which lies at the confluence of a first order line and a second order line, is
known as a tricritical point.
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Figure 7.17: Free energy ¢(u) = $ru® — 2u? + LuS for different values of the control parameter 7.

7.5.5 Hysteresis for the sextic potential

Once again, we consider the dissipative dynamics . = —I"f’(m). We adimensionalize by writing
/|y b2 o«
= ?u s CL:?'T s t:F—b2$ . (7.124:)
Then we obtain once again the dimensionless equation du/ds = —dy/0u, where
o(u) = %ruz + %u‘l + %u6 . (7.125)

In the above equation, the coefficient of the quartic term is positive if b > 0 and negative if b < 0. That
is, the coefficient is sgn(b). When b > 0 we can ignore the sextic term for sufficiently small «, and we
recover the quartic free energy studied earlier. There is then a second order transition at » = 0. The free
energy curves for various values of r are plotted in fig. 7.17.

New and interesting behavior occurs for b > 0. The fixed points of the dynamics are obtained by setting
¢'(u) = 0. We have

o(u) = %ru2 - iu‘l + %uﬁ , O () =u(r—u?+u?) . (7.126)

Thus, the equation ¢’(u) = 0 factorizes into a linear factor u and a quartic factor u* — u? + r which is
quadratic in u2. Thus, we can easily obtain the roots:

r<0 : u'=0 ,u" ==+ %—1— %—r
7.127
0<r<l i w=0 ,w=tieyior L uw=xy/io I, (7.127)

r>

=
IS
*
I
o
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Figure 7.18: Fixed points ¢'(u*) = 0 for the sextic potential ¢(u) = $ru? — u? + 1, and dynamical

flow (arrows) under & = —¢'(u). Solid curves show stable fixed points and dashed curves show unstable

tixed points. The thick solid black and solid grey curves indicate the equilibrium thermodynamic values

for u; note the overall u — —u symmetry. Within the region r € [0, 1] the dynamics are irreversible and
3

the system exhibits the phenomenon of hysteresis. There is a first order phase transition at r = ;.

In fig. 7.18, we plot the fixed points and the hysteresis loops for this system. At r = 1, there are two
symmetrically located saddle-node bifurcations at u = j:%. We find p(u = j:%, r=1)= 4%, whichis
positive, indicating that the stable fixed point «* = 0 remains the thermodynamic minimum for the free

energy ¢(u) as r is decreased through r = 1. Setting ¢(u) = 0 and ¢'(u) = 0 simultaneously, we obtain

r= 13—6 and v = j:@. The thermodynamic value for u therefore jumps discontinuously from u = 0 to
U= i@ (either branch) at r = % ; this is a first order transition.

Under the dissipative dynamics considered here, the system exhibits hysteresis, as indicated in the fig-
ure, where the arrows show the evolution of u(s) for very slowly varying r(s). When the control param-
eter r is large and positive, the flow is toward the sole fixed point at u* = 0. At 7 = 1, two simultaneous
saddle-node bifurcations take place at u* = jzi2 ; the outer branch is stable and the inner branch un-
stable in both cases. At r = 0 there is a subcritical pitchfork bifurcation, and the fixed point at u* = 0
becomes unstable.

Suppose one starts off with r > 1 with some value u > 0. The flow & = —¢/(u) then rapidly results
in u — 07. This is the ‘high temperature phase’ in which there is no magnetization. Now let r increase
slowly, using s as the dimensionless time variable. The scaled magnetization u(s) = u*(r(s)) will remain
pinned at the fixed point u* = 0". As r passes through r = I, two new stable values of u* appear, but
our system remains at u = 0%, since v* = 0 is a stable fixed point. But after the subcritical pitchfork,

u* = 0 becomes unstable. The magnetization u(s) then flows rapidly to the stable fixed point at u* = %,
and follows the curve u*(r) = (3 + (3 — 7’)1/2)1/2 forall » < 0.

Now suppose we start increasing r (i.e. increasing temperature). The magnetization follows the stable
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fixed point u*(r) = (1 4 (3 —7)1/?) Y2 bast r = 0, beyond the first order phase transition point at r = 2,

and all the way up to r = 1, at which point this fixed point is annihilated at a saddle-node bifurcation.
The flow then rapidly takes u — u* = 07, where it remains as r continues to be increased further. Within
the region r € [0, 1] of control parameter space, the dynamics are said to be irreversible and the behavior
of u(s) is said to be hysteretic.

7.6 Variational Density Matrix Method

7.6.1 The variational principle

Suppose we are given a Hamiltonian H. From this we construct the free energy, F:
F=E-TS=Tr(oH)+k,TTr(olng) . (7.128)

Here, ¢ is the density matrix®'. A physical density matrix must be (i) normalized (i.e. Tro = 1), (ii)

Hermitian, and (iii) non-negative definite (i.e. all the eigenvalues of ¢ must be non-negative).

Our goal is to extremize the free energy subject to the various constraints on o. Let us assume that o is
diagonal in the basis of eigenstates of H, i.c.

o= _ Pyl | (7.129)
.

where P, is the probability that the system is in state | v ). Then

F=> E,P,+kT» PP, . (7.130)
Y ol

Thus, the free energy is a function of the set {P,}. We now extremize F' subject to the normalization
constraint. This means we form the extended function

F*({P,},\) = F({P,}) + A( S P, - 1) : (7.131)

and then freely extremize over both the probabilities { P, } as well as the Lagrange multiplier A. This
yields the Boltzmann distribution,

w1
Pyt = exp(=Ey /k,T) (7.132)

where Z = Y e~ Fr/ksT = Tr e~H/ksT s the canonical partition function, which is related to A through
A=k, TWZ—-1) . (7.133)

Note that the Boltzmann weights are, appropriately, all positive.

Z'How do we take the logarithm of a matrix? The rule is this: A = In B if B = exp(A). The exponential of a
matrix may be evaluated via its Taylor expansion.
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If the spectrum of H is bounded from below, our extremum should in fact yield a minimum for the free
energy F. Furthermore, since we have freely minimized over all the probabilities, subject to the single
normalization constraint, any distribution { Py} other than the equilibrium one must yield a greater value of F.

Alas, the Boltzmann distribution, while exact, is often intractable to evaluate. For one-dimensional
systems, there are general methods such as the transfer matrix approach which do permit an exact
evaluation of the free energy. However, beyond one dimension the situation is in general hopeless. A
family of solvable (“integrable”) models exists in two dimensions, but their solutions require specialized
techniques and are extremely difficult. The idea behind the variational density matrix approximation
is to construct a tractable frial density matrix o which depends on a set of variational parameters {z,},
and to minimize F' with respect to this set.

7.6.2 Variational density matrix for the Ising model

Consider once again the Ising model Hamiltonian,

ﬁ:—ZJijJiJj—HZJi . (7.134)

i<j i

The states of the system | o) may be labeled by the values of the spin variables: | o) <— |01,09,...).
We assume the density matrix is diagonal in this basis, i.e.

on(a|o’) = oy(0)b00r (7.135)

where 0, o = []; 95, o, and where N is the number of sites. Indeed, this is the case for the exact density
matrix, which is to say the Boltzmann weight,

1 N
on(01,02,...) = - e BHEoN) (7.136)

We now write a trial density matrix which is a product over contributions from independent single sites:

on(o1,09,...) =[] elos) (7.137)
where
I+m 1—-m
o(o) = (—2 )50,1 + (T> o1 - (7.138)
Note that we’ve changed our notation slightly. We are denoting by o(o) the corresponding diagonal
element of the matrix
1+m 0
2

and the full density matrix is a tensor product over the single site matrices: oy = 0 ® 0 ® --- ® 0. Note
also that ¢ and o, are normalized with unit trace.
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Note that p and hence g, are appropriately normalized. The variational parameter here is m, which, if p
is to be non-negative definite, must satisfy —1 < m < 1. The quantity m has the physical interpretation
of the average spin on any given site, since

(0;) = Z o(o)o =m. (7.140)

o

We may now evaluate the average energy:

E=Tr(oyH)=~->_ Jym’ —HZm

oy (7.141)
:—%NJ(O)m —NHm

where once again .J(0) is the discrete Fourier transform of J(R) at wavevector ¢ = 0. The entropy is
given by

S = —ky Tr(oxInoy) = —Nk; Tr (oln o)

() (e () o
We now define the dimensionless free energy per site: f = F/N.J(0). We have
Fm,0,h) = —Lm —hm+9{(1+2m)1n(1+2m> + (1_2m>ln<1_2m)} , (7.143)

where 6 = k,T/.J(0) is the dimensionless temperature, and h = H/.J(0) the dimensionless magnetic
tield, as before. We extremize f(m) by setting

af 0 1+m
Solving for m, we obtain
m = tanh (mTJrh> : (7.145)

which is precisely what we found in eqn. 7.67.

Note that the optimal value of m indeed satisfies the requirement || < 1 of non-negative probability.
This nonlinear equation may be solved graphically. For h = 0, the unmagnetized solution m = 0
always applies. However, for § < 1 there are two additional solutions at m = +m,(0), with m,(0) =
V3(1—0)+0((1 - 6)3/ ?) for ¢ close to (but less than) one. These solutions, which are related by the
Zy symmetry of the h = 0 model, are in fact the low energy solutions. This is shown clearly in figure
7.19, where the variational free energy f(m, ) is plotted as a function of m for a range of temperatures
interpolating between ‘high” and ‘low’ values. At the critical temperature 6. = 1, the lowest energy state
changes from being unmagnetized (high temperature) to magnetized (low temperature).
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Figure 7.19: Variational field free energy Af = f(m, 6, h) + 6 In 2 versus magnetization m at six equally
spaced temperatures interpolating between ‘high” (¢ = 1.25, red) and ‘low” (¢ = 0.75, blue) values. Top
panel: i = 0. Bottom panel: ~ = 0.06.

For h > 0, there is no longer a Zy symmetry (i.e. 0; — —o; V 7). The high temperature solution now
has m > 0 (or m < 0if h < 0), and this smoothly varies as ¢ is lowered, approaching the completely
polarized limit m = 1 as # — 0. At very high temperatures, the argument of the tanh function is small,
and we may approximate tanh(z) ~ x, in which case

m(h,0) =

— (7.146)
This is called the Curie-Weiss law. One can infer . from the high temperature susceptibility X(0) =
(0m/0h),__, by plotting X! versus 6 and extrapolating to obtain the -intercept. In our case, X(f) =

(0 — 6.)~L. For low 6 and weak h, there are two inequivalent minima in the free energy.
When m is small, it is appropriate to expand f(m, 6, h), obtaining
fm,0,h)=—0m2—hm+3O—-1)m*+Em'+ Emi+ &mP+... . (7.147)

This is known as the Landau expansion of the free energy in terms of the order parameter m. An order
parameter is a thermodynamic variable ¢ which distinguishes ordered and disordered phases. Typically
¢ = 0in the disordered (high temperature) phase, and ¢ # 0 in the ordered (low temperature) phase.
When the order sets in continuously, i.e. when ¢ is continuous across ., the phase transition is said to
be second order. When ¢ changes abruptly, the transition is first order. It is also quite commonplace to
observe phase transitions between two ordered states. For example, a crystal, which is an ordered state,
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may change its lattice structure, say from a high temperature tetragonal phase to a low temperature
orthorhombic phase. When the high 7" phase possesses the same symmetries as the low 7" phase, as in
the tetragonal-to-orthorhombic example, the transition may be second order. When the two symmetries
are completely unrelated, for example in a hexagonal-to-tetragonal transition, or in a transition between
a ferromagnet and an antiferromagnet, the transition is in general first order.

Throughout this discussion, we have assumed that the interactions J;; are predominantly ferromagnetic,
ie. Ji; > 0, so that all the spins prefer to align. When J;; < 0, the interaction is said to be antiferro-
magnetic and prefers anti-alignment of the spins (i.e. 0; 0; = —1). Clearly not every pair of spins can be
anti-aligned — there are two possible spin states and a thermodynamically extensive number of spins.
But on the square lattice, for example, if the only interactions J;; are between nearest neighbors and
the interactions are antiferromagnetic, then the lowest energy configuration (I" = 0 ground state) will
be one in which spins on opposite sublattices are anti-aligned. The square lattice is bipartite — it breaks
up into two interpenetrating sublattices A and B (which are themselves square lattices, rotated by 45°
with respect to the original, and with a larger lattice constant by a factor of v/2), such that any site in
A has nearest neighbors in B, and vice versa. The honeycomb lattice is another example of a bipartite
lattice. So is the simple cubic lattice. The triangular lattice, however, is not bipartite (it is tripartite).
Consequently, with nearest neighbor antiferromagnetic interactions, the triangular lattice Ising model is
highly frustrated. The moral of the story is this: antiferromagnetic interactions can give rise to compli-
cated magnetic ordering, and, when frustrated by the lattice geometry, may have finite specific entropy
evenatT = 0.

7.6.3 ¢-state Potts model

The Hamiltonian for the Potts model is

H==) Jijboo;—HY 651 . (7.148)
i<j i
Here, 0; € {1,...,q}, with integer ¢. This is the so-called ‘g-state Potts model’. The quantity H is
analogous to an external magnetic field, and preferentially aligns (for H > 0) the local spins in the o =1
direction. We will assume H > 0.

The g-component set is conveniently taken to be the integers from 1 to ¢, but it could be anything, such
as
o; € {tomato, penny, ostrich, Grateful Dead ticket from 1987, ...} . (7.149)

The interaction energy is —J;; if sites i and j contain the same object (¢ possibilities), and 0 if 7 and j
contain different objects (¢> — ¢ possibilities).

The two-state Potts model is equivalent to the Ising model. Let the allowed values of o be 1. Then the
quantity

S0 = 5+ 500 (7.150)
equals 1 if 0 = ¢/, and is zero otherwise. The three-state Potts model cannot be written as a simple
three-state Ising model, i.e. one with a bilinear interaction o ¢’ where 0 € {—1,0,+1}. However, it is
straightforward to verify the identity

o0 =1+ 300 +30%0"” — (6° +07) . (7.151)
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Thus, the ¢ = 3-state Potts model is equivalent to a S = 1 (three-state) Ising model which includes
both bilinear (00’) and biquadratic (020"?) interactions, as well as a local field term which couples to the
square of the spin, o2. In general one can find such correspondences for higher ¢ Potts models, but, as
should be expected, the interactions become increasingly complex, with bi-cubic, bi-quartic, bi-quintic,
etc. terms. Such a formulation, however, obscures the beautiful Sq symmetry inherent in the model,
where S is the permutation group on g symbols, which has ¢! elements.

Getting back to the mean field theory, we write the single site variational density matrix o as a diagonal
matrix with entries

o(0) = 265y + <2 — ) (1= bm1) . (7.152)

with oy (0y,...,0y5) = 0(0;) - 0(oy). Note that Tr(p) = 1. The variational parameter is . When
1

r = ¢!, all states are equally probable. But for x > ¢~!, the state o = 1 is preferred, and the other (¢ —1)
states have identical but smaller probabilities. It is a simple matter to compute the energy and entropy:
R R 1—12)?
E=Tr(oyH) = —%NJ(O){%2 + ( _xl) } — NHz
4 X (7.153)
S =—kyTr(oyInoy) = —Nk‘B{:Uln:E +(1—2)ln (q — af)}
The dimensionless free energy per site is then
1—x) 1—
flz,0,h) = -1 {gﬂ + 1=z } +0 {wlnw +(1—2)In ( x)} —hz (7.154)
qg-—1 qg-—1
where h = H/.J(0). We now extremize with respect to z to obtain the mean field equation,
OF o o 1o pmr—om (128 (7.155)
ox q—1 -1

Note that for h = 0, z = ¢! is a solution, corresponding to a disordered state in which all states are
equally probable. At high temperatures, for small h, we expect z — ¢! « h. Indeed, using Mathematica
one can set z = ¢~ ! + s and expand the mean field equation in powers of s. One obtains

Lo @1 P’ (g=2)0 ,

3
- s (g = 1) s+ 0(s°) . (7.156)
For weak fields, |h| < 1, and we have
(g—1)h 2
s(0) = 21— L Oh?) 7.157
0) = Fg= 5 + o) (7157)
which again is of the Curie-Weiss form. The difference s = z — ¢~! is the order parameter for the

transition.

Finally, one can expand the free energy in powers of s, obtaining the Landau expansion,

2h + 1 q(g0—1) » (¢4-2)¢°0 4
5,0,h) = — —flng—hs+ LT 7 7.158
f(e,0,h) ! 2(¢—-1) 6(q— 1) 7159
3 4 5
(il 8]t 0T ] g 1Y _1)-5] 46
+ 15 [1—%(q 1) ]s 50 [1 (g—1) }s + 3 [1—%(q )77 s +...



7.6. VARIATIONAL DENSITY MATRIX METHOD 391

Note that, for ¢ = 2, the coefficients of s3, s°, and higher order odd powers of s vanish in the Landau
expansion. This is consistent with what we found for the Ising model, and is related to the Z, symmetry
of that model. For ¢ > 3, there is a cubic term in the mean field free energy, and thus we generically
expect a first order transition, as we shall see below when we discuss Landau theory.

7.6.4 XY Model
Variational density matrix

Consider the so-called XY model, in which each site contains a continuous planar spin, represented by
an angular variable ¢; € [, 7]:

H=-= Z Jij cos( - H Z cos i . (7.159)
2753
We write the (diagonal elements of the) full density matrix once again as a product:
N(b1, 2, ) Hg (6i) (7.160)

Our goal will be to extremize the free energy with respect to the function o(¢). To this end, we compute

E =Tr(oy H) = —~1NJ(0) (Tr (0c™) ‘2 ~ NHTr(gcos¢) . (7.161)

The entropy is S = — Nk Tr (0 In g) . Note that for any function A(¢), we have?

