
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider a q-state generalization of the Kac ring model in which Zq spins rotate around
an N -site ring which contains a fraction x = N

F
/N of flippers on its links. Each flipper

cyclically rotates the spin values: 1 → 2 → 3 → · · · → q → 1 (hence the clock model
symmetry Zq).

(a) What is the Poincare recurrence time?

(b) Make the Stosszahlansatz, i.e. assume the spin flips are stochastic random processes.
Then one has

Pσ(t+ 1) = (1− x)Pσ(t) + xPσ−1(t) ,

where P0 ≡ Pq. This defines a Markov chain

Pσ(t+ 1) = Qσσ′ Pσ′(t) .

Decompose the transition matrix Q into its eigenvectors. Hint: The matrix may be diago-
nalized by a simple Fourier transform.

(c) The eigenvalues of Q may be written as λα = e−1/τα e−iδα , where τα is a relaxation
time and δα is a phase. Find the spectrum of relaxation times. What is the longest finite
relaxation time?

(d) Suppose all the spins are initially in the state σ = q. Write down an expression for Pσ(t)
for all subsequent times t ∈ Z+. Plot your results for different values of x and q.

Solution:

(a) The recurrence time is τ = qN/gcd(NF, q), where gcd(NF, q) is the greatest common
divisor ofNF and q. After τ steps, which is to say q/gcd(NF, q) cycles around the ring, each
spin will have visited qN

F
/gcd(NF, q) flippers. This is necessarily an integer multiple of q,

which means that each spin will have mate N
F
/gcd(NF, q) complete cycles of its internal

Zq clock.

(b) We have
Qσσ′ = (1− x) δ̃σ,σ′ + x δ̃σ,σ′+1 ,

where

δ̃ij =

{
1 if i = j mod q

0 otherwise.

Q is known as a circulant matrix, which is to say it satisfies Qσσ′ = Q(σ − σ′ mod q). A
circulant matrix of rank q has only q independent entries. Such a matrix may be brought

to diagonal form by a unitary transformation: Q = U Q̂U †, where Uσk = 1√
q e

2πikσ/q and

Q̂kk′ ≡ Q̂(k) δ̃kk′ with

Q̂(k) =

q∑

n=1

Q(µ) e−2πikµ/q . (1)
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Figure 1: Behavior of Pσ(t) for q = 5 and x = 0.1 within the Stosszahlansatz with ini-
tial conditions Pσ(0) = δσ,q . Note that at large times the probabilities all converge to
limt→∞ Pσ(t) = q−1.

Since Q(µ) = (1− x) δ̃µ,0 + x δ̃µ,1, we have

Q̂(k) = 1− x+ x e−2πik/q .

(c) In the polar representation, we have Q̂(k) = e−1/τ
k
(x) e−iδ

k
(x), where

τk(x) = −
2

ln
[
1− 2x(1− x)

(
1− cos(2πk/q)

)]

and

δk(x) = tan−1

(
x sin(2πk/q)

1− x+ x cos(2πk/q)

)
.

Note that τq = ∞, because the total probability is conserved by the Markov process. The
longest finite relaxation time is τ1 = τq−1.

(d) Given the initial conditions Pσ(0) = δσ,q , we have

Pσ(t) =
(
Qt)σσ′ Pσ′(0)

=
1

q

q∑

k=1

Uσk Q̂
t(k)U∗

σ′k Pσ′(0)

=
1

q

q∑

k=1

e−t/τ
k e−itδ

k e2πiσk/q .

We can combine the terms in the k sum by pairing k with q − k, since τq−k = τk and
δq−k = −δk. We should however consider separately the cases k = q and, if q is even,

k = 1
2q, since for those values of k we have Q̂(k) is real.
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Figure 2: Evolution of the initial distribution Pσ(0) = δσ,q for the Zq Kac ring model for
q = 6, from a direct numerical simulation of the model.

If q is even, then Q̂
(
k = 1

2q
)
= 1− 2x. We then have

Pσ(t) =
1

q
+

(−1)σ

q
(1− 2x)t +

2

q

q

2
−1∑

k=1

e−t/τ
k
(x) cos

(
2πσk

q
− t δk(x)

)
.

If q is odd, then

Pσ(t) =
1

q
+

2

q

q−1

2∑

k=1

e−t/τ
k
(x) cos

(
2πσk

q
− t δk(x)

)
.

(e) See fig. 2.

(2) Consider a system with K possible states | i 〉, with i ∈ {1, . . . ,K}, where the transition
rate Wij between any two states is the same, with Wij = γ > 0.

(a) Find the matrix Γij governing the master equation Ṗi = −Γij Pj .

(b) Find all the eigenvalues and eigenvectors of Γ . What is the equilibrium distribution?

(c) Now suppose there are 2K possible states | i 〉, with i ∈ {1, . . . , 2K}, and the transition
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rate matrix is

Wij =

{
α if (−1)ij = +1

β if (−1)ij = −1 ,

with α, β > 0. Repeat parts (a) and (b) for this system.

