
PHYSICS 210A : STATISTICAL PHYSICS

FINAL EXAM SOLUTIONS

(1) Provide clear, accurate, and brief answers for each of the following:

(a) For the free energy density f = 1
2am

2 − 1
3ym

3 + 1
4bm

4, what does it mean to say that ‘a
first order transition preempts the second order transition’?

(b) A system of noninteracting bosons has a power law dispersion ε(k) = Akσ. What is
the condition on the power σ and the dimension d of space such that Bose condensation
will occur at some finite temperature?

(c) Sketch what the pair distribution function g(r) should look like for a fluid composed of
infinitely hard spheres of diameter a. How does g(r) change with temperature?

(d) For the cluster γ shown in Fig. 1, identify the symmetry factor sγ , the lowest order
virial oefficientBj to which this contributes, and write an expression for the cluster integral
bγ(T ) in terms of the Mayer function.

(e) Explain the following terms in the context of dynamical systems: recurrent, ergodic, and
mixing. How are these classifications arranged hierarchically?

Figure 1: The connected cluster γ for problem (1d).

Solution:

(a) In the absence of a cubic term (i.e. when y = 0), there is a second order transition at
a = 0, assuming b > 0 for stability. The ordered phase, for a < 0, has a spontaneous
moment m 6= 0. When the cubic term is present, a first order (i.e. discontinuous) transition

takes place at a = 2y2

9b , which is positive. Thus, as a is decreased from large positive values,
the first order transition takes place before a reaches a = 0, hence we say that the second
order transition that would have occurred at a = 0 is preempted. Typically a(T ) ∝ T − Tc,
where Tc is what the second order transition temperature would be in the case y = 0.
[5 points]

(b) At T = Tc, we have the relation

n =

∫

ddk

(2π)d
1

eε(k)/kBTc − 1
.

If the integral fails to converge, then there is no finite temperature solution and no Bose
condensation. For small k, we may expand the exponential in the denominator, and we
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find the occupancy function behaves as k
B
Tc/ε(k) ∝ k−σ. From the integration metric,

in d-dimensional polar coordinates, we have ddk = Ωd k
d−1 dk, where Ωd is the surface

area of the d-dimensional unit sphere. Thus, the integrand is proportional to kd−σ−1. For
convergence, then, we require d > σ. This is the condition for finite temperature Bose
condensation.
[5 points]

(c) The pdf for a hard sphere gas is shown in Fig. 2 below. The main features are g(r = 0)
for r < a, and a decaying oscillation for r > a. Since the potential is either U = 0 (no
two spheres overlapping), or U = ∞ (overlap of at least two spheres), temperature has no
effect, because U/k

B
T is also either 0 or ∞. The hard sphere gas is a reasonable model for

the physics of liquid argon (see figure).
[5 points]

Figure 2: (1c) Pair distribution functions (PDF) for hard spheres of diameter a at filling frac-
tion η = π

6a
3n = 0.49 (left) and for liquid argon at T = 85K (right). Molecular dynamics

data for hard spheres (points) is compared with the result of the Percus-Yevick approxima-
tion. Experimental data on liquid argon are from the neutron scattering work of Yarnell et
al. (1973). The data (points) are compared with molecular dynamics calculations by Verlet
(1967) for a Lennard-Jones fluid. See fig. 5.8 of the lecture notes.

Figure 3: Left: the connected cluster γ for problem (1d). Right: a labeled version of this
cluster used in expressing the cluster integral bγ .

(d) The symmetry factor is 2!·3! = 12, because, consulting the right panel of Fig. 3, vertices

2



2 and 6 can be exchanged, and vertices 3, 4, and 5 can be permuted in any way. There are
six vertices, hence the lowest order virial coefficient to which this cluster contributes is B6.
The cluster integral is

bγ =
1

12V

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5

∫

ddx6 f12 f16 f23 f24 f25 f26 f34 f35 f36 f45 f46 f56 ,

where fij = e−u(r
ij
)/k

B
T − 1. See Fig. 3 for the labels.

[5 points]

(e) A recurrent dynamical system exhibits the property that within any finite region of
phase space one can find a point which will return to that region in a finite time. Poincaré
recurrence is guaranteed whenever the dynamics are invertible and volume-preserving on
a finite phase space. An ergodic system is one where time averages are equal to phase
space averages. For the dynamical system ϕ̇ = V (ϕ), ergodicity means

〈

f(ϕ)
〉

T
= lim

T→∞

1

T

T
∫

0

dt f
(

ϕ(t)
)

=
Trf(ϕ) δ

(

E −H(ϕ)
)

Trδ
(

E −H(ϕ)
) =

〈

f(ϕ)
〉

S
,

where f(ϕ) is any smooth function on phase space. A mixing system is one where any
smooth normalized distribution ̺(ϕ, t) satisfies

lim
t→∞

Tr̺(ϕ, t) f(ϕ) =
〈

f(ϕ)
〉

S
.

Thus, the distribution spreads out ‘evenly’ over the entire energy surface. The hierarchy is

mixing ⊂ ergodic ⊂ recurrent .

