PHYSICS 140B : STATISTICAL PHYSICS FINAL EXAM

(1) Consider the equation of state

$$p = \frac{RT}{v - b\sqrt{T}} \exp\left(-\frac{a}{v\sqrt{T}}\right) \quad .$$

where *a* and *b* are constants, $R = N_A k_B$ is the gas constant, and *v* is the molar volume.

(a) Find the critical point values of p_c , T_x , and v_c . [12 points]

(b) Find the dimensionless equation of state $\bar{p} = \bar{p}(\bar{T}, \bar{v})$, where $\bar{p} = p/p_c$, $\bar{T} = T/T_c$, and $\bar{v} = v_c$. Check that $\bar{p}(1, 1) = 1$. [11 points]

(c) Describe the difference between the coexistence boundary and the spinodal line in a (p, v) diagram. Illustrate with a sketch, including curves for p(T, v) with $T > T_c$, $T = T_c$, and $T < T_c$. [10 points]

(2) The Hamiltonian for the four state clock model can be written as

$$\hat{H} = -J \sum_{\langle ij \rangle} \hat{\boldsymbol{n}}_i \cdot \hat{\boldsymbol{n}}_j - \boldsymbol{H} \cdot \sum_i \hat{\boldsymbol{n}}_i \quad ,$$

where on each site *i* the local 'spin' takes one of four possible vector values: $\hat{n}_i \in \{\pm \hat{x}, \pm \hat{y}\}$. The interactions are between nearest neighbors on a lattice of coordination number *z*. The applied field is $H = H\hat{x}$.

(a) Make the mean field Ansatz $\hat{n}_i = m + \delta \hat{n}_i$, with $m = m\hat{x}$. Find the mean field Hamiltonian \hat{H}^{MF} . [7 points]

(b) Defining $\theta \equiv k_{\rm B}T/zJ$ and $h \equiv H/zJ$, find the dimensionless mean field free energy per site $f \equiv F/NzJ$ as a function of θ , h, and m. [7 points]

(c) What is the self-consistent equation for m? [7 points]

(d) For h = 0, what is the critical temperature θ_c ? Is the transition first order (discontinuous) or second order (continuous)? Why? [7 points]

(e) For $\theta > \theta_{\rm c}$, find $m(\theta, h)$ to first order in h. [6 points]

(3) Consider an ideal gas of particles obeying the dispersion $\varepsilon(\mathbf{p}) = Ap^{3/2}$ in d = 3 dimensions.

(a) Find the scattering time $\tau(T)$. You are only asked to find the functional dependence on T, including the proper combination of dimensional prefactors involving A, $k_{\rm B}$, n (number density), and σ (scattering cross section). You do not need to compute any numerical coefficients. *Hint: First find* $\bar{v}_{\rm rel}(T)$ on dimensional grounds. Then use this to obtain $\tau(T)$. [15 points]

(b) Find the thermal conductivity $\kappa(T)$ from the relation

$$\kappa = \frac{n\tau}{3k_{
m B}T^2} \left\langle \boldsymbol{v}^2 \varepsilon(\varepsilon - c_p T) \right\rangle \quad .$$

Once again, you are asked only to find the correct temperature dependence and combination of dimensional prefactors – don't bother with the numerical prefactors. *Hint : This means you can solve this problem using dimensional analysis.* [18 points]