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Chapter 4

Statistical Ensembles

4.1 References

– F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, 1987)
This has been perhaps the most popular undergraduate text since it first appeared in 1967, and
with good reason.

– A. H. Carter, Classical and Statistical Thermodynamics
(Benjamin Cummings, 2000)
A very relaxed treatment appropriate for undergraduate physics majors.

– D. V. Schroeder, An Introduction to Thermal Physics (Addison-Wesley, 2000)
This is the best undergraduate thermodynamics book I’ve come across, but only 40% of the book
treats statistical mechanics.

– C. Kittel, Elementary Statistical Physics (Dover, 2004)
Remarkably crisp, though dated, this text is organized as a series of brief discussions of key con-
cepts and examples. Published by Dover, so you can’t beat the price.

– M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts.

– M. Plischke and B. Bergersen, Equilibrium Statistical Physics (3rd edition, World Scientific, 2006)
An excellent graduate level text. Less insightful than Kardar but still a good modern treatment of
the subject. Good discussion of mean field theory.

– E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics (part I, 3rd edition, Pergamon, 1980)
This is volume 5 in the famous Landau and Lifshitz Course of Theoretical Physics . Though dated,
it still contains a wealth of information and physical insight.
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2 CHAPTER 4. STATISTICAL ENSEMBLES

4.2 Microcanonical Ensemble (µCE)

4.2.1 The microcanonical distribution function

We have seen how in an ergodic dynamical system, time averages can be replaced by phase space aver-
ages:

ergodicity ⇐⇒
〈
f(ϕ)

〉
t
=
〈
f(ϕ)

〉
S

, (4.1)

where

〈
f(ϕ)

〉
t
= lim

T→∞

1

T

T∫

0

dt f
(
ϕ(t)

)
. (4.2)

and
〈
f(ϕ)

〉
S
=

∫
dµ f(ϕ) δ

(
E − Ĥ(ϕ)

)/∫
dµ δ

(
E − Ĥ(ϕ)

)
. (4.3)

Here Ĥ(ϕ) = Ĥ(q,p) is the Hamiltonian, and where δ(x) is the Dirac δ-function1. Thus, averages are
taken over a constant energy hypersurface which is a subset of the entire phase space.

We’ve also seen how any phase space distribution ̺(Λ1, . . . , Λk) which is a function of conserved quan-
titied Λa(ϕ) is automatically a stationary (time-independent) solution to Liouville’s equation. Note that
the microcanonical distribution,

̺E(ϕ) = δ
(
E − Ĥ(ϕ)

)/∫
dµ δ

(
E − Ĥ(ϕ)

)
, (4.4)

is of this form, since Ĥ(ϕ) is conserved by the dynamics. Linear and angular momentum conservation
generally are broken by elastic scattering off the walls of the sample.

So averages in the microcanonical ensemble are computed by evaluating the ratio

〈
A
〉
=

Tr Aδ(E − Ĥ)

Tr δ(E − Ĥ)
, (4.5)

where Tr means ‘trace’, which entails an integration over all phase space:

Tr A(q, p) ≡ 1

N !

N∏

i=1

∫
ddpi d

dqi
(2π~)d

A(q, p) . (4.6)

Here N is the total number of particles and d is the dimension of physical space in which each particle
moves. The factor of 1/N !, which cancels in the ratio between numerator and denominator, is present for
indistinguishable particles2. The normalization factor (2π~)−Nd renders the trace dimensionless. Again,
this cancels between numerator and denominator. These factors may then seem arbitrary in the defini-
tion of the trace, but we’ll see how they in fact are required from quantum mechanical considerations.
So we now adopt the following metric for classical phase space integration:

dµ =
1

N !

N∏

i=1

ddpi d
dqi

(2π~)d
. (4.7)

1We write the Hamiltonian as Ĥ (classical or quantum) in order to distinguish it from magnetic field, H .
2More on this in chapter 5.
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4.2.2 Density of states

The denominator,

D(E) = Tr δ(E − Ĥ) , (4.8)

is called the density of states. It has dimensions of inverse energy, such that

D(E)∆E =

E+∆E∫

E

dE′

∫
dµ δ(E′ − Ĥ) =

∫

E<Ĥ<E+∆E

dµ (4.9)

= # of states with energies between E and E +∆E .

Let us now compute D(E) for the nonrelativistic ideal gas. The Hamiltonian is

Ĥ(q, p) =

N∑

i=1

p2
i

2m
. (4.10)

We assume that the gas is enclosed in a region of volume V , and we’ll do a purely classical calculation,
neglecting discreteness of its quantum spectrum. We must compute

D(E) =
1

N !

∫ N∏

i=1

ddpi d
dqi

(2π~)d
δ

(
E −

N∑

i=1

p2
i

2m

)
. (4.11)

We shall calculate D(E) in two ways. The first method utilizes the Laplace transform, Z(β):

Z(β) = L
[
D(E)

]
≡

∞∫

0

dE e−βE D(E) = Tr e−βĤ . (4.12)

The inverse Laplace transform is then

D(E) = L−1
[
Z(β)

]
≡

c+i∞∫

c−i∞

dβ

2πi
eβE Z(β) , (4.13)

where c is such that the integration contour is to the right of any singularities of Z(β) in the complex
β-plane. We then have

Z(β) =
1

N !

N∏

i=1

∫
ddxi d

dpi
(2π~)d

e−βp2
i /2m

=
V N

N !




∞∫

−∞

dp

2π~
e−βp2/2m



Nd

=
V N

N !

(
m

2π~2

)Nd/2

β−Nd/2 .

(4.14)
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Figure 4.1: Complex integration contours C for inverse Laplace transform L−1
[
Z(β)

]
= D(E). When

the product dN is odd, there is a branch cut along the negative Reβ axis.

The inverse Laplace transform is then

D(E) =
V N

N !

(
m

2π~2

)Nd/2 ∮

C

dβ

2πi
eβE β−Nd/2

=
V N

N !

(
m

2π~2

)Nd/2 E
1
2
Nd−1

Γ(Nd/2)
,

(4.15)

exactly as before. The integration contour for the inverse Laplace transform is extended in an infinite
semicircle in the left half β-plane. When Nd is even, the function β−Nd/2 has a simple pole of order
Nd/2 at the origin. When Nd is odd, there is a branch cut extending along the negative Re β axis, and
the integration contour must avoid the cut, as shown in fig. 4.1. One can check that this results in the
same expression above, i.e. we may analytically continue from even values of Nd to all positive values
of Nd.

For a general system, the Laplace transform, Z(β) = L
[
D(E)

]
also is called the partition function. We

shall again meet up with Z(β) when we discuss the ordinary canonical ensemble.

Our final result, then, is

D(E,V,N) =
V N

N !

(
m

2π~2

)Nd/2 E
1
2
Nd−1

Γ(Nd/2)
. (4.16)

Here we have emphasized that the density of states is a function of E, V , and N . Using Stirling’s
approximation,

lnN ! = N lnN −N + 1
2 lnN + 1

2 ln(2π) +O
(
N−1

)
, (4.17)

we may define the statistical entropy,

S(E,V,N) ≡ k
B
lnD(E,V,N) = Nk

B
φ

(
E

N
,
V

N

)
+O(lnN) , (4.18)
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where

φ

(
E

N
,
V

N

)
=
d

2
ln

(
E

N

)
+ ln

(
V

N

)
+
d

2
ln

(
m

dπ~2

)
+
(
1 + 1

2d
)

. (4.19)

Recall kB = 1.3806503 × 10−16 erg/K is Boltzmann’s constant.

Second method

The second method invokes a mathematical trick. First, let’s rescale pαi ≡
√
2mE uαi . We then have

D(E) =
V N

N !

(√
2mE

h

)Nd
1

E

∫
dMu δ

(
u21 + u22 + . . .+ u2M − 1

)
. (4.20)

Here we have written u = (u1, u2, . . . , uM ) with M = Nd as a M -dimensional vector. We’ve also used
the rule δ(Ex) = E−1δ(x) for δ-functions. We can now write

dMu = uM−1 du dΩM , (4.21)

where dΩM is the M -dimensional differential solid angle. We now have our answer:3

D(E) =
V N

N !

(√
2m

h

)Nd

E
1
2
Nd−1 · 1

2 ΩNd . (4.22)

What remains is for us to compute ΩM , the total solid angle in M dimensions. We do this by a nifty
mathematical trick. Consider the integral

IM =

∫
dMu e−u2

= ΩM

∞∫

0

du uM−1 e−u2

= 1
2ΩM

∞∫

0

ds s
1
2
M−1

e−s = 1
2ΩM Γ

(
1
2M

)
,

(4.23)

where s = u2, and where

Γ(z) =

∞∫

0

dt tz−1 e−t (4.24)

is the Gamma function, which satisfies z Γ(z) = Γ(z + 1).4 On the other hand, we can compute IM in
Cartesian coordinates, writing

IM =




∞∫

−∞

du1 e
−u2

1



M

=
(√
π
)M

. (4.25)

3The factor of 1
2

precedingΩ
M

in eqn. 4.22 appears because δ(u2−1) = 1
2
δ(u−1)+ 1

2
δ(u+1). Since u = |u| ≥ 0,

the second term can be dropped.
4Note that for integer argument, Γ(k) = (k − 1)!
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Therefore

ΩM =
2πM/2

Γ(M/2)
. (4.26)

Thus we obtain Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, etc., the first two of which are familiar.