Tr(0A) = / gi o) A(¢) . (7.162)

—Tr

We now extremize the functional F|[o(¢)] = E — TS with respect to o(¢), under the condition that
Tr 0 = 1. We therefore use Lagrange’s method of undetermined multipliers, writing

F* = F — Nk,TX <Tr 0— 1) . (7.163)

Note that F™* is a function of the Lagrange multiplier A and a functional of the density matrix o(¢). The
prefactor Nk,T which multiplies A is of no mathematical consequence — we could always redefine the
multiplier to be N = Nk T \. It is present only to maintain homogeneity and proper dimensionality of
F* with ) itself dimensionless and of order N°. We now have

OF* 0 R o |2
50(0) = m{— %NJ(O) ‘Tr(ge ¢)‘ — NHTr(g cosgb) reh

+ NkyT Tr (o In p) —NkBT)\(Trg— 1)}

22The denominator of 27 in the measure is not necessary, and in fact it is even slightly cumbersome. It divides
out whenever we take a ratio to compute a thermodynamic average. I introduce this factor to preserve the relation
Tr 1 = 1. I personally find unnormalized traces to be profoundly unsettling on purely aesthetic grounds.
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To this end, we note that

™

0 0 do 1
——Tr(pA :—/— Alp)=— A . 7.165
Thus, we have
OF Lar 3 1 PN YV cos ¢
—— = —LINJO) —|Tr(ee) e + Tr(pe ) | — NH -
do(¢) 2NI0)- o7 [¢>’ (o) &' (e ) 2 (7.166)
b NET - — [1 (¢)+1] Nk T
Bl o [ MO 55 on
Now let us define -
. do . .
Z(b — - Z(z) = 7‘¢
'I(;r(ge ) /27T o(@) e’ =me'®o . (7.167)
We then have .
J(0) H
In o(¢) = m cos(¢ — ¢g) + cosp+ A — 1. (7.168)
(6) = L7 m eos(6— 60) + 1

Clearly the free energy will be reduced if ¢, = 0 so that the mean field is maximal and aligns with the
external field, which prefers ¢ = 0. Thus, we conclude

o(¢)=C exp(kHC; cos ¢> , (7.169)

B

where H_; = J(0)m + H and C = ¢*~'. The value of ) is then determined by invoking the constraint,

f H
Tro=1=C [ 52 oxp( 75 coso) = C I /boT) (7170)
B

where Ij(z) is the Bessel function. We are free to define e = H 4 /k, T, and treat ¢ as our single variational
parameter. We then have the normalized single site density matrix

exp(e cos exp(e cos
o(¢) = w— plecosd) p§ © ¢) (7.171)
% exp(e cos @) 0
We next compute the following averages:
oy [do o L)
+ip\ __ s +igp —
<e > = /27T o(p)e —IO(E) (7.172)

—Tr

2
<cos(¢ - ¢/)> = Re <ei¢ e_i¢,> = <Il(€)> , (7.173)
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as well as i
- d(b escos¢> - Il(E)
Tr(olnp) = /% 0@ {E cos ¢ — In IQ(E)} =€ o) Inly(e) . (7.174)
The dimensionless free energy per site is therefore
1 11(5)>2 Ii(e)
€,0,h) =—= + (0 — h —0Inly(e) , 7.175
febm =5 (1) + 6= 01T~ 0 mE(e) 7.175)

with § = k,T/J(0) and h = H/J(0) and f = F/N.J(0) as before. Note that the mean field equation is
m=0c—h=(e?),ie

Li(e)
e —h = 7.176
To(e) (7.176)
For small e, we may expand the Bessel functions, using
= ()
I, 32)" 1 7.177
(2) = (32) LTk +v+1) 7177
to obtain
fle.0,h)=5(0—-3)e+ 4 (2-30)e" —Lhe+{5he*+... . (7.178)

This predicts a second order phase transition at 6. = 3.%° Note also the Curie-Weiss form of the suscep-
tibility at high 0:
of h

E—O — 520_0C

o (7.179)

Neglect of fluctuations method

Consider again the Hamiltonian of eqn. 7.159. Define 2z, = exp(i¢;) and write 2z, = w + dz;, where
w = (z;) and dz; = z; — w. Of course we also have the complex conjugate relations 2z} = w* + §z; and
w* = (z7). Writing cos(¢; — ¢;) = Re(z]z;), by neglecting the terms proportional to 2 §z; in H we
arrive at the mean field Hamiltonian,

Y = INJ(0) |w]® = $J(0) [w] Y (w*z +wzf) — $HY (2 + 2) (7.180)

It is clear that the free energy will be minimized if the mean field w breaks the O(2) symmetry in the
same direction as the external field H, which means w € R and

HY = INJ(0)|w]® = (H + J(0)|w]) > cosg; . (7.181)
The dimensionless free energy per site is then
f=1w? —91n[0<h+9|w|> . (7.182)

ZNote that the coefficient of the quartic term in ¢ is negative for 6 > 2. At = 6. = 1, the coefficient is positive,
but for larger # one must include higher order terms in the Landau expansion.
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Differentiating with respect to |w|, one obtains

lw|=m =1, (“Tm>/10 <h+Tm> , (7.183)

which is the same equation as eqn. 7.176. The two mean field theories yield the same results in every
detail (see §7.10).

7.7 Mean Field Theory of Fluctuations

7.7.1 Correlation and response in mean field theory

We now consider the matter of correlation and response functions within mean field theory. A correla-
tion function is a thermodynamic average of fields at various sites, such as (0,0;) (two-point correlation
function), (0,0;0,.0;) (four-point correlation function), etc. A response function describes the influence of
external fields on thermodynamic averages, such as 9m,;/0H; , the variation of the local magnetization
m; = (o, at site i due to the presence of a local field H; at site j. We shall see that there is a direct relation
between correlation and response functions.

Consider the Ising model,
H=-3> Jjo,0,—> Hyop (7.184)
i, k

where the local magnetic field on site £ is now H,. We assume without loss of generality that the

diagonal terms vanish: J;; = 0. Now consider the partition function Z = Tr e=BH as a function of the
temperature 7" and the local field values { H,}. We have

0z 3
DI, B Tr [O‘Z e } BZ - (o;) 55
0’z _ 22 —BH| _ 52 '
W—ﬁ Tr [aiaje ]—5 Z -{0;0;)
Thus,
oF
m; = _O—Hi = <02>

(7.186)

om, O’ F 1

YT 9H, T 9H,0H, kT {tor) = (o0 0}

Expressions such as (0;), (0, 0;), etc. are in general called correlation functions. For example, we define
the spin-spin correlation function C;; as

Cij =(0;05) —(0;) (oj) - (7.187)

Expressions such as 9F/0H, and 0°F/0H, 0H ; are called response functions. The above relation between

correlation functions and response functions, C;; = kT X,;, is valid only for the equilibrium distribution.
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In particular, this relationship is invalid if one uses an approximate distribution, such as the variational
density matrix formalism of mean field theory.

The question then arises: within mean field theory, which is more accurate — correlation functions or
response functions? A simple argument suggests that the response functions are more accurate represen-
tations of the real physics. To see this, let’s write the variational density matrix ¢**" as the sum of the
exact equilibrium (Boltzmann) distribution ¢®4 = Z~! exp(— BH) plus a deviation d:

0" =%+ 60 . (7.188)
Then if we calculate a correlator using the variational distribution, we have
(0;0)var = Tr [ Mo j} =Tr [ch o; O'j:| + Tr [59 o; O'j:| . (7.189)

Thus, the variational density matrix gets the correlator right to first order in §o. On the other hand, the
free energy is given by

OF 1 O°F
FY¥™W =F94+ % —| 00, + = ——| 00,005 + ... . (7.190)
za': 006 | gea 7 Z o 00,00, 1 g i
Here o denotes a state of the system, i.e. |0) = |oy,...,0, ), where every spin polarization is specified.

Since the free energy is an extremum (and in fact an absolute minimum) with respect to the distribution,
the second term on the RHS vanishes. This means that the free energy is accurate to second order in the
deviation §o.

7.7.2 Calculation of the response functions

Consider the variational density matrix o(o) =[], 0;(0;), where

1+m, 1—m,
Qi(az’):< 5 >6ai,1+< 5 >6U, 1 (7.191)

The variational energy E = Tr (o H)is
—%ZJ S m —ZHm (7.192)

and the entropy S = —kpT Tr (pln o) is

LA

Setting the variation 25~ = 0, with F' = E — T'S, we obtain the mean field equations,
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where we use the summation convention: J;;m; = . J;; m;. Suppose T' > T and m, is small. Then
we can expand the RHS of the above mean fleld equatlons, obtaining

Thus, the susceptibility tensor X is the inverse of the matrix (k7" -1 —J):

X om,
i~ OH,

= (ksT-1-1), (7.196)

where I is the identity. Note also that so-called connected averages of the kind in eqn. 7.187 vanish
identically if we compute them using our variational density matrix, since all the sites are independent,
hence

(005) = Tr (0™ 0;0;) = Tr(of* 0;) Tr (0] 0;) = (o)(0j) (7.197)

and therefore X;; = 0 if we compute the correlation functions themselves from the variational density
matrix, rather than from the free energy F. As we have argued above, the latter approximation is more
accurate.

Assuming J;; = J(R; — R;), where R, is a Bravais lattice site, we can Fourier transform the above
equation, resulting in

H(q)
kT — j(‘])

Once again, our definition of lattice Fourier transform of a function ¢(R) is

n(q) = =X(q) H(q) (7.198)

, d% - ,
Q=S omem o =gt (7.199)
R

0

where (2 is the unit cell in real space, called the Wigner-Seitz cell, and () is the first Brillouin zone, which
is the unit cell in reciprocal space. Similarly, we have

:ZJ(R)(l—z’q-R—%(q-R)2—|—...>
R

(7.200)
—Jo)-{1- @R+ 0"}
where SR
R°J(R)
PR 7.201
Be= s IR) (7.200)
Here we have assumed inversion symmetry for the lattice, in which case
v 1 v 2
%:R“R J(R) =~ " %:R J(R) . (7.202)

On cubic lattices with nearest neighbor interactions only, one has R, = a/v/2d, where a is the lattice
constant and d is the dimension of space.



7.7. MEAN FIELD THEORY OF FLUCTUATIONS 397

Thus, with the identification k, T, = J(0), we have

. 1 1 1
M) = e T TR LR O R ETT @O0 (7.203)
where
_ -1/2
§(T) = R. - (T 7 TC> (7.204)

is the correlation length. With the definition {(T") o« |T" — T.|™" as T — T, we obtain the mean field
correlation length exponent v = 3. The exact result for the two-dimensional Ising model is v = 1,
whereas v 2 0.6 for the d = 3 Ising model. Note that X(q = 0, T) diverges as (T — T,,) ! for T > T,.

In real space, we have

ddq S ig(R.—R.
mi= D X Hp X = / Ty (@ eT T (7.205)
! 0
Note that X(q) is properly periodic under ¢ — g + G, where G is a reciprocal lattice vector, which
satisfies ¢! 2 = 1 for any direct Bravais lattice vector R. Indeed, we have

X (q) = kT — J(q) = kT —JY 0 (7.206)
é

where § is a nearest neighbor separation vector, and where in the second line we have assumed nearest
neighbor interactions only. On cubic lattices in d dimensions, there are 2d nearest neighbor separation
vectors, § = +a e, where i1 € {1,...,d}. The real space susceptibility is then

T

7'('d91 /ded ein191 .. einded
27 2n kT — (2Jcosby + ... +2Jcosb,) ’

—Tr —Tr

X(R,H =0) = (7.207)

d N
where R =a} 7 _n,¢€,
and the {n,,} are integers.

is a general direct lattice vector for the cubic Bravais lattice in d dimensions,

The long distance behavior was discussed in chapter 6 (see §6.5.7 on Ornstein-Zernike theory”*). For
convenience we reiterate those results:

e Ind=1,

3 ~lal/¢
Xg— =\ = . 7.208

2There is a sign difference between the particle susceptibility defined in chapter 6 and the spin susceptibility
defined here. The origin of the difference is that the single particle potential v as defined was repulsive for v > 0,
meaning the local density response én should be negative, while in the current discussion a positive magnetic
field H prefers m > 0.
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e Ind > 1, with r — oo and £ fixed,

Py o, e (13 (7.209)
d (T) - d : kTBTRg : 7a(d_l)/2 : T'/g ) .

where the C, are dimensionless constants.

e Ind > 2, with { — oo and r fixed (i.e. ' — T, at fixed separation r),

cy  em/E d—3
Xalr) = 5 Tps iz {1 " O( r/¢ > } ' 7210
In d = 2 dimensions we obtain
X j—o(r) =~ P TR2 ln<§> e {1 + O<7ln(r/§)>} , (7.211)

where the C C’l are dimensionless constants.

Close to the critical point the spatial dependence of the two-point correlation C(r,T) = kT X(r,T) is
given by
C(r,T) =r~“=2t0 (r/&(T)) (7.212)

where 7 is the anomalous critical exponent and ¢(r/€) is a scaling function. The condition T' ~ T, means
that £(T") > a, where a is a microscopic length, such as a lattice constant®. Thus, we’ve encountered
in this section two additional critical exponents, the anomalous exponent 1 and the correlation length

exponent v, which we first met in §7.3.2, whose mean field values are » = 0 and v = %

7.7.3 Beyond the Ising model

Consider a general spin model, and a variational density matrix o"*"

density matrices:

which is a product of single site

o™ [{S,}] H 0i(S) (7.213)

where m; = Tr (9" S) is the local magnetization and S;, which may be a scalar (e.g., o, in the Ising

model previously discussed), is the local spin operator. Note that Qgi) (S,) depends parametrically on the

variational parameter(s) m,;. Let the Hamiltonian be
H=—3> JSISy+Y hi(S)-> H;-S; (7.214)
.3 i J

where we separate the external applied fields H; from the local Hamiltonians h;(S;), which are pre-
sumed not to break time-reversal symmetry. Le. Tr [Sexp(—Sh(S)] = 0. The variational free energy

is
Fvar:—%ZJWm m} -I-ZQD )—Zqumf ) (7.215)

ZThe scaling functions on the high and low temperature sides of the transition may be different, and are de-
noted as ¢ (r/§), respectively.
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where the single site free energy ¢(m;,T) in the absence of an external field is given by
@(m;, T) = Tt |0,(S) (S)| + kT Tr|0,(S) In0,(S)| . (7.216)

where h(8) is the single site Hamiltonian. We then have

aFV&I‘

amf

—

om;

S+

J

(7.217)

For the noninteracting system, we have J/” = 0, and the weak field response must be linear. In this
limit we may write m/' = XW(T) HY + O(H}), and we conclude

§E%£%%Z]_: D))y +O(m) (7.218)

)

Note that this entails the following expansion for the single site free energy:

p(m;,T) = 0(0,7) + 3 [X°(T)] ,,

mtmY +O(m?) . (7.219)

Finally, we restore the interaction term and extremize F** by setting F"*" /Om/' = 0. To linear order,

then,
Qwﬁ+§:J” ) (7.220)

Typically the local susceptibility is a scalar in the internal spin space, i.e. x5, (T) = x°(T) 6, in which
case we obtain

(6 8,5 = X°(T) Iy mil =X"(T) H]' . (7.221)
In Fourier space, then,

Lol
(@ 1) =X0(1) (1-X"(0)3(@) (7.222)

|n%

where J(q) is the matrix whose elements are J**(q). If J*(q) = J(q) ", then the susceptibility is
isotropic in spin space, with
1

[O(T)]) ™~ J(a)

X(q,T) = (7.223)

Consider now the following illustrative examples:

(1) Quantum spin S with h(S) = 0 : We take the 2 axis to be that of the local external magnetic field,
ie. H;. Write o,(S;) = (71 exp(uS? /k,T), where u acts as a local field. The normalization is

sinh[(S + 3) u/kg T
sinh [u/2k,T]

S
(= Trens el = 3 v/l — (7.224)

j=—5
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The magnetization m is then given by m(u,T') = Tr(o; S7). The relation between m, u, and T is
then given by

01
m = (S7) = k, T 624 — (S + 1yetnh[(S + 1) u/kyT] — b ctnh[u/2k,T]
S5+ 1) "t O (7.225)
C 3k,T
The free-field single-site free energy (see Eqn. 7.216) is then
o(m,T) = k;TTr(o;Ing;) =um — k;TIn¢ (7.226)
whence
=m
—N—
0 ou Oln¢ Ou
% = u+m% - k/’BTWC =t = e(u,T) = 3 x"(T) v + O(u?) (7.227)
with m = x°(T) v and
S(S+1)
UT) = ——— 7.228

which is the Curie susceptibility.

(ii) Classical spin § = S# with 2(S) = 0 and 7 an N-component unit vector : We take the single site

density matrix to be ¢,(S;) = 2 Lexp(u - S,/k,T). The single site field-free partition function is
then

dn S22 4
¢= / 7 exp(u- §/kyT) =1+ s + O") (7.229)
with 2, = 27/2/T(N/2) the total solid angle, and therefore
B Oln¢  S*u 3

from which we read off x°(T") = S?/Nk,T. Note that this agrees in the classical (S — oc) limit, for
N = 3, with our previous result.

7.74 Magnetic ordering

Recall our mean field expression for the susceptibility x,,(q,T),

-1

$u(@ 1) =X(0) (1-X"(D) @) (7.231)

where x°(T) is the local susceptibility for the noninteracting model with all couplings .J;; = 0. Physically,

X%(T) — 0as T — oo and therefore X (@, T) ~ xX%(T) 4, at high temperatures.
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Consider the case where there is isotropy in spin space. The susceptibility x(g,T’) then diverges when
X%(T)J(q) = 1, where x°(T) is the local susceptibility. As we know, such a divergence heralds the on-
set of a phase transition where there is a spontaneous magnetization in the ordered (i.e. low temperature)
phase. Typically this happens at a particular wavevector @, or a set of symmetry related wavevec-
tors {Q1,Q2,...}. The ordering wavevector is that value of g which results in a maximum of J (q):
maxg { J (@)} = J(Q). The susceptibility, for isotropic systems, can be written

X°(T)

x(g) = = = = 7.232
W T Q)] @ — ) i
The critical temperature 7T is determined by the relation
X (To) J(Q) = 1. (7.233)
Expanding about T' = T}, and about g = Q, where
j(q)Zf(Q){l—(q—Q)QRer...} : (7.234)
we have (1) R2
o ~ X c *
X(q) ~ 2T+ (- QF (7.235)
where .
- (T) -
€)= g B (T-T) (7.236)

Thus, &(T) « (T — T.)~/2. The real space susceptibility y(R,T) oscillates with wavevector Q@ and
decays on the scale of the correlation length £(7T").

