
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a system composed of spin tetramers, each of which is described by the
Hamiltonian

Ĥ = −J(σ1σ2 + σ1σ3 + σ1σ4 + σ2σ3 + σ2σ4 + σ3σ4)− µ0H(σ1 + σ2 + σ3 + σ4) .

The individual tetramers are otherwise noninteracting.

(a) Find the single tetramer partition function ζ .

(b) Find the magnetization per tetramer m = µ0

〈

σ1 + σ2 + σ3 + σ4
〉

.

(c) Suppose the tetramer number density is nt. The magnetization density is M = ntm.
Find the zero field susceptibility χ(T ) = (∂M/∂H)H=0.

Solution:

(a) Note that we can write

Ĥ = 2J − 1
2J(σ1 + σ2 + σ3 + σ4)

2 − µ0H (σ1 + σ2 + σ3 + σ4) .

Thus, for each of the 24 = 16 configurations of the spins of any given tetramer, only the
sum

∑4
i=1 σi is necessary in computing the energy. We list the degeneracies of these states

in the table below. Thus, according to the table, we have

σ1 + σ2 + σ3 + σ4 degeneracy g energy E

+4 1 −6J − 4µ0H

+2 4 −2µ0H

0 6 −2J

−2 4 +2µ0H

−4 1 −6J + 4µ0H

ζ = 6 e−2J/k
B
T + 8 cosh

(

2µ0H

k
B
T

)

+ 2 e6J/kBT cosh

(

4µ0H

k
B
T

)

.

(b) The magnetization per tetramer is

m = − ∂f

∂H
= k

B
T

∂ ln ζ

∂H
= 4µ0 ·

2 sinh(2βµ0H) + e6βJ sinh(4βµ0H)

3 e−2βJ + 4 cosh(2βµ0H) + e6βJ cosh(4βµ0H)
.
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(c) The zero field susceptibility is

χ(T ) =
16nt µ

2
0

k
B
T

· 1 + e6βJ

3 e−2βJ + 4 + e6βJ

Note that for βJ → ∞ we have χ(T ) = (4µ0)
2nt/kB

T , which is the Curie value for a single
Ising spin with moment 4µ0. In this limit, all the individual spins are locked together, and
there are only two allowed configurations for each tetramer: |↑↑↑↑ 〉 and |↓↓↓↓ 〉. When
J = 0, we have χ = 4µ2

0nt/kB
T , which is to say four times the single spin susceptibility.

I.e. all the spins in each tetramer are independent when J = 0. When βJ → −∞, the only
allowed configurations are the six ones with

∑4
i=1 σi = 0. In order to exhibit a moment,

an energy gap of 2|J | must be overcome, hence χ ∝ exp(−2β|J |), which is exponentially
suppressed.

(2) A surface consisting of N
s

adsorption sites is in thermal and particle equilibrium with
an ideal monatomic gas. Each adsorption site can accommodate either zero particles (en-
ergy 0), one particle (two states, each with energy ε), or two particles (energy 2ε+ U ).

(a) Find the grant partition function of the surface, Ξsurf(T,Ns
, µ). and the surface grand

potential Ωsurf(T,Ns
, µ).

(b) Find the fraction of adsorption sites with are empty, singly occupied, and double occu-
pied. Express your answer in terms of the temperature, the density of the gas, and other
constants.

Solution:

(a) The grand partition function is

Ξsurf(T,Ns
, µ) =

(

1 + 2 eβ(µ−ε) + eβ(2µ−2ε−U)
)N

s

,

hence

Ωsurf(T,Ns
, µ) = −k

B
T ln Ξsurf = −N

s
k
B
T ln

(

1 + 2 eβ(µ−ε) + eβ(2µ−2ε−U)
)

.

(b) Thermal and particle equilibrium with the gas means that the fugacities of the gas and
surface are identical, and for the gas we have z = nλ3

T . Thus,

ν0 =
1

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

ν1 =
2nλ3

T e−ε/k
B
T

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

ν2 =
n2λ6

T e−(2ε+U)/k
B
T

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

.
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(3) Consider the Hamiltonian below with N kinetic DOF, N2 quadratic potential DOF, and
N4 quartic DOF, with N ≥ N2 +N4.

