
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a q-state Potts model on the body-centered cubic (BCC) lattice. The Hamilto-
nian is given by

Ĥ = −J
∑

〈ij〉
δσ

i
, σ

j
,

where σi ∈ {1, . . . , q} on each site.

(a) Following the mean field treatment in §7.6.3 of the notes, write x = 〈δσ
i
, 1〉 = q−1 + s,

and expand the free energy in powers of s through terms of order s4. Neglecting all higher
order terms in the free energy, find the critical temperature θc, where θ = k

B
T/zJ as usual.

Indicate whether the transition is first order or second order (this will depend on q).

(b) For second order transitions, the truncated Landau expansion is sufficient, since we care
only about the sign of the quadratic term in the free energy. First order transitions involve a
discontinuity in the order parameter, so any truncation of the free energy as a power series
in the order parameter involves an approximation. Find a way to numerically determine
θc(q) based on the full mean field (i.e. variational density matrix) free energy. Compare
your results with what you found in part (a), and sketch both sets of results for several
values of q.

Solution :

(a) The expansion of the free energy f(s, θ) is given in eqn. 7.129 of the notes (set h = 0).
We have

f = f0 +
1
2
a s2 − 1

3
y s3 + 1

4
b s4 +O(s5) ,

with

a =
q(qθ − 1)

q − 1
, y =

(q − 2) q3θ

2(q − 1)2
, b = 1

3
q3θ

[

1 + (q − 1)−3
]

.

For q = 2 we have y = 0, and there is a second order phase transition when a = 0, i.e.

θ = q−1. For q > 2, there is a cubic term in the Landau expansion, and this portends a first
order transition. Restricting to the quartic free energy above, a first order at a > 0 transition
preempts what would have been a second order transition at a = 0. The transition occurs
for y2 = 9

2
ab. Solving for θ, we obtain

θL

c =
6(q2 − 3q + 3)

(5q2 − 14q + 14) q
.

The value of the order parameter s just below the first order transition temperature is

s(θ−c ) =
√

2a/b ,

where a and b are evaluated at θ = θc
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Figure 1: Variational free energy of the q = 7 Potts model versus variational parameter
x. Left: free energy f(x, θ). Right: derivative f ′(x, θ) with respect to the x. The dot-dash
magenta curve in both cases is the locus of points for which the second derivative f ′′(x, θ)
with respect to x vanishes. Three characteristic temperatures are marked θ = q−1 (blue),
where the coefficient of the quadratic term in the Landau expansion changes sign; θ = θ0
(red), where there is a saddle-node bifurcation and above which the free energy has only
one minimum at x = q−1 (symmetric phase); and θ = θc (green), where the first order
transition occurs.

(b) The full variational free energy, neglecting constants, is

f(x, θ) = −1
2
x2 − (1− x)2

2(q − 1)
+ θ x lnx+ θ (1− x) ln

(

1− x

q − 1

)

.

Therefore

∂f

∂x
= −x+

1− x

q − 1
+ θ lnx− θ ln

(

1− x

q − 1

)

∂2f

∂x2
= − q

q − 1
+

θ

x(1− x)
.
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Figure 2: Comparisons of order parameter jump at θc (top) and critical temperature θc
(bottom) for untruncated (solid lines) and truncated (dashed lines) expansions of the mean
field free energy. Note the agreement as q → 2, where the jump is small and a truncated
expansion is then valid.

Solving for ∂2f
∂x2 = 0, we obtain

x± = 1
2
± 1

2

√

1− θ

θ0
,

where θ0 = q/4(q − 1). For temperatures below θ0, the function f(x, θ) has three extrema:
two local minima and one local maximum. The points x± lie between either minimum and
the maximum. The situation is depicted in fig. 1 for the case q = 7. To locate the first order
transition, we must find the temperature θc for which the two minima are degenerate. This
can be done numerically, but there is an analytic solution:

θMF

c =
q − 2

2(q − 1) ln(q − 1)
, s(θ−c ) =

q − 2

q
.

A comparison of these results with those from part (a) is shown in fig. 2.

(2) Consider the U(1) Ginsburg-Landau theory with

F =

∫

ddr
[

1
2
a |Ψ|2 + 1

4
b |Ψ|4 + 1

2
κ |∇Ψ|2

]

.
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Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appro-
priate for describing the transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note
that the free energy is a functional of the two independent fields Ψ(r) and Ψ∗(r), where
Ψ∗ is the complex conjugate of Ψ. Alternatively, one can consider F a functional of the real
and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can
be written in the form

F = ε0

∫

ddx
[

± 1
2
|ψ|2 + 1

4
|ψ|4 + 1

2
|∇ψ|2

]

,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign on the
first term on the RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and between r

and x.

(b) By extremizing the functional F [ψ,ψ∗] with respect to ψ∗, find a partial differential
equation describing the behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider the
case where ψ(x) describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are two-
dimensional polar coordinates. Find the ordinary differential equation for f(r) which ex-
tremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R
∫

0

dr r

[

1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1− f2
)2

]

,

where R is the radius of the system, which we presume is confined to a disk. Consider a
trial solution for f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and extremize
with respect to a to find the optimum value of a within this variational class of functions.

