
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider a two-dimensional gas of fermions which obey the dispersion relation

ε(k) = ε0

(

(k2x + k2y) a
2 + 1

2 (k
4
x + k4y) a

4
)

.

Sketch, on the same plot, the Fermi surfaces for ε
F
= 0.1 ε0, ε

F
= ε0, and ε

F
= 10 ε0.

Solution :

It is convenient to adimensionalize, writing

x ≡ kxa , y ≡ kya , ν ≡ ε

ε0
.

Then the equation for the Fermi surface becomes

x2 + y2 + 1
2x

4 + 1
2y

4 = ν .

In other words, we are interested in the level sets of the function ν(x, y) ≡ x2+y2+ 1
2x

4+ 1
2y

4.
When ν is small, we can ignore the quartic terms, and we have an isotropic dispersion, with
ν = x2 + y2. I.e. we can write x = ν1/2 cos θ and y = ν1/2 sin θ. The quartic terms give a
contribution of order ν4, which is vanishingly small compared with the quadratic term in
the ν → 0 limit. When ν ∼ O(1), the quadratic and quartic terms in the dispersion are of
the same order of magnitude, and the continuous O(2) symmetry, namely the symmetry
under rotation by any angle, is replaced by a discrete symmetry group, which is the group
of the square, known as C4v in group theory parlance. This group has eight elements:

{

E , R , R2 , R3 , σ , σR , σR2 , σR3
}

Here R is the operation of counterclockwise rotation by 90◦, sending (x , y) to (−y , x), and
σ is reflection in the y-axis, which sends (x , y) to (−x , y). One can check that the function
ν(x, y) is invariant under any of these eight operations from C4v.

Explicitly, we can set y = 0 and solve the resulting quadratic equation in x2 to obtain the
maximum value of x, which we call a(ν). One finds

1
2x

4 + x2 − ν = 0 =⇒ a =

√√
1 + 2ν − 1 .

So long as x ∈ {−a, a}, we can solve for y(x):

y(x) = ±
√

√

1 + 2ν − 2x2 − x4 − 1 .

A sketch of the level sets, showing the evolution from an isotropic (i.e. circular) Fermi
surface at small ν, to surfaces with discrete symmetries, is shown in fig. 1.

(2) Using noninteracting quantum statistics for fermions, answer the following:
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Figure 1: Level sets of the function ν(x, y) = x2+y2+ 1
2x

4+ 1
2y

4 for ν = (12n)
4, with positive

integer n.

(a) For ideal Fermi gases in d = 1, 2, and 3 dimensions, compute at T = 0 the average

energy per particle E/N in terms of the Fermi energy εF.

(b) Using the Sommerfeld expansion, compute the heat capacity for a two-dimensional
electron gas, to lowest nontrivial order in the temperature T .

Solution :

(a) The number of particles is

N = gV

∫

ddk

(2π)d
Θ(kF − k) = V · gΩd

(2π)d
kd
F

d
,

where g is the internal degeneracy and Ωd is the surface area of a sphere in d dimensions.
The total energy is

E = gV

∫

ddk

(2π)d
~
2k2

2m
Θ(k

F
− k) = V · gΩd

(2π)d
kd
F

d+ 2
· ~

2k2
F

2m
.

Therefore,
E

N
=

d

d+ 2
ε
F
.
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(b) In the notes we obtained the result

E

V
=

ε
F
∫

−∞

dε g(ε) ε +
π2

6
(k

B
T )2 g(εF) +O(T 4) .

This entails a heat capacity of CV,N = V · 1
3π

2k
B
g(εF) · kB

T . The density of states at the

Fermi level, g(εF), is easily found to be

g(εF) =
d

2
· n

ε
F

.

Thus,

CV,N = N · dπ
2

6
k
B
·
(

k
B
T

εF

)

,

a form which is valid in any spatial dimension d.

(3) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion

relation ε(k) = A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low temper-
atures. I.e. compute the O(T 2) term in µ(T ).

Solution :

(a) The density of states in d = 3 (g = 2S + 1 = 2) is given by

g(ε) =
1

π2

∞
∫

0

dk k2 δ
(

ε− ε(k)
)

=
1

π2
k2(ε)

dk

dε

∣

∣

∣

∣

∣

k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
R g(εF) kB

T =
π2R

4
· kB

T

εF
,

where εF = ~
2k2

F
/2m can be expressed in terms of the density using kF = (3π2n)1/3, which

is valid for any isotropic dispersion in d = 3. In deriving this formula we had to express

the density n, which enters in the denominator in the above expression, in terms of ε
F
. But

this is easy:

n =

ε
F
∫

0

dε g(ε) =
1

3π2

(

εF
A

)3/4

.
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(c) We have

δµ = −π2

6
(k

B
T )2

g′(εF)

g(εF)
=

π2

24
· (kB

T )2

εF
.

Thus,

µ(n, T ) = εF(n) +
π2

24
· (kB

T )2

εF(n)
+O(T 4) ,

where ε
F
(n) = ~

2

2m (3π2n)2/3.