Solution :

(a) We have

Γij =

{
−Wij = −γ if i 6= j
∑′

kWkj = (K − 1)γ if i = j .

I.e. Γ is a symmetric K×K matrix with all off-diagonal entries −γ and all diagonal entries
(K − 1)γ.

(b) It is convenient to define the unit vector ψ = K−1/2
(
1, 1, . . . , 1

)
. Then

Γ = Kγ
(
I− |ψ 〉〈ψ |

)
.

We now see that |ψ 〉 is an eigenvector of Γ with eigenvalue λ = 0, and furthermore that
any vector orthogonal to |ψ 〉 is an eigenvector of Γ with eigenvalue Kγ. This means that
there is a degenerate (K − 1)-dimensional subspace associated with the eigenvalue Kγ.
The equilibrium distribution is given by |P eq 〉 = K−1/2|ψ 〉, i.e. P eq

i = K−1.

(c) Define the unit vectors

ψ
e
= 1√

K

(
0, 1, 0, . . . , 1

)

ψ
o
= 1√

K

(
1, 0, 1, . . . , 0

)
.

Note that 〈ψ
e
|ψ

o
〉 = 0. Furthermore, we may write Γ as

Γ = 1
2K(3α+β) I+ 1

2K(α−β) J−Kα
(
|ψ

e
〉〈ψ

e
|+ |ψ

o
〉〈ψ

e
|+ |ψ

e
〉〈ψ

o
|
)
−Kβ |ψ

o
〉〈ψ

o
|

where I is the identity matrix and Jnn′ = (−1)n δnn′ is a diagonal matrix with alternating
−1 and +1 entries. Note that J |ψ

o
〉 = −|ψ

o
〉 and J |ψ

e
〉 = +|ψ

e
〉. The key to deriving the

above relation is to notice that

M = Kα
(
|ψ

e
〉〈ψ

e
|+ |ψ

o
〉〈ψ

e
|+ |ψ

e
〉〈ψ

o
|
)
+Kβ |ψ

o
〉〈ψ

o
|

=




β α β α · · · β α
α α α α · · · α α
β α β α · · · β α
α α α α · · · α α
...

...
...

...
. . .

...
...

β α β α · · · β α
α α α α · · · α α




.
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Now J hasK eigenvalues +1 andK eigenvalues −1. There is therefore a (K−1)-dimensional
degenerate eigenspace of Γ with eigenvalue 2Kα and a (K − 1)-dimensional degenerate
subspace with eigenvalue K(α + β). These subspaces are mutually orthogonal as well as
being orthogonal to the vectors |ψ

e
〉 and |ψ

o
〉. The remaining two-dimensional subspace

spanned by these vectors yields the reduced matrix

Γred =

(
〈ψ

e
|Γ |ψ

e
〉 〈ψ

e
|Γ |ψ

o
〉

〈ψ
o
|Γ |ψ

e
〉 〈ψ

o
|Γ |ψ

o
〉

)
=

(
Kα −Kα
−Kα Kα

)
.

The eigenvalues in this subspace are therefore 0 and 2Kα. Thus, Γ has the following
eigenvalues:

λ = 0 (nondegenerate)

λ = K(α+ β) (degeneracy K − 1)

λ = 2Kα (degeneracy K) .

(3) A generalized two-dimensional cat map can be defined by

(
x′

y′

)
=

M︷ ︸︸ ︷(
1 p
q pq + 1

) (
x
y

)
mod Z

2 ,

where p and q are integers. Here x, y ∈ [0, 1] are two real numbers on the unit interval, so
(x, y) ∈ T2 lives on a two-dimensional torus. The inverse map is

M−1 =

(
pq + 1 −p
−q q

)
.

Note that detM = 1.

(a) Consider the action of this map on a pixelated image of size (lK)×(lK), where l ∼ 4−10
and K ∼ 20− 100. Starting with an initial state in which all the pixels in the left half of the
array are ”on” and the others are all ”off”, iterate the image with the generalized cat map,
and compute at each state the entropy S = −

∑
r pr log2 pr, where the sum is over the K2

different l× l subblocks, and pr is the probability to find an ”on” pixel in subblock r. (Take
p = q = 1 for convenience, though you might want to explore other values.)

Now consider a three-dimensional generalization (Chen et al., Chaos, Solitons, and Fractals
21, 749 (2004)), with 


x′

y′

z′


 =M



x
y
z


 mod Z

3 ,

which is a discrete automorphism of T3, the three-dimensional torus. Again, we require
that both M and M−1 have integer coefficients. This can be guaranteed by writing

Mx =



1 0 0
0 1 px
0 qx pxqx + 1


 , My =




1 0 py
0 1 0
qy 0 pyqy + 1


 , Mz =




1 pz 0
qz pzqz + 1 0
0 0 1



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and taking M = MxMyMz , reminiscent of how we build a general O(3) rotation from a
product of three O(2) rotations about different axes.