Solution :

(a) Taking the ratio of the second and first terms in the free energy density, we learn that

Ψ has units of A ≡
(

|a|/b
)1/2

. Taking the ratio of the third to the first terms yields a length

scale ξ =
(

κ/|a|
)1/2

. We therefore write Ψ = Aψ and x̃ = ξx to obtain the desired form of
the free energy, with

ε0 = A2 ξd |a| = |a|2− 1

2
d b−1 κ

1

2
d .
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(b) We extremize with respect to the field ψ∗. Writing F = ε0
∫

d3x F , with F = ±1
2
|ψ|2 +

1
4
|ψ|4 + 1

2
|∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗ −∇· ∂F

∂∇ψ∗ = ±1

2
ψ + 1

2
|ψ|2 ψ − 1

2
∇2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,

which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇
2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into ∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r) φ̂ into our expression for F , we have

F = 1
2
|∇ψ|2 − 1

2
|ψ|2 + 1

4
|ψ|4

= 1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1− f2
)2 − 1

4
,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show
that the Euler-Lagrange equations,

∂ (rF)

∂f
− d

dr

(

∂ (rF)

∂f ′

)

= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r)
into F . The resulting integrals are elementary, and we obtain

F (a,R) = 1
4
πε0

{

1− a4

(R2 + a2)2
+ 2 ln

(

R2

a2
+ 1

)

+
R2 a2

R2 + a2

}

.

Taking the limit R→ ∞, we have

F (a,R → ∞) = 2 ln

(

R2

a2

)

+ a2 .

We now extremize with respect to a, which yields a =
√
2. Note that the energy in the

vortex state is logarithmically infinite. In order to have a finite total free energy (relative
to the ground state), we need to introduce an antivortex somewhere in the system. An
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antivortex has a phase winding which is opposite to that of the vortex, i.e. ψ = f e−iφ. If
the vortex and antivortex separation is r, the energy is

V (r) = 1
2
πε0 ln

(

r2

a2
+ 1

)

.

This tends to V (r) = πε0 ln(d/a) for d≫ a and smoothly approaches V (0) = 0, since when
r = 0 the vortex and antivortex annihilate leaving the ground state condensate. Recall
that two-dimensional point charges also interact via a logarithmic potential, according to
Maxwell’s equations. Indeed, there is a rather extensive analogy between the physics of
two-dimensional models with O(2) symmetry and (2 + 1)-dimensional electrodynamics.

(3) A system is described by the Hamiltonian

Ĥ = −J
∑

〈ij〉
I(µi, µj)−H

∑

i

δµi,A , (1)

where on each site i there are four possible choices for µi : µi ∈ {A,B,C,D}. The interaction
matrix I(µ, µ′) is given in the following table:

I A B C D

A +1 −1 −1 0

B −1 +1 0 −1

C −1 0 +1 −1

D 0 −1 −1 +1

(a) Write a trial density matrix

̺(µ1, . . . , µN ) =

N
∏

i=1

̺1(µi)

̺1(µ) = x δµ,A + y(δµ,B + δµ,C + δµ,D) .

What is the relationship between x and y? Henceforth use this relationship to eliminate y
in terms of x.

(b) What is the variational energy per site, E(x, T,H)/N?

(c) What is the variational entropy per site, S(x, T,H)/N?

(d) What is the mean field equation for x?

(e) What value x∗ does x take when the system is disordered?

(f) Write x = x∗ + 3
4
ε and expand the free energy to fourth order in ε. (The factor 3

4
should

generate manageable coefficients in the Taylor series expansion.)

6



(g) Sketch ε as a function of T for H = 0 and find Tc. Is the transition first order or second
order?

Solution:

(a) Clearly we must have y = 1
3
(1− x) in order that Tr(̺1) = x+ 3y = 1.

(b) We have
E

N
= −1

2
zJ

(

x2 − 4xy + 3 y2 − 4 y2
)

−Hx ,

The first term in the bracket corresponds to AA links, which occur with probability x2 and
have energy −J . The second term arises from the four possibilities AB, AC, BA, CA, each
of which occurs with probability xy and with energy +J . The third term is from the BB,
CC, and DD configurations, each with probability y2 and energy −J . The last term is from
the BD, CD, DB, and DC configurations, each with probability y2 and energy +J . Finally,
there is the field term. Eliminating y = 1

3
(1− x) from this expression we have

E

N
= 1

18
zJ

(

1 + 10x− 20x2
)

−Hx

Note that with x = 1 we recoverE = −1

2
NzJ −H , i.e. an interaction energy of −J per link

and a field energy of −H per site.

(c) The variational entropy per site is

s(x) = −k
B
Tr

(

̺1 ln ̺1
)

= −k
B

(

x lnx+ 3y ln y
)

= −k
B

[

x lnx+ (1− x) ln

(

1− x

3

)

]

.

(d) It is convenient to adimensionalize, writing f = F/Nε0, θ = k
B
T/ε0, and h = H/ε0,

with ε0 =
5
9
zJ . Then

f(x, θ, h) = 1
10

+ x− 2x2 − hx+ θ

[

x lnx+ (1− x) ln

(

1− x

3

)

]

.