* Ferromagnet: J;; = +J > 0if i and j are nearest neighbors; otherwise J;; = 0. On a hypercubic
lattice (d dimensions, 2d nearest neighbor vectors = +a é,), we then have

J(q) = JZ e~ — 2J{cos(q a) + cos(gya) + ... +cos(qua)} . (7.237)
[

The ordering wavevector is @ = 0, and J(Q) = 2dJ. For the spin-S Heisenberg model, then,
ksT = 2d.S(S + 1) J, and the susceptibility is

25(S +1)/ky

X(q,T) = (7.238)
(T —Ty) +Tyd™? Zgzl [1— cos(qva)]
The uniform susceptibility x = x(g = 0) is then
1) =S5 ED (7.239)
3k (T —T¢)

where T, is the Curie temperature.

Ferromagnetic insulators: ferrites, EuO, TDAE-Cg.
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* Antiferromagnet: J;; = —J < 0if i and j are nearest neighbors; otherwise J;; = 0. On a hypercubic

lattice (d dimensions, 2d nearest neighbors), we then have
J(q) = —JZ e~% = —27{cos(qa) + cos(gya) + ...+ cos(qya)} . (7.240)
s
The ordering wavevector is Q = (r/a, . ..,7/a), at the zone corner, where .J(Q) = 2d.J. For the

spin-S Heisenberg model, then, kT = 2d S(S + 1).J, and the susceptibility is
S(S+1)/3k,

X(q,T) = (7.241)
(T —Ty) + Ty d1 %, [1 + cos(gua)]
The uniform susceptibility x ..(T) = x(g = 0,T) is then
1
3k (T + Ty)

where Ty is the Néel temperature. Note that x(q = 0,7T) does not diverge. Indeed, plotting the
inverse uniform susceptibility x~!((q = 0,T) versus T, one obtains an intercept along the T-axis

at 7' = —T}. This is one crude way of estimating the Néel temperature. What does diverge is the
staggered susceptibility Xy.,.(T) = X(Q, T, i.e. the susceptibility at the ordering wavevector:

S(S+1)

X(Q,T) = m

(7.243)

Antiferromagnetic insulators: MnO, CoO, FeO, NiO, LayCuO;,.

Frustrated Antiferromagnet: On the triangular lattice, the antiferromagnetic state is frustrated.
What does mean field theory predict? We begin by writing primitive direct lattice vectors {a,, a,}
and primitive reciprocal lattice vectors {b,, b, }, viz.

4

a, = a(1,0) b, = a—ﬂg (4, -1 (7.244)
47

ay=a(3, %) by=—=(0.1)

where a is the lattice constant. Note that a, - b; = 27 §,;: The six nearest neighbor vectors are then

and writing g = 6,b; /27 + 0, b, /27, we find
J(q) = —2J{cos(6;) + cos(fy) + cos(6; — 6,)} . (7.246)

We suspect that this should be maximized somewhere along the perimeter of the Brillouin zone.

The face center lies at (6;,6,) = 2n(3, 3), where J(q) = +2J. However, an even greater value is
obtainecA:l either of the two inequivalent zone corners, (6,,60,) = 2r(%, 1) and (6,,6,) = 27(3, 2),
where J(q) = +3J. Each of these corresponds to a tripartite division of the triangular lattice in to

three v/3 x /3 triangular sublattices.
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* Helimagnet: Consider a cubic lattice system with mixed ferromagnetic and antiferromagnetic in-

teractions:
+J1 > 0 6 nearest neighbors
Jij = ¢ —J2 <0 12 next-nearest neighbors (7.247)
0 otherwise
Then
J(q) = 2.J1[ cos(gza) + cos(gqya) + cos(g.a)] (7.248)
— 4J5[ cos(gza) cos(gya) + cos(gza) cos(g-a) + cos(gya) cos(g.a)] '
The ordering wavevector is then
Q- a! COS_l(J1/4J2) (Q—F’!J—FZA) lf J1 < 4Js (7249)
0 if Jl > 4J2

Thus, for J; < 4.J, the order is incommensurate with the lattice. The maximum value of J(q) is

2 .
Q) = {3J1 JAdy ifJy < 4y 7250

6(J1 — 2J2) if JJy >4Jy

hence incommensurate order sets in at 7} = S(S + 1).J? /4k,Jo. The uniform susceptibility is

g = 0.1) = SBT3y

- J. 2
T—STIJ—j< —J—f)

(7.251)

Thus,
C/T+T*) 0<Jy<2Jy (AFM-like)
x(gq=0,T) ~ (7.252)
C/HT —T*) 2Jy < J; < 4J; (FM-like)

7.8 Global Symmetries

7.8.1 Symmetries and symmetry groups

Interacting systems can be broadly classified according to their global symmetry group. Consider the
following five examples:

Hygpe=—> Jijo;0; , oy€{-1+1} | (7.253)
i<j
which is the Ising model,
H, ok = — Z J;; cos <TJ> . Le{l,2,....p} , (7.254)

1<j



404 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

which is the p-state clock model,

Hy poyis = — > Jij 0oa, » 0i€{L2....q} (7.255)
1<J

which is the ¢g-state Potts model,

Hyy ==Y Jjjcos(¢;—¢;) , ¢ €[0,2n] (7.256)

1<J

which is the XY model (also called the O(2) model), and

=Y Jyhgeny o, A e SN (7.257)

i<j
which is the O(N) model.

The Ising Hamiltonian is left invariant by the global symmetry group Z,. This group has two elements,
which we write as [ and r. E is the identity operation, i.e. E'o, = o, for all i. The  operation reverses the
spins: r 0, = —o, . By simultaneously reversing all the spins o, — —o;, the interactions remain invariant.
Note that 72 = E.

The degrees of freedom of the p-state clock model are integer variables [, each of which ranges from 1 to p.
The Hamiltonian is invariant under the discrete group Z,, whose p elements are generated by the single

operation r, where

L.+1 if [ 1,2,...,p—1

pp, = it Le{l2 1) (7.258)
1 it I,=p

Think of a clock with one hand and p ‘hour’ markings consecutively spaced by an angle 27 /p. In each
site 4, a hand points to one of the p hour marks; this determines /,. The operation r simply advances all
the hours by one tick, with hour p advancing to hour 1, just as 23:00 military time is followed one hour
later by 00:00. The interaction cos (2 (l; —1 i)/ p) is invariant under such an operation. The p elements of
the group Z,, are then {E, r, 7%, ..., rP~'}.

We’ve already met up with the g-state Potts model, where each site supports a ‘spin” o, which can be
in any of ¢ possible states, which we may label by integers {1, ..., ¢}. The energy of two interacting
sites i and j is —J;; if o; = 0, and zero otherwise. This energy function is invariant under global op-
erations of the symmetric group on q characters, S,, which is the group of permutations of the sequence
{1,2,3, ..., q}. The group S, has ¢! elements. Note the difference between a Z, symmetry and an S,

symmetry. In the former case, the Hamiltonian is invariant only under the g-element cyclic permuta-
tions, e.g.
12---q—1gq
r=
23... ¢ 1

All these models — the Ising, p-state clock, and g-state Potts models — possess a global symmetry group
which is discrete. That is, each of the symmetry groups Z,, Z,,, and S, is a discrete group, with a finite

and its powers r! with =0,...,q — 1.

number of elements. The XY Hamiltonian H yy on the other hand is invariant under a continuous
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Figure 7.20: A domain wall in a one-dimensional Ising model.

group of transformations ¢, — ¢, + «, where ¢, is the angle variable on site i. More to the point, we
could write the interaction term cos(¢; — ¢;) as 16 z; + ziz;), where z; = €% is a phase which lives
on the unit circle, and =z is the complex conjugate of z;. The model is then invariant under the global
transformation z; — €'®z,. The phases e* form a group under multiplication, called U(1), which is the
same as O(2). Equivalently, we could write the interaction as n; - n;, where i; = (cos ¢; , sin ¢;), which
explains the O(2), symmetry, since the symmetry operations are global rotations in the plane, which is
to say the two-dimensional orthogonal group. This last representation generalizes nicely to unit vectors
in n dimensions, where 7 = (n!, n?, ..., nV). with 12 = 1. The dot product 7, - n; is then invariant
under global rotations in this n-dimensional space, which is the group O(N).

7.8.2 Lower critical dimension

Depending on whether the global symmetry group of a model is discrete or continuous, there exists a
lower critical dimension d, at or below which no phase transition may take place at finite temperature.
That is, for d < d,, the critical temperature is 7, = 0. Owing to its neglect of fluctuations, mean field
theory generally overestimates the value of T, because it overestimates the stability of the ordered phase?.
Indeed, there are many examples where mean field theory predicts a finite 7, when the actual critical
temperature is T, = 0. This happens whenever d < d,.

Let’s test the stability of the ordered (ferromagnetic) state of the one-dimensional Ising model at low
temperatures. We consider order-destroying domain wall excitations which interpolate between regions
of degenerate, symmetry-related ordered phase, i.e. 11111 and JJJJJ. For a system with a discrete sym-
metry at low temperatures, the domain wall is abrupt, on the scale of a single lattice spacing. If the
exchange energy is J, then the energy of a single domain wall is 2., since a link of energy —J is replaced
with one of energy +J. However, in a system of length L (with periodic boundary conditions), there
are L possible locations for the domain wall, hence its entropy is &k In L. For a system with A/ domain

2Tt is a simple matter to concoct models for which the mean field transition temperature underestimates the
actual critical temperature. Consider for example an Ising model with interaction u(o,0’) = —e ' In(1 + eoo’),
where the spins take values 0,0’ = £1, and where 0 < € < 1. If we write 0 = (o) + do at each site and neglect
terms quadratic in fluctuations, the resulting mean field Hamiltonian is equivalent to a set of decoupled spins in
an external field h = zm/(1 + em?). The mean field transition temperature is 7" = z, the lattice coordination
number, independent of e. On the other hand, we may also write u(o,0’) = u_— J. 0o’, where u, = —In(1 —€?)/2¢
and J, = ¢! tanh ™' (¢). On the square lattice, where z = 4, one has the exact result 7, (¢) = 2.J./sinh ! (1), which
diverges as € — 1, while T)'" = 4 remains finite. For € > 0.9265, one has T, (¢) > T}'".
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Figure 7.21: Domain walls in the two-dimensional (left) and three-dimensional (right) Ising model.

walls, the free energy is

L
F=2MJ—k,Tl <M>
(7.259)
=N {2Jx+kBT[xlnx+(1—w)ln(1—w)]} ;

where x = M/L is the density of domain walls, and where we have used Stirling’s approximation for !
when £ is large. Extremizing with respect to , we find

T kT -t
T L= B == w_e2J/kBT—|—1 . (7.260)

The average distance between domain walls is 21, which is finite for finite 7. Thus, the thermodynamic
state of the system is disordered, with no net average magnetization.

Consider next an Ising domain wall in d dimensions. Let the linear dimension of the system be L - a,
where L is a real number and « is the lattice constant. Then the energy of a single domain wall which
partitions the entire system is 2J - L4~1. The domain wall entropy is difficult to compute, because the
wall can fluctuate significantly, but for a single domain wall we have S 2 k; In L. Thus, the free energy
F = 2JL% ! — k,Tn L is dominated by the energy term if d > 1, suggesting that the system may be
ordered. We can do a slightly better job in d = 2 by writing

Z & exp <Ld > Np e—QPJ/’fBT> , (7.261)
P

where the sum is over all closd loops of perimeter P, and N, is the number of such loops. An example
of such a loop circumscribing a domain is depicted in the left panel of fig. 7.21. It turns out that

Np~rPP0. {1 n O(P—l)} , (7.262)
where k = z — 1 with z the lattice coordination number, and 6 is some exponent. We can understand the

k¥ factor in the following way. At each step along the perimeter of the loop, there are k = z—1 possible
directions to go (since one doesn’t backtrack). The fact that the loop must avoid overlapping itself and
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must return to its original position to be closed leads to the power law term P~?, which is subleading
since K P~ = exp(Plnx — 0In P) and P >> In P for P >> 1. Thus,

1
Fr—=L4Y plenn=280)P 7.263

which diverges if Ink > 26J, i.e. if T > 2J/k;In(z — 1). We identify this singularity with the phase
transition. The high temperature phase involves a proliferation of such loops. The excluded volume
effects between the loops, which we have not taken into account, then enter in an essential way so that
the sum converges. Thus, we have the following picture:

Ink < 2B8J : large loops suppressed ; ordered phase
Ink > 28J : large loops proliferate ; disordered phase

On the square lattice, we obtain

27 2J
E.Tapprox _ “Y _ g9 7T , k. Tt — = —997]J
pre In3 Bre sinh (1)

The agreement is better than we should reasonably expect from such a crude argument.

Nota bene : Beware of arguments which allegedly prove the existence of an ordered phase. Generally
speaking, any approximation will underestimate the entropy, and thus will overestimate the stability of
the putative ordered phase.

7.8.3 Continuous symmetries

When the global symmetry group is continuous, the domain walls interpolate smoothly between or-
dered phases. The energy generally involves a stiffness term,

E = ip, / d (V)2 | (7.264)

where 6(r) is the angle of a local rotation about a single axis and where p, is the spin stiffness. Of course,
in O(n) models, the rotations can be with respect to several different axes simultaneously.

In the ordered phase, we have 6(r) = 6, a constant. Now imagine a domain wall in which 6(r) rotates
by 27 across the width of the sample. We write 6(r) = 2mnx/L, where L is the linear size of the sample
(here with dimensions of length) and n is an integer telling us how many complete twists the order
parameter field makes. The domain wall then resembles that in fig. 7.22. The gradient energy is

2m™n

L
2
E = %ps Ld—l/dw <T> = 27T2n2ps L2 (7.265)

Recall that in the case of discrete symmetry, the domain wall energy scaled as E o L?~!. Thus, with
S 2 kg In L for a single wall, we see that the entropy term dominates if d < 2, in which case there is no
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Figure 7.22: A domain wall in an XY ferromagnet.
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finite temperature phase transition. Thus, the lower critical dimension d, depends on whether the global
symmetry is discrete or continuous, with

discrete global symmetry — d,=1

continuous global symmetry — d, =2

Note that all along we have assumed local, short-ranged interactions. Long-ranged interactions can en-
hance order and thereby suppress d,.

Thus, we expect that for models with discrete symmetries, d, = 1 and there is no finite temperature
phase transition for d < 1. For models with continuous symmetries, d, = 2, and we expect T,, = 0 for
d < 2. In this context we should emphasize that the two-dimensional XY model does exhibit a phase
transition at finite temperature, called the Kosterlitz-Thouless transition. However, this phase transition
is not associated with the breaking of the continuous global O(2) symmetry and rather has to do with
the unbinding of vortices and antivortices. So there is still no true long-ranged order below the critical
temperature 7T}, even though there is a phase transition!

7.8.4 Random systems : Imry-Ma argument

Oftentimes, particularly in condensed matter systems, intrinsic randomness exists due to quenched
impurities, grain boundaries, immobile vacancies, etc. How does this quenched randomness affect a
system’s attempt to order at 7' = 0? This question was taken up in a beautiful and brief paper by J.
Imry and S.-K. Ma, Phys. Rev. Lett. 35,1399 (1975). Imry and Ma considered models in which there are
short-ranged interactions and a random local field coupling to the local order parameter:

Hgpr=—-J» o,0;,—> Ho, (7.266)
(ig) i
Hypony = —J Y _fy-h;— > Hn (7.267)
(ig) i
where
(H)=0 (HEH] ) =166, | (7.268)

where (( o )) denotes a configurational average over the disorder. Imry and Ma reasoned that a system
could try to lower its free energy by forming domains in which the order parameter takes advantage of
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Figure 7.23: Left panel : Imry-Ma domains for an O(2) model. The arrows point in the direction of the
local order parameter field (n(r)). Right panel : free energy density as a function of domain size Lg.
Keep in mind that the minimum possible value for L is the lattice spacing a.

local fluctuations in the random field. The size of these domains is assumed to be L, a length scale to
be determined. See the sketch in the left panel of fig. 7.23.

There are two contributions to the energy of a given domain: bulk and surface terms. The bulk energy
is given by

By = —Hyg (La/a)? (7.269)
where a is the lattice spacing. This is because when we add together (L 4/a)¢ random fields, the magni-

tude of the result is proportional to the square root of the number of terms, i.e. to (L4/a)%?. The quantity

H,.. = VT is the root-mean-square fluctuation in the random field at a given site. The surface energy is

J (Lq/a)?~1 (discrete symmetry)

Esurface X { (7270)

J (Lq/a)?=2 (continuous symmetry)

We compute the critical dimension d.. by balancing the bulk and surface energies,

d—1=3d = d, =2 (discrete)
d—2=3d = d, =4 (continuous)

The total free energy is F = (V/L4) - AE, where AE = E, ;, + E._; Thus, the free energy per unit cell
is

3 0 /2 0 \&2
=——n~J(— - H — . 7.271
o) () oo
If d < d,, the surface term dominates for small L, and the bulk term dominates for large L, There is
global minimum at
Ly d J \2/de=d)
Zd (e , 7.272
a < d Hrms > ( )

For d > d_, the relative dominance of the bulk and surface terms is reversed, and there is a global
maximum at this value of L.
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Sketches of the free energy f(L,) in both cases are provided in the right panel of fig. 7.23. We must keep
in mind that the domain size L; cannot become smaller than the lattice spacing a. Hence we should
draw a vertical line on the graph at L ; = a and discard the portion L; < a as unphysical. For d < d., we
see that the state with L ; = oo, i.e. the ordered state, is never the state of lowest free energy. In dimensions
d < d,, the ordered state is always unstable to domain formation in the presence of a random field.

