PHYSICS 210A : STATISTICAL PHYSICS
FINAL EXAM SOLUTIONS

(1) Provide clear, accurate, and brief answers for each of the following:

(a) For the free energy density f = Sam? — Tym® + 1bm*, what does it mean to say that ‘a

tirst order transition preempts the second order transition’?

(b) A system of noninteracting bosons has a power law dispersion (k) = Ak°. What is
the condition on the power ¢ and the dimension d of space such that Bose condensation
will occur at some finite temperature?

(c) Sketch what the pair distribution function g(r) should look like for a fluid composed of
infinitely hard spheres of diameter a. How does g(r) change with temperature?

(d) For the cluster v shown in Fig. 1, identify the symmetry factor s,, the lowest order
virial oefficient B to which this contributes, and write an expression for the cluster integral

b,(T) in terms of the Mayer function.

(e) Explain the following terms in the context of dynamical systems: recurrent, ergodic, and
mixing. How are these classifications arranged hierarchically?

Figure 1: The connected cluster v for problem (1d).

Solution:

(@) In the absence of a cubic term (i.e. when y = 0), there is a second order transition at
a = 0, assuming b > 0 for stability. The ordered phase, for a < 0, has a spontaneous
moment m # 0. When the cubic term is present, a first order (i.e. discontinuous) transition
takes place ata = %, which is positive. Thus, as a is decreased from large positive values,
the first order transition takes place before a reaches a = 0, hence we say that the second
order transition that would have occurred at a = 0 is preempted. Typically a(T) < T — T,
where T, is what the second order transition temperature would be in the case y = 0.

[6 points]

(b) At T' =T, we have the relation

[ d% 1
n= 2m) =@ /kgTe — 1

If the integral fails to converge, then there is no finite temperature solution and no Bose
condensation. For small k£, we may expand the exponential in the denominator, and we



find the occupancy function behaves as k,7T,./c(k) o« k~7. From the integration metric,
in d-dimensional polar coordinates, we have d% = 2, k91 dk, where (2, is the surface
area of the d-dimensional unit sphere. Thus, the integrand is proportional to k4~“~!. For
convergence, then, we require d > o. This is the condition for finite temperature Bose
condensation.

[6 points]

(c) The pdf for a hard sphere gas is shown in Fig. 2 below. The main features are g(r = 0)
for r < a, and a decaying oscillation for » > a. Since the potential is either U = 0 (no
two spheres overlapping), or U = oo (overlap of at least two spheres), temperature has no
effect, because U/k,T is also either 0 or co. The hard sphere gas is a reasonable model for
the physics of liquid argon (see figure).

[5 points]
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Figure 2: (1c) Pair distribution functions (PDF) for hard spheres of diameter « at filling frac-
tion n = Za*n = 0.49 (left) and for liquid argon at T = 85K (right). Molecular dynamics
data for hard spheres (points) is compared with the result of the Percus-Yevick approxima-
tion. Experimental data on liquid argon are from the neutron scattering work of Yarnell et
al. (1973). The data (points) are compared with molecular dynamics calculations by Verlet
(1967) for a Lennard-Jones fluid. See fig. 5.8 of the lecture notes.

2 3
@ | @ 4
6 5
Figure 3: Left: the connected cluster v for problem (1d). Right: a labeled version of this
cluster used in expressing the cluster integral b,,.

(d) The symmetry factor is 2!-3! = 12, because, consulting the right panel of Fig. 3, vertices



2 and 6 can be exchanged, and vertices 3, 4, and 5 can be permuted in any way. There are
six vertices, hence the lowest order virial coefficient to which this cluster contributes is By.
The cluster integral is

1
bw - W/ddfl ddﬂ?z dd333/dd$4/dd335 dd% J12 J16 fas foa fos foe f3a f35 f36 fas fas F56 5

where f;; = e i)/ _ 1 See Fig. 3 for the labels.
[5 points]

(e) A recurrent dynamical system exhibits the property that within any finite region of
phase space one can find a point which will return to that region in a finite time. Poincaré
recurrence is guaranteed whenever the dynamics are invertible and volume-preserving on
a finite phase space. An ergodic system is one where time averages are equal to phase
space averages. For the dynamical system ¢ = V' (¢), ergodicity means

T
1 Trf(p)6(E — H(p))
= lim — [dt t) = =
(fl@)r Tgrg)OT/ fe(t)) T (E — H(9)) (F(@))s
0
where f(¢) is any smooth function on phase space. A mixing system is one where any

smooth normalized distribution ¢(¢, t) satisfies
Jim Tro(p, 1) f(0) = (f()) -

Thus, the distribution spreads out ‘evenly’ over the entire energy surface. The hierarchy is
mixing C ergodic C recurrent .

