PHYSICS 210A : STATISTICAL PHYSICS FINAL EXAMINATION

(1) Provide clear, accurate, and brief answers for each of the following:

(a) For the free energy density $f = \frac{1}{2}am^2 - \frac{1}{3}ym^3 + \frac{1}{4}bm^4$, what does it mean to say that 'a first order transition preempts the second order transition'? [5 points]

(b) A system of noninteracting bosons has a power law dispersion $\varepsilon(\mathbf{k}) = A k^{\sigma}$. What is the condition on the power σ and the dimension d of space such that Bose condensation will occur at some finite temperature? [5 points]

(c) Sketch what the pair distribution function g(r) should look like for a fluid composed of infinitely hard spheres of diameter a. How does g(r) change with temperature? [5 points]

(d) For the cluster γ shown in Fig. 1, identify the symmetry factor s_{γ} , the lowest order virial coefficient B_j to which this contributes, and write an expression for the cluster integral $b_{\gamma}(T)$ in terms of the Mayer function. [5 points]

(e) Explain the following terms in the context of dynamical systems: *recurrent, ergodic,* and *mixing*. How are these classifications arranged hierarchically?[5 points]

Figure 1: The connected cluster γ for problem (1d).

(2) Consider a gas of spinless bosons in d = 3 dimensions with dispersion $\varepsilon(\mathbf{p}) = \mathbf{p}^2/2m$ and bulk number density n. The gas is in equilibrium with a d = 2 surface, and the surface bosons have dispersion $\varepsilon_{2d}(p_x, p_y) = (p_x^2 + p_y^2)/2m + \Delta$ with $\Delta > 0$. Note that $\text{Li}_1(z) = -\log(1-z)$.

(a) For $T > T_c$, where T_c is the bulk critical temperature for Bose-Einstein condensation, write down relations between (i) the bulk density n, temperature T, and fugacity z, and (ii) the surface density n_{2d} , T, and z. Your expressions may also involve m, Δ , and numeral and physical constants.

[5 points]

(b) For $T < T_c$, write down relations between (i) the bulk density n, temperature T, and bulk condensate density n_0 , and (ii) the surface density n_{2d} , T, and n_0 . Your expressions

may also involve m, Δ , and numeral and physical constants. [10 points]

(c) What is $T_{\rm c}?$ Find an equation relating $n_{\rm 2d}(T_{\rm c})$ to $n,\,\Delta,\,m,$ and physical constants. [5 points]

(d) What is the $T \to 0$ limit of the surface density n_{2d} ? Interpret your result. Do the surface bosons ever condense? Why or why not? What do you think happens if $\Delta < 0$? [5 points]

Important: You may regard the bulk number density to be fixed at n regardless of the surface number density n_{2d} because in the thermodynamic limit the bulk contains vastly more particles than the surface.

(3) The Hamiltonian for the one-dimensional *p*-state clock model is

$$\hat{H} = -J\sum_{i} \cos\left(\frac{2\pi(n_i - n_{i+1})}{p}\right) = \sum_{i} E_{n_i, n_{i+1}} \quad ,$$

where on each site one has $n_i \in \{0, 1, ..., p-1\}$. Here you are invited to consider the case p = 4. The interaction energy between neighboring clock spins with values n and n' is then

$$E_{n,n'} = \begin{pmatrix} -J & 0 & J & 0 \\ 0 & -J & 0 & J \\ J & 0 & -J & 0 \\ 0 & J & 0 & -J \end{pmatrix}$$

(a) Write down the transfer matrix T_{n,n^\prime} at temperature $T. \ensuremath{\left[9 \ensuremath{\text{points}}\right]}$

(b) Find the eigenvalues of *T*. As a helpful hint, note that the (normalized) eigenvectors of the matrix

$$M = \begin{pmatrix} a & 1 & b & 1\\ 1 & a & 1 & b\\ b & 1 & a & 1\\ 1 & b & 1 & a \end{pmatrix}$$

are

$$\psi_1 = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \quad , \quad \psi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} \quad , \quad \psi_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix} \quad , \quad \psi_4 = \frac{1}{2} \begin{pmatrix} 1\\-1\\1\\-1 \end{pmatrix}$$

[8 points]

(c) Find the free energy per site in the thermodynamic limit.

[8 points]

(d) Let $\phi_i = \delta_{n_i,1} - \frac{1}{4}$. This serves as an order parameter since $\langle \phi_i \rangle = 0$ in the disordered phase where each n value is equally likely and hence $\langle \delta_{n_i,1} \rangle = \frac{1}{4}$. Using the transfer matrix formalism, find the correlator $C(m) = \langle \phi_1 \phi_{1+m} \rangle$. What is the correlation length $\xi(T)$? [100 quatloos extra credit]

(4) Now consider the mean field phase transition of the p = 4 clock model, with

$$\hat{H} = -J \sum_{\langle ij \rangle} \cos \left(\frac{2\pi (n_i - n_j)}{4} \right) - H \sum_i \left(\delta_{n_i,0} - \frac{1}{4} \right) \quad ,$$

with $n_i \in \{0, 1, 2, 3\}$ on each site *i*. Find the variational free energy from the normalized single site density matrix

$$\varrho(n) = \frac{e^{u \cos(2\pi n/4)}}{2 + 2\cosh u}$$

= $\frac{e^u}{2 + 2\cosh u} \delta_{n,0} + \frac{1}{2 + 2\cosh u} \delta_{n,1} + \frac{e^{-u}}{2 + 2\cosh u} \delta_{n,2} + \frac{1}{2 + 2\cosh u} \delta_{n,3}$

(a) Find $E = \text{Tr}(\hat{H}\varrho_N^{\text{var}})$, where $\varrho_N = \prod_{i=1}^N \varrho(n_i)$. You should assume a Bravais lattice with of coordination number z with nearest neighbor interactions only. [6 points]

(b) Find $S = -k_{\rm B} \operatorname{Tr} \left(\varrho_N^{\rm var} \log \varrho_N^{\rm var} \right)$. [6 points]

(c) Find the dimensionless free energy per site $f(u, \theta, h) = F/NzJ$, with $\theta = k_{\rm B}T/zJ$ and h = H/zJ the dimensionless temperature and symmetry-breaking external field. [6 points]

(d) Find θ_c and $\phi(h)$ above θ_c , where $\phi = \langle \delta_{n_i,1} - \frac{1}{4} \rangle$ is the order parameter. [7 points]