For d > d, there are two possibilities, depending on the relative size of J and H,,,,. We can see this
by evaluating f(L; = a) = J — H,,, and f(L; = oo) = 0. Thus, if J > H, , the minimum energy
state occurs for L; = oco. In this case, the system has an ordered ground state, and we expect a finite
temperature transition to a disordered state at some critical temperature 7,, > 0. If, on the other hand,
J < H,,,, then the fluctuations in H overwhelm the exchange energy at 7' = 0, and the ground state is

disordered down to the very smallest length scale (i.e. the lattice spacing a).

Please read the essay, Memories of Shang-Keng Ma.

7.9 Ginzburg-Landau Theory

7.9.1 Ginzburg-Landau free energy

Including gradient terms in the free energy, we write?”
F[m(x), h(z)] = /ddx {fo +tam®+ Ibm? + tem® —hm+ ik (Vm)? + ... } . (7.273)

In principle, any term which does not violate the appropriate global symmetry will turn up in such
an expansion of the free energy, with some coefficient. Examples include hm? (both m and h are odd
under time reversal), m?(Vm)?, etc. We now ask: what function m(z) extremizes the free energy func-
tional F'[m(x), h(x)]? The answer is that m(x) must satisfy the corresponding Euler-Lagrange equa-
tion, which for the above functional is

am+bm3+em® —h—kVim=0 . (7.274)

If a > 0 and h is small (we assume b > 0 and ¢ > 0), we may neglect the m? and m® terms. The above
equation then simplifies to (a — k V?) m = h. We solve by Fourier transform, obtaining

) h(q) SR/ C) 1
= X(q) = — = . 7.275
m(q) - = (q) hlg) _ at R (7.275)
Thus,
m(x) = /ddac’ X(x—2')h(z') (7.276)
where 4 gz
B d y el (z—x
Loy — 1
X(x—x') =k /(Qw)d Fie? (7.277)

¥ For a systematic derivation of the Ginzburg-Landau free energy, see the appendix in §7.12.
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where the correlation length is ¢ = \/k/a o (T — T.)~'/?, as before.

If a < 0 then there is a spontaneous magnetization, given by the solution to bm3 + cmg = |a|, and we
write m(x) = m, + dm(x). Assuming h is weak, we then have two equations

a+bmd+cmy=0

7.278
(a+3bm3 +5cmg — kV?) dm = h ( )
Assuming |a| is small, we have m3 = |a|/b and
) h(q)
5 _ 7.279
m(q) ol 1 ng? (7.279)

7.9.2 Domain wall profile

A particularly interesting application of Ginzburg-Landau theory is its application toward modeling the
spatial profile of defects such as vortices and domain walls. Consider, for example, the case of Ising (Z,)
symmetry with i = 0. We expand the free energy density to order m*:

Fm(z)] = /ddw {fo + 2am?® + Lom?* + Lk (Vm)2} . (7.280)

We assume a < 0, corresponding to 7' < T,.. Consider now a domain wall, where m(z — —o0) = —m,,
and m(z — +00) = +m, where m,, is the equilibrium magnetization, which we obtain from the Euler-
Lagrange equation,

am+bm? —kVim=0 |, (7.281)

assuming a uniform solution where Vim = 0. This gives m, = {/|a| /b. It is useful to scale m(x) by m,,

writing m(x) = m, ¢(x). The scaled order parameter function ¢(x) interpolates between ¢(—o0) = —1
and ¢(+o0) = 1.

Thus, we have

EVih=—9+9¢> (7.282)
where { = \/k/|a|. We assume ¢(x) = ¢(z,) is only a function of the first coordinate. Then the Euler-
Lagrange equation becomes

, d% aU

3 _
&y _ _ =_= 7.283
Ez=0rd=-T (7.283)
where U(¢) = —1(¢*—1) ® The ‘potential’ U(¢) is an inverted double well, with maxima at ¢ = £1. The
equation ¢ = —U’(¢), where dot denotes differentiation with respect to ¢, is simply Newton’s second

law with time replaced by space. In order to have a stationary solution at { — oo where ¢ = +£1, the
total energy mustbe £ = U(¢ = +1) = 0, where £ = %¢2 +U(¢). This leads to the first order differential
equation
do _ 4 2
Sd—wl—i(l—ﬂﬁ ) (7.284)
with solution
¢(x) = tanh(z,/2¢) = m(x) = my tanh(z,/2§) . (7.285)

Note that the correlation length ¢ diverges at the Ising transition.
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7.9.3 Ginzburg criterion
Let us define A(T, H,V, N) to be the usual (i.e. thermodynamic) Helmholtz free energy. Then
e PA = / Dm e PFIm@] (7.286)

where the functional F[m(x)] is of the Ginzburg-Landau form, given in eqn. 7.280. The integral above is
a functional integral. We can give it a more precise meaning by defining its measure in the case of periodic
functions m(x) confined to a rectangular box. Then we can expand

1 .
m(x) = —= Y 1, 1" (7.287)
VV 4
and we define the measure
Dm = dmg [ [ dRe g dim 1, . (7.288)
q
dx >0

Note that the fact that m(x) € R means that m_, = ;. We'll assume 7" > T, and H = 0 and we'll
explore limit 7" — T, from above to analyze the properties of the critical region close to 7. In this limit
we can ignore all but the quadratic terms in m, and we have

_ ~ k., T 1/2
e ﬁA:/Dm exp (— %ﬁZ(a+nq2)|mq|2> :H<a—|—/iq2> . (7.289)
q q
Thus,
1 a+ kg
A=3k,T> In — . (7.290)
q B

Close to the critical point, we write a(1") = at, where ¢ is the dimensionless quantity t = (T' — T,)/T,,
known as the reduced temperature.

We now compute the heat capacity C;, = —T 9%4/9T%. We are really only interested in the singular
contributions to C,, which means that we’re only interested in differentiating with respect to 7" as it
appears in a(7T"). We divide by Nk, where N is the number of unit cells of our system, which we
presume is a lattice-based model. Note N ~ V/a? where V is the volume and a the lattice constant. The
dimensionless heat capacity per lattice site is then

A

Cy a?al [ d% 1
-V _ 7.291
TN T 22 /(27r)d (£244%)?2 ( )

1

where ¢ = (r/at)'/? o |t|~1/? is the correlation length, and where A ~ a~! is an ultraviolet cutoff. We

define R, = (x/a)'/?,in which case

AL

cm Riadgid. / dg 1 (7.292)
i 2) @2m)d 1+
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where g = ¢€. Thus,
const. ifd >4
ct)y~< —Int ifd=4 (7.293)
572 ifd<4

For d > 4, mean field theory is qualitatively accurate, with finite corrections. In dimensions d < 4, the
mean field result is overwhelmed by fluctuation contributions as ¢t — 0% (i.e. as T — T."). We see that
MFT is sensible provided the fluctuation contributions are small, i.e. provided R 13d¢41 « 1, which

entails ¢t > t,, where
5 \24/(4=d)
te = <R_*> (7.294)

is the Ginzburg reduced temperature. The criterion for the sufficiency of mean field theory, namely ¢ > ¢,
is known as the Ginzburg criterion. The region |t| < t, is known as the critical region.

In a lattice ferromagnet, as we have seen, R, ~ a is on the scale of the lattice spacing itself, hence ¢, ~ 1
and the critical regime is very large. Mean field theory then fails quickly as 7" — T. In a (conventional)
three-dimensional superconductor, R, is on the order of the Cooper pair size, and R,/a ~ 10? — 10?,
hence t., = (a/R,)% ~ 107 — 10712 is negligibly narrow. The mean field theory of the superconducting
transition — BCS theory — is then valid essentially all the way to 7" = T...

7.10 AppendixI: Equivalence of the Mean Field Descriptions

In both the variational density matrix and mean field Hamiltonian methods as applied to the Ising
model, we obtained the same result m = tanh ((m + h)/6). What is perhaps not obvious is whether
these theories are in fact the same, i.e. if their respective free energies agree. Indeed, the two free energy
functions,

Falm,h,0) = —3m _hm+9{<HTm> ln<1zm>+<1_2m>ln<l_7m>} (7.295)

fo(m, h,0) = +1 m2—01n (e+(m+h)/6 + e—(m+h)/9) ’

where f, is the variational density matrix result and f, is the mean field Hamiltonian result, clearly are
different functions of their arguments. However, it turns out that upon minimizing with respect to m
in each cast, the resulting free energies obey f,(h,0) = fg(h,8). This agreement may seem surprising.
The first method utilizes an approximate (variational) density matrix applied to the exact Hamiltonian
H. The second method approximates the Hamiltonian as H,;, but otherwise treats it exactly. The two
Landau expansions seem hopelessly different:

fam,h,0) =02 —hm+310O-1)m* +Lm*+Lmé+ ...
7.296
(m+h)?  (m+h)* (m+h)° 7:296)

h,0) = —01n2+ im? — _
fu(m, h,0) na+gm 20 1200 45 6°




414 CHAPTER 7. MEAN FIELD THEORY OF PHASE TRANSITIONS

We shall now prove that these two methods, the variational density matrix and the mean field approach,
are in fact equivalent, and yield the same free energy f(0, h).

Let us generalize the Ising model and write

H=-) TJjeloio;)—> ®(oi) . (7.297)
i<j i
Here, each ‘spin’ o; may take on any of K possible values, {sy, ..., sy }. For the S = 1 Ising model, we

would have K = 3 possibilities, with s; = —1, s, = 0, and s; = +1. Buttheset {s,}, witha € {1,..., K},
is completely arbitrary?®. The ‘local field’ term ® (o) is also a completely arbitrary function. It may be
linear, with ®(c) = Ho, for example, but it could also contain terms quadratic in o, or whatever one
desires.

The symmetric, dimensionless interaction function (o, 0’) = £(¢’, o) is a real symmetric K x K matrix.
According to the singular value decomposition theorem, any such matrix may be written in the form

NS
e(o,0") =AM () M) (7.298)
p=1

where the {A,} are coefficients (the singular values), and the {),(c)} are the singular vectors. The
number of terms [V, in this decomposition is such that /N, < K. This treatment can be generalized to
account for continuous o.

7.10.1 Variational density matrix

The most general single-site variational density matrix is written

K
o0) = z,0,, . (7.299)
a=1

Thus, z,, is the probability for a given site to be in state o, with ¢ = s,,. The {z} are the K variational
parameters, subject to the single normalization constraint, y"  x., = 1. We now have

1
NJ(0)

= _% Z Z Ap )‘p(sa) )‘p(sa’) Lo Lo — Z (:0(304) Ty + HZwa lnxa s

P o,

= {Tr<gﬁ>+kBT Tr(glnm}

(7.300)

where ¢(c) = ®(c)/J(0). We extremize in the usual way, introducing a Lagrange undetermined multi-
plier ¢ to enforce the constraint. This means we extend the function f ({z,}), writing

K
f*(xl,...,wK,o=f<w1,...,xK>+<<Zxa—1) : (7.301)
a=1

2t needn’t be an equally spaced sequence, for example.
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and freely extremizing with respect to the (K + 1) parameters {x, ..., 2, (}. This yields K nonlinear
equations,

0
0= f ZZA A Sor) Ty — P(8) + 0 nay +C+60 (7.302)
for each o, and one linear equatlon, whlch is the normalization condition,

af*
0= T => z,—-1 . (7.303)

«

We cannot solve these nonlinear equations analytically, but they may be recast, by exponentiating them,

as
To = 7 XD { [Z ZA Ap( Sor) Ty + go(sa)] } , (7.304)
with

7 = e/ zexp{g [ZZAPA,J(sa)Ap(sa/)xa/+w<sa>]} - (7.305)

From the logarithm of z,, we may compute the entropy, and, finally, the free energy:

= % Z Z Ap /\p(sa) Ap(sog’) Lo Tyt — 0lnZ 3 (7306)

!
P a,a

which is to be evaluated at the solution of 7.302, {z},(h,0) }

7.10.2 Mean field approximation

We now derive a mean field approximation in the spirit of that used in the Ising model above. We write
Ap(0) = (Ap(0)) + 6Ap(0) (7.307)
and abbreviate A, = (\,(0)), the thermodynamic average of \,(c) on any given site. We then have

Ap(0) Ap(0) = A2+ Xy A, (0) + Ap 6Ap(07) + 6Xp(0) SA,(0”)
(7.308)
= —5\?, + 5\p ()\p(a) + )\p(a/)) + 6\, (0) 5)\1,(0/)

The product 6A,(c) 6A,(0”) is of second order in fluctuations, and we neglect it. This leads us to the
mean field Hamiltonian,

e = +NTO S 4,3~ 3 [10 S 43, (00 49600 (7.309)

The free energy is then

FEMEO) =35> A —01In Y exp {% {Z Ap 2y Mp(s,) + cp(sa)] } : (7.310)
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The variational parameters are the mean field values { Xy }.

The single site probabilities {z,, } are then

T, = exp{ [ZA Ap Ap( ©(s )]} , (7.311)

with Z implied by the normalization ) , z, = 1. These results reproduce exactly what we found in eqn.
7.302, since the mean field equation here, 9f /0, = 0, yields

K
=> Mlsa) T, - (7.312)
a=1
The free energy is immediately found to be
=35> AN -0z (7.313)
P

which again agrees with what we found using the variational density matrix.

Thus, whether one extremizes with respect to the set {z,,...,2x,(}, or with respect to the set {)\,},
the results are the same, in terms of all these parameters, as well as the free energy f(6). Generically,
both approaches may be termed ‘mean field theory’ since the variational density matrix corresponds to
a mean field which acts on each site independently?’.

711 Appendix II : Additional Examples of Mean Field Theory

7.11.1 Blume-Capel model

The Blume-Capel model provides a simple and convenient way to model systems with vacancies. The
simplest version of the model is written

= QZ S S;+AY S (7.314)

The spin variables S; range over the values {—1, 0, +1}, so this is an extension of the S = 1 Ising model.
We explicitly separate out the diagonal terms, writing J;; = 0, and placing them in the second term on
the RHS above. We say that site 7 is occupied if S; = +1 and vacant if S; = 0, and we identify —A as
the vacancy creation energy, which may be positive or negative, depending on whether vacancies are
disfavored or favored in our system.

We make the mean field Ansatz, writing S, = m + 5SZ-. This results in the mean field Hamiltonian,

Hyo = INJ(0)m ym Z S, +A Z s? . (7.315)

PThe function ®(0) may involve one or more adjustable parameters which could correspond, for example, to
an external magnetic field k. We suppress these parameters when we write the free energy as f(9).
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Once again, we adimensionalize, writing f = F/N.J(0), § = k,T/J(0), and 6 = A/.J(0). We assume

A

J(0) > 0. The free energy per site is then
f(m,0,8) =4m?—01n (1 +2¢7%/0 cosh(m/9)> . (7.316)

Extremizing with respect to m, we obtain the mean field equation,

B 2sinh(m/0)
e exp(d/6) + 2 cosh(m/0)

(7.317)

Note that m = 0 is always a solution. Finding the slope of the RHS at m = 0 and setting it to unity gives

us the critical temperature:

2
0 = — —— . 7.31
¢ exp(0/6,)+2 (7.318)

This is an implicit equation for 6, in terms of the vacancy energy J. Equivalently, we can write
2
9.(0) = 91n<§ - 2> . (7.319)

Let’s now expand the free energy in terms of the magnetization m. We find, to fourth order,

1 2
! Oln (14 2¢ )+20< 2+exp(5/9)>m

(7.320)

1 6 4
LT (2 + exp(6/6))63 <2+exp(5/9) - 1>m T

Note that setting the coefficient of the m? term to zero yields the equation for §.. However, upon further
examination, we see that the coefficient of the m* term can also vanish. As we have seen, when both the
coefficients of the m? and the m* terms vanish, we have a tricritical point®. Setting both coefficients to
zero, we obtain

=3 , 6, =22 . (7.321)

Wl

At § = 0, it is easy to see we have a first order transition, simply by comparing the energies of the
paramagnetic (S; = 0) and ferromagnetic (S; = +1 or S; = —1) states. We have

E 0 if m = 0
L s (7.322)

These results are in fact exact, and not only valid for the mean field theory. Mean field theory is approx-
imate because it neglects fluctuations, but at zero temperature, there are no fluctuations to neglect!

How about the first order line in the phase diagram? To fix this, we seek the boundary between what
are the analogs to regions D and E in fig. 7.118. This requires that 9%f /0m? > 0 for m = 0, with means

30We should really check that the coefficient of the sixth order term is positive, but that is left as an exercise to
the eager student.
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Figure 7.24: Mean field phase diagram for the Blume-Capel model. The black dot signifies a tricritical
point, where the coefficients of m? and m* in the Landau free energy expansion both vanish. The dashed
curve denotes a first order transition, and the solid curve a second order transition. The thin dotted line
is the continuation of the §.(¢) relation to zero temperature.

d > 9.(0). We then invoke the mean field equation eqn. 7.317 as well as the condition f(m) = f(0). This
latter condition is found to be

5 4 sinh?(m,/26)

The simultaneous solution of this equation and the mean field equation yield the equation of the first
order line, §*(6), as well as the order parameter discontinuity m* () at the first order transition.. As
0 — 6, we have 6*(0;) = 6, = 1 and m*(6;) = 0.

The phase diagram is shown in fig. 7.24. Note that for § large and negative, vacancies are strongly
disfavored, hence the only allowed states on each site have S, = +1, which is our old friend the two-
state Ising model. Accordingly, the phase boundary there approaches the vertical line 6. = 1, which is
the mean field transition temperature for the two-state Ising model.

7.11.2 Ising antiferromagnet in an external field

Consider the following model:
H=7J)Y o,0;-H» o, , (7.324)
(i7) g

with J > 0 and o, = +1. We've solved for the mean field phase diagram of the Ising ferromagnet; what
happens if the interactions are antiferromagnetic?