[5 points]

(2) Consider a gas of spinless bosons in d = 3 dimensions with dispersion (p) = p?/2m
and bulk number density n. The gas is in equilibrium with a d = 2 surface, and the
surface bosons have dispersion €,(p,,p,) = (p2 + pz) /2m + A with A > 0. Note that
Li,(z) = —log(1 — 2).

(a) For T' > T,, where T, is the bulk critical temperature for Bose-Einstein condensation,
write down relations between (i) the bulk density n, temperature 7', and fugacity z, and (ii)
the surface density n,4, 7, and z. Your expressions may also involve m, A, and numeral
and physical constants.

(b) For T' < T,, write down relations between (i) the bulk density n, temperature 7', and
bulk condensate density n, and (ii) the surface density n,,, 7, and n,. Your expressions
may also involve m, A, and numeral and physical constants.

(c) What is 7,.? Find an equation relating n,4(7) to n, A, m, and physical constants.

(d) What is the T" — 0 limit of the surface density n,,? Interpret your result. Do the surface
bosons ever condense? Why or why not? What do you think happens if A < 0?



Important: You may regard the bulk number density to be fixed at n regardless of the
surface number density n,, because in the thermodynamic limit the bulk contains vastly
more particles than the surface.

Solution:
(a) The derivation may be found in ch. 5 of the lecture notes:

n =" Liz/o(2) , Noq = Ap2 Liy (2 e_A/kBT) = —\;’log (1-= e_A/kBT)
[5 points]
(b) When the bulk is condensed, 4 = 0 and z = 1, hence

n=ngy+ C(%))\;g , Noq = —Ap° log (1- e_A/kBT)

[10 points]
(c) When T =T, = (27h?/m) (n/((%)2/3, we have

mA
naa(Te) = —(n/C(3))"" 1og [1 o <_ 2t (n/C(3)) )]

[5 points]

(d) As T — 0 we have from (b) that n,y = A\;2exp(—A/k,T) — 0. In this limit all the
bosons are in the bulk and condensed into their lowest energy state, ¢(p = 0) = 0. Since
A > 0, the lowest energy surface state has €,; = A > 0 and is unoccupied. The surface
bosons never condense because there is no 2D Bose condensation of ballistic particles. This
would be the case even if A were negative. If A < 0, the maximum value of the fugacity
is 2 = e 1AI/k8T In this case as T — 0 the bosons all crowd onto the surface., which is
unphysical if the bosons have a hard core.

[6 points]

(3) The Hamiltonian for the one-dimensional p-state clock model is
7 2m(n; — niy,)
H = —JZCOS<# = ZE"i’”i+l ;

where on each site one has n, € {0,1,...,p — 1}. Here you are invited to consider the case
p = 4. The interaction energy between neighboring clock spins with values n and n' is then

-J 0 J 0
0o —-J 0 J
B = J 0 —-J 0

o J 0 —J

(a) Write down the transfer matrix T, , at temperature 7.



(b) Find the eigenvalues of 7. As a helpful hint, note that the (normalized) eigenvectors of
the matrix

a 1 b 1

1 a 1 b

M= b 1 a 1

1 61 a

are

1 1 0 1
111 1 0 1 1 11 -1
'1#1—5 1 ; %—ﬁ . ; wg—ﬁ 0 ; '404—5 1
1 0 —1 —1

(c) Find the free energy per site in the thermodynamic limit.

(d) Let ¢, =9, ; — %. This serves as an order parameter since (¢;) = 0 in the disordered
phase where each n value is equally likely and hence (,, ;) = 1. Using the transfer matrix
formalism, find the correlator C(m) = (¢, ¢,.,,). What is the correlation length £(7")?