4.2.3 Arbitrariness in the definition of S(E)

Note that D(E) has dimensions of inverse energy, so one might ask how we are to take the logarithm
of a dimensionful quantity in eqn. 4.18. We must introduce an energy scale, such as ∆E in eqn. 4.9,
and define D̃(E;∆E) = D(E)∆E and S(E;∆E) ≡ k

B
ln D̃(E;∆E). The definition of statistical entropy

then involves the arbitrary parameter ∆E, however this only affects S(E) in an additive way. That is,

S(E,V,N ;∆E1) = S(E,V,N ;∆E2) + kB ln

(
∆E1

∆E2

)
. (4.27)

Note that the difference between the two definitions of S depends only on the ratio ∆E1/∆E2, and is
independent of E, V , and N .

4.2.4 Ultra-relativistic ideal gas

Consider an ultrarelativistic ideal gas, with single particle dispersion ε(p) = cp. We then have

Z(β) =
V N

N !

ΩN
d

hNd




∞∫

0

dp pd−1 e−βcp



N

=
V N

N !

(
Γ(d)Ωd

cd hd βd

)N
. (4.28)

The statistical entropy is S(E,V,N) = k
B
lnD(E,V,N) = Nk

B
φ
(
E
N ,

V
N

)
, with

φ

(
E

N
,
V

N

)
= d ln

(
E

N

)
+ ln

(
V

N

)
+ ln

(
Ωd Γ(d)

(dhc)d

)
+ (d+ 1) (4.29)

4.2.5 Discrete systems

For classical systems where the energy levels are discrete, the states of the system |σ 〉 are labeled by a
set of discrete quantities {σ1, σ2, . . .}, where each variable σi takes discrete values. The number of ways
of configuring the system at fixed energy E is then

Ω(E,N,λ) =
∑

σ

δ
Ĥ(σ),E

, (4.30)

where the sum is over all possible configurations, and where λ is a vector of parameters which enter
into Ĥ(σ). Here N labels the total number of particles. For example, if we have N spin-12 particles on a
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lattice which are placed in a magnetic field B,5, so the individual particle energy is εi = −µ0Bσi , where
σ = ±1, then in a configuration in which N+ particles have σi = +1 and N− = N − N+ particles have
σi = −1, the energy is E = (N− −N+)µ0B. The number of configurations at fixed energy E is

Ω(E,N,B) =

(
N

N+

)
=

N !

N+!N−!
, (4.31)

We may write N± = 1
2N(1 ± m) where m = (N+ − N−)/N ∈ [−1, 1] is the ’magnetization’. Thus

m = −E/Nµ0B, and it is left as an exercise to the reader to show, using Stirling’s formula, that the
statistical entropy is

S(E,N,B) = kB ln Ω(E,N,B) = −NkB

[(
1+m
2

)
ln
(
1+m
2

)
+
(
1−m
2

)
ln
(
1−m
2

)]
. (4.32)

4.2.6 Two systems in thermal contact

Consider two systems in thermal contact, as depicted in fig. 4.2. The two subsystems #1 and #2 are
free to exchange energy, but their respective volumes and particle numbers remain fixed. We assume
the contact is made over a surface, and that the energy associated with that surface is negligible when
compared with the bulk energies E1 and E2. Let the total energy be E = E1 + E2. Then the density of
states D(E) for the combined system is

D(E) =

∫
dE1D1(E1)D2(E − E1) . (4.33)

The probability density for system #1 to have energy E1 is then

P1(E1) =
D1(E1)D2(E −E1)

D(E)
. (4.34)

Note that P1(E1) is normalized:
∫
dE1 P1(E1) = 1. We now ask: what is the most probable value of E1?

We find out by differentiating P1(E1) with respect to E1 and setting the result to zero. This requires

0 =
1

P1(E1)

dP1(E1)

dE1

=
∂

∂E1

lnP1(E1)

=
∂

∂E1

lnD1(E1) +
∂

∂E1

lnD2(E − E1) .

(4.35)

We conclude that the maximally likely partition of energy between systems #1 and #2 is realized when

∂S1
∂E1

=
∂S2
∂E2

. (4.36)

This guarantees that
S(E,E1) = S1(E1) + S2(E − E1) (4.37)

is a maximum with respect to the energy E1, at fixed total energy E.

5Properly, we should use H here rather than B, but to obviate any confusion between H and the Hamiltonian

Ĥ , we use B instead.
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Figure 4.2: Two systems in thermal contact.

The temperature T is defined as
1

T
=

(
∂S

∂E

)

V,N

, (4.38)

a result familiar from thermodynamics. The difference is now we have a more rigorous definition of the
entropy. When the total entropy S is maximized, we have that T1 = T2. Once again, two systems in
thermal contact and can exchange energy will in equilibrium have equal temperatures.

According to eqns. 4.19 and 4.29, the entropies of nonrelativistic and ultrarelativistic ideal gases in d
space dimensions are given by

S
NR

= 1
2NdkB

ln

(
E

N

)
+Nk

B
ln

(
V

N

)
+ const.

S
UR

= Ndk
B
ln

(
E

N

)
+Nk

B
ln

(
V

N

)
+ const. .

(4.39)

Invoking eqn. 4.38, we then have ENR = 1
2NdkBT and EUR = NdkBT .

We saw that the probability distribution P1(E1) is maximized when T1 = T2, but how sharp is the peak
in the distribution? Let us write E1 = E∗

1 +∆E1, where E∗
1 is the solution to eqn. 4.35. We then have

lnP1(E
∗
1 +∆E1) = lnP1(E

∗
1 ) +

1

2kB

∂2S1
∂E2

1

∣∣∣∣
E∗

1

(∆E1)
2 +

1

2kB

∂2S2
∂E2

2

∣∣∣∣
E∗

2

(∆E1)
2 + . . . , (4.40)

where E∗
2 = E − E∗

1 . We must now evaluate

∂2S

∂E2
=

∂

∂E

(
1

T

)
= − 1

T 2

(
∂T

∂E

)

V,N

= − 1

T 2CV

, (4.41)

where CV =
(
∂E/∂T

)
V,N

is the heat capacity. Thus,

P1 = P ∗
1 e

−(∆E1)
2/2kBT

2C̄V , (4.42)

where

C̄V =
CV,1CV,2

CV,1 + CV,2

. (4.43)

The distribution is therefore a Gaussian, and the fluctuations in ∆E1 can now be computed:

〈
(∆E1)

2
〉
= k

B
T 2 C̄V =⇒ (∆E1)RMS

= T
√
k
B
C̄V . (4.44)
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The individual heat capacities CV,1 and CV,2 scale with the volumes V1 and V2, respectively. If V2 ≫ V1,

then CV,2 ≫ CV,1, in which case C̄V ≈ CV,1. Therefore the RMS fluctuations in ∆E1 are proportional to

the square root of the system size, whereas E1 itself is extensive. Thus, the ratio (∆E1)RMS
/E1 ∝ V −1/2

scales as the inverse square root of the volume. The distribution P1(E1) is thus extremely sharp.

The full distribution function for the energy is

P (E) =
〈
δ(E − Ĥ)

〉
=

Tr δ(E − Ĥ) e−βĤ

Tr e−βĤ
=

1

Z
D(E) e−βE . (4.45)

Thus,

P (E) = e−β[E−TS(E)]

∫
dE ′ e−β[E ′−TS(E ′)]

, (4.46)

where S(E) = k
B
lnD(E) is the statistical entropy. Let’s write E = E + δE , where E extremizes the

combination E − T S(E), i.e. the solution to T S′(E) = 1, where the energy derivative of S is performed
at fixed volume V and particle number N . We now expand S(E + δE) to second order in δE , obtaining

S(E + δE) = S(E) +
δE
T

−
(
δE
)2

2T 2 CV

+ . . . (4.47)

Recall that S′′(E) = ∂
∂E

(
1
T

)
= − 1

T 2C
V

. Thus,

E − T S(E) = E − T S(E) +
(δE)2
2T CV

+O
(
(δE)3

)
. (4.48)

Applying this to both numerator and denominator of eqn. 4.46, we obtain6

P (E) = N exp

[
− (δE)2

2kBT
2CV

]
, (4.49)

where N = (2πkBT
2CV )

−1/2 is a normalization constant which guarantees
∫
dE P (E) = 1. Once again,

we see that the distribution is a Gaussian centered at 〈E〉 = E, and of width (∆E)RMS =
√
k
B
T 2CV . This

is a consequence of the Central Limit Theorem.

