
PHYSICS 140B : STATISTICAL PHYSICS

FINAL EXAM SOLUTIONS

(1) Consider the equation of state

p =
RT

v − b
√
T

exp

(

− a

v
√
T

)

,

where a and b are constants, R = N
A
k
B

is the gas constant, and v is the molar volume.

(a) Find the critical point values of pc , Tx , and vc . [12 points]

(b) Find the dimensionless equation of state p̄ = p̄(T̄ , v̄) , where p̄ = p/pc , T̄ = T/Tc , and
v̄ = vc . Check that p̄(1, 1) = 1. [11 points]

(c) Describe the difference between the coexistence boundary and the spinodal line in a
(p, v) diagram. Illustrate with a sketch, including curves for p(T, v) with T > Tc , T = Tc ,
and T < Tc . [10 points]

Solution :

(a) We find where the isothermal compressibility κ = − 1

v

(

∂v
∂p

)

T
diverges by setting

(

∂p

∂v

)

T

= − RT
(

v − b
√
T
)2

e−a/v
√
T +

RT

v − b
√
T

a

v2
√
T

e−a/v
√
T = 0 .

Defining u ≡ v/b
√
T , we have

f(u) ≡ u2

u− 1
=

a

bT
.

Clearly f(u) has a unique minimum for u > 1, and since f ′(u) = u(u − 2)/(u − 1)2, the
minimum is at u∗ = 2, where f(u∗) = 4. Thus

vc
b
√

Tc

= 2 ,
a

bTc

= 4 ⇒ Tc =
a

4b
, vc =

√
ab ,

and plugging into the equation of state we obtain

pc =
R

2e2

√
a

b
.

(b) In terms of the dimensionless quantities {p̄, T̄ , v̄}, we find

p̄(T̄ , v̄) =
T̄

2v̄ −
√
T̄

exp

(

2− 2

v̄
√
T̄

)

.

Note that p̄(1, 1) = 1.
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Figure 1: Pressure-volume isotherms for the van der Waals system, corrected to account
for the Maxwell construction. The boundary of the purple shaded region is the spinodal line
p̄∗(v̄). The boundary of the orange shaded region is the stability boundary with respect to
phase separation, and is called the coexistence curve.

(c) A sketch is provided in fig. 1. The spinodal line is the locus of points where ∂p/∂v = 0.
The coexistence curve marks the boundary of the region where the free energy is mini-
mized by phase separation using the Maxwell construction.

(2) The Hamiltonian for the four state clock model can be written as

Ĥ = −J
∑

〈ij〉
n̂i · n̂j −H ·

∑

i

n̂i ,

where on each site i the local ‘spin’ takes one of four possible vector values: n̂i ∈ {±x̂,±ŷ}.
The interactions are between nearest neighbors on a lattice of coordination number z. The
applied field is H = Hx̂.

(a) Make the mean field Ansatz n̂i = m+ δn̂i , with m = mx̂. Find the mean field Hamil-
tonian ĤMF. [7 points]

(b) Defining θ ≡ k
B
T/zJ and h ≡ H/zJ , find the dimensionless mean field free energy per

site f ≡ F/NzJ as a function of θ, h, and m. [7 points]

(c) What is the self-consistent equation for m? [7 points]

(d) For h = 0, what is the critical temperature θc ? Is the transition first order (discontinu-
ous) or second order (continuous)? Why? [7 points]

(e) For θ > θc , find m(θ, h) to first order in h. [6 points]
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Solution :

(a) The Hamiltonian is

Ĥ = −
∑

i<j

Jijn̂i · n̂j −Hx̂ ·
∑

i

n̂i ,

where Jij = J
(

|Ri −Rj |
)

is a function of distance, here restricted to nearest neighbors on
a z-fold coordinated lattice. After making the mean field Ansatz and dropping terms of
O
(

(δn̂)2
)

, we obtain the mean field Hamiltonian,

ĤMF = 1

2
NĴ(0)m2 −

(

H + Ĵ(0)m
)

·
∑

i

x̂ · n̂i .

(b) Computing ZMF we obtain the dimensionless mean field free energy per site

f(θ, h,m) = 1

2
m2 − θ log

[

2 + 2 cosh

(

h+m

θ

)

]

(c) Setting ∂f/∂m = 0, we obtain the mean field equation

m =
sinh

(

h+m
θ

)

1 + cosh
(

h+m
θ

) .

(d) With h = 0, we have

m =
sinh(m/θ)

1 + cosh(m/θ)
.

Taking the derivative of the RHS at m = 0 and setting it to 1, we obtain θc = 1

2
. Since the

free energy is even in m, there is no cubic term, and assuming the coefficient of the quartic
term is positive, this means the mean field transition is second order. One can check that
to linear order in h and quartic order in m one has

f(θ, h,m) =
1

2

(

1− 1

2θ

)

m2 +
m4

96 θ3
− hm

2θ
+ . . . .

(e) Expanding the mean field equation for small m and h, we have

m =
h+m

2θ
+ . . . ⇒ m(θ, h) =

h

2θ − 1
=

h

2(θ − θc)
.
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(3) Consider an ideal gas of particles obeying the dispersion ε(p) = Ap3/2 in d = 3 dimen-
sions.

(a) Find the scattering time τ(T ). You are only asked to find the functional dependence on
T , including the proper combination of dimensional prefactors involving A, k

B
, n (number

density), and σ (scattering cross section). You do not need to compute any numerical
coefficients. Hint: First find v̄

rel
(T ) on dimensional grounds. Then use this to obtain τ(T ).

[15 points]

(b) Find the thermal conductivity κ(T ) from the relation

κ =
nτ

3k
B
T 2

〈

v2ε(ε− cpT )
〉

.

Once again, you are asked only to find the correct temperature dependence and combina-
tion of dimensional prefactors – don’t bother with the numerical prefactors. Hint : This
means you can solve this problem using dimensional analysis. [18 points]

Solution :

(a) With ε = Aps, with s = 3

2
in our case, we have that the speed is

v = sAps−1 = sAs−1

ε1−s−1 ∼ As−1

(k
B
T )1−s−1

by dimensional analysis. This dimensional relation is valid for any average quantities
linear in velocity, such as average relative particle speed v̄

rel
, mean speed v̄ = 〈v〉, root

mean square speed
√

〈v2〉, etc. The only thing that changes is the numerical prefactor. To
find τ(T ), we set nv̄

rel
τσ = 1, which says that there is on average one scattering event in

a cylinder of cross sectional area σ (the total particle scattering cross section) and length
ℓ = v̄τ (the mean free path). Thus,

τ ∼ 1

nv̄
rel
σ

∼ A−s−1

(k
B
T )s

−1−1 ∝ T−1/3 .

(b) For κ(T ), we use the formula given,

κ =
nτ

3k
B
T 2

〈

v2ε(ε− cpT )
〉

,

and apply dimensional analysis. This yields

κ ∼ nk
B
A2s−1

τ(T )(k
B
T )2−2s−1 ∼ T 1−s−1

.

For s = 3

2
, then, we have κ(T ) ∼ T 1/3.
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