Ĥ = 1
2

N
∑

i,j

m−1
ij pi pj +

1
2

N
2

∑

i=1

Ki q
2
i +

1
4

N
2
+N

4
∑

j=N
2
+1

Aj q
4
j .

Find the free energy F and the internal energy E in terms of T , V , N , N2 , and N4. Assume
the matrix mij is nondegenerate.

Solution:

If mij is nondegenerate, its rank is N . By transforming to an eigenbasis, one finds

∫ N
∏

l=1

dpl
h

e−m−1

ij
p
i
p
j
/2k

B
T =

(

k
B
T

2π~2

)N/2√
detm .

As for the potential energy, we have

∞
∫

−∞

dq e−Kq2/2k
B
T =

(

2πk
B
T

K

)1/2

and
∞
∫

−∞

dq e−Aq4/4k
B
T =

(

4k
B
T

A

)1/4
∞
∫

−∞

du e−u4

= Γ
(

5
4

)

(

4k
B
T

A

)1/4

,

where Γ
(

5
4

)

≈ 0.906402. Thus, the partition function is

Z = C V N−N
2
−N

4 (k
B
T )

1

2
(N+N

2
)+ 1

4
N

4 .

where

C ≡
(√

2 Γ
(

5
4

)

~

)N √
detm

∏

iK
1/2
i

∏

j A
1/4
j

.

The free energy is

F = −k
B
T lnZ = −k

B
T lnC− (N −N2−N4) kB

T lnV −
(

1
2N + 1

2N2+
1
4N4

)

k
B
T ln(k

B
T ) .

The energy follows from

E =
∂(βF )

∂β
=
(

1
2N + 1

2N2 +
1
4N4

)

k
B
T .

3



(4) Consider a gas of classical spin-32 particles, with Hamiltonian

Ĥ =

N
∑

i=1

p
2
i

2m
− µ0H

∑

i

Sz
i ,

where Sz
i ∈

{

− 3
2 ,−1

2 ,+
1
2 ,+

3
2

}

and H is the external magnetic field. Find the Helmholtz
free energyF (T, V,H,N), the entropyS(T, V,H,N), and the magnetic susceptibilityχ(T,H, n),
where n = N/V is the number density.

Solution:

The partition function is

Z = Tr e−Ĥ/k
B
T =

1

N !

V N

λdN
T

(

2 cosh(µ0H/2k
B
T ) + 2 cosh(3µ0H/2k

B
T )
)N

,

so

F = −Nk
B
T ln

(

V

Nλd
T

)

−Nk
B
T −Nk

B
T ln

(

2 cosh(µ0H/2k
B
T ) + 2 cosh(3µ0H/2k

B
T )
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength. The entropy is

S = −
(

∂F

∂T

)

V,N,H

= Nk
B
ln

(

V

Nλd
T

)

+ (12d+ 1)Nk
B
+N ln

(

2 cosh(µ0H/2k
B
T ) + 2 cosh(3µ0H/2k

B
T )
)

− µ0H

2T
· sinh(µ0H/2k

B
T ) + 3 sinh(3µ0H/2k

B
T )

cosh(µ0H/2k
B
T ) + cosh(3µ0H/2k

B
T )

.

The magnetization is

M = −
(

∂F

∂H

)

T,V,N

= 1
2Nµ0 ·

sinh(µ0H/2k
B
T ) + 3 sinh(3µ0H/2k

B
T )

cosh(µ0H/2k
B
T ) + cosh(3µ0H/2k

B
T )

.

The magnetic susceptibility is

χ(T,H, n) =
1

V

(

∂M

∂H

)

T,V,N

=
nµ2

0

4k
B
T
f(µ0H/2k

B
T )

where

f(x) =
d

dx

(

sinhx+ 3 sinh(3x)

cosh x+ cosh(3x)

)

.

In the limit H → 0, we have f(0) = 5, so χ = 4nµ2
0/4kB

T at high temperatures. This is a
version of Curie’s law.

4


