
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #7 SOLUTIONS

(1) The Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑

〈ij〉
n̂i · n̂j ,

where each local unit vector n̂i can take one of three possible values:

n̂ = x̂ , n̂ = −1
2
x̂+

√
3

2
ŷ , n̂ = −1

2
x̂−

√
3

2
ŷ .

(a) Consider the Z3 clock model on a lattice of coordination number z. Make the mean field
assumption 〈n̂i〉 = mx̂. Expanding the Hamiltonian to linear order in the fluctuations,
derive the mean field Hamiltonian for this model Ĥ

MF
.

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where N is the number of sites, find f(m, θ).

(c) Find the mean field equation.

(d) Is the transition second order or first order?

(e) Show that this model is equivalent to the three state Potts model. Is the Z4 clock model
equivalent to the four state Potts model? Why or why not?

Solution:

(a) The mean field Hamiltonian is

Ĥ
MF

= 1
2
NzJm2 − zJm x̂ ·

∑

i

n̂i .

(b) We have

f(m, θ) = 1

2
m2 − θ lnTr

n̂

emx̂·n̂/θ

= 1
2
m2 − θ ln

(

1
3
em/θ + 2

3
e−m/2θ

)

= 1
2

(

1− 1

2 θ

)

m2 − m3

24 θ2
+

m4

64 θ3
+O(m5) .

Here we have defined Tr
n̂

= 1
3

∑

n̂
as the normalized trace. The last line is somewhat

tedious to obtain, but is not necessary for this problem.

(c) The mean field equation is

0 =
∂f

∂m
= m− em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.
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εclockσσ′ 0◦ 120◦ 240◦

0◦ −J 1
2
J 1

2
J

120◦ 1
2
J −J 1

2
J

240◦ 1
2
J 1

2
J −J

Table 1: Z3 clock model energy matrix.

εPotts

σσ′ A B C

A −J̃ 0 0

B 0 −J̃ 0

C 0 0 −J̃

Table 2: q = 3 Potts model energy matrix.

Expanding the RHS to lowest order in m and setting the slope to 1, we find θc =
1

2
.

(d) Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than con-
stants) should include terms of all orders starting with O(m2). This means that there will
in general be a cubic term, hence we expect a first order transition.

(e) Let ε(n̂, n̂′) = −Jn̂ · n̂′ be the energy for a given link. The unit vectors n̂ and n̂′ can
each point in any of three directions, which we can label as 0◦, 120◦, and 240◦. The matrix
of possible bond energies is shown in Tab. 1.

Now consider the q = 3 Potts model, where the local states are labeled |A 〉, |B 〉, and |C 〉.
The Hamiltonian is

Ĥ = −J̃
∑

〈ij〉
δσ

i
,σ

j
.

The interaction energy matrix for the Potts model is given in Tab. 2.

We can in each case label the three states by a local variable σ ∈ {1, 2, 3}, corresponding,
respectively, to 0◦, 120◦, and 240◦ for the clock model and to A, B, and C for the Potts
model. We then observe

εclockσσ′ (J) = εPotts

σσ′ (3
2
J) + 1

2
J .

Thus, the free energies satisfy

F clock(J) = 1
4
NzJ + F Potts(3

2
J) ,

and the models are equivalent. However, the Zq clock model and q-state Potts model are
not equivalent for q > 3. Can you see why? Hint: construct the corresponding energy
matrices for q = 4.
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(2) Consider a four-state Ising model on a cubic lattice with Hamiltonian

Ĥ = −J
∑

〈ij〉
SiSj −H

∑

i

Si ,

where each spin variable Si takes on one of four possible values: Si ∈ {−2,−1,+1,+2},
and the first sum is over all nearest-neighbor pairs of the lattice (i.e. over all unique links).
Note there is no Si = 0 state.

(a) What is the mean field Hamiltonian Ĥ
MF

?

(b) Find the mean field free energy per site f(θ, h,m), where m = 〈Si〉, θ = k
B
T/zJ ,

h = H/zJ , and f = F/NzJ . Here z is the lattice coordination number.