It turns out that under certain circumstances, the ferromagnet and the antiferromagnet behave exactly
the same in terms of their phase diagram, response functions, efc. This occurs when H = 0, and when
the interactions are between nearest neighbors on a bipartite lattice. A bipartite lattice is one which can
be divided into two sublattices, which we call A and B, such that an A site has only B neighbors, and a B
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site has only A neighbors. The square, honeycomb, and body centered cubic (BCC) lattices are bipartite.
The triangular and face centered cubic lattices are non-bipartite. Now if the lattice is bipartite and the
interaction matrix J;; is nonzero only when i and j are from different sublattices (they needn’t be nearest
neighbors only), then we can simply redefine the spin variables such that

. ifjeA
o =% I (7.325)
—o; ifjEB
Then o0 = —0,0;, and in terms of the new spin variables the exchange constant has reversed. The

thermodynamic properties are invariant under such a redefinition of the spin variables.

We can see why this trick doesn’t work in the presence of a magnetic field, because the field H would
have to be reversed on the B sublattice. In other words, the thermodynamics of an Ising ferromagnet
on a bipartite lattice in a uniform applied field is identical to that of the Ising antiferromagnet, with the
same exchange constant (in magnitude), in the presence of a staggered field H, = +H and H, = —H.

We treat this problem using the variational density matrix method, using two independent variational
parameters m, and my for the two sublattices:

_1+m, 1—-m,

0a(0) 5 0p1 T+ 5 01
1+m 1—m (7.326)
QB(J) = 2 = 50,1 + 2 = 60,—1

With the usual adimensionalization, f = F//NzJ, 0 = k,T/zJ, and h = H/zJ, we have the free energy
f(my,my) = %mAmB - % h(my +mg) — % 0 s(m,) — %es(mB) ) (7.327)

where the entropy function is

14+m 1+m 1—m 1—m
s(m) = — 5 ln< 5 ) +— ln< 5 >] . (7.328)
Note that i P
as 1 1+m s _ 1
e ln<1 — m> , oo Rl e B (7.329)

Differentiating f(m,, my) with respect to the variational parameters, we obtain two coupled mean field
equations:

of _y _ mB:h_gln<1+mA>

om, 1—m,

7.330
af 0 — —h—gln 1+my ( )
om, Ta= Ty T T,

Recognizing tanh™' (z) = +1n [(1 +xz)/(1 — :L')], we may write these equations in an equivalent but

perhaps more suggestive form:

m, = tanh <h — mB> , my = tanh <h _emA> . (7.331)

0
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Figure 7.25: Graphical solution to the mean field equations for the Ising antiferromagnet in an external
field, here for 6 = 0.6. Clockwise from upper left: (a) h = 0.1, (b) h = 0.5, (c) h =1.1,(d) h = 1.4.

In other words, the A sublattice sites see an internal field H

aint = —#Jmy from their B neighbors, and
the B sublattice sites see an internal field H ;,, = —2Jm, from their A neighbors.

We can solve these equations graphically, as in fig. 7.25. Note that there is always a paramagnetic
solution with m, = myz = m, where

1 _
m=h— (L —  m—tanh (22T (7.332)
2 1—-m 0

However, we can see from the figure that there will be three solutions to the mean field equations pro-

vided that ngA < —1 at the point of the solution where m, = m,, = m. This gives us two equations with
B

which to eliminate m, and my, resulting in the curve

6 1
h*(0) =m + 3 1H<1i——2> with m=+v1—-6 . (7.333)
Thus, for § < 1 and |h| < h*(#) there are three solutions to the mean field equations. It is usually the
case, the broken symmetry solutions, which mean those for which m, # mg in our case, are of lower
energy than the symmetric solution(s). We show the curve 1h*(¢) in fig. 7.26.
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Figure 7.26: Mean field phase diagram for the Ising antiferromagnet in an external field. The phase
diagram is symmetric under reflection in the ~ = 0 axis.

We can make additional progress by defining the average and staggered magnetizations m and m,

D=

m=g(my+my) , mg=g(my —my) . (7.334)
We expand the free energy in terms of m,:

fim,my) = im? — Im2 —hm — L 0s(m +my) — 3 0s(m —m,)

7.335
:%mz—hm—ﬁs(m)—%<1+98"(m)>m§—ﬁ@s"”(m)m3+... ( )
The term quadratic in m, vanishes when 6 s”(m) = —1, i.e. when m = /1 — 6. It is easy to obtain
3 2 4, 2(1 2
ds m ’ ds (14 3m?) ’ (7.336)
dm? (1 —m?)? dm? (1 —m?2)3

from which we learn that the coefficient of the quartic term, —ﬁ 6 s""(m), never vanishes. Therefore the
transition remains second order down to # = 0, where it finally becomes first order.

We can confirm the § — 0 limit directly. The two competing states are the ferromagnet, with m, = my =
+1, and the antiferromagnet, with m, = —m, = %1. The free energies of these states are

fFM — % —h , fAFM - _% . (7.337)

There is a first order transition when f™ = fA™ which yields h = 1.

711.3 Canted quantum antiferromagnet

Consider the following model for quantum S = % spins:

H=), [_J(”f"f +077) +A050ﬂ + 1K ) ofoioiof (7.338)
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where o, is the vector of Pauli matrices on site i. The spins live on a square lattice. The second sum is
over all square plaquettes. All the constants J, A, and K are positive.

Let’s take a look at the Hamiltonian for a moment. The J term clearly wants the spins to align ferro-
magnetically in the (z, y) plane (in internal spin space). The A term prefers antiferromagnetic alignment
along the 2 axis. The K term discourages any kind of moment along 2 and works against the A term.
We’d like our mean field theory to capture the physics behind this competition.

Accordingly, we break up the square lattice into two interpenetrating v/2 x v/2 square sublattices (each
rotated by 45° with respect to the original), in order to be able to describe an antiferromagnetic state. In
addition, we include a parameter o which describes the canting angle that the spins on these sublattices
make with respect to the z-axis. That is, we write

0, = % + %m(sinaax—i—cosagz)
0y = % + %m (sina 0¥ —cosao®) (7.339)

Note that Tr g, = Tr g, = 1 so these density matrices are normalized. Note also that the mean direction
for a spin on the A and B sublattices is given by

m,,=Tr(0,z0)=Emcosaz+msinaz . (7.340)

Thus, when a = 0, the system is an antiferromagnet with its staggered moment lying along the 2 axis.
When « = 17, the system is a ferromagnet with its moment lying along the @ axis.

Finally, the eigenvalues of g, , are still A, = (1 & m), hence

S(m) =-—Tr (QA In QA) =—Tr (QB In QB)
1+m 1+m 1—-m 1—m (7.341)
In In .

2 2 2 2

Note that we have taken m, = m, = m, unlike the case of the antiferromagnet in a uniform field. The
reason is that there remains in our model a symmetry between A and B sublattices.

The free energy is now easily calculated:
F =Tr(oH) + k,TTr(oln o)
(7.342)
= —2N<J sina 4+ A cos2a) m? + %NKm4 cos*ar — Nk, T s(m)

We can adimensionalize by defining 6 = A/J, k = K/4.J, and 6 = k,T/4J. Then the free energy per site
is f = F/ANJ is
f(m,a) = —%mz + %(1 — 6) m? cos®a + %ﬁm‘l costa — O s(m) . (7.343)

There are two variational parameters: m and 6. We thus obtain two coupled mean field equations,

0 1
O—f =0=-m+ (1 — 5) m cos’a + km? costa + %9 1n<1+—m>
m -m (7.344)
g =0= (1 — 5+ rm? cos2a> m?sin a cos a
Oa



7.11. APPENDIXII: ADDITIONAL EXAMPLES OF MEAN FIELD THEORY 423

2.5 [ T T T T T T T T | T T T T | T ]
- oy ]
2 i * 4 ANTIFERRO 4
- O ]
A Y .
o P F > > CANTED -
1 :_ 7777777777777777777 _:
222 PARA ]
05— = - FERRO (n=0) -
Endindis ]
0 L ] ] ] | ] ] ] ] ] ] | L

0 0.5 1 1.5

Figure 7.27: Mean field phase diagram for the model of eqn. 7.338 for the case x = 1.

Let’s start with the second of the mean field equations. Assuming m # 0, it is clear from eqn. 7.343 that

0 if <1
cosa =< (0—1)/km? if 1<6<1+rm? (7.345)
1 if 6>14rm?

Suppose § < 1. Then we have cos o = 0 and the first mean field equation yields the familiar result

m = tanh (m/0) . (7.346)
Along the 6 axis, then, we have the usual ferromagnet-paramagnet transition at §, = 1.
For 1 < § < 1+ xm? we have canting with an angle

L [i-1
2

a=a*(m) = cos” (7.347)

Km
Substituting this into the first mean field equation, we once again obtain the relation m = tanh (m/6).
However, eventually, as 6 is increased, the magnetization will dip below the value my = /(0 —1)/k.
This occurs at a dimensionless temperature

my 0—1

- M0 1 =
0 tanh ™! (m,) 0 K

(7.348)

For § > 6,, we have § > 1 + xm?2, and we must take cos?

becomes p .
b — wm® =& ln< - m) , (7.349)

a = 1. The first mean field equation then

1—m

or, equivalently, m = tanh ((ém — km?)/6). A simple graphical analysis shows that a nontrivial solution
exists provided # < §. Since cos @ = %1, this solution describes an antiferromagnet, with m, = +mz2
and m; = Fmz. The resulting mean field phase diagram is then as depicted in fig. 7.27.
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7.11.4 Coupled order parameters

Consider the Landau free energy

fm,¢) =Sa,m*+ 1b,m' + Lay,¢* + by 0" + 5Am* ¢ (7.350)
We write
ay, = o, 0, ) ay =a,0, (7.351)
where
T— Tc,m T— TC,d)
0 0

where T, is some temperature scale. We assume without loss of generality that T, ,,, > T, ;. We begin by
rescaling:

o \V/2 o \V2 -
m= <b_m> m , o= <b_m> o . (7.353)
We then have
f=¢ {r (30, m%+ 1wt +r7 (30,0% + 16" + 3 Am%}?} : (7.354)
where 1o
O Xy e < b¢ )
0= T3 , r=—|-— , A=—"— (7.355)
0 (bm b¢)1/2 Oé¢ bm (bm b¢)1/2
It proves convenient to perform one last rescaling, writing
m=r""*m ) o=r/t o . (7.356)
Then
f= 50{%q9m m? + 1 m* + %q_l 9¢<,02 +1 ot + 3 >\m2g02} , (7.357)
where /o /4
Uy b
g=r= <_> (b_¢> . (7.358)
a, m
Note that we may write
f(m,p) = o (mz (pg) <1 A) <m22> I €0 (mz cp2) ( q_?m > ' (7.359)
4 Al %) 2 q 9d>

The eigenvalues of the above 2 x 2 matrix are 1+ ), with corresponding eigenvectors ( ill ). Since ¢? > 0,

we are only interested in the first eigenvector (}), corresponding to the eigenvalue 1 + \. Clearly when

A < 1 the free energy is unbounded from below, which is unphysical.

We now set of of
oo =0 7 % =0 |, (7.360)

and identify four possible phases:
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e Phasel: m =0, ¢ = 0. The free energy is f; = 0.
e Phase Il : m # 0 with ¢ = 0. The free energy is

€
f= 50 (q 6, m?+ % m4) ) (7.361)

hence we require 6,, < 0 in this phase, in which case

£
My =V=00, . fu=-F 0, (7.362)

e Phase III : m = 0 with ¢ # 0. The free energy is

€ —
fZEO(q 19¢¢2+%¢4) , (7.363)
hence we require ¢, < 0 in this phase, in which case
€ —

O =/~ 9¢ ) S = _ZO q 2 935 . (7.364)

e PhaseIV:m # 0 and ¢ # 0. Varying f yields

(G-

with solution

m2: qem_q 19(1))‘
A2 -1
. (7.366)
A v |

Since m? and ¢? must each be nonnegative, phase IV exists only over a yet-to-be-determined subset
of the entire parameter space. The free energy is

2 n2 —2 n2
02+ q 202 — 210, 0
fov = 0 £ 5 G (7.367)

We now define § = 0,, and 7 = 0, — 0,,, = (1,
temperature ranges to consider.

=T /Ty, Note that 7 > 0. There are three possible

,m

(1) 64 > 6,, > 0. The only possible phases are I and IV. For phase IV, we must impose the conditions
m? > 0and ¢* > 0. If \? > 1, then the numerators in eqns. 7.366 must each be positive:

2 0
q° 0, 7 N 0
0, > O,

A<

2 9
= )\<min<q09m, 25’) . (7.368)
¢ 4Ym
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But since either ¢20,,,/0 » Or its inverse must be less than or equal to unity, this requires A < —1,
which is unphysical.

If on the other hand we assume A? < 1, the non-negativeness of m? and ¢? requires

A >

29
4 I ) A >

2 0
; s = )\>max<q b o >>1 . (7.369)
¢ " Ym

05 %0y,
Thus, A > 1 and we have a contradiction.

Therefore, the only allowed phase for § > 0 is phase L.

0, > 0 > 0,. Now the possible phases are L, II, and IV. We can immediately rule out phase I
because f;; < f;. To compare phases II and IV, we compute

(gA0,, —q7'6,)
02 -1)

Af = fIV - fII = (7.370)

Thus, phase II has the lower energy if A> > 1. For A < 1, phase IV has the lower energy, but the
conditions m? > 0 and ? > 0 then entail

29 0
Tm cxc 2 = PO, >0,>0 . (7.371)
9¢ %0,
Thus, ) is restricted to the range
A 1 % (7.372)
€l -1, 52— . .
%10, |

With 0, =6 < 0and 6, = 0 + 7 > 0, the condition q?0,,| > 0, is found to be

—T<O< A1 (7.373)
Thus, phase IV exists and has lower energy when
O+
—T<O< - and —1<A<— , (7.374)
T+ rf

where r = ¢°.

0> 6, > 0, In this regime, any phase is possible, however once again phase I can be ruled out
since phases II and III are of lower free energy. The condition that phase II have lower free energy
than phase Il is

g _
Fu— fun= (@205 = a05) <O, (7.375)

ie. |04 <rl0,,| which means r|| > || — 7. If r > 1 this is true for all # < 0, while if 7 < 1 phase II
is lower in energy only for || < 7/(1 —r).
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Figure 7.28: Phase diagram for 7 = 0.5, r = 1.5 (top) and 7 = 0.5, r = 0.25 (bottom). The hatched
purple region is unphysical, with a free energy unbounded from below. The blue lines denote second
order transitions. The thick red line separating phases II and III is a first order line.

We next need to test whether phase IV has an even lower energy than the lower of phases II and

III. We have
(gA0,, —q7'6,)
Jov = fu = 402 - 1)
(46 — - A6¢)2 (7.376)
fIV_fIII: 4(}\2_1)

In both cases, phase IV can only be the true thermodynamic phase if A> < 1. We then require
m? > 0 and ¢? > 0, which fixes

2 0
Ae [—1,min<q Om. 2 >] . (7.377)
0¢ q 9m

The upper limit will be the first term inside the rounded brackets if ¢2|6,,| < 6 g e if r[f] < |6] — 7.
This is impossible if » > 1, hence the upper limit is given by the second term in the rounded

brackets:
0+T1

o

r>1:X¢e [ -1, } (condition for phase IV) . (7.378)
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If r < 1, then the upper limit will be ¢*6,,, /6, = r6/(6 + 1) if |§] > 7/(1 —r), and will be 8, /¢6,, =
O+71)/roif 0] < 7/(1 —r).

0+
r<l ,—1_T<0<—T.)\€|:—1,7 (phase IV)
(7.379)
T ré
r<l 70<—1_ ')\E[_l’Q—i——T (phase IV)

Representative phase diagrams for the cases r > 1 and r < 1 are shown in fig. 7.28.

712 Appendix III : Derivation of Ginzburg-Landau Free Energy

We can make some progress in systematically deriving the Ginzburg-Landau free energy. Consider the
Ising model,

k:HT =5 Koo, =Y hioy+3y Ky | (7.380)
B i\ j i i

where now K;; = J;;/k,T and h; = H,/k,T are the interaction energies and local magnetic fields in
units of k7. The last term on the RHS above cancels out any contribution from diagonal elements of
K;;. Our derivation makes use of a generalization of the Gaussian integral,

7 1.2 2T 1/2 2
/ dr e”29% b — <?> /e (7.381)
The generalization is
T T 1 - 2m) N2y,
dz /dm e~ 2AyT b (7 e2ij Vi 7.382
/ ! N vdet A ( )

where we use the Einstein convention of summing over repeated indices, and where we assume that the
matrix A is positive definite (else the integral diverges). This allows us to write

1 1
7 = e_§Kn' Tr [ezKijUi 9 ehz’ 0i:|

= det™1/?(27K) e—%Kn/dqsl - -/dqu e~ 255 9i%5 Ty e(@ithi)o;

i L 0o 0o P | ;n (7.383)
— det 1/2(27TK) e 2K”/d¢1 . /d¢N e~ 255 ¢;9; ez”b ln[2cosh(q§l+hz)]

- /d¢1 . ./d¢N T
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where

©=13 K. '¢;¢;— > Incosh(¢;, + h;) + 3 Indet(2rK) + 3 Tr K — NIn2 . (7.384)
ij i

We assume the model is defined on a Bravais lattice, in which case we can write ¢, = ¢ . We can then
define the Fourier transforms,

1 n iq- n 1 —ig-
¢R:\/—N§q:¢qew , gbq:ﬁ;qﬁ}ze TR (7.385)

and
K(qg)=) K(R)e ™R (7.386)
R

A few remarks about the lattice structure and periodic boundary conditions are in order. For a Bravais
lattice, we can write each direct lattice vector R as a sum over d basis vectors with integer coefficients, viz.
R = Zi:l n, a, , where d is the dimension of space. The reciprocal lattice vectors b, have dimensions
inverse to those of R and satisfy a,-b, = 27 4,,, . The set {b,, } is complete, hence any wavevector g may

be expressed as
d

1
a=5-> 0,b, . (7.387)
pu=1
We can impose periodic boundary conditions on a system of size L; x Ly X --- x L, by requiring
¢R+2Z:1 l,L,a, PR (7.388)
This leads to the quantization of the wavevectors, which must then satisfy
eluaan — by =1 (7.389)

and therefore ¢, = 2wm,, /L, , where m,, is an integer. There are then L,L,---L; = N independent
values of g, which can be taken to be those corresponding tom,, € {1,...,L,}.

