
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) Consider the collisionless Boltzmann equation for the Hamiltonian Ĥ(p) = 1
4Ap

4 in
one space dimension. Suppose the initial distribution is given by

f(x, p, t = 0) = C e−x2/2σ2

e−p2/2κ2

.

(a) Find f(x, p, t) for all t > 0.

(b) Find the equation for the locus of points (x, p) for which f(x, p, t) = exp(−α2/2).

(c) Express your result in (b) in dimensionless form and plot it for various values of the
dimensionless time.

Solution :

(a) The velocity is v(p) = ∂ε/∂p = Ap3 and thus

f(x, p, t) = f
(

x− v(p)t, p, 0
)

= C e−(x−Ap3t)2/2σ2

e−p2/2κ2

.

(b) Clearly we have
(x−Ap3t)2

σ2
+

p2

κ2
= α2 ,

which may be written as

x(p, t;α) = Ap3t± σ

√

α2 −
p2

κ2
.

If we write

x̄ ≡
x

σ
, p̄ ≡

p

κ
, s ≡

Aκ3 t

σ
,

then in dimensionless form we have

x̄(p̄, s;α) = p̄3s±
√

α2 − p̄2 .

(c) See fig. 1.

(2) Consider an ideal gas of point particles in d = 3 dimensions with isotropic dispersion
ε(p) = Apσ.

(a) Find the enthalpy per particle h = µ+Ts, where µ is the chemical potential and s is the
entropy per particle. (You may find it useful to review some of the material in chapter 4 of
the notes.)
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Figure 1: Level sets x̄(p̄, s;α) = p̄3s±
√

α2 − p̄2 for α = 0.2 (red) to α = 1.2 (blue) and s = 0
(upper left), s = 1

3 (upper right), s = 2
3 (lower right), and s = 1 (lower left). Compare with

fig. 8.1 of the lecture notes.

(b) Find the thermal conductivity κ within the relaxation time approximation.

Solution :

(a) For the dispersion ε(p) = Apσ, in d dimensions, one obtains the density of states g(ε) =
Cεr−1 where r = d/σ and C is a constant. One then obtains the Helmholtz free energy

F = −Nk
B
T log(V/N)−Nk

B
T −Nk

B
T log

∞
∫

0

dε g(ε) exp(−ε/k
B
T )

= −Nk
B
T log(V/N)−Nk

B
T log

[

eAΓ(r)
]

− rNk
B
T log(k

B
T ) .

We then have

µ =

(

∂F

∂N

)

T,V

= −k
B
T log(V/N)− k

B
T log

[

AΓ(r)
]

− rk
B
T log(k

B
T )

s = −
1

N

(

∂F

∂T

)

V.N

= k
B
log(V/N) + k

B
log

[

eAΓ(r)
]

+ rk
B
log(ek

B
T ) ,

and thus
h = µ+ Ts = (r + 1)k

B
.
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The thermal conductivity is obtained from the energy current jε = −κ∇T , where

jαε =

∫

ddp ε vα δf = −
nτ

k
B
T 2

〈

vαvβ ε (ε− h)
〉 ∂T

∂xβ
,

where we have used the result (see eqn. 8.71 of the lecture notes)

δf = −
τ

k
B
T 2

(ε− h)(v ·∇T ) f0

and h = cpT for our ideal gas. Thus from isotropy we can replace
〈

vαvβ → d−1v2 δαβ , in
which case

κ =
nτ

dk
B
T 2

〈

v2 ε (ε − h)
〉

.

With ε(p) = Apσ we have v(p) = σApσ−1p̂ and thus v2 = σ2A2/σ ε2−2σ−1

. We then have

κ =
nτ

dk
B
T 2

σ2A2/σ
〈

ε3−2σ−1(

ε− (r + 1) k
B
T
)〉

Now with the density of states g(ε) ∝ εr−1 we have

〈εs〉 =

∞
∫

0

dε εr−1+s e−βε

/ ∞
∫

0

dε εr−1 e−βε =
Γ(r + s)

Γ(r)
(k

B
T )s .

Working out the remaining details, we arrive at the expression

κ =
2σ(σ − 1) Γ(r + 3− 2σ−1)

dΓ(r)
A2/σ · nτk

B
· (k

B
T )2(1−σ−1) .

As a check, if we set σ = 2 and A = 1/2m (ballistic dispersion), then for d = 3 we have
r = 3

2 and find κ = 5
2 nτk

2
B
T , which is identical to the result in §8.4.4 of the lecture notes.
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