PHYSICS 140B: STATISTICAL PHYSICS HW ASSIGNMENT #1

(1) Consider a two-dimensional gas of fermions which obey the dispersion relation

$$\varepsilon(\mathbf{k}) = \varepsilon_0 \Big((k_x^2 + k_y^2) a^2 + \frac{1}{2} (k_x^4 + k_y^4) a^4 \Big)$$
.

Sketch, on the same plot, the Fermi surfaces for $\varepsilon_{\rm F}=0.1\,\varepsilon_{\rm 0},\,\varepsilon_{\rm F}=\varepsilon_{\rm 0}$, and $\varepsilon_{\rm F}=10\,\varepsilon_{\rm 0}$.

- **(2)** Using the Sommerfeld expansion, compute the heat capacity for a two-dimensional electron gas, to lowest nontrivial order in the temperature T.
- (3) 3 He atoms consist of an odd number of fermions (two electrons, two protons, and one neutron), and hence is itself a fermion. Consider a kilomole of 3 He atoms at standard temperature and pressure (T=293, K, p=1 atm).
 - (a) What is the Fermi temperature of the gas?
 - (b) Calculate $\mu/k_{\rm B}T$ and $\exp(-\mu/k_{\rm B}T)$.
 - (c) Find the average occupancy $n(\varepsilon)$ of a single particle state with energy $\frac{3}{2}k_{\rm B}T$.
- **(4)** For ideal Fermi gases in d=1, 2, and 3 dimensions, compute at T=0 the average energy per particle E/N in terms of the Fermi energy $\varepsilon_{\rm F}$.
- **(5)** Obtain numerical estimates for the Fermi energy (in eV) and the Fermi temperature (in Kelvin) for the following systems:
 - (a) conduction electrons in silver, lead, and aluminum
 - (b) nucleons in a heavy nucleus, such as $^{200}\mathrm{Hg}$
- **(6)** Show that the chemical potential of a three-dimensional ideal nonrelativistic Fermi gas is given by

$$\mu(n,T) = \varepsilon_{\rm F} \left[1 - \frac{\pi^2}{12} \left(\frac{k_{\rm B}T}{\varepsilon_{\rm F}} \right)^2 - \frac{\pi^4}{80} \left(\frac{k_{\rm B}T}{\varepsilon_{\rm F}} \right)^4 + \ldots \right]$$

and the average energy per particle is

$$\frac{E}{N} = \frac{3}{5} \varepsilon_{\rm F} \left[1 + \frac{5\pi^2}{12} \left(\frac{k_{\rm B}T}{\varepsilon_{\rm F}} \right)^2 - \frac{\pi^4}{16} \left(\frac{k_{\rm B}T}{\varepsilon_{\rm F}} \right)^4 + \dots \right] \quad ,$$

where $\mu_0(n)$ is the Fermi energy at T=0. Compute the heat capacity $C_V(T)$ to terms of order T^3 . How does the T^3 contribution to the electronic heat capacity compare with the contribution from phonons?