(c) Find the mean field equation relating m, θ, and h.

(d) Expand f to fourth order in m, retaining terms only to first order in h, and working to
lowest order in θ − θc. What is θc?

(e) If J/k
B
= 100K, what is the critical temperature Tc?

Solution:

(a) The mean field is H
eff

= H + zJm where m = 〈Si〉. The mean field Hamiltonian is

Ĥ
MF

= 1
2
NzJm2 − (H + zJm)

∑

i

Si ,

where the square of the fluctuation terms on each site have been neglected.

(b) The partition function is Z
MF

= Tr exp(−Ĥ
MF
/k

B
T ) ≡ exp(−NzJf), with

f(θ, h,m) = 1
2
m2 − θ lnTr

S
exp

[

− (m+ h)S/θ
]

= 1
2
m2 − θ ln

[

2 cosh

(

m+ h

θ

)

+ 2cosh

(

2m+ 2h

θ

)

]

.

(c) Setting f ′(m) = 0, we obtain the mean field equation:

m =
sinh

(

m+h
θ

)

+ 2 sinh
(

2m+2h
θ

)

cosh
(

m+h
θ

)

+ cosh
(

2m+2h
θ

) .

(d) Isolating the contribution from the high temperature entropy, we have

f = 1
2
m2 − θ ln

[

1
2
cosh

(

m+ h

θ

)

+ 1
2
cosh

(

2m+ 2h

θ

)

]

− θ ln 4
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Now we expand using cosh u = 1 + 1
2
u2 + 1

24
u4 +O(u6) and ln(1 + ε) = ε − 1

2
ε2 + O(ε3),

where both u and ε are small. This yields, with u ≡ (m+ h)/θ,

f + θ ln 4 = 1
2
m2 − θ ln

[

1
2
+ 1

4
u2 + 1

48
u4 + . . .+ 1

2
+ 1

4
(2u)2 + 1

48
(2u)4 + . . .

]

= 1
2
m2 − θ ln

[

1 + 5
4
u2 + 17

48
u4 + . . .

]

= 1

2
m2 − θ

[

5

4
u2 + 17

48
u4 − 1

2

(

5

4
u2

)2
+ . . .

]

= 1
2
m2 − 5(m+ h)2

4θ
+

41(m+ h)4

96 θ3
+ . . .

=

(

1

2
− 5

4θ

)

m2 +
41

96 θ3
m4 − 5

2θ
hm+ . . . .

From this we find θc =
5
2

, and

f(θ, h,m) = −θ ln 4 + 1
5
(θ − θc)m

2 + 41
1500

m4 − hm .

(e) We have k
B
Tc = zJθc = 6× 5

2
× 100K = 1500K.

(3) Consider the free energy

f(θ,m) = f0 +
1
2
am2 + 1

4
bm4 + 1

8
dm8

with d > 0. Note there is an octic term but no sextic term. Derive results corresponding
to those in fig. 7.16 of the lecture notes. Find the equation of the first order line in the
(a/d, b/d) plane. Also identify the region in parameter space where there exist metastable
local minima in the free energy (curve E in fig. 7.16).

Solution:

We have

f(m) = f0 +
1
2
am2 + 1

4
bm4 + 1

8
dm8

f ′(m) = am+ bm3 + dm7

f ′′(m) = a+ 3bm2 + 7dm6 .

To find the first order line, we set f(m) = f0 and f ′(m) = 0 simultaneously. Dividing out
by the root at m = 0 we obtain the simultaneous equations

1
2
a+ 1

4
bm2 + 1

8
dm6 = 0

a+ bm2 + dm6 = 0 .

Eliminating the m6 terms, we obtain m2 = 3a/|b| (remember a > 0 and b < 0 for a first
order transition). Inserting this back in either of the above equations yields the relation

ac =

√

2|b|3
27d

.
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Figure 1: Regimes for the octic free energy in problem 5..