Let’s now expand the function ®(¢) in powers of the ¢,, and to first order in the external fields h,. We
obtain

=1 zq: (fc—l(q) - 1) |bal® + 15 ER: PR — ER: hg ér + O(6°, 1?) (7.390)
+3Tr K+ Trin(2rK) — NIn2

On a d-dimensional lattice, for a model with nearest neighbor interactions K, only, we have K(g) =
K, > 5€'7%, where § is a nearest neighbor separation vector. These are the eigenvalues of the matrix
K, ;. We note that K, is then not positive definite, since there are negative eigenvalues’!. To fix this, we
can add a term K|, everywhere along the diagonal. We then have

K(q) = K, + K, Z cos(q-9) . (7.391)
[

3!To evoke a negative eigenvalue on a d-dimensional cubic lattice, set ¢, = 7/a for all ;.. The eigenvalue is then
—2dK,.
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Here we have used the inversion symmetry of the Bravais lattice to eliminate the imaginary term. The
eigenvalues are all positive so long as K, > zK;, where z is the lattice coordination number. We can
therefore write K(q) = K(0) — a ¢* for small g, with a > 0. Thus, we can write

Kl 9 -1=a+kg®+... . (7.392)

To lowest order in g the RHS is isotropic if the lattice has cubic symmetry, but anisotropy will enter in
higher order terms. We’ll assume isotropy at this level. This is not necessary but it makes the discussion
somewhat less involved. We can now write down our Ginzburg-Landau free energy density:

F=a¢’ +ic|VeP + 50" —ho | (7.393)
valid to lowest nontrivial order in derivatives, and to sixth order in ¢.

One might wonder what we have gained over the inhomogeneous variational density matrix treatment,
where we found

F=-1> J(g ZH

*’“BTE{( Zm’)ln(“;mi)+<1—2mz~)ln(1—2mi>} S

Surely we could expand J(q) = J(0) — taqg®+. .. and obtain a similar expression for 7. However, such a
derivation using the variational density matrix is only approximate. The method outlined in this section
is in principle exact.

Let’s return to our complete expression for &:

B(p) = Bo(d) + Y v(¢r) (7.395)
R
where
- 1 27
Dy (9) = %ZG_I(q) \¢(q)\2 +1Tr (1 - G_1> +1Trln (W) —NIn2 . (7.396)
q
Here we have defined
v(¢) = $¢> —Incosh ¢ = 35 ¢* — £ ¢° + 545 6% + (7.397)
and R
G(q) = Lf’) (7.398)
1-K(q)
We now want to compute
= / D¢ e=%0(®) ¢~ 2r?(%R) (7.399)

where D¢ = do, do, - - - dop . We expand the second exponential factor in a Taylor series, allowing us to

write
Z:Zo{l—z +3) ) (v(or)v(dr)) + } , (7.400)

R R R
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where
Zy = / D e~ ®0(®)
(7.401)
InZ,=3Tr {ln(l—i-G) - H—LG + Nln2
and o
Do F e %o
(F(¢)) = % : (7.402)

To evaluate the various terms in the expansion of eqn. 7.400, we invoke Wick’s theorem, which says

oo

o0 o0 o0
_lgo-1,. .. _leo=1, ..
<ac. T, T, >: dey---[dzye 295 %% ¢ ..q dey--- [ dzy e 2 Yij T
iy iy iog, ot tar
—o0 —00 —00 —00

(7.403)
= Z gj1j2gj3j4 o gj2L71j2L
all 4i§tinct
pairings
where the sets {j;, ..., j,, } are all permutations of the set {i,, ..., iy, }. In particular, (z}) = 3(G; )2 so

(%) _3< ZG ) . (7.404)

Thus, if we write v(¢) ~ 5 ¢* and retain only the quartic term in v(¢), we obtain

F —
kT

e (TrG) — NlIn2

- —Nln2+ﬁ(-|_r G)* - —Tr (G?) +0(G?)

—anO:%Tr[ N

—In(1+ G)] 7405

Note that if we set K;; to be diagonal, then K(q) and G(q) are constant functions of q. The O(G?)
term then vanishes, which is required since the free energy cannot depend on the diagonal elements of

K;;.
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Chapter 8

The Boltzmann Equation

8.1 References

— H. Smith and H. H. Jensen, Transport Phenomena (Oxford, 1989)
An outstanding, thorough, and pellucid presentation of the theory of Boltzmann transport in clas-
sical and quantum systems.

— P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge,
2010)
Superb, modern discussion of a broad variety of issues and models in nonequilibrium statistical
physics.

— E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, 1981)
Volume 10 in the famous Landau and Lifshitz Course of Theoretical Physics. Surprisingly read-
able, and with many applications (some advanced).

— M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts. Includes a very in-
structive derivation of the Boltzmann equation starting from the BBGKY hierarchy.

— J. A. McLennan, Introduction to Non-equilibrium Statistical Mechanics (Prentice-Hall, 1989)
Though narrow in scope, this book is a good resource on the Boltzmann equation.

— F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason. The later chapters discuss transport phenomena at an undergraduate level.

— N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (3rGl edition, North-Holland,
2007)
This is a very readable and useful text. A relaxed but meaty presentation.
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8.2 Equilibrium, Nonequilibrium and Local Equilibrium

Classical equilibrium statistical mechanics is described by the full N-body distribution,

1 Zyt e Pl (I tei}) OCE
on(®y, - TN, Py, - DY) = N1~ {5_1 PN =By (fp}=})  GCE | (8.1)
We assume a Hamiltonian of the form
A N g2 N N
V=D gt D o)+ ) uld — ). (8.2)
=1 =1 i<j

Here v(x) = Uy (x) is due to external forces. In the context of transport theory, v(z) typically will
denote the effect of an applied external field, e.g. v(2) = —¢FE - & for a particle of charge ¢ in the presence
of a uniform electric field E. We write &, and p, for the corresponding phase space variables, the position
and momentum vectors for the i*? particle, respectively. The quantity

N
oN(Tys - Ty, Py, DY) Hd'“j , (8.3)
j=1

with dp; = dd y ddpj /h?, is the probability, under equilibrium conditions, of finding N particles in the
system, with particle #1 lying within d°r; of z; and having momentum within d%; of p,, etc. The tem-

perature 7' and chemical potential . are constants, independent of position. Note that o3} ({z;}, {p;})
has units of h=.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equi-
librium, meaning that the distribution function is not given by the Boltzmann distribution above. Rather,
itis a time-dependent quantity, o, ( For a general nonequilibrium setting, it is hopeless to make progress
- we’d have to integrate the equations of motion for all the constituent particles. However, typically we
are concerned with situations where external forces or constraints are imposed over some macroscopic
scale. Examples would include the imposition of a voltage drop across a metal, or a temperature differ-
ential across any thermodynamic sample. In such cases, scattering at microscopic length and time scales
described by the mean free path ¢ and the collision time T work to establish local equilibrium throughout the
system. A local equilibrium is a state described by a space and time varying temperature 7'(r,t) and
chemical potential p(r,t). As we will see, the Boltzmann distribution with 7" = T'(r,t) and p = u(r,t)
will not be a solution to the evolution equation governing the distribution function. Rather, the distri-
bution for systems slightly out of equilibrium will be of the form f = f° + §f, where f° describes a state
of local equilibrium.

We will mainly be interested in the one-body distribution

N
flr,pit) =Y (8(r—a;(t)) 6(p — pi(1)) )
=1 (8.4)

N
:Nh_d/Hd/J‘z QN(,r?m%"'>mN7p>p27"'7pN7t)
=2
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Note that f(r, p,t) has dimensions of A=, and f(r,p,t) d* d? is the average number of particles found
within d% of » and d% of p at time . The full k-particle density matrix, which for classical systems we
may write in terms of its diagonal matrix elements in the ({x,}, {p,}) basis, is given by

fk({wz} ) {Pz’}7t) = Z/<5(w1 - fﬁjl (t)) T 5(5% - fﬁjk(t)) 5(1’1 —ﬁjl (t)) "'5(Pk - ﬁjk(t))>

{j17"'7jk}
N (8.5)
N p~Hd
(N —k)! / H dp; oy ({25}, {p;}. t)
i=k+1
where {x j} as an argument of the s-body density matrix f, denotes the ordered set {x,...,x,}, where

k€ {1,...,N} (similarly for {p,}). The prime on the sum over the indices {3y, ..., j, } indicates that no
two indices take the same value. Note that the normalization of f, is

k
N!
/Hdd%‘ dp; fr{m;}, {p;}.t) = D (8.6)
i=1 :
for all t. We write the one-body density matrix f,(x;,p;,t) = f(r,p,t), where r = x; and p = p, .

In the GCE, we sum over different particle numbers N. Assuming v = 0 so that there is no one-body
potential to break translational symmetry, the equilibrium distribution is time-independent and space-
independent:

FO(r,p) = n (2mmk,T) =32 ¢ #"/2mhT (8.7)

wheren = N/V orn = n(T, u) is the particle density in the OCE or GCE. From the one-body distribution
we can compute things like the particle current, j, and the energy current, j.:

it = [db frpin) 2 ©8)
i) = [dhfrmn e 2 89)

where £(p) = p?/2m. Clearly these currents both vanish in equilibrium, when f = f°, since f°(r,p)
depends only on p? and not on the direction of p. In a steady state nonequilibrium situation, the above
quantities are time-independent.

Thermodynamics says that
dg=Tds=de —pudn (8.10)

where s, ¢, and n are entropy density, energy density, and particle density, respectively, and dq is the
differential heat density. This relation may be case as one among the corresponding current densities:

Thus, in a system with no particle flow, 7 = 0 and the heat current j, is the same as the energy current j..

When the individual particles are not point particles, they possess angular momentum as well as linear
momentum. Following Lifshitz and Pitaevskii, we abbreviate I" = (p, L) for these two variables for the
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case of diatomic molecules, and I' = (p, L,n - L) in the case of spherical top molecules, where 7 is the
symmetry axis of the top. We then have, in d = 3 dimensions,

d®p point particles
dI' = dp LdLd$2; diatomic molecules (8.12)
d% L*dL df2; dcos?  symmetric tops

where ¥ = cos™ (- L). We will call the set I" the “kinematic variables’. The instantaneous number
density at r is then

n(r,t) = /de(r,F; t) . (8.13)

One might ask why we do not also keep track of the angular orientation of the individual molecules.
There are two reasons. First, the rotations of the molecules are generally extremely rapid, so we are
justified in averaging over these motions. Second, the orientation of, say, a rotor does not enter into
its energy. While the same can be said of the spatial position in the absence of external fields, (i) in
the presence of external fields one must keep track of the position coordinate r since there is physical
transport of particles from one region of space to another, and (ii) the collision process, which as we
shall see enters the dynamics of the distribution function, takes place in real space.

8.3 Boltzmann Transport Theory

8.3.1 Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

# of particles with positions within d% of

f(r,p,t)d* d* = { (8.14)

r and momenta within d% of p at time ¢.
Thus, the units of f(r,p,t) are those of inverse action, i.e. /M L?. We now ask how the distribution
functions f(r,p,t) evolves in time. It is clear that in the absence of collisions, the distribution function
must satisfy the continuity equation,

0

a—{—FV-(uf):O . (8.15)
This is just the condition of number conservation for particles. Take care to note that V and w are
six-dimensional phase space vectors:

u:(j} v Y 52, D >py >pz) (8.16)
v-(2 090 9 0 9
~ \ 90z’ 9y’ 92" dp,’ dp,’ Op
The continuity equation describes a distribution in which each constituent particle evolves according to
a prescribed dynamics, which for a mechanical system is specified by

dr OH dp OH

o % = v(p) ) a T o Fo (8.18)

(8.17)
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where F' is an external applied force. Here,
H(p,r) =e(p) + Uy (r) - (8.19)
For example, under the influence of gravity, Uext(r) = mg - r and F = -V U, = —mg.

Note that as a consequence of the dynamics, we have V-u = 0, i.e. phase space flow is incompressible,
provided that £(p) is a function of p alone, and not of . Thus, in the absence of collisions, we have

of

—+u-Vf=0 . 8.20

v (820)
The differential operator D; = 0, + u -V is sometimes called the ‘convective derivative’, because D, f is
the time derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynam-
ics. In a collision process, a particle with momentum p and one with momentum p can instantaneously
convert into a pair with momenta p’ and p/, provided total momentum is conserved: p +p = p’ + p'.
This means that D, f # 0. Rather, we should write

Dy _of . of _of (df
Dt ot e TP op <dt>coll 621

where the right side is known as the collision integral. The collision integral is in general a function of
r, p, and t and a functional of the distribution f. Suppose we evaluate the time-dependent distribution
f(r,p,t) along a particle trajectory, i.e. substituting » — r(¢) and p = p(t). Then

of dp L 0f _Df

_Of dr
ropn.g P Wlawmemn  Olpweng D

%f(r(t),p(t),t) =3 @ . (8.22)

{r(®).p(t),t}

Thus, in the absence of collisions, the convective derivative of the distribution f(r,p,t) vanishes, meaning that
the one-body distribution does not vary in time along a particle trajectory.

We can write the Boltzmann equation as

of (0f df
E B <E>str " <%>coll ’ (823)
where
af . of . of
(Elu =i (8.24)

is known as the streaming term. Thus, there are two contributions to df/0t: streaming and collisions.

8.3.2 Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

of e oOf af
o "o ar Ve gy =0 (8.25)
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In order to gain some intuition about how the streaming term affects the evolution of the distribution
f(r,p,t), consider a case where F, , = 0. We then have

of of
2 v(p) - B = 0 . (8.26)
Clearly, then, any function of the form
f(r,p,t) =¢(r —v(P)t, p) (8.27)

will be a solution to the collisionless Boltzmann equation, where v(p) = 3. One possible solution
would be the Boltzmann distribution,

fr,p,t) = Cet/FsTe=®)/ksT (8.28)

which is time-independent'. Here, C is a constant with units of (7'//M L?). For a ballistic dispersion,
e(p) = p?/2m and C = h™3, in which case [d%r d?p f(r,p) = V exp(u/kzT) = (N).

For a slightly less trivial example, let the initial distribution be o (r, p) = C e~"*/27"¢=P*/25% 50 that

F(rp,t) = O (rB) 12w (8.29)

Consider the one-dimensional version, and rescale position, momentum, and time so that
flz,p,t)=C o~ @-PD?/2 —P?/2 (8.30)

Now consider the level sets of f, where f(z,p,t) = C e=*/2. The equation for these sets is
T=ptEa?—-p> . (8.31)

For fixed ¢, these level sets describe the loci in phase space of equal probability densities, with the
probability density decreasing exponentially in the parameter a?. For t = 0, the initial distribution
describes a Gaussian cloud of particles with a Gaussian momentum distribution. As ¢ increases, the
distribution widens in Z but not in p — each particle moves with a constant momentum, so the set of
momentum values never changes. However, the level sets in the (Z, p) plane become elliptical, with a
semimajor axis oriented at an angle § = ctn ~!(¢) with respect to the z axis. For £ > 0, he particles at the
outer edges of the cloud are more likely to be moving away from the center. See the sketches in fig. 8.1

Suppose we add in a constant external force F, ;. Then it is easy to show (and left as an exercise to the
reader to prove) that any function of the form

pt F‘extt2 Fextt>
—_— s p —
m 2m m

f(r,p,t) = w(r - (8.32)

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

!Indeed, any arbitrary function of p alone would be a solution. Ultimately, we require some energy exchanging
processes, such as collisions, in order for any initial nonequilibrium distribution to converge to the Boltzmann
distribution.
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Figure 8.1: Level sets for a sample f(z,p,f) = C e @PD*/2¢=7°/2 for values f = C'e~**/2 with a in
equally spaced intervals from o = 0.2 (red) to & = 1.2 (blue). The time variable ¢ is taken to be ¢ = 0.0
(upper left), 0.2 (upper right), 0.8 (lower right), and 1.3 (lower left).

8.3.3 Collisional invariants

Consider a function A(r, p) of position and momentum. Its average value at time ¢ is

Aw) = [d b Arp) frp.0) 6:33)
Taking the time derivative,
/ d / d®p A(r,p)
9 . o . daf
3 . —_ — . —_—
/d /d Alr,p { (7f) op (pf) + <dt>cou} (8.34)
0A dr 0A dp df
— 3 3 it b
_/dr/dp{<ar dt+8p >f+A( )<dt>coll}
Hence, if A is preserved by the dynamics between collisions, then?
d(A(t)) O0A dr 0A dp
ZRecall from classical mechanics the definition of the Poisson bracket, {A, B} = % . %—g - %—f . %. Then

from Hamilton’s equations 7 = %—g and p = ar , where H(p,r,t) is the Hamiltonian, we have %1 = {4, H}.
Invariants have zero Poisson bracket with the Hamiltonian.



440 CHAPTER 8. THE BOLTZMANN EQUATION

We therefore have that the rate of change of (A(t)) is determined wholly by the collision integral

/ dr / d* A(r,p) ( >COH . (8.36)

Quantities which are then conserved in the collisions satisfy A = 0. Such quantities are called collisional
invariants. Examples of collisional invariants include the particle number (A = 1), the components of
the total momentum (A = p,,) (in the absence of broken translational invariance, due e.g. to the presence
of walls), and the total energy (A = £(p)).

8.3.4 Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The
first involves potential scattering, where a particle in state |I") scatters, in the presence of an external
potential, to a state |I). Recall that I" is an abbreviation for the set of kinematic variables, e.g. I"' = (p, L)
in the case of a diatomic molecule. For point particles, I" = (p,, Pysp,) and dI' = d3p.