4.3 The Quantum Mechanical Trace

Thus far our understanding of ergodicity is rooted in the dynamics of classical mechanics. A Hamil-
tonian flow which is ergodic is one in which time averages can be replaced by phase space averages
using the microcanonical ensemble. What happens, though, if our system is quantum mechanical, as all
systems ultimately are?

6In applying eqn. 4.48 to the denominator of eqn. 4.46, we shift E ′ by E and integrate over the difference
δE ′ ≡ E ′ − E, retaining terms up to quadratic order in δE ′ in the argument of the exponent.
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4.3.1 The density matrix

First, let us consider that our system S will in general be in contact with a worldW . We call the union of
S and W the universe, U =W ∪S. Let |w 〉 denote a quantum mechanical state of W , and let | s 〉 denote
a quantum mechanical state of S. Then the most general wavefunction we can write is of the form

|Ψ 〉 =
∑

w,s

Ψw,s | s 〉 ⊗ | s 〉 . (4.50)

Now let us compute the expectation value of some operator Â which acts as the identity within W ,

meaning 〈w | Â |w′ 〉 = Â δww′ , where Â is the ‘reduced’ operator acting within S alone. We then have

〈Ψ | Â |Ψ 〉 =
∑

w,w′

∑

s,s′

Ψ∗
w,sΨw′,s′ δww′ 〈 s | Â | s′ 〉 = Tr

(
ˆ̺Â
)

, (4.51)

where

ˆ̺ =
∑

w

∑

s,s′

Ψ∗
w,sΨw,s′ | s′ 〉 〈 s | (4.52)

is the density matrix for S. The time-dependence of ˆ̺ is easily found:

ˆ̺(t) =
∑

w

∑

s,s′

Ψ∗
w,sΨw,s′ | s′(t) 〉 〈 s(t) | = e−iĤt/~ ˆ̺ e+iĤt/~ , (4.53)

where Ĥ is the Hamiltonian for the system S. Thus, we find

i~
∂ ˆ̺

∂t
=
[
Ĥ, ˆ̺

]
. (4.54)

Note that the density matrix evolves according to a slightly different equation than an operator in the
Heisenberg picture, for which

Â(t) = e+iHt/~ Ae−iĤt/~ =⇒ i~
∂Â

∂t
=
[
Â, Ĥ

]
= −

[
Ĥ, Â

]
. (4.55)

For Hamiltonian systems, we found that the phase space distribution ̺(q, p, t) evolved according to the
Liouville equation, i ∂̺/∂t = L̺ , where the Liouvillian L is the differential operator

L = −i
Nd∑

j=1

{
∂Ĥ

∂pj

∂

∂qj
− ∂Ĥ

∂qj

∂

∂pj

}
. (4.56)

Accordingly, any distribution ̺(Λ1, . . . , Λk) which is a function of constants of the motion Λa(q, p) is
a stationary solution to the Liouville equation: ∂t ̺(Λ1, . . . , Λk) = 0. Similarly, any quantum mechan-
ical density matrix which commutes with the Hamiltonian is a stationary solution to eqn. 4.54. The

corresponding microcanonical distribution is ˆ̺E = δ
(
E − Ĥ

)
.
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Figure 4.3: A system S in contact with a ‘world’ W . The union of the two, universe U = W ∪ S, is said
to be the ‘universe’.

4.3.2 Averaging the DOS

If our quantum mechanical system is placed in a finite volume, the energy levels will be discrete, rather
than continuous, and the density of states (DOS) will be of the form

D(E) = Tr δ
(
E − Ĥ

)
=
∑

l

δ(E − El) , (4.57)

where {El} are the eigenvalues of the Hamiltonian Ĥ . In the thermodynamic limit, V → ∞, and the
discrete spectrum of kinetic energies remains discrete for all finite V but must approach the continuum
result. To recover the continuum result, we average the DOS over a window of width ∆E:

D(E) =
1

∆E

E+∆E∫

E

dE′D(E′) . (4.58)

If we take the limit ∆E → 0 but with ∆E ≫ δE, where δE is the spacing between successive quantized
levels, we recover a smooth function, as shown in fig. 4.4. We will in general drop the bar and refer to
this function as D(E). Note that δE ∼ 1/D(E) = exp

[
−Nφ(ε, v)

]
is (typically) exponentially small in the

size of the system, hence if we took ∆E ∝ V −1 which vanishes in the thermodynamic limit, there are
still exponentially many energy levels within an interval of width ∆E.

4.3.3 Coherent states

The quantum-classical correspondence is elucidated with the use of coherent states. Recall that the one-
dimensional harmonic oscillator Hamiltonian may be written

Ĥ0 =
p2

2m
+ 1

2mω2
0 q

2 = ~ω0

(
a†a+ 1

2

)
, (4.59)

where a and a† are ladder operators satisfying
[
a, a†

]
= 1, which can be taken to be

a = ℓ
∂

∂q
+

q

2ℓ
, a† = −ℓ ∂

∂q
+

q

2ℓ
, (4.60)
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Figure 4.4: Averaging the quantum mechanical discrete density of states yields a continuous curve.

with ℓ =
√

~/2mω0 . Note that q = ℓ (a+ a†) and p = ~

2iℓ (a− a†) .

The ground state satisfies aψ0(q) = 0, which yields

ψ0(q) = (2πℓ2)−1/4 e−q2/4ℓ2 . (4.61)

The normalized coherent state | z 〉 is defined as

| z 〉 = e−
1
2 |z|

2

eza
† | 0 〉 = e−

1
2 |z|

2
∞∑

n=0

zn√
n!

|n 〉 . (4.62)

The overlap of coherent states is given by

〈 z1 | z2 〉 = e−
1
2 |z1|

2

e−
1
2 |z2|

2

ez̄1z2 , (4.63)

hence different coherent states are not orthogonal. Despite this nonorthogonality, the coherent states
allow a simple resolution of the identity,

1 =

∫
d2z

2πi
| z 〉〈 z | ;

d2z

2πi
≡ dRez d Imz

π
(4.64)

which is straightforward to establish.

To gain some physical intuition about the coherent states, define

z ≡ Q

2ℓ
+
iℓP

~
(4.65)

and write | z 〉 ≡ |Q,P 〉. One finds (exercise!)

ψQ,P (q) = 〈 q | z 〉 = (2πℓ2)−1/4 e−iPQ/2~ eiP q/~ e−(q−Q)2/4ℓ2 , (4.66)

hence the coherent state ψQ,P (q) is a wavepacket Gaussianly localized about q = Q, but oscillating with
average momentum P .
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For example, we can compute

〈Q,P | q |Q,P 〉 = 〈 z | ℓ (a + a†) | z 〉 = 2ℓ Re z = Q (4.67)

〈Q,P | p |Q,P 〉 = 〈 z | ~

2iℓ
(a− a†) | z 〉 = ~

ℓ
Im z = P (4.68)

as well as

〈Q,P | q2 |Q,P 〉 = 〈 z | ℓ2 (a+ a†)2 | z 〉 = Q2 + ℓ2 (4.69)

〈Q,P | p2 |Q,P 〉 = −〈 z | ~
2

4ℓ2
(a− a†)2 | z 〉 = P 2 +

~
2

4ℓ2
. (4.70)

Thus, the root mean square fluctuations in the coherent state |Q,P 〉 are

∆q = ℓ =

√
~

2mω0

, ∆p =
~

2ℓ
=

√
m~ω0

2
, (4.71)

and ∆q ·∆p = 1
2 ~. Thus we learn that the coherent state ψQ,P (q) is localized in phase space, i.e. in both

position and momentum. If we have a general operator Â(q, p), we can then write

〈Q,P | Â(q, p) |Q,P 〉 = A(Q,P ) +O(~) , (4.72)

where A(Q,P ) is formed from Â(q, p) by replacing q → Q and p→ P .

Since
d2z

2πi
≡ dRez d Imz

π
=
dQdP

2π~
, (4.73)

we can write the trace using coherent states as

Tr Â =
1

2π~

∞∫

−∞

dQ

∞∫

−∞

dP 〈Q,P | Â |Q,P 〉 . (4.74)

We now can understand the origin of the factor 2π~ in the denominator of each (qi, pi) integral over
classical phase space in eqn. 4.6.

Note that ω0 is arbitrary in our discussion. By increasing ω0, the states become more localized in q and
more plane wave like in p. However, so long as ω0 is finite, the width of the coherent state in each
direction is proportional to ~

1/2, and thus vanishes in the classical limit.

