
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider the equation of state

p
√

v2 − b2 = RT exp

(

− a

RTv2

)

.

(a) Find the critical point (vc, Tc, pc).

(b) Defining p̄ = p/pc , v̄ = v/vc , and T̄ = T/Tc, write the equation of state in dimension-
less form p̄ = p̄(v̄, T̄ ).

(c) Expanding p̄ = 1 + π , v̄ = 1 + ǫ, and T̄ = 1 + t, find ǫliq(t) and ǫgas(t) for −1 ≪ t < 0.

Solution :

(a) We write

p(T, v) =
RT√
v2 − b2

e−a/RTv2 ⇒
(

∂p

∂v

)

T

=

(

2a

RTv3
− v

v2 − b2

)

p .

Thus, setting
( ∂p
∂v

)

T
= 0 yields the equation

2a

b2RT
=

u4

u2 − 1
≡ ϕ(u) ,

where u ≡ v/b. Differentiating ϕ(u), we find it has a unique minimum at u∗ =
√
2, where

ϕ(u∗) = 4. Thus,

Tc =
a

2b2R
, vc =

√
2 b , pc =

a

2eb2
.

(b) In terms of p̄, v̄, and T̄ , we have the universal equation of state

p̄ =
T̄√

2v̄2 − 1
exp

(

1− 1

T̄ v̄2

)

.

(c) With p̄ = 1 + π, v̄ = 1 + ǫ, and T̄ = 1 + t, we have from ch. 7 of the Lecture Notes,

ǫL,G = ∓
(

6πǫt
πǫǫǫ

)1/2

(−t)1/2 +O(t) .

From Mathematica we find πǫt = −2 and πǫǫǫ = −16, hence

ǫL,G = ∓
√
3
2 (−t)1/2 +O(t) .
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(2) Consider an Ising ferromagnet where the nearest neighbor exchange temperature is
J

NN
/k

B
= 50K and the next nearest neighbor exchange temperature is J

NNN
/k

B
= 10K.

What is the mean field transition temperature Tc if the lattice is:

(a) square
(b) honeycomb
(c) triangular
(d) simple cubic
(e) body centered cubic

Hint : As an intermediate step, you might want to show that the mean field transition
temperature is given by

k
B
TMF

c = z1 JNN
+ z2 JNNN

,

where z1 and z2 are the number of nearest neighbors and next-nearest neighbors of a given
lattice site, respectively.

Solution : The mean field transition temperature is given by k
B
TMF

c = Ĵ(0). With only
nearest and next-nearest neighbors, we have

k
B
TMF

c =
∑

R

J(R) = z1 JNN
+ z2 JNNN

,

where J
NN

and J
NNN

are the nearest neighbor and next nearest neighbor exchange interac-
tion energies. According to sketches in fig. 1, we have:

(a) square lattice : z1 = 4 and z2 = 4 ⇒ TMF

c = 240K.
(b) honeycomb lattice : z1 = 3 and z2 = 6 ⇒ TMF

c = 210K.
(c) triangular lattice : z1 = 6 and z2 = 6 ⇒ TMF

c = 360K.
(d) simple cubic lattice : z1 = 6 and z2 = 12 ⇒ TMF

c = 420K.
(e) body-centered cubic lattice : z1 = 8 and z2 = 6 ⇒ TMF

c = 460K.

(3) Consider a three state Ising model,

Ĥ = −J
∑

〈ij〉
Si Sj −B

∑

i

Si ,

where Si ∈
{

−1 , 0 , +1
}

.

(a) Writing Si = m+ δSi and ignoring terms quadratic in the fluctuations, derive the mean
field Hamiltonian H

MF
.

(b) Find the dimensionless mean field free energy density, f = F
MF

/NzJ , where z is the lat-
tice coordination number. You should define the dimensionless temperature θ ≡ k

B
T/zJ

and the dimensionless field h ≡ B/zJ .

(c) Find the self-consistency equation for m = 〈Si〉 and show that this agrees with the
condition ∂f/∂m = 0.

2



Figure 1: Nearest neighbors (red circles), next nearest neighbors (light blue squares), and
some third nearest neighbors (green triangles) for five common lattices. (a) square, (b)
honeycomb, (c) triangular, (d) simple cubic, and (e) body centered cubic.

