
PHYSICS 210A : EQUILIBRIUM STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Compute the information entropy in the Fall 2024Physics 140A grade distribution. See
https://courses.physics.ucsd.edu/2024/Fall/physics140a .

Solution :

∑

nNn = 59 A+ A A- B+ B B- C+ C C- D F

Nn 4 16 5 5 8 5 3 3 3 4 3

pn 0.0678 0.271 0.0847 0.0847 0.136 0.0847 0.0508 0.0508 0.0508 0.0678 0.0508

−pn log2 pn 0.263 0.522 0.302 0.302 0.391 0.302 0.219 0.219 0.219 0.263 0.219

Table 1: F24 Physics 140A final grade distribution.

Assuming the only possible grades are A+, A, A-, B+, B, B-, C+, C, C-, D, F (11 possibilities),
then from the chart we produce the entries in Tab. 1. We then find

S = −
11
∑

n=1

pn log2 pn = 3.21 bits

For maximum information, set pn = 1
11

for all n, whence Smax = log2 11 = 3.46 bits.

(2) Show that the Poisson distribution Pν(n) =
1
n! ν

n e−ν for the discrete variable n ∈ Z≥0

tends to a Gaussian in the limit ν → ∞.

Solution:

For large fixed ν, Pν(n) is maximized for n ∼ ν. We can see this from Stirling’s asymptotic
expression,

lnn! = n lnn− n+ 1
2
lnn+ 1

2
ln 2π +O(1/n) ,

which yields
lnPν(n) = n ln ν − n lnn− ν + n− 1

2
lnn− 1

2
ln 2π

up to terms of order 1/n, which we will drop. Varying with respect to n, which we can
treat as continuous when it is very large, we find n = ν − 1

2
+O(1/ν). We therefore write

n = ν + 1
2
+ ε and expand in powers of ε. It is easier to expand in powers of ε̃ ≡ ε+ 1

2
, and

since n is an integer anyway, this is really just as good. We have

lnPν(ν + ε̃) = −(ν + ε̃) ln

(

1 +
ε̃

ν

)

+ ε̃− 1
2
ln(ν + ε̃)− 1

2
ln 2π .

Now expand, recalling ln(1 + z) = z − 1
2
z2 + . . . , and find

lnPν(ν + ε̃) = − ε̃(1 + ε̃)

2ν
− ln

√
2πν +

ε̃2

4ν2
+ . . .
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Since ν → ∞, the last term before the ellipses is negligible compared with the others,
assuming ε̃ = O(ν0). Thus,

Pν(n) ∼ (2πν)−1/2 exp

{

−
(

n− ν + 1
2

)2

2ν

}

,

which is a Gaussian.

(3) Frequentist and Bayesian statistics can sometimes lead to different conclusions. You
have a coin of unknown origin. You assume that flipping the coin is a Bernoulli process, i.e.
the flips are independent and each flip has a probability p to end up heads and probability
1− p to end up tails.

(a) You perform 14 flips of the coin and you observe the sequence {HHTHTHHHTTHHHH}.
As a frequentist, what is your estimate of p?

(b) What is your frequentist estimate for the probability that the next two flips will each
end up heads? If offered even odds, would you bet on this event?

(c) Now suppose you are a Bayesian. You view p as having its own distribution. The
likelihood f(data|p) is still given by the Bernoulli distribution with the parameter p.
For the prior π(p), assume a Beta distribution,

π(p|α, β) = Γ(α+ β)

Γ(α) Γ(β)
pα−1 (1− p)β−1 .

where α and β are hyperparameters. Compute the posterior distribution π(p|data, α, β).

(d) What is the posterior predictive probability f(HH |data, α, β)?

(e) Since a priori we don’t know anything about the coin, it seems sensible to choose
α = β = 1 initially, corresponding to a flat prior for p. What is the numerical value
of the probability to get two heads in a row? Would you bet on it?

Solution:

(a) A frequentist would conclude p = 5
7

since the trial produced ten heads and four tails.

(b) The frequentist reasons that the probability of two consecutive heads is p2 = 25

49
. This is

slightly larger than 1
2

, so the frequentist should bet! (Frequently, in fact.)

(c) Are you reading the lecture notes? You should, because this problem is solved there in
§1.5.2. We have

π(p|data, α, β) = p9+α (1− p)3+β

B(10 + α, 4 + β)
,

where the Beta function is B(α, β) = Γ(α) Γ(β)/Γ(α + β).
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(d) The posterior predictive is

p(data′|data) = B(10 + Y + α, 4 +M − Y + β)

B(10 + α, 4 + β)
,

where Y is the total number of heads found among M tosses. We are asked to consider
M = 2, Y = 2, so

f(HH|data, α, β) = B(12 + α, 4 + β)

B(10 + α, 4 + β)
.

(e) With α = β = 1, we have

f(HH|data, α, β)
∣

∣

∣

α=β=1
=

B(13, 5)

B(11, 5)
=

11 · 12
16 · 17 =

33

68
= 0.4852941.

This is slightly less than 1
2
. Don’t bet!

It is instructive to note that the Bayesian posterior prediction for a single head, assuming
α = β = 1, is

f(H|data, α, β)
∣

∣

∣

α=β=1
=

B(11 + α, 4 + β)

B(10 + α, 4 + β)
=

B(12, 5)

B(11, 5)
=

11

16
.

The square of this number is 121
256

= 0.4726565, which is less than the posterior prediction
for two consecutive heads, even though our likelihood function is the Bernoulli distribution,
which assumes the tosses are statistically independent. The eager student should contemplate
why this is the case.

(4) Professor Jones begins his academic career full of hope that his postdoctoral work, on
relativistic corrections to the band structure of crystalline astatine under high pressure,
will eventually be recognized with a Nobel Prize in Physics. Being of Bayesian convic-
tions, Jones initially assumes he will win the prize with probability θ, where θ is uniformly
distributed on [0, 1] to reflect Jones’ ignorance.

(a) After N years of failing to win the prize, compute Jones’s chances to win in year
N + 1 by performing a Bayesian update on his prior distribution.

(b) Jones’ graduate student points out that Jones’ prior is not parameterization-independent.
He suggests Jones redo his calculations, assuming initially the Jeffreys prior for the
Bernoulli process. What then are Jones’ chances after his N year drought?

(c) Professor Smith, of the Economics Department, joined the faculty the same year as
Jones. His graduate research, which concluded that poor people have less purchas-
ing power than rich people, was recognized with a Nobel Prize in Economics1 in his
fifth year. Like Jones, Smith is a Bayesian, whose initial prior distribution was taken
to be uniform. What is the probability he will win a second Nobel Prize in year 11?
If instead Smith were a frequentist, how would he assess his chances in year 11?

1Strictly speaking, there is no such thing as a “Nobel Prize in Economics”. Rather, there is a “Nobel Memo-
rial Prize in Economic Sciences”.
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Solution:

(a) For the Beta distribution π(θ) = θα−1(1− θ)β−1/B(α, β), one has

〈θ〉 = α

α+ β
.

Assuming α0 = β0 = 1, under the Bayesian update rules, αN = α+P and βN = β+N−P ,

where P is the number of successes in N years. Alas, for Jones P = 0, so αN = 1 and

βN = N + 1, meaning f(prize|reality) = 1/(N + 2).

(b) For the Jeffries prior, take α0 = β0 =
1
2
, in which case f(prize|reality) = 1/(2N + 2).

(c) For Smith, we take P = 1 and N = 10, hence f(prize|reality) = 2/(N + 2) = 1
6
. If Smith

were a frequentist, he would estimate his chances at p = 1
10

.
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