[5 points]

(2) Consider a gas of spinless bosons in d = 3 dimensions with dispersion ε(p) = p2/2m
and bulk number density n. The gas is in equilibrium with a d = 2 surface, and the
surface bosons have dispersion ε2d(px, py) = (p2x + p2y)/2m + ∆ with ∆ > 0. Note that
Li1(z) = − log(1− z).

(a) For T > Tc, where Tc is the bulk critical temperature for Bose-Einstein condensation,
write down relations between (i) the bulk density n, temperature T , and fugacity z, and (ii)
the surface density n2d, T , and z. Your expressions may also involve m, ∆, and numeral
and physical constants.

(b) For T < Tc, write down relations between (i) the bulk density n, temperature T , and
bulk condensate density n0, and (ii) the surface density n2d, T , and n0. Your expressions
may also involve m, ∆, and numeral and physical constants.

(c) What is Tc? Find an equation relating n2d(Tc) to n, ∆, m, and physical constants.

(d) What is the T → 0 limit of the surface density n2d? Interpret your result. Do the surface
bosons ever condense? Why or why not? What do you think happens if ∆ < 0?
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Important: You may regard the bulk number density to be fixed at n regardless of the
surface number density n2d because in the thermodynamic limit the bulk contains vastly
more particles than the surface.

Solution:

(a) The derivation may be found in ch. 5 of the lecture notes:

n = λ−3
T Li3/2(z) , n2d = λ−2

T Li1

(

z e−∆/k
B
T
)

= −λ−2
T log

(

1− z e−∆/k
B
T
)

.

[5 points]

(b) When the bulk is condensed, µ = 0 and z = 1, hence

n = n0 + ζ
(

3
2

)

λ−3
T , n2d = −λ−2

T log
(

1− e−∆/k
B
T
)

.

[10 points]

(c) When T = Tc = (2π~2/m)
(

n/ζ(32
)2/3

, we have

n2d(Tc) = −
(

n/ζ(32)
)2/3

log

[

1− exp

(

− m∆

2π~2
(

n/ζ(32 )
)2/3

)]

[5 points]

(d) As T → 0 we have from (b) that n2d = λ−2
T exp(−∆/k

B
T ) → 0. In this limit all the

bosons are in the bulk and condensed into their lowest energy state, ε(p = 0) = 0. Since
∆ > 0, the lowest energy surface state has ε2d = ∆ > 0 and is unoccupied. The surface
bosons never condense because there is no 2D Bose condensation of ballistic particles. This
would be the case even if ∆ were negative. If ∆ < 0, the maximum value of the fugacity
is z = e−|∆|/k

B
T . In this case as T → 0 the bosons all crowd onto the surface., which is

unphysical if the bosons have a hard core.
[5 points]

(3) The Hamiltonian for the one-dimensional p-state clock model is

Ĥ = −J
∑

i

cos

(

2π(ni − ni+1)

p

)

=
∑

i

En
i
,n

i+1
,

where on each site one has ni ∈ {0, 1, . . . , p− 1}. Here you are invited to consider the case
p = 4. The interaction energy between neighboring clock spins with values n and n′ is then

En,n′ =









−J 0 J 0
0 −J 0 J
J 0 −J 0
0 J 0 −J









.

(a) Write down the transfer matrix Tn,n′ at temperature T .
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(b) Find the eigenvalues of T . As a helpful hint, note that the (normalized) eigenvectors of
the matrix

M =









a 1 b 1
1 a 1 b
b 1 a 1
1 b 1 a









are

ψ1 =
1

2









1
1
1
1









, ψ2 =
1√
2









1
0
−1
0









, ψ3 =
1√
2









0
1
0
−1









, ψ4 =
1

2









1
−1
1
−1









.

(c) Find the free energy per site in the thermodynamic limit.

(d) Let φi = δn
i
,1 − 1

4 . This serves as an order parameter since 〈φi〉 = 0 in the disordered

phase where each n value is equally likely and hence 〈δn
i
,1〉 = 1

4 . Using the transfer matrix

formalism, find the correlator C(m) = 〈φ1 φ1+m〉. What is the correlation length ξ(T )?

Solution:

(a) The transfer matrix is

Tn,n′ = e
−βE

n,n′ =









eβJ 1 e−βJ 1
1 eβJ 1 e−βJ

e−βJ 1 eβJ 1
1 e−βJ 1 eβJ









.

[9 points]

(b) Applying M to each of the given mutually orthogonalnnormalized eigenvectors, we
find λ1 = a + b + 2, λ2 = λ3 = a − b, and λ4 = a + b − 2. For our purposes, we have
a = exp(βJ) and b = exp(−βJ). Thus, the four eigenvalues of T are

λ1 = 2cosh(βJ) + 2 , λ2 = λ3 = 2 sinh(βJ) , λ4 = 2cosh(βJ)− 2 ,

with λ1 > λ2 = λ3 ≥ λ4.
[8 points]

(c) In the thermodynamic limit L → ∞ the maximum eigenvalue λ1 dominates and we
have Z = λL1 , hence

f =
F

L
= −k

B
T log λ1 = −k

B
T log

(

2 cosh(J/k
B
T ) + 2

)

.

