
PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a model in which there are three possible states per site, which we can denote
by A, B, and V. The states A and B are for our purposes identical. The energies of A-A, A-B,
and B-B links are all identical and equal to W . The state V represents a vacancy, and any
link containing a vacancy, meaning A-V, B-V, or V-V, has energy 0.

(a) Suppose we write σ = +1 for A, σ = −1 for B, and σ = 0 for V. How would you write
a Hamiltonian for this system? Your result should be of the form

Ĥ =
∑

〈ij〉

E(σi , σj) .

Find a simple and explicit function E(σ, σ′) which yields the correct energy for each possi-
ble bond configuration.

(b) Consider a triangle of three sites. Find the average total energy at temperature T . There
are 33 = 27 states for the triangle. You can just enumerate them all and find the energies.

(c) For a one-dimensional ring of N sites, find the 3 × 3 transfer matrix R. Find the free
energy per site F (T,N)/N and the ground state entropy per site S(T,N)/N in theN → ∞
limit for the cases W < 0 and W > 0. Interpret your results. The eigenvalue equation for
R factorizes, so you only have to solve a quadratic equation.

Solution:

(a) The quantity σ2i is 1 if site i is in state A or B and is 0 in state V. Therefore we have

Ĥ =W
∑

〈ij〉

σ2i σ
2
j .

(b) Of the 27 states, eight have zero vacancies – each site has two possible states A and B –
with energy E = 3W . There are 12 states with one vacancy, since there are three possible
locations for the vacancy and then four possibilities for the remaining two sites (each can
be either A or B). Each of these 12 single vacancy states has energy E = W . There are 6
states with two vacancies and 1 state with three vacancies, all of which have energyE = 0.
The partition function is therefore

Z = 8 e−3βW + 12 e−βW + 7 .

Note that Z(β = 0) = Tr 1 = 27 is the total number of ‘microstates’. The average energy is
then

E = − 1

Z

∂Z

∂β
=

(

24 e−3βW + 12 e−βW

8 e−3βW + 12 e−βW + 7

)

W
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(c) The transfer matrix is

Rσσ′ = e−βWσ2σ′2

=





e−βW e−βW 1
e−βW e−βW 1
1 1 1



 ,

where the row and column indices are A (1), B (2), and V (3), respectively. The partition
function on a ring of N sites is

Z = λN1 + λN2 + λN3 ,

where λ1,2,3 are the three eigenvalues of R. Generally the eigenvalue equation for a 3 × 3
matrix is cubic, but we can see immediately that detR = 0 because the first two rows are
identical. Thus, λ = 0 is a solution to the characteristic equation P (λ) = det

(

λI − R
)

= 0,
and the cubic polynomial P (λ) factors into the product of λ and a quadratic. The latter is
easily solved. One finds

P (λ) = λ3 − (2x+ 1)λ2 + (2x− 2)λ ,

where x = e−βW . The roots are λ = 0 and

λ± = x+ 1
2 ±

√

x2 − x+ 9
4 .

The largest of the three eigenvalues is λ+, hence, in the thermodynamic limit,

F = −k
B
T lnZ = −Nk

B
T ln

(

e−W/k
B
T + 1

2 +
√

e−2W/k
B
T − e−W/k

B
T + 9

4

)

.

The entropy is S = −∂F
∂T . In the limit T → 0 with W < 0, we have

λ+(T → 0 , W < 0) = 2 e|W |/k
B
T + e−|W |/k

B
T +O(e−2|W |/k

B
T
)

.

Thus

F (T → 0 , W < 0) = −N |W | −Nk
B
T ln 2 + . . .

S(T → 0 , W < 0) = N ln 2 .

When W > 0, we have

λ+(T → 0 , W > 0) = 2 + 2
3 e

−W/k
B
T +O(e−2W/k

B
T
)

.

Then

F (T → 0 , W > 0) = −Nk
B
T ln 2− 1

3NkB
T e−W/k

B
T + . . .

S(T → 0 , W > 0) = N ln 2 .

Thus, the ground state entropies are the same, even though the allowed microstates are
very different. For W < 0, there are no vacancies. For W > 0, every link must contain at
least one vacancy.
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(2) Consider a longer-ranged Ising model on a ring with Hamiltonian

Ĥ =

L
∑

n=1

E(σn, σn+1, σn+2) ,

where the length L > 2 is even and the energy function E(σ.σ′, σ′′) is arbitrary. Note that
this chain involves second-neighbor interactions.

(a) Show that the partition function can be written as

Z(T,L) = Tr
σ

K
∏

k=1

T (σ2k−1, σ2k |σ2k+1, σ2k+2)

where K = 1
2L. and find T (σ2k−1, σ2k |σ2k+1, σ2k+2) in terms of E(σn, σn+1, σn+2).

