
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) For the Mayer cluster expansion, write down all possible unlabeled connected sub-
graphs γ which contain four vertices. For your favorite of these animals, identify its sym-
metry factor sγ , and write down the corresponding expression for the cluster integral bγ .
For example, for the � diagram with four vertices the symmetry factor is s

�
= 8 and the

cluster integral is

b
�
=

1

8V

∫

ddr1

∫

ddr2

∫

ddr3

∫

ddr4 f(r12) f(r23) f(r34) f(r14)

=
1

8

∫

ddr1

∫

ddr2

∫

ddr3 f(r12) f(r23) f(r1) f(r3) .

(You’ll have to choose a favorite other than �.) If you’re really energetic, compute sγ and
bγ for all of the animals with four vertices.

Figure 1: Connected clusters with nγ = 4 sites.

Solution :

The animals and their symmetry factors are shown in fig. 1.

ba =
1

2

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r12) f(r23)

bb =
1

6

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r2) f(r3)

bc =
1

2

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r12) f(r13) f(r23)

bd =
1

8

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r2) f(r13) f(r23)

be =
1

4

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r2) f(r12) f(r13) f(r23)

bf =
1

24

∫

ddr1

∫

ddr2

∫

ddr3 f(r1) f(r2) f(r3) f(r12) f(r13) f(r23) .
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(2) For each of the cluster diagrams in Fig. 2, find the symmetry factor sγ and write an
expression for the cluster integral bγ .

(a) (b) (c) (d)

Figure 2: Cluster diagrams for problem 2.

Solution : Choose labels as in Fig. 3, and set xnγ
≡ 0 to cancel out the volume factor in the

definition of bγ .

(a) (b) (c) (d)
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Figure 3: Labeled cluster diagrams.

(a) The symmetry factor is sγ = 2, so

bγ = 1
2

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4 f(r12) f(r13) f(r24) f(r34) f(r4) .

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is sγ = 6. We
then have

bγ = 1
6

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4 f(r12) f(r13) f(r24) f(r34) f(r14) f(r23) f(r4) .

(c) The diagram is symmetric under reflections in two axes, hence sγ = 4. We then have

bγ = 1
4

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f(r12) f(r13) f(r24) f(r34) f(r35) f(r4) f(r5) .

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).
Thus, sγ = 24 = 16. We then have

bγ = 1
16

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f(r12) f(r13) f(r14) f(r23) f(r24) f(r34) f(r35) f(r45) f(r3) f(r4) f(r5) .
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(3) Compute the partition function for the one-dimensional Tonks gas of hard rods of
length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once
again, assume a particular ordering so that x1 < x2 < · · · < xN . Due to translational
invariance, we can define the positions of particles {2, . . . , N} relative to that of particle 1,
which we initially place at x1 = 0. Then periodicity means that xN ≤ L− a, and in general
one then has

xj−1 + a ≤ xj ≤ Yj ≡ L−Na+ (j − 1)a .

Now integrate over {x2, . . . , xN} subject to these constraints. Finally, one does the x1 inte-
gral, which is over the entire ring, but which must be corrected to eliminate overcounting
from cyclic permutations. How many cyclic permutations are there?

Solution :

There are N cyclic permutations, hence

Z(T,L,N) = λ−N
T

L

N

Y
2

∫

a

dx2

Y
3

∫

x
2
+a

dx3 · · ·

YN
∫

x
N−1

+a

dxN =
L(L−Na)N−1λ−N

T

N !
.

(4) Consider a three-dimensional gas of point particles interacting according to the poten-
tial

u(r) =











+∆0 if r ≤ a

−∆1 if a < r ≤ b

0 if b < r ,

where ∆0,1 are both positive. Compute the second virial coefficient B2(T ) and find a rela-
tion which determines the inversion temperature in a throttling process.

Solution :

The Mayer function is

f(r) =











e−∆
0
/k

B
T − 1 if r ≤ 0

e∆1
/k

B
T − 1 if a < r ≤ b

0 if b < r .

The second virial coefficient is

B2(T ) = −1

2

∫

d3r f(r)

=
2πa3

3
·

[

(

1− e−∆
0
/k

B
T
)

+ (s3 − 1)
(

1− e∆1
/k

B
T
)

]

,
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where s = b/a. The inversion temperature is a solution of the equation B2(T ) = TB′

2(T ),
which gives

s3 − 1 =
1 +

(

∆
0

k
B
T − 1

)

e−∆
0
/k

B
T

1 +
(

∆
1

k
B
T + 1

)

e∆1
/k

B
T

.
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