4.4 Ordinary Canonical Ensemble (OCE)

4.4.1 Canonical distribution and partition function

Consider a system S in contact with a world W , and let their union U = W ∪ S be called the ‘universe’.
The situation is depicted in fig. 4.3. The volume VS and particle number NS of the system are held fixed,
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but the energy is allowed to fluctuate by exchange with the world W . We are interested in the limit
N

S
→ ∞, N

W
→ ∞, with N

S
≪ N

W
, with similar relations holding for the respective volumes and

energies. We now ask what is the probability that S is in a state |n 〉 with energy En. This is given by the
ratio

Pn = lim
∆E→0

D
W
(E

U
− En)∆E

D
U
(E

U
)∆E

=
# of states accessible to W given that ES = En

total # of states in U
.

(4.75)

Then

lnPn = lnD
W
(E

U
− En)− lnD

U
(E

U
)

= lnD
W
(E

U
)− lnD

U
(E

U
)− En

∂ lnDW(E)

∂E

∣∣∣∣
E=E

U

+ . . . .
(4.76)

The higher order terms are negligible if vol(S) ≪ vol(W ). In this case we have lnPn = −α− βEn , with

β =
∂ lnDW(E)

∂E

∣∣∣∣
E=E

U

≡ 1

kBT
. (4.77)

The constant α is fixed by the requirement that
∑

n Pn = 1, and thus we obtain

Pn =
1

Z
e−En/kBT , Z(T, V,N) = Tr e−βĤ =

∑

n

e−En/kBT . (4.78)

We define the Helmholtz free energy F (T, V,N) as

F (T, V,N) = −k
B
T lnZ(T, V,N) . (4.79)

We’ve already met Z(β) in eqn. 4.12 – it is the Laplace transform of the density of states. It is also
called the partition function of the system S. Quantum mechanically, we can write the ordinary canonical
density matrix as

ˆ̺ =
e−βĤ

Tr e−βĤ
, (4.80)

which is known as the Gibbs distribution. Note that
[
ˆ̺, Ĥ

]
= 0, hence the ordinary canonical distribution

is a stationary solution to the evolution equation for the density matrix. Note that the OCE is specified
by three parameters: T , V , and N .

4.4.2 The difference between P (En) and Pn

Let the total energy of the Universe be fixed atEU. The joint probability densityP (ES, EW) for the system
to have energy ES and the world to have energy EW is

P (ES, EW) = DS(ES)DW(EW) δ(EU − ES − EW)
/
DU(EU) , (4.81)
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where

DU(EU) =

∞∫

−∞

dES DS(ES)DW(EU − ES) , (4.82)

which ensures that
∫
dES

∫
dEW P (ES, EW) = 1. The probability density P (ES) is defined such thatP (ES) dES

is the (differential) probability for the system to have an energy in the range [ES, ES + dES]. The units
of P (ES) are E−1. To obtain P (ES), we simply integrate the joint probability density P (ES, EW) over all
possible values of EW, obtaining

P (ES) =
D

S
(E

S
)D

W
(E

U
− E

S
)

DU(EU)
, (4.83)

as we have in eqn. 4.75. Suppose we wish to know the probability Pn that the system is in a particular
state |n 〉 with energy En. Clearly

Pn = lim
∆E→0

probability that E
S
∈ [En, En +∆E]

# of S states with E
S
∈ [En, En +∆E]

=
P (En)∆E

D
S
(En)∆E

=
D

W
(E

U
− En)

D
U
(E

U
)

. (4.84)

4.4.3 Additional remarks

The formula of eqn. 4.75 is quite general and holds in the case where NS/NW = O(1), so long as we are
in the thermodynamic limit, where the energy associated with the interface between S and W may be
neglected. In this case, however, one is not licensed to perform the subsequent Taylor expansion, and
the distribution Pn is no longer of the Gibbs form. It is also valid for quantum systems7, in which case
we interpret Pn = 〈n|̺

S
|n〉 as a diagonal element of the density matrix ̺

S
. The density of states functions

may then be replaced by

DW(EU − En)∆E → eSW
(E

U
−En ,∆E) ≡ Tr

W

E
U
−En+∆E∫

E
U
−En

dE δ(E − ĤW)

DU(EU)∆E → eSU
(E

U
,∆E) ≡ Tr

U

E
U
+∆E∫

E
U

dE δ(E − ĤU) .

(4.85)

The off-diagonal matrix elements of ̺S are negligible in the thermodynamic limit.

4.4.4 Averages within the OCE

To compute averages within the OCE,

〈
Â
〉
= Tr

(
ˆ̺Â
)
=

∑
n 〈n|Â|n〉 e−βEn

∑
j e

−βE
j

, (4.86)

7See T.-C. Lu and T. Grover, arXiv 1709.08784.
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where we have conveniently taken the trace in a basis of energy eigenstates. In the classical limit, we
have

̺(ϕ) =
1

Z
e−βĤ(ϕ) , Z = Tr e−βĤ =

∫
dµ e−βĤ(ϕ) , (4.87)

with dµ = 1
N !

∏N
j=1(d

dqj d
dpj/h

d) for identical particles (‘Maxwell-Boltzmann statistics’). Thus,

〈A〉 = Tr (̺A) =

∫
dµ A(ϕ) e−βĤ(ϕ)

∫
dµ e−βĤ(ϕ)

. (4.88)

4.4.5 Entropy and free energy

The Boltzmann entropy is defined by

S = −kB Tr
(
ˆ̺ ln ˆ̺) = −kB

∑

n

Pn lnPn . (4.89)

The Boltzmann entropy and the statistical entropy S = kB lnD(E) are identical in the thermodynamic
limit. Since lnPn = β(F − En), we have

S = −k
B

∑

n

Pn

(
βF − βEn

)
= −F

T
+

〈 Ĥ 〉
T

, (4.90)

which is to say F = E − TS, where

E =
∑

n

PnEn =
Tr Ĥ e−βĤ

Tr e−βĤ
(4.91)

is the average energy. We also see that

Z = Tr e−βĤ =
∑

n

e−βEn =⇒ E =

∑
n En e

−βEn

∑
j e

−βEj

= − ∂

∂β
lnZ =

∂

∂β

(
βF
)

. (4.92)

Thus, F (T, V,N) is a Legendre transform of E(S, V,N), with

dF = −S dT − p dV + µdN , (4.93)

which means

S = −
(
∂F

∂T

)

V,N

, p = −
(
∂F

∂V

)

T,N

, µ = +

(
∂F

∂N

)

T,V

. (4.94)
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4.4.6 Fluctuations in the OCE

In the OCE, the energy is not fixed. It therefore fluctuates about its average value E = 〈Ĥ〉. Note that

−∂E
∂β

= k
B
T 2 ∂E

∂T
=
∂2 lnZ

∂β2

=
Tr Ĥ2 e−βĤ

Tr e−βĤ
−
(
Tr Ĥ e−βĤ

Tr e−βĤ

)2

=
〈
Ĥ2
〉
−
〈
Ĥ
〉2

.

(4.95)

Thus, the heat capacity is related to the fluctuations in the energy, just as we saw in §4.2.6:

CV =

(
∂E

∂T

)

V,N

=
1

kBT
2

(〈
Ĥ2
〉
−
〈
Ĥ
〉2) ⇒ (∆E)RMS

E
=

√
kBT

2CV

E
. (4.96)

For the nonrelativistic ideal gas, we found CV = d
2 NkB

, hence the ratio of RMS fluctuations in the
energy to the energy itself is (

(∆E)RMS

E

)

NRIG

=

√
2

Nd
, (4.97)

which scales as N−1/2 and thus vanishes in the thermodynamic limit.

4.4.7 Thermodynamics revisited

The average energy within the OCE is

E =
∑

n

EnPn , (4.98)

and therefore

dE =
∑

n

En dPn +
∑

n

Pn dEn = d̄Q− d̄W , (4.99)

where

d̄Q =
∑

n

En dPn , d̄W = −
∑

n

Pn dEn . (4.100)

Finally, from Pn = Z−1 e−En/kBT , we can write

En = −k
B
T lnZ − k

B
T lnPn , (4.101)

with which we obtain

d̄Q =
∑

n

En dPn = −kBT lnZ
∑

n

dPn − kBT
∑

n

lnPn dPn

= T d
(
− kB

∑

n

Pn lnPn

)
= T dS .

(4.102)
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Figure 4.5: Microscopic, statistical interpretation of the First Law of Thermodynamics.

Note also that

d̄W = −
∑

n

Pn dEn = −
∑

n

Pn

(
∑

i

∂En

∂Xi

dXi

)

= −
∑

n,i

Pn 〈n |
∂Ĥ

∂Xi

|n 〉 dXi ≡
∑

i

Fi dXi ,

(4.103)

so the generalized force Fi conjugate to the generalized displacement dXi is

Fi = −
∑

n

Pn

∂En

∂Xi

= −
〈
∂Ĥ

∂Xi

〉
. (4.104)

This is the force acting on the system8. In the chapter on thermodynamics, we defined the generalized
force conjugate to Xi as yi ≡ −Fi.