(b) Show that T (σ, σ′ |σ′′, σ′′′) can be considered a 4× 4 matrix, whence Z = Tr TK .

(c) Suppose

E(σn, σn+1, σn+2) =

{

−J if σn = σn+1 = σn+2

0 otherwise .

Find the 4× 4 transfer matrix.

Solution:

(a) Define

T (σ2k−1, σ2k |σ2k+1, σ2k+2) ≡ e−βE(σ
2k−1

,σ
2k

,σ
2k+1

) e−βE(σ
2k

,σ
2k+1

,σ
2k+2

) .

Then

Z(T,L) = Tr
σ

e−βE(σ1,σ2,σ3) e−βE(σ2,σ3,σ4) · · · e−βE(σ
L−2

,σ
L−1

,σ
L
) e−βE(σ

L−1
,σ

L
,σ

1
) e−βE(σ

L
,σ1,σ2) ,

which is the partition function for the L-site chain.

(b) Since the pair (σ, σ′) can take four possible values, i.e. (+,+), (+,−), (−,+), and (−,−),
which we respectively define as states a = 1, 2, 3, and 4, we have

Ta,a′ = e−βE(a,a′)

and clearly Z = Tr TK .

(c) For the given energy function E(σn, σn+1, σn+2), we have

E(a, a′) =























−2J if a = (+,+) and a′ = (+,+) or a = (−,−) and a′ = (−,−)

−J if a = (+,+) and a′ = (+,−) or a = (−,−) and a′ = (−,+)

−J if a = (−,+) and a′ = (+,+) or a = (+,−) and a′ = (−,−)

0 otherwise .
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In matrix form,

E(a, a′) =









−2J −J 0 0
0 0 0 −J
−J 0 0 0
0 0 −J −2J









and

Ta,a′ = e−βE(a,a′) =









x2 x 1 1
1 1 1 x
x 1 1 1
1 1 x x2









,

where x = exp(βJ). The characteristic polynomial P (λ) = det(λ I − T ) factors into a
product of binomials, with roots

λ1 =
1
2x

2 + 1
2

√

x4 + 2x2 + 8x+ 5 + 3
2 , λ3 =

1
2x

2 + (x− 1)3/2(x+ 3)1/2 − 1
2

λ2 =
1
2x

2 − 1
2

√

x4 + 2x2 + 8x+ 5 + 3
2 , λ4 =

1
2x

2 − (x− 1)3/2(x+ 3)1/2 − 1
2 .

The largest eigenvalue is λ1 and thus in the thermodynamic limit we have Z = λK1 .

(3) The Blume-Capel model is a spin-1 version of the Ising model, with Hamiltonian

H = −J
∑

〈ij〉

Si Sj −∆
∑

i

S2
i ,

where Si ∈ {−1 , 0 , +1} and where the first sum is over all links of a lattice and the second
sum is over all sites. It has been used to describe magnetic solids containing vacancies
(S = 0 for a vacancy) as well as phase separation in 4He − 3He mixtures (S = 0 for a 4He
atom). This problem will give you an opportunity to study and learn the material in §§5.2,3
of the notes. For parts (b), (c), and (d) you should work in the thermodynamic limit. The
eigenvalues and eigenvectors are such that it would shorten your effort considerably to
use a program like Mathematica to obtain them.

(a) Find the transfer matrix for the d = 1 Blume-Capel model.

(b) Find the free energy F (T,∆, N).

(c) Find the density of S = 0 sites as a function of T and ∆.

(d) Exciting! Find the correlation function 〈Sj Sj+n 〉 .

Solution:

(a) The transfer matrixR can be written in a number of ways, but it is aesthetically pleasing
to choose it to be symmetric. In this case we have

RSS′ = eβJSS
′

eβ∆(S2+S′2)/2 =





eβ(∆+J) eβ∆/2 eβ(∆−J)

eβ∆/2 1 eβ∆/2

eβ(∆−J) eβ∆/2 eβ(∆+J)



 .
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(b) For an N -site ring, we have

Z = Tr e−βH = Tr
(

RN ) = λN+ + λN0 + λN− ,

where λ+, λ0, and λ− are the eigenvalues of the transfer matrix R. To find the eigenvalues,
note that

~ψ0 =
1√
2





1
0
−1





is an eigenvector with eigenvalue λ0 = 2 eβ∆ sinh(βJ). The remaining eigenvectors must
be orthogonal to ψ0, and hence are of the form

~ψ± =
1

√

2 + x2±





1
x±
1



 .