To obtain the condition for the saddle-node bifurcation, where the metastable m 6= 0 local
minima in f(m) first appear, we simultaneously solve f ′(m) = 0 and f ′′(m) = 0, yielding
the simultaneous equations

a+ bm2 + dm6 = 0

a+ 3bm2 + 7dm6 = 0 .

Again we eliminate the m6 term and solve for m2, obtaining m2 = 3a/2|b|. Inserting this
back into either of the above equations yields the condition

a∗ =

√

4|b|3
27d

.

The results are plotted in fig. 1. Note a∗ > ac.
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(4) Consider the U(1) Ginsburg-Landau theory with

F =

∫

ddr
[

1
2
a |Ψ|2 + 1

4
b |Ψ|4 + 1

2
κ |∇Ψ|2

]

.

Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appro-
priate for describing the transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note
that the free energy is a functional of the two independent fields Ψ(r) and Ψ∗(r), where
Ψ∗ is the complex conjugate of Ψ. Alternatively, one can consider F a functional of the real
and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy can
be written in the form

F = ε0

∫

ddx
[

± 1
2
|ψ|2 + 1

4
|ψ|4 + 1

2
|∇ψ|2

]

,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign on the
first term on the RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and between r

and x.

(b) By extremizing the functional F [ψ,ψ∗] with respect to ψ∗, find a partial differential
equation describing the behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider the
case where ψ(x) describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are two-
dimensional polar coordinates. Find the ordinary differential equation for f(r) which ex-
tremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R
∫

0

dr r

[

1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1− f2
)2

]

,

where R is the radius of the system, which we presume is confined to a disk. Consider a
trial solution for f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and extremize
with respect to a to find the optimum value of a within this variational class of functions.

Solution:

(a) Taking the ratio of the second and first terms in the free energy density, we learn that

Ψ has units of A ≡
(

|a|/b
)1/2

. Taking the ratio of the third to the first terms yields a length

scale ξ =
(

κ/|a|
)1/2

. We therefore write Ψ = Aψ and x̃ = ξx to obtain the desired form of
the free energy, with

ε0 = A2 ξd |a| = |a|2− 1

2
d b−1 κ

1

2
d .
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(b) We extremize with respect to the field ψ∗. Writing F = ε0
∫

d3x F , with F = ±1
2
|ψ|2 +

1
4
|ψ|4 + 1

2
|∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗ −∇· ∂F

∂∇ψ∗ = ±1
2
ψ + 1

2
|ψ|2 ψ − 1

2
∇2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,

which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇
2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into ∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r) φ̂ into our expression for F , we have

F = 1
2
|∇ψ|2 − 1

2
|ψ|2 + 1

4
|ψ|4

= 1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1− f2
)2 − 1

4
,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show
that the Euler-Lagrange equations,

∂ (rF)

∂f
− d

dr

(

∂ (rF)

∂f ′

)

= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r)
into F . The resulting integrals are elementary, and we obtain

F (a,R) = 1
4
πε0

{

1− a4

(R2 + a2)2
+ 2 ln

(

R2

a2
+ 1

)

+
R2 a2

R2 + a2

}

.

Taking the limit R→ ∞, we have

F (a,R → ∞) = 2 ln

(

R2

a2

)

+ a2 .

We now extremize with respect to a, which yields a =
√
2. Note that the energy in the

vortex state is logarithmically infinite. In order to have a finite total free energy (relative
to the ground state), we need to introduce an antivortex somewhere in the system. An
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antivortex has a phase winding which is opposite to that of the vortex, i.e. ψ = f e−iφ. If
the vortex and antivortex separation is r, the energy is

V (r) = 1
2
πε0 ln

(

r2

a2
+ 1

)

.

This tends to V (r) = πε0 ln(d/a) for d≫ a and smoothly approaches V (0) = 0, since when
r = 0 the vortex and antivortex annihilate leaving the ground state condensate. Recall
that two-dimensional point charges also interact via a logarithmic potential, according to
Maxwell’s equations. Indeed, there is a rather extensive analogy between the physics of
two-dimensional models with O(2) symmetry and (2 + 1)-dimensional electrodynamics.

8