Differentiating with respect to x, we obtain the mean field equation

∂f

∂x
= 0 =⇒ 1− 4x− h+ θ ln

(

3x

1− x

)

= 0 .

(e) When the system is disordered, there is no distinction between the different polariza-
tions of µ0. Thus, x∗ = 1

4
. Note that x = 1

4
is a solution of the mean field equation from

part (d) when h = 0.
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(f) Find
f
(

x = 1
4
+ 3

4
ε, θ, h

)

= f0 +
3
2

(

θ − 3
4

)

ε2 − θ ε3 + 7
4
θ ε4 − 3

4
h ε

with f0 =
9
40

− 1
4
h− θ ln 4.

(g) For h = 0, the cubic term in the mean field free energy leads to a first order transition
which preempts the second order one which would occur at θ∗ = 3

4
, where the coefficient

of the quadratic term vanishes. We learned in §6.7.1,2 of the notes that for a free energy
f = 1

2
am2 − 1

3
ym3 + 1

4
bm4 that the first order transition occurs for a = 2

9
b−1y2, where the

magnetization changes discontinuously from m = 0 at a = a+c to m0 = 2
3
b−1y at a = a−c .

For our problem here, we have a = 3
(

θ − 3
4

)

, y = 3θ, and b = 7θ. This gives

θc =
63
76

≈ 0.829 , ε0 =
2
7
.

As θ decreases further below θc to θ = 0, ε increases to ε(θ = 0) = 1. No sketch needed!

(4) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = −1
2

∑

i,j

Jij Si Sj +∆
∑

i

S2
i ,

where Jij = J(Ri − Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is
discussed in section 7.11 of the Lecture Notes, using the ’neglect of fluctuations’ method.
Consider instead a variational density matrix approach. Take ̺(S1, . . . , SN ) =

∏

i ˜̺(Si),
where

˜̺(S) =

(

n+m

2

)

δS,+1 + (1− n) δS,0 +

(

n−m

2

)

δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (̺H).

(c) Find S = −k
B
Tr (̺ ln ̺).

(d) Adimensionalizing by writing θ = k
B
T/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find the

dimensionless free energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find n(θ, δ)
when m = 0.

(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn. 7.322
of the Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗,
and find the value of δ∗.1

1This problem has been corrected: (θ
∗
, δ

∗
) is not the tricritical point.
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(i) Assume m2 ≪ 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug
this into your result for part (d) and obtain an expansion of f in terms of powers of m2

alone. Find the first order line. You may find it convenient to use Mathematica here.

Solution :

(a) From the given expression for ˜̺, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(˜̺A).

(b) From the results of part (a), we have

E = Tr(˜̺Ĥ)

= −1
2
NĴ(0)m2 +N∆n ,

assuming Jii = 0 for al i.

(c) The entropy is

S = −k
B
Tr (̺ ln ̺)

= −Nk
B

{

(

n−m

2

)

ln

(

n−m

2

)

+ (1− n) ln(1− n) +

(

n+m

2

)

ln

(

n+m

2

)

}

.

(d) The dimensionless free energy is given by

f(m,n, θ, δ) = −1
2
m2+δn+θ

{

(

n−m

2

)

ln

(

n−m

2

)

+(1−n) ln(1−n)+
(

n+m

2

)

ln

(

n+m

2

)

}

.

(e) The mean field equations are

0 =
∂f

∂m
= −m+ 1

2
θ ln

(

n−m

n+m

)

0 =
∂f

∂n
= δ + 1

2
θ ln

(

n2 −m2

4 (1− n)2

)

.

These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1 − n)2 e−2δ/θ .

(f) Settingm = 0 solves the first mean field equation always. Plugging this into the second
equation, we find

n =
2

2 + exp(δ/θ)
.
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(g) If we set m→ 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(

2

θ
− 2

)

with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(

2

θ
− 2

)

− 1

1− θ
=⇒ θ =

δ

δ + 1
.

Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical
solution yields the maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ),
which we then expand in powers of m, obtaining

f(m, θ, δ) = f0 +
1
2
am2 + 1

4
bm4 + 1

6
cm6 +O(m8) .

We find

a =
2

3θ

{

δ − θ ln

(

2(1− θ)

θ

)

}

b =
1

45 θ3

{

4(1− θ) θ ln

(

2(1− θ)

θ

)

+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1− θ)2

{

24 (1 − θ)2 θ ln

(

2(1− θ)

θ

)

+ 24δ(1 − θ)2 + θ
(

35 − 154 θ + 189 θ2
)

}

.

The tricritical point occurs for a = b = 0, which yields

θt =
1
3

, δt =
2
3
ln 2 .

If, following Landau, we consider terms only up through orderm6, we predict a first order
line given by the solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that
f(m, θ, δ) has a degenerate minimum, with one of the minima at m = 0 and the other at
m = ±m0. The results from Landau theory will coincide with the exact mean field solution
at the tricritical point, where them0 = 0, but in general the first order lines obtained by the
exact mean field theory solution and by a truncated sixth order Landau expansion of the
free energy will differ.
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