We now demand

R





1
x
1



 =





2 eβ∆ cosh(βJ) + x eβ∆/2

2 eβ∆/2 + x

2 eβ∆ cosh(βJ) + x eβ∆/2



 =





λ
λx
λ



 ,

resulting in the coupled equations

λ = 2 eβ∆ cosh(βJ) + x eβ∆/2

λx = 2eβ∆/2 + x .

Eliminating x, one obtains a quadratic equation for λ. The solutions are

λ± =
(

eβ∆ cosh(βJ) + 1
2

)

±
√

(

eβ∆ cosh(βJ) + 1
2

)2
+ 2 eβ∆

x± = e−β∆/2

{

(

1
2 − eβ∆ cosh(βJ)

)

±
√

(

1
2 − eβ∆ cosh(βJ)

)2
+ 2 eβ∆

}

.

Note λ+ > λ0 > 0 > λ− and that λ+ is the eigenvalue of the largest magnitude. This is in
fact guaranteed by the Perron-Frobenius theorem, which states that for any positive matrixR
(i.e. a matrix whose elements are all positive) there exists a positive real number p such that
p is an eigenvalue of R and any other (possibly complex) eigenvalue of R is smaller than p

in absolute value. Furthermore the associated eigenvector ~ψ is such that all its components
are of the same sign. In the thermodynamic limit N → ∞ we then have

F (T,∆, N) = −Nk
B
T lnλ+ .

(c) Note that, at any site,

〈S2〉 = − 1

N

∂F

∂∆
=

1

β

∂ lnλ+
∂∆

,

5



and furthermore that
δS,0 = 1− S2 .

Thus,

ν0 ≡
N0

N
= 1− 1

β

∂ lnλ+
∂∆

.

After some algebra, find

ν0 = 1− r − 1
2√

r2 + 2 eβ∆
,

where
r = eβ∆ cosh(βJ) + 1

2 .

It is now easy to explore the limiting cases ∆ → −∞, where we find ν0 = 1, and ∆ → +∞,
where we find ν0 = 0. Both these limits make physical sense.

(d) We have

C(n) = 〈Sj Sj+n 〉 =
Tr

(

ΣRnΣRN−n
)

Tr
(

RN
) ,

where ΣSS′ = S δSS′ . We work in the thermodynamic limit. Note that 〈+ |Σ |+ 〉 = 0,
therefore we must write

R = λ+ |+ 〉〈+ |+ λ0 | 0 〉〈 0 | + λ− | − 〉〈− | ,

and we are forced to choose the middle term for the n instances of R between the two Σ
matrices. Thus,

C(n) =

(

λ0
λ+

)n
∣

∣〈+ |Σ | 0 〉
∣

∣

2
.

We define the correlation length ξ by

ξ =
1

ln
(

λ+/λ0
) ,

in which case
C(n) = Ae−|n|/ξ ,

where now we generalize to positive and negative values of n, and where

A =
∣

∣〈+ |Σ | 0 〉
∣

∣

2
=

1

1 + 1
2x

2
+

.

(4) Consider an N -site Ising ring, with N even. Let K = J/k
B
T be the dimensionless

ferromagnetic coupling (K > 0), and H(K,N) = H/k
B
T = −K∑N

n=1 σn σn+1 the dimen-

sionless Hamiltonian. The partition function is Z(K,N) = Tr e−H(K,N). By ‘tracing out’
over the even sites, show that

Z(K,N) = e−N ′c Z(K ′, N ′) ,
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where N ′ = N/2, c = c(K) and K ′ = K ′(K). Thus, the partition function of an N site ring
with dimensionless coupling K is related to the partition function for the same model on an
N ′ = N/2 site ring, at some renormalized coupling K ′, up to a constant factor.

Solution :

We have

∑

σ
2k

=±

eKσ
2k

(σ
2k−1

+σ
2k+1

) = 2cosh
(

Kσ2k−1 +Kσ2k+1

)

≡ e−c eK
′σ

2k−1
σ
2k+1

Consider the cases (σ2k−1, σ2k+1) = (1, 1) and (1,−1), respectively. These yield two equa-
tions,

2 cosh 2K = e−c eK
′

2 = e−c e−K ′

.

From these we derive
c(K) = − ln 2− 1

2 ln coshK

and
K ′(K) = 1

2 ln cosh 2K .

This last equation is a realization of the renormalization group. By thinning the degrees of
freedom, we derive an effective coupling K ′ valid at a new length scale. In our case, it is
easy to see that K ′ < K so the coupling gets weaker and weaker at longer length scales.
This is consistent with the fact that the one-dimensional Ising model is disordered at all
finite temperatures.
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