Thus we see from eqn. 4.99 that there are two ways that the average energy can change; these are
depicted in the sketch of fig. 4.5. Starting from a set of energy levels {En} and probabilities {Pn}, we
can shift the energies to {E′

n}. The resulting change in energy (∆E)I = −W is identified with the work
done on the system. We could also modify the probabilities to {P ′

n} without changing the energies. The
energy change in this case is the heat absorbed by the system: (∆E)II = Q. This provides us with a
statistical and microscopic interpretation of the First Law of Thermodynamics.

8In deriving eqn. 4.104, we have used the so-called Feynman-Hellman theorem of quantum mechanics:

d〈n|Ĥ |n〉 = 〈n| dĤ |n〉, if |n〉 is an energy eigenstate.
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4.4.8 Generalized susceptibilities

Suppose our Hamiltonian is of the form

Ĥ = Ĥ(λ) = Ĥ0 − λ Q̂ , (4.105)

where λ is an intensive parameter, such as magnetic field. Then Z(λ) = Tr e−β(Ĥ0−λQ̂) and

1

Z

∂Z

∂λ
= β · 1

Z
Tr

(
Q̂ e−βĤ(λ)

)
= β 〈Q̂〉 . (4.106)

But then from Z = e−βF we have

Q(λ, T ) = 〈 Q̂ 〉 = −
(
∂F

∂λ

)

T

. (4.107)

Typically we will take Q to be an extensive quantity. We can now define the susceptibility χ as

χ =
1

V

∂Q

∂λ
= − 1

V

∂2F

∂λ2
. (4.108)

The volume factor in the denominator ensures that χ is intensive.

It is important to realize that we have assumed here that
[
Ĥ0 , Q̂

]
= 0, i.e. the ‘bare’ Hamiltonian Ĥ0

and the operator Q̂ commute. If they do not commute, then the response functions must be computed
within a proper quantum mechanical formalism, which we shall not discuss here.

Note also that we can imagine an entire family of observables
{
Q̂k

}
satisfying

[
Q̂k , Q̂k′

]
= 0 and[

Ĥ0 , Q̂k

]
= 0, for all k and k′. Then for the Hamiltonian

Ĥ (λ) = Ĥ0 −
∑

k

λk Q̂k , (4.109)

we have that

Qk(λ, T ) = 〈 Q̂k 〉 = −
(
∂F

∂λk

)

T, {Na}, {λj(6=k)}

(4.110)

and we may define an entire matrix of susceptibilities,

χ
kl ≡

1

V

∂Qk

∂λl
= − 1

V

∂2F

∂λk ∂λl
. (4.111)

4.5 Grand Canonical Ensemble (GCE)

4.5.1 Grand canonical distribution and partition function

Consider once again the situation depicted in fig. 4.3, where a system S is in contact with a world W ,
their union U = W ∪ S being called the ‘universe’. We assume that the system’s volume VS is fixed, but
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otherwise it is allowed to exchange energy and particle number with W . Hence, the system’s energy E
S

and particle number N
S

will fluctuate. We ask what is the probability that S is in a state |n 〉 with energy
En and particle number Nn. This is given by the ratio

Pn = lim
∆E→0

lim
∆N→0

DW(EU − En , NU −Nn)∆E∆N

DU(EU, NU)∆E∆N

=
# of states accessible to W given that E

S
= En and N

S
= Nn

total # of states in U
.

(4.112)

Then

lnPn = lnD
W
(E

U
− En , NU

−Nn)− lnD
U
(E

U
, N

U
)

= lnDW(EU, NU)− lnDU(EU, NU)

− En

∂ lnDW(E,N)

∂E

∣∣∣∣ E=E
U

N=N
U

−Nn

∂ lnDW(E,N)

∂N

∣∣∣∣ E=E
U

N=N
U

+ . . .

(4.113)

and thus lnPn = −α− βEn + βµNn , with

β =
∂ lnDW(E,N)

∂E

∣∣∣∣ E=E
U

N=N
U

=
1

kBT
, µ = −k

B
T
∂ lnDW(E,N)

∂N

∣∣∣∣ E=E
U

N=N
U

. (4.114)

The quantity µ has dimensions of energy and is called the chemical potential. Nota bene: Some texts
define the ‘grand canonical Hamiltonian’ K̂ as K̂ ≡ Ĥ − µN̂ . Thus, Pn = e−α e−β(En−µNn). Once again,
the constant α is fixed by the requirement that

∑
n Pn = 1:

Pn =
1

Ξ
e−β(En−µNn)

Ξ(β, V, µ) =
∑

n

e−β(En−µNn) = Tr e−βK̂ .

(4.115)

Thus, the quantum mechanical grand canonical density matrix is given by

ˆ̺ =
e−βK̂

Tr e−βK̂
, (4.116)

with K̂ = Ĥ − µN̂ . Note that
[
ˆ̺, K̂

]
= 0. The quantity Ξ(T, V, µ) is called the grand partition function. It

stands in relation to a corresponding free energy in the usual way:

Ω(T, V, µ) = −k
B
T lnΞ(T, V, µ) ⇐⇒ Ξ = exp(−Ω/k

B
T ) , (4.117)

where Ω(T, V, µ) is the grand potential, also known as the Landau free energy. The dimensionless quantity
z ≡ exp(µ/kBT ) is called the fugacity. Thus, lnPn = (Ω −En + µNn)/kBT .
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If
[
Ĥ, N̂

]
= 0, the grand potential may be expressed as a sum over contributions from each N sector, viz.

Ξ(T, V, µ) =
∑

N

eβµN Z(T, V,N) . (4.118)

When there is more than one species, we have several chemical potentials {µa}, and accordingly we
define

K̂ = Ĥ −
∑

a

µa N̂a , (4.119)

with Ξ = Tr e−βK̂ as before. To compute averages within the GCE, we use the grand canonical density
matrix ˆ̺ :

〈
Â
〉
= Tr

(
ˆ̺Â
)
=

∑
n 〈n|Â|n〉 e−β(En−µNn)

∑
j e

−β(Ej−µNj)
, (4.120)

4.5.2 Entropy and Gibbs-Duhem relation

In the GCE, the Boltzmann entropy is

S = −k
B

∑

n

Pn lnPn = −k
B

∑

n

Pn

(
βΩ − βEn + βµNn

)

= −Ω
T

+
〈Ĥ〉
T

− µ 〈N̂ 〉
T

,

(4.121)

which says
Ω = E − TS − µN , (4.122)

where
E =

∑

n

En Pn = Tr
(
ˆ̺Ĥ
)

, N =
∑

n

Nn Pn = Tr
(
ˆ̺N̂
)

. (4.123)

Therefore, Ω(T, V, µ) is a double Legendre transform of E(S, V,N), with

dΩ = −S dT − p dV −Ndµ , (4.124)

which entails

S = −
(
∂Ω

∂T

)

V,µ

, p = −
(
∂Ω

∂V

)

T,µ

, N = −
(
∂Ω

∂µ

)

T,V

. (4.125)

Since Ω(T, V, µ) is an extensive quantity, we must be able to write Ω = V ω(T, µ). We identify the
function ω(T, µ) as the negative of the pressure:

∂Ω

∂V
= −kBT

Ξ

(
∂Ξ

∂V

)

T,µ

=
1

Ξ

∑

n

∂En

∂V
e−β(En−µNn) =

(
∂E

∂V

)

T,µ

= −p(T, µ) . (4.126)

Therefore, Ω = −pV , and p = p(T, µ) is an equation of state. This is consistent with the result from
thermodynamics that G = E − TS + pV = µN . Taking the differential, we recover the Gibbs-Duhem
relation,

dΩ = −S dT − p dV −Ndµ = −p dV − V dp ⇒ S dT − V dp+Ndµ = 0 . (4.127)
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4.5.3 Fluctuations in the GCE

Both energy and particle number fluctuate in the GCE. Let us compute the fluctuations in particle num-
ber. We have

N = 〈 N̂ 〉 = Tr N̂ e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
=

1

β

∂

∂µ
lnΞ = −∂Ω

∂µ
. (4.128)

Therefore,

1

β

∂N

∂µ
= − 1

β

∂2Ω

∂µ2
=

Tr N̂2 e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)
−
(
Tr N̂ e−β(Ĥ−µN̂)

Tr e−β(Ĥ−µN̂)

)2
=
〈
N̂2
〉
−
〈
N̂
〉2

, (4.129)

and thus 〈
N̂2
〉
−
〈
N̂
〉2

〈
N̂
〉2 =

k
B
T

N2

(
∂N

∂µ

)

T,V

=
k
B
T

V
κT , (4.130)

where κT is the isothermal compressibility. Note:

(
∂N

∂µ

)

T,V

=
∂(N,T, V )

∂(µ, T, V )
= −∂(N,T, V )

∂(V, T, µ)

= −∂(N,T, V )

∂(N,T, p)
·

N/V︷ ︸︸ ︷
∂(N,T, p)

∂(V, T, p)
·

1︷ ︸︸ ︷
∂(V, T, p)

∂(N,T, µ)
·

N/V︷ ︸︸ ︷
∂(N,T, µ)

∂(V, T, µ)

= −N
2

V 2

(
∂V

∂p

)

T,N

=
N2

V
κT .