(d) Expand f(m) to fourth order in m and first order in h.

(e) Find the critical temperature θc.

(f) Find m(θc, h).

Solution:

(a) We have

SiSj = (m+ δSi)(m+ δSj)

= m2 +m (δSi + δSj) + δSi δSj

= −m2 +m (Si + Sj) + δSi δSj .

We ignore the fluctuation term, resulting in the mean field Hamiltonian

H
MF

= 1
2NzJm2 −

(

zJm+B
)

∑

i

Si .

(b) The effective field is Beff = zJm+B. Note that

∑

S

eBeff
S/k

B
T = 1 + 2 cosh

(

zJm+B

k
B
T

)

.
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It is convenient to adimensionalize, writing f = /NzJ , θ = k
B
T/zJ , and h = B/zJ . Then

we have

f(m, θ, h) = 1
2m

2 − θ ln

(

1 + 2 cosh

(

m+ h

θ

)

)

.

(c) Extremizing the free energy f(m) with respect to m, we obtain the mean field equation:

∂f

∂m
= 0 =⇒ m =

2 sinh
(

m+h
θ

)

1 + 2 cosh
(

m+h
θ

) .

The self consistency condition is the same:

m =

∑

S S e(m+h)S/θ

∑

S e
(m+h)S/θ

=
2 sinh

(

m+h
θ

)

1 + 2 cosh
(

m+h
θ

) .

(d) We have

f(m) = 1
2m

2 − θ ln

(

3 +
(h+m)2

θ2
+

(h+m)4

12θ4
+ . . .

)

= −θ ln 3 + 1
2

(

1− 2

3θ

)

m2 +
m4

36θ3
− 2hm

3θ
+ . . . .

(e) The critical temperature is identified as the value of θ where the coefficient of the m2

term in the free energy vanishes. Thus, θc =
2
3 .

(f) Setting θ = θc =
2
3 , we extremize f(m) and obtain the equation

f ′(m, θc, h) = 0 =
m3

9θ3c
− 2h

3θc
=⇒ m(θc, h) =

(

6 θ2c h
)1/3

=
(

8
3h
)1/3

.

(4) For the O(3) Heisenberg ferromagnet,

Ĥ = −J
∑

〈ij〉
Ω̂i · Ω̂j ,

find the mean field transition temperature TMF

c . Here, each Ω̂i is a three-dimensional unit
vector, which can be parameterized using the usual polar and azimuthal angles:

Ω̂i =
(

sin θi cosφi , sin θi sinφi , cos θi
)

.

The thermodynamic trace is defined as

TrA(Ω̂1 , . . . , Ω̂N ) =

∫ N
∏

i=1

dΩi

4π
A(Ω̂1 , . . . , Ω̂N ) ,
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where
dΩi = sin θi dθi dφi .

Hint : Your mean field Ansatz will look like Ω̂i = m + δΩi, where m = 〈Ωi〉. You’ll want
to ignore terms in the Hamiltonian which are quadratic in fluctuations, i.e. δΩi · δΩj . You
can, without loss of generality, assume m to lie in the ẑ direction.

Solution:

Writing Ω̂i = m+ δΩi and neglecting the fluctuations, we arrive at the mean field Hamil-
tonian

H
MF

= 1
2NzJm2 − zJm ·

∑

i

Ω̂i ,

where m = 〈Ω̂i〉 is assumed to be independent of the site index i. The partition function is

Z = e−
1
2NβzJm2

(

∫

dΩ

4π
eβzJm·Ω̂

)N

.

We once again adimensionalize, writing f = F/NzJ and θ = k
B
T/zJ . We then find

f(m, θ) = 1
2m

2 − θ ln

∫

dΩ

4π
em·Ω̂/θ

= 1
2m

2 − θ ln

(

sinh(m/θ)

m/θ

)

= 1
2m

2 − θ ln

(

1 +
m2

6 θ2
+

m4

120 θ4
+ . . .

)

= 1
2

(

1− 1

3 θ

)

m2 +
m4

180 θ3
+ . . . .

Setting the coefficient of the quadratic term to zero, we obtain θc =
1
3 .
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