Single particle scattering
We now define the function w(I"” | I') such that
w(I"| ) f(I')dI' dI"" = rate per unit volume to scatter {| " +dI")} — {|I" +dI"")} (8.37)

at time t. Here we have suppressed the time dependence in the distribution f (I, t), and typically we will
presume w(I" | I") to be independent of both 7 and ¢. By {|I" + dI")} we mean states with momenta
within d% of p (more generally, within dI" = d®pd3L of (p, L)) and at the same position coordinate 7.
We assume the rate is independent of the position r and the time ¢. The units of w dI” are therefore 1/T".
The differential scattering cross section for single particle scattering is then

w(I|T)

do =
n vl

ar’ (8.38)

where v = p/m is the particle’s velocity and n the density.

In computing the collision integral for the state |r, "), we must take care to sum over contributions
from transitions out of this state, i.e. [I') — |I""), which reduce f(r,I"), and transitions into this state, i.e.
|I") — |I'), which increase f(r, I"). Thus, for one-body scattering, we have

d
B 0 Tit) = [ar {w(D | 1) fr, 1) = (I |T) £ T} = (d—";)ml S (39
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I’ I’ I

I r I

Figure 8.2: Left: single particle scattering process |I") — |I"”). Right: two-particle scattering process
|F7F1> - |F/>F1/>

Two particle scattering

The second class is that of two-particle scattering processes, i.e. |{r, '}, {r, I }) — |{r, "}, {r,I]}).
We define the scattering function w(I”, I | I, I') by

rate per unit volume to scatter two particles

8.40
{I0+dr. 1y +dly)} = {| I +dI", I +dIT)} 540

w(I', I | 1) f(0) f(I)dl dn dIY dI = {

at time t. We assume that w(I”, I | I, I') is independent of 7 and ¢. Thus the units of w dI" dI'; are again
1/T, and the differential scattering cross section is

w(I, I \ I’ Iy)

do =
v — v,

ar'dr] . (8.41)

For two-body scattering, we therefore have

D
Ef(r,F; t) = /dFl/dF’/dF{ {w(r,rl\r’,r{) folr, e I75t)

o (8.42)
_w(F/,FI/|F7F1) fQ(T,F;T,Fl;t)} = <a> )

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since
the LHS involves the one-body distribution f = f; and the RHS involves the two-body distribution f; .
To close the equations, we make the approximation

fo(r, T3 7, I5t) m f(r, Tst) f(7, T58) (8.43)
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We then have

—f r, I;t) /dFl/dF/dfl (F,F1 | ', I7) f(r, I;t) f(r, I7;t)
(8.44)
—w(I", 17|, 1Y) f(r, T} t)f(r,Fl;t)} = <‘;—J;> )

We stress that in both cases we assume that any scattering occurs locally, i.e. the particles attain their
asymptotic kinematic states on distance scales small compared to the mean interparticle separation. In
this case we can treat each scattering process independently. This assumption is particular to rarefied
systems, i.e. gases, and is not appropriate for dense liquids. The two types of scattering processes are
depicted in fig. 8.2.

8.3.5 Detailed balance

Classical mechanics places some restrictions on the form of the kernel w(I', I, | I, I')). In particular, if
I'" = (—p, —L) denotes the kinematic variables under time reversal (7 ), then

w(I', 7|00 =w( 07,17 |07, 17 (8.45)
This is because the time reverse of the process |I',I')) — |, I7]) is [["7, 1) — |['7, I ).

In equilibrium, we must have
w(I', | L1y (1) £ d'D = w(I7, 17 | D7, 7Y fO(0T) f9(0{7)d' T (8.46)

where
d‘r=drdrydr'ar; , 4" =dr7drydr'vdry” . (8.47)

Since dI" = dI'" etc., we may cancel the differentials above, and after invoking eqn. 8.45 and suppressing
the common r label, we find

£ £ = o) A7) (8.48)

This is the condition of detailed balance. For the Boltzmann distribution, we have fO(I') = Ae~*/*sT,
where A is a constant and where ¢ = ¢(I") is the kinetic energy, e.g. €(I") = p?/2m in the case of point
particles. Note that ¢(I'7) = ¢(I"). Detailed balance is satisfied because the kinematics of the collision
requires energy conservation:

et+e =€+ . (8.49)

Since momentum is also kinematically conserved, i.e.

p+p =p +p] , (8.50)
any distribution of the form

(8.51)

) = A exp<— SN -Vep V"’)

kT
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also satisfies detailed balance, for any velocity parameter V. This distribution is appropriate for gases
which are flowing with average particle V. Note that

gp(s—V-p):v—V , (8.52)

which is the velocity relative to the local flow.

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the
parity operation P, we have r — —r and p — —p. Note that a pseudovector suchas L = r x p
is unchanged under P. Thus, I'” = (—p,L). Under the combined operation of C = PT, we have
I'® = (p,—L). If the microscopic Hamiltonian is invariant under C, then we must have

w(I', 1| 1) =w(DC I | 176, 0°) . (8.53)
For point particles, invariance under 7" and P then means
w(p',pi|p,py) = wip,pi [P, P1) (8.54)
and therefore the collision integral takes the simplified form,

D

{)(tp) = /d3p1/d3p’/d3p’1 w(®', i |p.py) {F(0) F(Bh) ~ F(P) fp1)} = <%>Con ) (8.55)

where we have suppressed both r and ¢ variables.

The most general statement of detailed balance is

o o)) w(l | nn)

= 8.56
fO([‘)fO(Fl) w(F7F1|F/>F1/) ( )
Under this condition, the collision term vanishes for f = f°, which is the equilibrium distribution.
8.3.6 Kinematics and cross section
We can rewrite eqn. 8.55 in the form
Df (p) _ 3 do / /
T2~ [t [a2 - v 57 {16) 560) - 10) FB0)} (857)

where 92 is the differential scattering cross section. Recall the definition from scattering theory in classical

mechanics,

J # of particles scattered into solid angle df2 per unit time
ag =

8.58
incident flux ( )

If we recast the scattering problem in terms of center-of-mass and relative coordinates, we conclude that
the total momentum is conserved by the collision, and furthermore that the energy in the CM frame
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is conserved, which means that the magnitude of the relative momentum is conserved. Thus, we may
write p’ — p}| = |p — p,| £2, where £2 is a unit vector. Then p’ and p| are determined to be

p=1p+p +|p-pNR)

/

- 8.59
pi=%p+p —lp—p2) . (8.59)

Recall that for the scattering of classical hard spheres of radius a, the differential scattering cross section

is filg = a?. Thus, the total scattering cross section is o,,; = 4ma? = 7d?, where d = 2a is the sphere
diameter. For Coulomb scattering of two point particles of charge g, one has
do ( me? >2
— = - , (8.60)
s Py — Pyl Sln2(%19)

where p, - p, = cos Y. The total cross section for Coulomb scattering diverges since the differential cross
section behaves as 9~% as ¥ — 0.

8.4 Relaxation Time Approximation

8.4.1 Weakly inhomogeneous gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and
Pitaevskii, §6. As the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equa-
tion of the form f = f + §f, where f° is describes a local equilibrium. Recall that such a distribution
function is annihilated by the collision term in the Boltzmann equation but not by the streaming term,
hence a correction Jf must be added in order to obtain a solution. The Boltzmann equation is written

g p 0 0 df
<8t+_ +F- —>(f +0f) = (dt>con ) (8.61)

m or

The RHS of this equation must be of order df because the local equilibrium distribution f° is annihilated
by the collision integral.

The full derivation of the linearized Boltzmann equation in the relaxation time approximation is given in
§8.7 below. To get an idea of the program here, let’s first consider a local equilibrium for point particles

described by
_ V.
19(r,p) = Cexp (” o) + p) | (5.62)
kT

where pp = p(r,t), T =T(r,t), and V (r,t) vary slowly in space and time. Note that

df’ = (du—l—p'dV%—(e—V'p—p)d—T—de) ( 8f0>

T Oe

) (8.63)
= (%dp—l—p-dv—l—(e—h)d%—de) ( 88{_:) ,
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where h = i + T's is the enthalpy per particle, and where we drop the term proportional to V' -p dT,
which on the assumption that V' = 0 on average is second order in smallness. We have also invoked
local thermodynamics in the relation dp = —s dT +n~*dp. We now systematically expand to linear order
in time derivatives and gradients, and appealing to local thermodynamics. This is done carefully in §8.7
below, and the general result is

asf [e(I)—nh e(I') —h+Tc, fO(df
51 { T v VT +mu,vg Qup T V-V_-F-v T\t ), (8.64)

where ¢, = T'(0s/0T),, and ¢, = T(9s/0T)  are the specific heats at constant volume and pressure’, h

is the enthalpy per particle, and
1 /oV, 8‘/6
Qup =3 (—8% + —8%> ; (8.65)

with V' (z, t) the local flow velocity of the fluid.

8.4.2 Approximation of collision integral

We now consider a very simple model of the collision integral,

daf =
<a>coll o o (560

T T

This model is known as the relaxation time approximation. Here, f° = f°(r, p,t) is a distribution function
which describes a local equilibrium at each position r and time ¢. The quantity 7 is the relaxation time,
which can in principle be momentum-dependent, but which we shall first consider to be constant. In
the absence of streaming terms, we have

oof _ _of
ot T
The distribution f then relaxes to the equilibrium distribution f° on a time scale 7. We note that this

approximation is obviously flawed in that all quantities — even the collisional invariants — relax to their
equilibrium values on the scale 7. In the

5f(r,p,t) = 6f (r,p,0) " . (8.67)

8.4.3 Computation of the scattering time

Consider two particles with velocities v and v’. The average of their relative speed is

(Jlv—"']) = /d?’v/d?’v' Pv)P)|v -2 |, (8.68)
where P(v) is the Maxwell velocity distribution,
3/2 2
m mv
P(v) = <27T/<;BT> exp <— 2/<:BT> , (8.69)

3We define s = S/N, i.e. the entropy per particle.
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T

rel

Figure 8.3: Graphic representation of the equation n o v, 7 = 1, which yields the scattering time 7 in
terms of the number density n, average particle pair relative velocity o,e), and two-particle total scatter-
ing cross section 0. The equation says that on average there must be one particle within the tube.

which follows from the Boltzmann form of the equilibrium distribution f°(p). It is left as an exercise for

the student to verify that

i 4 [k, T\

Ur015<”l)—’l),‘>:ﬁ< ;n > : (870)
Note that o, ,; = /2, where ¥ is the average particle speed. Let o be the total scattering cross section,

which for hard spheres is ¢ = md?, where d is the hard sphere diameter. Then the rate at which particles
scatter is

1

—=nV,q0 . (8.71)
-
The particle mean free path is then
1
\/§ no ( )
While the scattering length is not temperature-dependent within this formalism, the scattering time is
T-dependent, with
1 VT [ m 1/2
T) = = ) 8.73
() nvyo  4no <kBT> ®.73)

As T — 0, the collision time diverges as 7 oc T~'/2, because the particles on average move more slowly
at lower temperatures. The mean free path, however, is independent of 7', and is given by ¢ = 1/v/2no.

8.4.4 Thermal conductivity

We consider a system with a temperature gradient V1" and seek a steady state (i.e. time-independent)
solution to the Boltzmann equation. We assume F,, = Q5 = 0. Appealing to eqn. 8.146, and using the
relaxation time approximation for the collision integral, we have

(e —¢c,T)

3 (v-VT) O . (8.74)

f = —

We are now ready to compute the energy and particle currents. In order to compute the local density of
any quantity A(r, p), we multiply by the distribution f(r, p) and integrate over momentum:

py(r,t) = / d’p A(r,p) f(r,p,t) (8.75)
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For the energy (thermal) current, we let A = v, = ep,/m, in which case p ), = Jo - Note that i dpp 0 =
0 since 0 is isotropic in p even when y and T depend on r. Thus, only §f enters into the calculation of
the various currents. Thus, the energy (thermal) current is

o o nr o or
Je (r):/dgpsv 5f:_k:BT2 (v fuﬁ&?(s—c T)>83:5 , (8.76)

where the repeated index  is summed over, and where momentum averages are defined relative to the
equilibrium distribution, i.e.

(o)) = [dolo) 1°w) [ [ ) = [ Plo) o) 877
In this context, it is useful to invoke the identity d% f%(p) = nd% P(v), where
m \? (v=V)2/2k, T
P(v) = <2ka T> ’ b (8.78)

is the Maxwell velocity distribution.

Note that if ¢ = ¢(¢) is a function of the energy, and if V' = 0, then
% fO(p) = nd® P(v) =n P(e)de (8.79)

where

P(e) = Z (k1) 322 em/kaT (8.80)

VT
0 ~
is the Maxwellian distribution of single particle energies. The normalized distribution satisfies [de P(e) =
0
1. Averages with respect to this distribution are given by

($(e)) = / dz 9(2) P(e) = 2 (k1) / de /2 g(e) e</ksT . (8.81)
0 0

If ¢(¢) is homogeneous, then for any o we have
() = % Lo+ 3) (k1) . (8.82)

Due to spatial isotropy, it is clear that we can replace v® v” by % CREN 5 and thene = tmv? in eqn. 8.76..

We then have j, = —x VT, with

SnTk2T
2m

m:i@z(e—cpT)):

Sl T = gnlve, (8.83)

8l The quantity & is called the thermal conductivity. Note that  oc T''/2.

_5 2 _
where ¢, = 5k, and ©
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Figure 8.4: Gedankenexperiment to measure shear viscosity 7 in a fluid. The lower plate is fixed. The
viscous drag force per unit area on the upper plate is Fy;ag/A = —nV/d. This must be balanced by an
applied force F.

8.4.5 Viscosity

Consider the situation depicted in fig. 8.4. A fluid filling the space between two large flat plates at = = 0
and z = d is set in motion by a force F' = F'& applied to the upper plate; the lower plate is fixed. It
is assumed that the fluid’s velocity locally matches that of the plates. Fluid particles at the top have
an average z-component of their momentum (p,) = mV. As these particles move downward toward
lower z values, they bring their z-momenta with them. Therefore there is a downward (—2-directed)
flow of (p,). Since z-momentum is constantly being drawn away from z = d plane, this means that
there is a —x-directed viscous drag on the upper plate. The viscous drag force per unit area is given
by Fy../A = —nV/d, where V/d = 0V, /0z is the velocity gradient and 7 is the shear viscosity. In
steady state, the applied force balances the drag force, i.e. I+ Fyy . = 0. Clearly in the steady state the
net momentum density of the fluid does not change, and is given by £pV &, where p is the fluid mass
density. The momentum per unit time injected into the fluid by the upper plate at z = d is then extracted
by the lower plate at z = 0. The momentum flux density II,,, = n (p, v, ) is the drag force on the upper

surface per unit area: IT, = —7 aa‘ix . The units of viscosity are [n] = M/LT.

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second
type of viscosity, called second viscosity or bulk viscosity, which is measurable although not by the type
of experiment depicted in fig. 8.4.

The momentum flux tensor Il ; = n (p, vg) is defined to be the current of momentum component p, in
the direction of increasing z ;. For a gas in motion with average velocity V, we have

O,z =nm((V, + U;)(VB + UIB) )
=nmV, Vs +nm (v,vg) (8.84)
:anaVﬁ+%nm(v'2>5aﬁ =pV,Vs+pdas

where v’ is the particle velocity in a frame moving with velocity V, and where we have invoked the
ideal gas law p = nk,T. The mass density is p = nm.

When V is spatially varying,
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where 7,5 is the viscosity stress tensor. Any symmetric tensor, such as 7,4, can be decomposed into a
sum of (i) a traceless component, and (ii) a component proportional to the identity matrix. Since 7,4
should be, to first order, linear in the spatial derivatives of the components of the velocity field V, there
is a unique two-parameter decomposition:

v, 9V,
Gop :n<—“ +a—wﬁ - %V-V%ﬁ) +( V-V,

ox 3 (8.86)

=2n (Qaﬁ — %TF(Q) 5aﬁ) +¢ Tr(Q) 5&5

The coefficient of the traceless component is 7, known as the shear viscosity. The coefficient of the com-
ponent proportional to the identity is ¢, known as the bulk viscosity. The full stress tensor o, ; contains a
contribution from the pressure:

Oop = —Dop+0a5 - (8.87)

The differential force dF,, that a fluid exerts on on a surface element ndA is dF,, = —0o, 5N dA, where
we are using the Einstein summation convention and summing over the repeated index 3. We will now
compute the shear viscosity 1 using the Boltzmann equation in the relaxation time approximation.

Appealing again to eqn. 8.146, with F' = 0 and h = ¢,T', we find

= dmuvso .+ 2t v vyl (8.88)
T kT a”f ap T ek ' '

We assume VI' = V - V = 0, and we compute the momentum flux:

2

I, = n/dgppwvz of = _% Qaﬁ <vx Uy Vg v5>
B (8.89)
_ (9% + oV, (mv?-mv?) = —nrk,T Az + Vs
kT \ 0z Ox v =L PP\ or 0z
Thus, if V,, = V,(z), we have
v,
I, = —nrk,T—= .
Tz nr B az (8 90)
from which we read off the viscosity,
n =nkTt = gnmlv . (8.91)

Note that 5(T") oc T/2.

How well do these predictions hold up? In fig. 8.5, we plot data for the thermal conductivity of argon
and the shear viscosity of helium. Both show a clear sublinear behavior as a function of temperature, but
the slope dInx/dInT is approximately 0.65 and dInn/dInT is approximately 0.63. Clearly the simple
model is not even getting the functional dependence on 7' right, let alone its coefficient. Still, our crude
theory is at least qualitatively correct.

Why do both x(7") as well as n(7) decrease at low temperatures? The reason is that the heat current
which flows in response to VT as well as the momentum current which flows in response to 9V, /0z
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Figure 8.5: Left: thermal conductivity (X in figure) of Ar between 7" = 800 K and 7" = 2600 K. The best
fit to a single power law \ = 7" results in b = 0.651. Source: G. S. Springer and E. W. Wingeier, J. Chem
Phys. 59, 1747 (1972). Right: log-log plot of shear viscosity (¢ in figure) of He between 7' ~ 15K and

T ~ 1000 K. The red line has slope 3. The slope of the data is approximately 0.633. Source: J. Kestin and
W. Leidenfrost, Physica 25, 537 (1959).

are due to the presence of collisions, which result in momentum and energy transfer between particles.
This is true even when total energy and momentum are conserved, which they are not in the relaxation
time approximation. Intuitively, we might think that the viscosity should increase as the temperature
is lowered, since common experience tells us that fluids ‘gum up’ as they get colder — think of honey
as an extreme example. But of course honey is nothing like an ideal gas, and the physics behind the
crystallization or glass transition which occurs in real fluids when they get sufficiently cold is completely
absent from our approach. In our calculation, viscosity results from collisions, and with no collisions
there is no momentum transfer and hence no viscosity. If, for example, the gas particles were to simply
pass through each other, as though they were ghosts, then there would be no opposition to maintaining
an arbitrary velocity gradient.