(4.131)

We thus arrive at the result
(∆N)RMS

N
=

√
kBT κT
V

, (4.132)

which again scales as V −1/2. For the nonrelativistic ideal gas κT = 1/p and the ratio is N−1/2. Compare
with the OCE result in eqn. 4.96.

4.5.4 Generalized susceptibilities in the GCE

We can appropriate the results from §4.4.8 and apply them, mutatis mutandis, to the GCE. Suppose we
have a family of observables

{
Q̂k

}
satisfying

[
Q̂k , Q̂k′

]
= 0 and

[
Ĥ0 , Q̂k

]
= 0 and

[
N̂a , Q̂k

]
= 0 for all

k, k′, and a. We define the grand canonical Hamiltonian,

K̂ = Ĥ0 −
∑

a

µa N̂a −
∑

k

λk Q̂k . (4.133)

We then have

Ω
(
T, V, {µa}, {λk}

)
= −kBT Tr e−K̂/k

B
T , (4.134)
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whence

dΩ = −S dT − p dV +
∑

a

Na dµa −
∑

k

Qk dλk , (4.135)

where the un-hatted quantities {Na, Qk} are statistical averages within the GCE, viz.

Na = 〈N̂a〉 = − ∂Ω

∂µa
, Qk = 〈Q̂k〉 = − ∂Ω

∂λk
. (4.136)

This leads to various generalized susceptibilities and cross-susceptibilities,

∂Na

∂µb
= − ∂2Ω

∂µa∂µb
,

∂Qk

∂λl
= − ∂2Ω

∂λk∂λl
,

∂Na

∂λk
=
∂Qk

∂µa
= − ∂2Ω

∂µa∂λk
. (4.137)

Note that the mixed second derivatives are independent of order and yield various Maxwell relations.

4.5.5 Gibbs ensemble

Let the system’s particle number N be fixed, but let it exchange energy and volume with the world W .
Mutatis mutandis , we have

Pn = lim
∆E→0

lim
∆V→0

D
W
(E

U
− En , VU

− Vn)∆E∆V

D
U
(E

U
, V

U
)∆E∆V

. (4.138)

Then

lnPn = lnDW(EU − En , VU − Vn)− lnDU(EU, VU) (4.139)

= lnDW(EU, VU)− lnDU(EU, VU)− En
∂ lnDW(E,V )

∂E

∣∣∣∣E=E
U

V =V
U

− Vn
∂ lnDW(E,V )

∂V

∣∣∣∣E=E
U

V =V
U

+ . . . ,

and thus lnPn = −α− βEn − βp Vn , where the constants β and p are given by

β =
∂ lnDW(E,V )

∂E

∣∣∣∣E=E
U

V =V
U

=
1

kBT
, p = k

B
T
∂ lnDW(E,V )

∂V

∣∣∣∣E=E
U

V =V
U

. (4.140)

The corresponding partition function is

Y (T, p,N) = Tr e−β(Ĥ+pV ) =
1

V0

∞∫

0

dV e−βpV Z(T, V,N) ≡ e−βG(T,p,N) , (4.141)

where V0 is a constant which has dimensions of volume. The factor V −1
0 in front of the integral renders

Y dimensionless. Note that G(V ′
0) = G(V0) + k

B
T ln(V ′

0/V0), so the difference is not extensive and can
be neglected in the thermodynamic limit. In other words, it doesn’t matter what constant we choose for
V0 since it contributes subextensively to G. Moreover, in computing averages, the constant V0 divides
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out in the ratio of numerator and denominator. Like the Helmholtz free energy, the Gibbs free energy
G(T, p,N) is also a double Legendre transform of the energy E(S, V,N), viz.

G = E − TS + pV

dG = −S dT + V dp+ µdN ,
(4.142)

which entails

S = −
(
∂G

∂T

)

p,N

, V = +

(
∂G

∂p

)

T,N

, µ = +

(
∂G

∂N

)

T,p

. (4.143)

4.6 Statistical Ensembles from Maximum Entropy

The basic principle: maximize the Boltzmann entropy,

S = −k
B

∑

n

Pn lnPn , (4.144)

subject to a set of constraints. Constrained extremization using Lagrange’s method of undetermined
multipliers is reviews in the appendix, §4.10.

4.6.1 Microcanonical ensemble

We maximize S subject to the single constraint

C =
∑

n

Pn − 1 = 0 . (4.145)

We implement the constraint C = 0 with a Lagrange multiplier, λ̄ ≡ kB λ, writing

S∗ = S − k
B
λC , (4.146)

and freely extremizing over the distribution {Pn} and the Lagrange multiplier λ. Thus,

δS∗ = δS − k
B
λ δC − k

B
C δλ

= −kB

∑

n

[
lnPn + 1 + λ

]
δPn − kB C δλ ≡ 0 .

(4.147)

We conclude that C = 0 and that
lnPn = −

(
1 + λ

)
, (4.148)

and we fix λ by the normalization condition
∑

n Pn = 1. This gives Pn = 1/Ω, with

Ω =
∑

n

Θ(E +∆E − En)Θ(En − E) , (4.149)

i.e. the total number of energy states lying in the interval [E,E +∆E] .
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4.6.2 Ordinary canonical ensemble

We maximize S subject to the two constraints

C1 =
∑

n

Pn − 1 = 0 , C2 =
∑

n

En Pn − E = 0 . (4.150)

We now have two Lagrange multipliers. We write

S∗ = S − k
B

2∑

j=1

λj Cj , (4.151)

and we freely extremize over {Pn} and {Cj}. We therefore have

δS∗ = δS − k
B

∑

n

(
λ1 + λ2En

)
δPn − k

B

2∑

j=1

Cj δλj

= −k
B

∑

n

[
lnPn + 1 + λ1 + λ2En

]
δPn − k

B

2∑

j=1

Cj δλj ≡ 0 .

(4.152)

Thus, C1 = C2 = 0 and
lnPn = −

(
1 + λ1 + λ2En

)
. (4.153)

We define λ2 ≡ β and we fix λ1 by normalization. This yields

Pn =
1

Z
e−βEn , Z =

∑

n

e−βEn = Tr e−βĤ . (4.154)

4.6.3 Grand canonical ensemble

We maximize S subject to the three constraints

C1 =
∑

n

Pn − 1 = 0 , C2 =
∑

n

En Pn −E = 0 , C3 =
∑

n

Nn Pn −N = 0 . (4.155)

We now have three Lagrange multipliers. We write

S∗ = S − k
B

3∑

j=1

λj Cj , (4.156)

and hence

δS∗ = δS − kB

∑

n

(
λ1 + λ2En + λ3Nn

)
δPn − kB

3∑

j=1

Cj δλj

= −kB

∑

n

[
lnPn + 1 + λ1 + λ2En + λ3Nn

]
δPn − kB

3∑

j=1

Cj δλj ≡ 0 .

(4.157)
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Thus, C1 = C2 = C3 = 0 and

lnPn = −
(
1 + λ1 + λ2En + λ3Nn

)
. (4.158)

We define λ2 ≡ β and λ3 ≡ −βµ, and we fix λ1 by normalization. This yields

Pn =
1

Ξ
e−β(En−µNn) , Ξ =

∑

n

e−β(En−µNn) = Tr e−β(Ĥ−µN̂) . (4.159)

4.6.4 Generalized Gibbs ensembles

Suppose we have p constraints of the form 〈Q̂k〉 = Qk with k ∈ {1, . . . , p} and c constraints of the form

〈N̂a〉 = Na with a ∈ {1, . . . , c}, in addition to the constraint of overall normalization of the probability
distribution Pn. Then construct the extended function S∗, with

1

k
B

S∗(P1, . . . , PΩ , λ , η1 , . . . , ηc , θ1, . . . , θp) = −
∑

n

Pn lnPn − λ

(∑

n

Pn − 1

)
(4.160)

−
p∑

k=1

θk

(∑

n

PnQk,n −Qk

)
−

c∑

a=1

ηa

(∑

n

PnNa,n −Na

)
,

where λ, {θk} and {ηa} comprise 1+p+c undetermined Lagrange multipliers. The total number of states
is taken to be Ω, i.e. n ∈ {1, . . . ,Ω}. Setting the variation δS∗ = 0, we obtain the following Ω+ 1 + p+ c

equations:

0 =
1

kB

∂S∗

∂Pn

= − lnPn − (1 + λ)−
p∑

k=1

θkQk,n −
c∑

a=1

ηaNa,n

0 =
1

kB

∂S∗

∂λ
= 1−

∑

n

Pn

0 =
1

k
B

∂S∗

∂θk
= Qk −

∑

n

PnQk,n

0 =
1

k
B

∂S∗

∂ηa
= Na −

∑

n

PnNa,n .