[8 points]

(d) The correlator is

C(m) =
Tr
(

ΦTmΦTL−m
)

TrTL
=

∑4
α,β=1

∣

∣〈ψα |Φ |ψβ 〉
∣

∣

2
λmβ λL−m

α
∑4

γ=1 λ
L
γ
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where

Φ =









3
4 0 0 0
0 −1

4 0 0
0 0 −1

4 0
0 0 0 −1

4









.

Note that
〈

ψ1

∣

∣Φ
∣

∣ψ1

〉

=
〈

ψ3

∣

∣Φ
∣

∣ψ1

〉

= 0, 〈ψ2 |Φ |ψ1 〉 = 2−3/2, and 〈ψ4 |Φ |ψ1 〉 = 1
4 .

Thus, we have

C(m) =
∣

∣〈ψ2 |Φ |ψ1 〉
∣

∣

2
(

λ2
λ1

)m

+
∣

∣〈ψ4 |Φ |ψ1 〉
∣

∣

2
(

λ4
λ1

)m

= 1
8

[

tanh(J/2k
B
T )
]|m|

+ 1
6

[

tanh(J/2k
B
T )
]2 |m|

,

since

λ2,3
λ1

=
sinh(βJ)

1 + cosh(βJ)
= tanh(12βJ) ,

λ4
λ1

=
cosh(βJ) − 1

cosh(βJ) + 1
= tanh2(12βJ) .

The correlation length is obtained by setting exp(−1/ξ) = tanh(12βJ), yielding

ξ(T ) =
1

log ctnh (J/2k
B
T )

.

[100 quatloos extra credit]

(4) Now consider the mean field phase transition of the p = 4 clock model, with

Ĥ = −J
∑

〈ij〉

cos

(

2π(ni − nj)

4

)

−H
∑

i

(

δn
i
,0 − 1

4

)

,

with ni ∈ {0, 1, 2, 3} on each site i. Find the variational free energy from the normalized
single site density matrix

̺(n) =
eu cos(2πn/4)

2 + 2 cosh u

=
eu

2 + 2 cosh u
δn,0 +

1

2 + 2 cosh u
δn,1 +

e−u

2 + 2 cosh u
δn,2 +

1

2 + 2 cosh u
δn,3 .

(a) Find E = Tr (Ĥ̺varN ), where ̺N =
∏N

i=1 ̺(ni). You should assume a Bravais lattice with
of coordination number z with nearest neighbor interactions only.

(b) Find S = −k
B
Tr
(

̺varN log ̺varN

)

(c) Find the dimensionless free energy per site f(u, θ, h) = F/NzJ , with θ = k
B
T/zJ and

h = H/zJ the dimensionless temperature and symmetry-breaking external field.

(d) Find θc and φ(h) above θc , where φ = 〈δn
i
,1 − 1

4〉 is the order parameter.
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Solution:

(a) We have

E = −1
2NzJ

4
∑

n=1

4
∑

n′=1

En,n′ ̺(n) ̺(n′)−H
(

̺(0)− 1
4

)

= −1
2NzJ

[

̺(0) − ̺(2)
]2 − 1

2NzJ
[

̺(1)− ̺(3)
]2 −H

(

̺(0) − 1
4

)

= −1
2NzJ tanh2(12u)−H

(

eu

2 + 2 cosh u
− 1

4

)

.

[6 points]

(b) The entropy is

S = −Nk
B

4
∑

n=1

̺(n) log ̺(n)

= −Nk
B

[

u sinhu

1 + cosh u
− log(2 + 2 cosh u)

]

.

[6 points]

(c) The dimensionless free energy is

f(u, θ, h) = −1
2 tanh

2(u/2) − h eu

2 + 2 cosh u
+ 1

4h+ θ

[

u sinhu

1 + cosh u
− log(2 + 2 cosh u)

]

= −θ log 4− 1
4hu+ 1

4

(

θ − 1
2

)

u2 + 1
32

(

2
3 − θ

)

u4 + . . . .

The expansion to order u2 is straightforward.
[6 points]

(d) From the above Landau expansion to order u2 we have θc =
1
2 . The order parameter is

φ = −∂f/∂h = 1
4u, and setting ∂f/∂u = 0 yields (θ − θc)u = 1

2h, whence

φ = 1
8(θ − θc)

−1 .

Nota bene: The coefficient of the quartic term in the expansion from part (c), which you
were not expected to derive, might elicit some concern - what happens when θ > 2

3? Is
there a first order transition for h = 0? There is not. One obtains

∂f(u, θ, h = 0)

∂u
=
θu− tanh(u/2)

2 cosh2(u/2)
.

Thus there are at most three stationary points at finite values of u: u = 0 and, for θ < 1
2 , the

two equal and opposite solutions to θu = tanh(u/2). Thus, the transition is second order.
[7 points]
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