8.4.6 Oscillating external force

Suppose a uniform oscillating external force F,(t) = F e ™! is applied. For a system of charged
particles, this force would arise from an external electric field F,, = ¢E e, where q is the charge of
each particle. We'll assume V71" = 0. The Boltzmann equation is then written

of . p Of Lt OF _ ff°
5t + o D + Fe ap - . (8.92)
We again write f = f° + §f, and we assume Jf is spatially constant. Thus,
aof it O Of
T + Fe v % = . (8.93)

If we assume &f (t) = Jf (w) e~™! then the above differential equation is converted to an algebraic equa-
tion, with solution
T e—z’wt o fO

1 —dwr Oe

of(t) = (8.94)
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We now compute the particle current:

: N _Te™ Fy a0
ja(r’t)_/dpvéf_m.kBT d’p [7(P)va v
4 ' (8.95)
_ Te—.lwt . nkF, /d?’v P(’U) v? — nr F, e.—lwt
1 —dwr 3kT m 1—iwT
If the particles are electrons, with charge ¢ = —e, then the electrical current is (—e) times the particle
current. We then obtain
2 —iwt
(elee) €T Eg e _ it
]Oél (t) - m ' 106_ ZU.)T = O-CEB(W) Eﬁe “ ? (8'96)
where
_ ne’r 1 5 (8.97)
Tap(w) = m 1 —iwr 8 '

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons,
we should be using the Fermi distribution in place of the Maxwell-Boltzmann distribution for f°(p).
This affects the relation between n and 4 only, and the final result for the conductivity tensor o, 5(w) is
unchanged.

8.4.7 Quick and dirty calculation of transport coefficiencs

Suppose we have some averaged intensive quantity ¢ which is spatially dependent through 7'(r) or
p(r) or V(r). For simplicity we will write ¢ = ¢(z). We wish to compute the current of ¢ across some
surface whose equation is dz = 0. If the mean free path is ¢, then the value of ¢ for particles crossing
this surface in the +2 direction is ¢(z — £cos §), where 6 is the angle the particle’s velocity makes with
respect to 2, i.e. cos § = v, /v. We perform the same analysis for particles moving in the —2z direction, for
which ¢ = ¢(z + £cos 0). The current of ¢ through this surface is then

Jo = nﬁ/dsv P(v)v, ¢(z — Lcosb) + nﬁ/dsv P(v)v, ¢(z + Lcosb)

v, >0 v, <0 (8.98)
9. [ v2 _, 09
= —nfgz/va(v); = —%m}ﬁgz ,
where v = % is the average particle speed. If the z-dependence of ¢ comes through the dependence

of ¢ on the local temperature 7', then we have

: _0¢ _
Jo = —% nlo 9T VI=-KVT (8.99)

where 96
K = into 57 (8.100)
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is the transport coefficient. If ¢ = (¢), then g—,f? = ¢p, where ¢, is the heat capacity per particle at constant
pressure. We then find j. = —x VT with thermal conductivity

k=3inlvc, . (8.101)

Our Boltzmann equation calculation yielded the same result, but with a prefactor of Z instead of 3.
We can make a similar argument for the viscosity. In this case ¢ = (p,) is spatially varying through its

dependence on the flow velocity V(7). Clearly 0¢/0V, = m, hence

oV
1 = T
vz = —3nmlV 2

ji =1 (8.102)

from which we identify the viscosity, 7 = $nm¢v. Once again, this agrees in its functional dependences
with the Boltzmann equation calculation in the relaxation time approximation. Only the coefficients
differ. The ratio of the coefficients is K. /Kppr = 5= = 0.849 in both cases®.

8.4.8 Thermal diffusivity, kinematic viscosity, and Prandtl number

Suppose, under conditions of constant pressure, we add heat ¢ per unit volume to an ideal gas. We
know from thermodynamics that its temperature will then increase by an amount AT = ¢/nc,. If a heat
current j, flows, then the continuity equation for energy flow requires

T
ne, %_t +V-j,=0 . (8.103)

In a system where there is no net particle current, the heat current j, is the same as the energy current

J.,and since j. = —x VT, we obtain a diffusion equation for temperature,
or
< _F oy (8.104)
ot nc,

The combination a = x/nc, is known as the thermal diffusivity. Our Boltzmann equation calculation
in the relaxation time approximation yielded the result x = nk,T7c,/m. Thus, we find a = k,T1/m
via this method. Note that the dimensions of a are the same as for any diffusion constant D, namely
[a] = L?/T.

Another quantity with dimensions of L?/T is the kinematic viscosity, v = n/p, where p = nm is the mass
density. We found 7 = nk,T'7 from the relaxation time approximation calculation, hence v = k;T'7/m.

The ratio v/a, called the Prandtl number, Pr = s /mk, is dimensionless. According to our calculations,

Pr = 1. According to table 8.1, most monatomic gases have Pr ~ %

“Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time
approximation’.
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H Gas ‘ n (uPa - s) ‘ £k (MW /m - K) ‘ cp/ kg ‘ Pr H

He 19.5 149 2.50 | 0.682
Ar 22.3 174 2.50 | 0.666
Xe 22.7 5.46 2.50 | 0.659
H, 8.67 179 3.47 | 0.693
Ny 17.6 25.5 3.53 | 0.721
O, 20.3 26.0 3.50 | 0.711
CH, 11.2 33.5 429 | 0.74
CO, 14.8 18.1 4.47 | 0.71
NH, 10.1 24.6 4.50 | 0.90

Table 8.1: Viscosities, thermal conductivities, and Prandtl numbers for some common gases at 7" = 293 K
and p = 1 atm. (Source: Table 1.1 of Smith and Jensen, with data for triatomic gases added.)

8.5 The Equations of Hydrodynamics

We now derive the equations governing fluid flow. The equations of mass and momentum balance are

0
a_§+v.(pv) =0 (8.105)
IpVa) 8Haﬁ
= = 1
T p: 0, (8.106)
where N
Top
aVa avﬁ 2
HaB:pVaVB+p6aﬁ_ n %+%_§V'V(5aﬁ +CVV50¢B . (8107)
B a
Substituting the continuity equation into the momentum balance equation, one arrives at
pﬁ—l—p(V'V)V:—V}H—nV V+{(+3nV(V-V) | (8.108)

which, together with continuity, are known as the Navier-Stokes equations. These equations are supple-
mented by an equation describing the conservation of energy,

s . oV,
T—+TV (SV) :O'aﬁw

o7 +V - (kVT) | (8.109)

where G5 is the viscosity stress tensor identified in eqn. 8.107 above. Note that the LHS of eqn. 8.108
is p DV /Dt, where D /Dt is the convective derivative. Multiplying by a differential volume, this gives
the mass times the acceleration of a differential local fluid element. The RHS, multiplied by the same
differential volume, gives the differential force on this fluid element in a frame instantaneously moving
with constant velocity V. Thus, this is Newton’s Second Law for the fluid.
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If the fluid is incompressible, then V - V' = 0, and with the kinematic viscosity v = 7/p we have the
inviscid Navier-Stokes equations,

ov

5 + (V- V)V:—%Vp+VV2V . (8.110)

Since [7] = M/LT and [p] = M/L3?, we have [ = L?/T. At T = 20°C,

VH,0 = 1072 cm? /sec ) Vair = 0.15cm? /sec , Vglycerine = 0-8 cm?/sec . (8.111)
8.6 AppendixI: H-theorem
To peek ahead, we are about to prove the following. Let
) = [ £rp.0) 1 (r.p, 1)/
(8.112)

j(r,t) = /d3pf(r,p,t) n[f(r,p,t)/f°] Z—Z

Here f can be any constant which has the appropriate dimensions of A~3, where A stands for action.
Then if f(r, p,t) evolves according to the Boltzmann equation, it is necessarily the case that

Oh(r, 1)
ot

+V.jg(r,t) <0 (8.113)
Where V = 9/0r. If we integrate over all space, and we adopt boundary conditions where j — 0 at
spatial infinity,

H(t) :/d3r h(r,t) = Cil—?: <0 . (8.114)

Thus, Boltzmann dynamics recognizes an arrow of time. Time increases in the direction that h(r,t) decreases.

Let’s consider the Boltzmann equation with two particle collisions. We define the local (i.e. r-dependent)
quantity

po(r,t) = /d3p frp,t)o(f(r,p,t) (8.115)

where f = f(r,p,t) and ¢(f) is arbitrary. At this point, ¢(p, f) is arbitrary. We now compute

op, 3f<p (fe) Of
a—f_/g /d COf ot

3(f<P) L of L of  (df
/d3 of { Vo Pap <E>c0n} (8.116)

_ a(fe) fe) |, fe) (df
—/d3p{ Sor P op * of <a>c0n}
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We may integrate the second term in the brackets by parts on p. Assuming f = 0 for infinite values of
the kinematic variables, which is the only physical possibility, we then have

ap . O(fe) oOr ofe) (df
a—f:/dgp{_r' or ar SO of <%>wu}

(8.117)
__Q 3 ; 5 0(fp) ﬁ
 or /dpfcp’r—l—/dp of <dt>coll
Thus,
0 b )
Wa(: ) v o t) = o (rt) (8.118)
where
ulrit) = [ 5.t o(7rp.) o)
(8.119)

_ 3 8(f90)‘ (d_f>
U@(r’t) /dp 8f f(r,p,t) dt coll

and 7 = v(p) = 0H,/Jp is the velocity.

Thus, we arrive at eqn. 8.118, which is a continuity equation with a source term o,,(r,¢). The source
term is nonzero only in the presence of collisions. We now evaluate o, under the assumption that f
satisfies the Boltzmann equation with two particle scattering. Thus,

o,(r,t) = /d?’p/dgpl/d?’p’/d% {w(p’,pi |p,p1) f(P)f(P1) X(P) — w(p, Py | P, DY) f(p’)f(p’l)x(p’)}

/d3 /d3 /d3 ’/d3p1w p.p1|p.p1) F(p)f(P1) (x(P) — X' (D) (8.120)
where
X = gjﬁp) ot f , (8.121)

and where we have suppressed the r and ¢ dependences. We now invoke the symmetry
w(p',p] |p,p1) =w(pl,p'|pP1.p) . (8.122)

which allows us to write

/d3 /d3 /d3 //dgplw P01 | p,p1) F)f(p1) (x(P) + x(P1) — x(P) = x(P) . (8123)

This shows that o, = 0 if x(p) is a collisional invariant.

Now let us fix ¢(f) = In(f/f°) and evaluate the source term o = Opin(s/ o) We have

= ——/d3 /d3 /d3 ’/d3p1w p.,pi|p,p) F(P)f (D) z(p,py |P,P)) Inz(p,p, |, p)) , (8124)
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where z(p,p,,p',p}) = f(p)f(py)/f(P')f(P|). We next invoke the result

/d3 //d?’ w(p',pl | p.p1) /d3 //ds w(p,p | P, p)) (8.125)

which is a statement of unitarity of the scattering matrix’. Multiplying both sides by f(p) f(p;), then
integrating over p and p,, and finally changing variables (p, p,) <> (p/, p}), we find

0= /d3p/d3p1/d3p’/d3p’1 w(p',ph | p.py) (F0)F(P1) = F(0)F (D))

(8.126)
/d3 /d3p1/d3 ’/dgplw P, |p7p1)f(p’)f(p’1){x(p7p1!p’m’l)—l}

Multiplying this result by 1 and adding it to the previous equation for h, we arrive at our final result,

/d3 /d3 /d3 ’/d3p1w P, 01| p.p) f@)f(P) (wlnz—z+1) (8.127)

where © = z(p,p,p',p)) = f(P)f(p:)/f(P")f(P}). It is now easy to prove that the function g(z) =
zlnz — x + 1 is nonnegative for all positive x values®, which therefore entails the important result

Oh(r,t)

T +V.-j(r,t)=0(r,t) <0 . (8.128)

Boltzmann'’s H function is the space integral of the local density h(r): H = [d% h(r)

Thus, everywhere in space, the source term o(r,t) is nonpositive. In equilibrium, h = 0 everywhere,
which requires z = 1, i.e.
o) fp) = ) B (8.129)
or, taking the logarithm,
In f(p) +In f°(py) = In fO(p) + In fO(p) (8.130)

But this means that In f0 is itself a collisional invariant, and if 1, p, and ¢ are the only collisional invari-
ants, then In % must be expressible in terms of them. Thus,

V-p €
Inf0 =" - 8.131
=R T TR T T ®.131)

where p, V, and T are constants which parameterize the equilibrium distribution f°(p), corresponding
to the chemical potential, flow velocity, and temperature, respectively.

5See Lifshitz and Pitaevskii, Physical Kinetics, §2.

®The function g(z) = zlnz — z + 1 satisfies ¢’(z) = Inz, hence ¢'(z) < 0 on the interval z € [0,1) and ¢'(z) > 0
onz € (1, 00]. Thus, g(x) monotonically decreases from g(0) = 1 to g(1) = 0, and then monotonically increases to
g(00) = 00, never becoming negative.
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8.7 Appendix II : Weakly Inhomogeneous Gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and
Pitaevskii, §6. As the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equa-
tion of the form f = f9 + §f, where f° is describes a local equilibrium. Recall that such a distribution
function is annihilated by the collision term in the Boltzmann equation but not by the streaming term,
hence a correction Jf must be added in order to obtain a solution. The Boltzmann equation is written

0 p 0 0 df
(o F ) =(5) - &1

The RHS of this equation must be of order df because the local equilibrium distribution f° is annihilated
by the collision integral.

The most general form of local equilibrium is described by the distribution

(. T) = Cexp (” - 5(2; v p> , (8.133)

where = p(r,t), T =T(r,t),and V = V(r,t) vary in both space and time. Note that

0
df’ = (d,u—kp'dV—F(E—V-p—,u)d?T—dzs) < an;>

(1 dT af°
—<Edp+p~dV+(€—h)?—ds>< 85) ,

where h = ;i + T's is the enthalpy per particle, and where we drop the term proportional to V' -p dT,
which on the assumption that V' = 0 on average is second order in smallness. We have also invoked
local thermodynamics in the form

(8.134)

ou ou 1
T = —sdT + = 1
dp = <8T>d +<8p> dp sd +ndp ; (8.135)
where s is the entropy per particle and n is the number density. We also have
of* _ f°
- — 1
Oe  kgT (8.136)

which we shall invoke further on below. When f° is the Maxwell-Boltzmann distribution, we have
FOp) = n (2mmk, T)3/2 ¢ P /2mksT (8.137)
is normalized so that [d3r [d3p fO(p) = N.

We wish to evaluate one of the contributions to the LHS of eqn. 8.132:
of° p 0f° as° ( 8f0>{1 dp  e—hoT

o T Ty et gt @ V)V
(8.138)

£ —

+'v-< 8V+ Vp> h'v-VT—F-v}
at n
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To simplify this, first note that Newton’s laws applied to an ideal fluid give pV = —Vp, where p = mn
is the mass density. Corrections to this result, e.g. viscosity and nonlinearity in V, are of higher order.

Next, continuity for particle number means 7 + V - (nV') = 0. We assume V is zero on average and that
all derivatives are small, hence V- (nV) =V - Vn+nV -V & nV - V. Thus,

dlnn  Olnp O0InT
Ty Yo e v.-v | (8.139)

where we have invoked the ideal gas law n = p/k,T above.

Next, we invoke conservation of entropy. If s is the entropy per particle, then ns is the entropy per unit
volume, in which case we have the continuity equation
d(ns) Os on

n +V'(”SV):”<E+V'VS>+S<E+V'(”V)>:0 . (8.140)

The second bracketed term on the RHS vanishes because of particle continuity, leaving us with the
combination $ + V - Vs = § = 0 (since V = 0 on average, and any gradient is first order in smallness).
Now thermodynamics says

[ 0Os Os G ky
ds = <8_T>pdT+ <3_p>T dp = T drT ) dp (8.141)

since ¢, = T(as/aT)p and (8s/0p), = (av/aT)p, where v = V/N. Here, ¢, is the heat capacity per

particle at constant pressure’. Thus,

¢, OlnT  Olnp
k—p e on =0 . (8.142)
B

We now have in eqns. 8.139 and 8.142 two equations in the two unknowns JIn7/0t and Jlnp/0t,
yielding

OnT _ kegyy 0 O G g oy (8.143)
ot cy ot cy
Thus eqn. 8.138 becomes
of° p af° of° of°N\ [e—nh h—Tc,—e¢
or . p o1 p ol _(_91 VT L T y.v_F. 144
ot +m or - op Oe T "7 VI muqus Qopt cy kg vV vi oo G149
where ¢ = ¢(I") and
1 /oV, 8‘/6
Qup = B <8—w5 + 8—%> . (8.145)

Therefore, the Boltzmann equation takes the form

dof e(I') —h e(I') —h+Tc, o rdf
ot +{ T v VT +mu,vg Qup — - V-V_-F.v BT o L (8.146)

7In the chapter on thermodynamics, we adopted a slightly different definition of ¢, as the heat capacity per
mole. In this chapter c, is the heat capacity per particle.
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Notice we have dropped the terms v - 9 f /Or and F - 0 f /Op, since §f must already be first order in
smallness, and both the 0/0r operator as well as F' add a second order of smallness, which is negligible.
Typically 0f/0t is nonzero if the applied force F(t) is time-dependent. We use the convention of
summing over repeated indices. Note that 6,5Q,5 = Q.o = V - V. For ideal gases in which only
translational and rotational degrees of freedom are excited, h = cpT.
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