(4.161)

Thus, the probability distribution is given by

Pn(θ,η) =
1

Z(θ,η)
exp

{
−

p∑

k=1

θkQk,n −
c∑

a=1

ηaNa,n

}
(4.162)

with

Z(θ,η) =
∑

n

exp

{
−

p∑

k=1

θkQk,n −
c∑

a=1

ηaNa,n

}
(4.163)

as well as
Qk =

∑

n

Pn(θ,η)Qk,n , Na =
∑

n

Pn(θ,η)Na,n , (4.164)
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where Qk,n = 〈n | Q̂k |n 〉 and Na,n = 〈n | N̂a |n 〉.

If for k = 1 we have Q̂k=1 = Ĥ, then Q1,n = En and we may define θ1 ≡ β = 1/kBT and θk ≡ −βλk
for k ≥ 2. Similarly we may define ηa ≡ −βµa . Further defining the generalized grand canonical
Hamiltonian as

K̂(λ,µ) ≡ Ĥ −
p∑

k=2

λk Q̂k −
c∑

a=1

µa N̂a , (4.165)

we have
Z(T,λ,µ) = Tr e−βK̂ =

∑

n

e−Kn/kBT (4.166)

and
Pn(T,λ,µ) = Z−1 e−Kn/kBT , Kn = 〈n | K̂ |n 〉 . (4.167)

Note the correspondence of these results with those of §4.5.4.

4.7 Ideal Gas Statistical Mechanics

The ordinary canonical partition function for the ideal gas was computed in eqn. 4.14. We found

Z(T, V,N) =
1

N !

N∏

i=1

∫
ddxi d

dpi
(2π~)d

e−βp2
i /2m

=
V N

N !




∞∫

−∞

dp

2π~
e−βp2/2m



Nd

=
1

N !

(
V

λdT

)N
,

(4.168)

where λT is the thermal wavelength,

λT =
√

2π~2/mkBT . (4.169)

The physical interpretation of λT is that it is the de Broglie wavelength for a particle of mass m which
has a kinetic energy of kBT .

In the GCE, we have

Ξ(T, V, µ) =

∞∑

N=0

eβµN Z(T, V,N)

=

∞∑

N=1

1

N !

(
V eµ/kBT

λdT

)N
= exp

(
V eµ/kBT

λdT

)
.

(4.170)

From Ξ = e−Ω/k
B
T , we have the grand potential is

Ω(T, V, µ) = −V k
B
T eµ/kBT

/
λdT . (4.171)

Since Ω = −pV (see §4.5.2), we have

p(T, µ) = kBT λ
−d
T eµ/kBT . (4.172)
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The number density can also be calculated:

n =
N

V
= − 1

V

(
∂Ω

∂µ

)

T,V

= λ−d
T eµ/kBT . (4.173)

Combined, the last two equations recapitulate the ideal gas law, pV = NkBT .

4.7.1 Maxwell velocity distribution

The distribution function for momenta is given by

g(p) =
〈 1

N

N∑

i=1

δ(pi − p)
〉

. (4.174)

Note that g(p) =
〈
δ(pi − p)

〉
is the same for every particle, independent of its label i. We compute the

average 〈A〉 = Tr
(
Ae−βĤ

)
/Tr e−βĤ . Setting i = 1, all the integrals other than that over p1 divide out

between numerator and denominator. We then have

g(p) =

∫
d3p1 δ(p1 − p) e−βp2

1/2m

∫
d3p1 e

−βp2
1/2m

= (2πmk
B
T )−3/2 e−βp2/2m . (4.175)

Textbooks commonly refer to the velocity distribution f(v), which is related to g(p) by

f(v) d3v = g(p) d3p . (4.176)

Hence,

f(v) =

(
m

2πkBT

)3/2
e−mv2/2kBT . (4.177)

This is known as the Maxwell velocity distribution. Note that the distributions are normalized, viz.

∫
d3p g(p) =

∫
d3v f(v) = 1 . (4.178)

If we are only interested in averaging functions of v = |v| which are isotropic, then we can define the
Maxwell speed distribution, f̃(v), as

f̃(v) = 4π v2f(v) = 4π

(
m

2πkBT

)3/2
v2 e−mv2/2kBT . (4.179)

Note that f̃(v) is normalized according to
∞∫
0

dv f̃(v) = 1 . It is convenient to represent v in units of

v0 =
√
kBT/m, in which case

f̃(v) =
1

v0
ϕ(v/v0) , ϕ(s) =

√
2
π s

2 e−s2/2 . (4.180)
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Figure 4.6: Maxwell distribution of speeds ϕ(v/v0). The most probable speed is vmax =
√
2v0. The

average speed is vavg =
√

8/π v0. The RMS speed is vrms =
√
3 v0.

The distribution ϕ(s) is shown in fig. 4.6. Computing averages, we have

Ck ≡ 〈sk〉 =
∞∫

0

ds sk ϕ(s) =
2√
π
· 2k/2 Γ

(
3
2 + k

2

)
. (4.181)

Thus, C0 = 1, C1 =
√

8/π, C2 = 3, etc. The speed averages are

〈
vk
〉
= Ck

(
kBT

m

)k/2
. (4.182)

Note that the average velocity is 〈v〉 = 0, but the average speed is 〈v〉 =
√

8kBT/πm. The speed distribu-
tion is plotted in fig. 4.6.

4.7.2 Equipartition

The Hamiltonian for ballistic (i.e. massive nonrelativistic) particles is quadratic in the individual com-
ponents of each momentum pi. There are other cases in which a classical degree of freedom appears
quadratically in Ĥ as well. For example, an individual normal mode ξ of a system of coupled oscillators
has the Lagrangian L = 1

2 ξ̇
2 − 1

2 ω
2
0 ξ

2, where the dimensions of ξ are [ξ] = M1/2L by convention. The

Hamiltonian for this normal mode is then Ĥ = 1
2p

2 + 1
2 ω

2
0 ξ

2, from which we see that both the kinetic as
well as potential energy terms enter quadratically into the Hamiltonian. The classical rotational kinetic
energy is also quadratic in the angular momentum components.

Let us compute the contribution of a single quadratic degree of freedom in Ĥ to the partition func-
tion. We’ll call this degree of freedom u – it may be a position or momentum or an angle or an angular
momentum or some other generalized coordinate or conjugate momentum – and we’ll write its contri-
bution to Ĥ as Ĥu = 1

2Ku
2, where K is some constant. Integrating over u yields the following factor in
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the partition function:

ζ(β) ≡
∞∫

−∞

du e−βKu2/2 =

(
2π

Kβ

)1/2
, (4.183)

where β = 1/k
B
T . The contribution to the Helmholtz free energy is then

∆Fu = −k
B
T ln ζ = 1

2kB
T ln

(
K

2πkBT

)
, (4.184)

and therefore the contribution to the internal energy E is

∆Eu = −∂ ln ζ
∂β

= 1
2kBT . (4.185)

We have thus derived what is commonly called the equipartition theorem of classical statistical mechanics:

To each degree of freedom which enters the Hamiltonian quadratically is associated a contri-
bution 1

2kBT to the internal energy of the system. This results in a concomitant contribution
of 1

2kB to the heat capacity.

We now see why the internal energy of a classical ideal gas with f degrees of freedom per molecule is
E = 1

2fNkB
T , and CV = 1

2NkB
. This result also has applications in the theory of solids. The atoms

in a solid possess kinetic energy due to their motion, and potential energy due to the spring-like in-
teratomic potentials which tend to keep the atoms in their preferred crystalline positions. Thus, for
a three-dimensional crystal, there are six quadratic degrees of freedom (three positions and three mo-
menta) per atom, and the classical energy should be E = 3Nk

B
T , and the heat capacity CV = 3Nk

B
.

As we shall see, quantum mechanics modifies this result considerably at temperatures below the high-
est normal mode (i.e. phonon) frequency, but the high temperature limit is given by the classical value
CV = 3νR (where ν = N/NA is the number of moles) derived here, known as the Dulong-Petit limit.

For a degree of freedom which enters the Hamiltonian as a power, such as Ĥu = 1
2K|u|σ we have

ζ(β) = 2

∞∫

0

du e−βKuσ/2 =
21+σ−1

Γ(1/σ)

σK1/σ
β−1/σ (4.186)

after substituting u(t) = (2t/βK)1/σ and integrating over t. We then obtain ∆Eu = kBT/σ.