Solution:

(a) The transfer matrix is
e’ 1 e B/ 1

BJ —BJ
_ -BE__, _ 1 e 1 e
T = S e P 1 ebJ 1

1 e8I 1 e’
[9 points]

(b) Applying M to each of the given mutually orthogonalnnormalized eigenvectors, we
find \; =a+b+2, XA, = X3 =a—0b and A\, = a+ b — 2. For our purposes, we have
a = exp(BJ) and b = exp(—pJ). Thus, the four eigenvalues of T are

A =2cosh(B8J)+2 , A= A3=2sinh(8J) , Ay =2cosh(fJ)—2 ,

[8 points]

(c) In the thermodynamic limit . — oo the maximum eigenvalue \; dominates and we
have Z = )\IL, hence

F
f= 7= —kyTlog \| = —kT'log(2cosh(J/k,T) + 2)
[8 points]

(d) The correlator is

Tr(@Tm o TEm) b oy (e [ @] 4| A AL
TrTL B S A

C(m) =



where
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Note that (¢ [® [y ) = (¢3|® |1y ) = 0, (¢p|®|¢hy) = 272, and (¢ |®|¢y) = 1.
Thus, we have

o) = [l @lunl” (32) + ol elonf (32)

— tanh(J/2k,T)]™ + L[ tanh(J/2k,T)]* "™
since

Ag3  sinh(BJ)

)

A, 1+cosh(BJ)

B 1 Ay cosh(BJ) -1 21
—tanh(iﬂJ) s A—l—m—tanh (25J)

The correlation length is obtained by setting exp(—1/¢) = tanh(33.J), yielding

1
) = fog cnh (J/2k,T)

[100 quatloos extra credit]

(4) Now consider the mean field phase transition of the p = 4 clock model, with

=0y o (2T SHY (o)

(3)

with n;, € {0,1,2,3} on each site i. Find the variational free energy from the normalized
single site density matrix

el cos(2mn/4)
o(n) = 2+ 2coshu
ev 1 e v 1
= — — —
2+2coshu ™ + 2+ 2coshu ™! + 2+ 2coshu ™2 + 2+ 2coshu ™3

(a) Find E = Tr (H "), where o = Hf\il o(n;). You should assume a Bravais lattice with
of coordination number z with nearest neighbor interactions only.
(b) Find S = —k; Tr (0" log 0%")

(c) Find the dimensionless free energy per site f(u,8,h) = F/NzJ, with § = k;T/zJ and
h = H/zJ the dimensionless temperature and symmetry-breaking external field.

(d) Find 6, and ¢(h) above 6., where ¢ = (4, | — 1) is the order parameter.



Solution:

(a) We have
4 4
—INzJ Y Y E,0n)o(n') — H(o(0) — 1)
n=1n'=1
2 2
= —3NzJ[0(0) - 0(2)]” — §N=2J[0(1) — 0(3)]" — H(0(0) - 3)
CINaJtanh®(bu) — H 5 1
p Nz tanh™(5u) 2+2coshu 4
[6 points]
(b) The entropy is
4
= —Nkg, Z o(n)log o(n
Ny [0 4 9 coshu)
N P11+ coshu &
[6 points]

(c) The dimensionless free energy is

he" u sinh u
2+ 2coshwu 1+ coshu

= —Ologd —thu+ (0 -+ L (2-0)u'+...

flu,0,h) = —%tanh2(u/2) - + %h—l—@[ —log(2 + 2 cosh u)

The expansion to order u? is straightforward.
[6 points]

(d) From the above Landau expansion to order u* we have 6, = 3. The order parameter is
¢ = —0f/0h = tu, and setting Of /Ou = 0 yields (6 — 0, )u = %h whence

¢ = %(9 - 90)_1

Nota bene: The coefficient of the quartic term in the expansion from part (c), which you
were not expected to derive, might elicit some concern - what happens when § > 2? Is
there a first order transition for A = 0? There is not. One obtains

Of(u,0,h =0)  Ou—tanh(u/2)
ou ~ 2cosh?(u/2)

Thus there are at most three stationary points at finite values of u: u = 0 and, for § < 3, the
two equal and opposite solutions to fu = tanh(u/2). Thus, the transition is second order.
[7 points]