(4) In an n-type semiconductor, the donor levels lie a distance ∆ below the bottom of the
conduction band. Suppose there are M such donor levels. Due to the fact that such donor
levels are spatially localized, one can ignore the possibility of double occupancy. Thus,
each donor level can be occupied by at most one electron, but of either spin polarization.
Assume the conduction band dispersion is isotropic, given by ε

k
= ~

2
k
2/2m∗. (Set the

conduction band minimum to ε = 0.)

(a) Assuming that the conduction band is very sparsely populated, find an expression for
the conduction electron density nc(T, µ).

(b) Suppose there are Nd electrons sitting on the donor sites, i.e. Nd of the M donor levels
are singly occupied. Find the entropy of these electrons.

(c) Find the chemical potential of the donor electrons.

(d) Use the fact that the donor electrons and the conduction band electrons are in thermal
equilibrium to eliminate µ from the problem, and find the conduction electron density
nc(T ) and the fraction νd(T ) of occupied donor sites. Assume that the donor concentration
is ρd, and that all conduction electrons are due to singly ionized donors.

Solution :

(a) We have

nc = 2

∫

d3k

(2π)d
1

eβ(εk−µc) + 1
≈ 2λ−3

c eµc/kBT ,

where µc is the chemical potential and λc = (2π~2/m∗k
B
T )1/2 thermal de Broglie wave-

length for the conduction electrons.

(b) We assume that each donor site can either be empty, or else occupied by an electron in
one of two possible polarization states. We forbid double occupancy of the donors, due to
the large Coulomb energy associated with such a state. The number of configurations for
Nd occupied donor sites is then

Ω(Nd,M) = 2Nd

(

M

Nd

)

,
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and therefore

Sd = k
B
ln

(

2Nd M !

Nd! (M −Nd)!

)

.

The free energy of the donor system is then

F (T,Nd,M) = −Nd∆− k
B
T ln

(

2Nd M !

Nd! (M −Nd)!

)

≈ −Nd∆−Nd kB
T ln 2 +Mk

B
T

{

Nd

M
ln

(

Nd

M

)

+

(

M −Nd

M

)

ln

(

M −Nd

M

)

}

,

where we have invoked Stirling’s approximation. The chemical potential for the donor
level electrons, which we will need later, is then

µd =

(

∂F

∂Nd

)

T,M

= −∆− k
B
T ln 2 + k

B
T ln

(

fd
1− fd

)

,

where fd = Nd/M is the fraction of donor sites which are occupied.

(c) Invoking our results from part (a) and (b), and setting µc = µd ≡ µ, we have

eµ/kBT = 1
2 ncλ

3
c =

1
2 e

−∆/k
B
T fd
1− fd

,

Thus,
(

f−1
d − 1

)

nc = λ−3
c e−∆/k

B
T .

Now suppose the donor site density is ρd. All the conduction electrons must come from
ionized donor sites. The fraction of such sites is 1 − fd , hence nc = (1− fd) ρd. Therefore,
we have

(1− fd)
2

fd
=

e−∆/k
B
T

ρdλ
3
c

≡ b(T ) .

This yields a quadratic equation for 1− fd , whose solution is

1− fd = −1
2b+

√

1
4b

2 + b ⇒ nc =

{

− 1
2b+

√

1
4b

2 + b

}

ρd .

Note that fd → 1 as b → 0. In this limit, which is achieved when k
B
T ≪ ∆, or when

ρdλ
3
c ≫ 1, or by some combination of these two conditions, all the donor sites are occupied,

and the conduction electron density is zero. It is energetically/entropically two costly for
the donors to donate an electron to the conduction band. In the T → 0 limit, we have
1− fd ≃

√
b , hence the chemical potential becomes

µ(T → 0) = −1
2∆+ k

B
T ln

[

1
2ρd

(

2π~2

m∗k
B
T

)3/2
]

,

which ultimately ends up exactly halfway between the donor levels and the bottom of the
conduction band.
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This problem is very similar to the adsorption model considered in §4.9.3 of the Lecture
Notes. There, we considered a surface of adsorption sites in equilibrium with a classical
gas. The only difference here is that the adsorbate particles can exist in one of two ener-
getically degenerate polarization states. One can also solve for the donor density in the
grand canonical ensemble. The donors are independent, hence the partition function for
the donor electrons is

Ξd =
(

1 + 2 eµ/kBT e∆/k
B
T
)M

.

Note the factor of two, due to the degeneracy of the spin polarization states. If we were to
include the possibility of doubly occupied donors, we would have instead

Ξd =
(

1 + 2 eµ/kBT e∆/k
B
T + e2µ/kBT e(2∆−U)/k

B
T
)M

,

where the energy of the doubly occupied level is −2∆ + U , with U being the Coulomb
repulsion energy for two electrons to sit on the same localized donor site. Again, we have
assumed U is much larger than every other energy scale in this problem, meaning we can
ignore the possibility of double occupancy. The grand potential for the donor electrons is
then Ωd = −k

B
T ln Ξd , and so

fd = − 1

M

(

∂Ωd

∂µ

)

T,M

=
1

1
2e

−(µ+∆)/k
B
T + 1

,

which recovers the result previously obtained in part (a).
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