(b) Find M and M−1 when px = qx = py = qy = pz = qz = 1.

(c) Repeat part (a) for this three-dimensional generalized cat map, computing the entropy
by summing over the K3 different l × l × l subblocks.

(d) 100 quatloos extra credit if you find a way to show how a three dimensional object (a
ball, say) evolves under this map. Is it Poincaré recurrent?

Figure 3: Two-dimensional cat map on a 12×12 square array with l = 4 and K = 3 shown.
Left: initial conditions at t = 0. Right: possible conditions at some later time t > 0. Within
each l× l cell r, the occupation probability pr is computed. The entropy −pr log2 pr is then
averaged over the K2 cells.

Solution :

(a) See figs. 4 and 5.

(b) We have

Mx =



1 0 0
0 1 1
0 1 2


 , My =



1 0 1
0 1 0
1 0 2


 , Mz =



1 1 0
1 2 0
0 0 1




and

M−1
x =



1 0 0
0 2 −1
0 −1 1


 , M−1

y =




2 0 −1
0 1 0
−1 0 1


 , M−1

z =




2 −1 0
−1 1 0
0 0 1


 .

Thus,

M =MxMyMz =



1 1 1
2 3 2
3 4 4




and

M−1 =M−1
z M−1

y M−1
x =




4 0 −1
−2 1 0
−1 −1 1


 .
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Figure 4: Coarse-grained entropy per unit volume for the iterated two-dimensional cat
map (p = q = 1) on a 200 × 200 pixelated torus, with l = 4 and K = 50. Bottom panel:
coarse-grained entropy per unit volume versus iteration number. Top panel: power spec-
trum of entropy versus frequency bin. A total of 214 = 16384 iterations were used.

Figure 5: Same as in fig. 4 but with l = 10 and K = 20.

Note that detM = 1.

(c) See fig. 6.
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Figure 6: Coarse-grained entropy per unit volume for the iterated three-dimensional cat
map (px = qx = py = qy = pz = qz = 1) on a 40 × 40 × 40 pixelated three-dimensional
torus, with l = 4 and K = 10. Bottom panel: coarse-grained entropy per unit volume
versus iteration number. Top panel: power spectrum of entropy versus frequency bin. A
total of 214 = 16384 iterations were used.

(d) On a k×k×k grid, there are 2k
3

possible pixelated images. The 3d cat map then uniquely
and reversibly maps between different elements of this set. Thus the map is recurrent.

(4) Consider a d-dimensional ideal gas with dispersion ε(p) = A|p|α, with α > 0. Find
the density of states D(E,V,N), the statistical entropy S(E,V,N), the equation of state
p = p(T, V,N), the heat capacity at constant volume CV,N (T, V,N), and the heat capac-
ity at constant pressure Cp,N(T, V,N). (Particle number N is held constant.) Recall the
thermodynamic relation

dS =
1

T
dE +

p

T
dV −

µ

T
dN ,

Solution :

The density of states is

D(E,V,N) =
V N

N !

∫
ddp1
hd

· · ·

∫
ddpN
hd

δ
(
E −Apα1 − . . .−ApαN

)
.
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The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βApα

)N

=
V N

N !

(
Ωd

hd

∞∫

0

dp pd−1 e−βApα
)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = k
B
lnD(E,V,N)

= Nk
B
ln

(
V

N

)
+
d

α
Nk

B
ln

(
E

N

)
+Na0 ,

where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
Nk

B

V
dV +

d

α

Nk
B

E
dE + s0 dN

=
p

T
dV +

1

T
dE −

µ

T
dN ,

where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = Nk
B
T

E =
d

α
Nk

B
T .

Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
Nk

B
dT + p dV

=
d

α
Nk

B
dT + p d

(
Nk

B
T

p

)
.

Thus,

CV,N =
d̄Q

dT

∣∣∣∣
V,N

=
d

α
Nk

B
, Cp,N =

d̄Q

dT

∣∣∣∣
p,N

=

(
1 +

d

α

)
Nk

B
.
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(5) Write a well-defined expression for the greatest possible number expressible using only
five symbols. Examples: 1 + 2 + 3 , 10100 , Γ(99). [50 quatloos extra credit]

Solution :

Using conventional notation, my best shot would be 99
9
9
9

. This is a very big number

indeed: 99 ≈ 3.73×108, so 99
9

∼ 103.7×108 , and 99
9
9
9

∼ 1010
10

3.7×10
8

. But in the world of big
numbers, this is still tiny. For a fun diversion, use teh google to learn about the Ackermann
sequence and Knuth’s up-arrow notation. Using Knuth’s notation, described in

https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation ,

one could write 9 ↑99 9, which is vastly larger than the puny 99
9
9
9

. But even these num-
bers are modest compared with something called the ”Busy Beaver sequence”, which is a
concept from computer science and Turing machines. For a very engaging essay on large
numbers, see https://www.scottaaronson.com/blog/?p=3445.
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