4.8 Selected Examples

4.8.1 Spins in an external magnetic field

Consider a system of N spins, each of which can be either up (σ = +1) or down (σ = −1). The
Hamiltonian for this system is

Ĥ = −µ0H
N∑

j=1

σj , N (4.187)
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where now we write Ĥ for the Hamiltonian, to distinguish it from the external magnetic field H , and µ0
is the magnetic moment per particle. We treat this system within the ordinary canonical ensemble. The
partition function is

Z =
∑

σ1

· · ·
∑

σ
N

e−βĤ = ζN , (4.188)

where ζ is the single particle partition function:

ζ =
∑

σ=±1

eµ0Hσ/k
B
T = 2cosh

(
µ0H

kBT

)
. (4.189)

The Helmholtz free energy is then

F (T,H,N) = −k
B
T lnZ = −Nk

B
T ln

[
2 cosh

(
µ0H

kBT

)]
. (4.190)

The magnetization is

M = −
(
∂F

∂H

)

T,N

= Nµ0 tanh

(
µ0H

kBT

)
. (4.191)

The energy is

E =
∂

∂β

(
βF
)
= −Nµ0H tanh

(
µ0H

kBT

)
. (4.192)

Hence, E = −HM , which we already knew, from the form of Ĥ itself.

Each spin here is independent. The probability that a given spin has polarization σ is

Pσ =
eβµ0Hσ

eβµ0H + e−βµ0H
. (4.193)

The total probability is unity, i.e. P↑ + P↓ = 1, and the average polarization is a weighted average of
σ = +1 and σ = −1 contributions:

〈σ〉 = P↑ − P↓ = tanh

(
µ0H

k
B
T

)
. (4.194)

At low temperatures T ≪ µ0H/kB, we have P↑ ≈ 1 − e−2µ0H/kBT . At high temperatures T > µ0H/kB,

the two polarizations are equally likely, and Pσ ≈ 1
2

(
1 +

σµ0H
k
B
T

)
.

The isothermal magnetic susceptibility is defined as

χ
T =

1

N

(
∂M

∂H

)

T

=
µ20
kBT

sech2
(
µ0H

kBT

)
. (4.195)

(Typically this is computed per unit volume rather than per particle.) At H = 0, we have χT = µ20/kB
T ,

which is known as the Curie law.
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Aside

The energy E = −HM here is not the same quantity we discussed in our study of thermodynamics. In
fact, the thermodynamic energy for this problem vanishes! Here is why. To avoid confusion, we’ll need
to invoke a new symbol for the thermodynamic energy, E . Recall that the thermodynamic energy E is a
function of extensive quantities, meaning E = E(S,M,N). It is obtained from the free energy F (T,H,N)
by a double Legendre transform:

E(S,M,N) = F (T,H,N) + TS +HM . (4.196)

Now from eqn. 4.190 we derive the entropy

S = −∂F
∂T

= Nk
B
ln

[
2 cosh

(
µ0H

kBT

)]
− Nµ0H

T
tanh

(
µ0H

kBT

)
. (4.197)

Thus, using eqns. 4.190 and 4.191, we obtain E(S,M,N) = 0.

The potential confusion here arises from our use of the expression F (T,H,N). In thermodynamics, it is
the Gibbs free energyG(T, p,N) which is a double Legendre transform of the energy: G = E −TS+ pV .
By analogy, with magnetic systems we should perhaps write G = E − TS −HM , but in keeping with
many textbooks we shall use the symbol F and refer to it as the Helmholtz free energy. The quantity
we’ve called E in eqn. 4.192 is in fact E = E−HM , which means E = 0. The energy E(S,M,N) vanishes
here because the spins are noninteracting. N

4.8.2 Negative temperature (!)

Consider again a system of N spins, each of which can be either up (+) or down (−). Let Nσ be the
number of sites with spin σ, where σ = ±1. Clearly N+ +N− = N . We now treat this system within the
microcanonical ensemble.

The energy of the system is E = −HM , where H is an external magnetic field, and M = (N+ −N−)µ0
is the total magnetization. We now compute S(E) using the ordinary canonical ensemble. The number
of ways of arranging the system with N+ up spins is

Ω =

(
N

N+

)
=

N !

N+!N−!
. (4.198)

Using Stirling’s expression lnK! = K lnK −K +O(lnK) for large K , we have

S = kB ln Ω =
(
N lnN −N+ lnN+ −N− lnN− +N−

)
−
(
N −N+ −N−

)

= −Nk
B

{
x lnx+ (1− x) ln(1− x)

} (4.199)

in the thermodynamic limit: N → ∞, N+ → ∞, x = N+/N constant. Now the magnetization is
M = (N+ −N−)µ0 = (2N+ −N)µ0 , hence if we define the maximum energy E0 ≡ Nµ0H , then

E

E0

= − M

Nµ0
= 1− 2x =⇒ x =

E0 − E

2E0

. (4.200)
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Figure 4.7: When entropy decreases with increasing energy, the temperature is negative. Typically,
kinetic degrees of freedom prevent this peculiarity from manifesting in physical systems.

We therefore have

S(E,N) = −Nk
B

[(
E0 − E

2E0

)
ln

(
E0 − E

2E0

)
+

(
E0 + E

2E0

)
ln

(
E0 + E

2E0

)]
. (4.201)

We now have

1

T
=

(
∂S

∂E

)

N

=
∂S

∂x

∂x

∂E
=
Nk

B

2E0

ln

(
E0 − E

E0 + E

)
. (4.202)

We see that the temperature is positive for −E0 ≤ E < 0 and is negative for 0 < E ≤ E0.

What has gone wrong? The answer is that nothing has gone wrong – all our calculations are perfectly
correct. This system does exhibit the possibility of negative temperature. It is, however, unphysical in
that we have neglected kinetic degrees of freedom, which result in an entropy function S(E,N) which
is an increasing function of energy. In this system, S(E,N) achieves a maximum of Smax = NkB ln 2
at E = 0 (i.e. x = 1

2 ), and then turns over and starts decreasing. In fact, our results are completely
consistent with eqn. 4.192 : the energy E is an odd function of temperature. Positive energy requires
negative temperature! Another example of this peculiarity is provided in the appendix in §4.11.2.

4.8.3 Adsorption

PROBLEM: A surface containing N adsorption sites is in equilibrium with a monatomic ideal gas. Atoms
adsorbed on the surface have an energy −∆ and no kinetic energy. Each adsorption site can accommo-
date at most one atom. Calculate the fraction f of occupied adsorption sites as a function of the gas
density n, the temperature T , the binding energy ∆, and physical constants.
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SOLUTION: The grand partition function for the surface is

Ξsurf = e−Ω
surf

/kBT =
N∑

j=0

(
N

j

)
ej(µ+∆)/kBT =

(
1 + eµ/kBT e∆/kBT

)N
. (4.203)

The fraction of occupied sites is

f =
〈N̂surf〉
N

= − 1

N

∂Ωsurf

∂µ
=

eµ/kBT

eµ/kBT + e−∆/k
B
T

. (4.204)

Since the surface is in equilibrium with the gas, its fugacity z = exp(µ/k
B
T ) and temperature T are the

same as in the gas.

For a monatomic ideal gas, the single particle partition function is ζ = V λ−3
T , where λT =

√
2π~2/mkBT

is the thermal wavelength. Thus, the grand partition function, for indistinguishable particles, is

Ξgas = exp
(
V λ−3

T eµ/kBT
)

. (4.205)

The gas density is

n =
〈N̂gas〉
V

= − 1

V

∂Ωgas

∂µ
= λ−3

T eµ/kBT . (4.206)

We can now solve for the fugacity: z = eµ/kBT = nλ3T . Thus, the fraction of occupied adsorption sites is

f =
nλ3T

nλ3T + e−∆/k
B
T

. (4.207)

Interestingly, the solution for f involves the constant ~.

It is always advisable to check that the solution makes sense in various limits. First of all, if the gas
density tends to zero at fixed T and ∆, we have f → 0. On the other hand, if n → ∞ we have f → 1,
which also makes sense. At fixed n and T , if the adsorption energy is (−∆) → −∞, then once again
f = 1 since every adsorption site wants to be occupied. Conversely, taking (−∆) → +∞ results in
n→ 0, since the energetic cost of adsorption is infinitely high.

4.8.4 Elasticity of wool

Wool consists of interlocking protein molecules which can stretch into an elongated configuration, but
reversibly so. This feature gives wool its very useful elasticity. Let us model a chain of these proteins
by assuming they can exist in one of two states, which we will call A and B, with energies εA and εB
and lengths ℓA and ℓB. The situation is depicted in fig. 4.8. We model these conformational degrees of
freedom by a spin variable σ = ±1 for each molecule, where σ = +1 in the A state and σ = −1 in the B
state. Suppose a chain consisting of N monomers is placed under a tension τ . We then have

Ĥ =

N∑

j=1

[
εA δσj ,+1 + εB δσj ,−1

]
. (4.208)
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Figure 4.8: The monomers in wool are modeled as existing in one of two states. The low energy unde-
formed state is A, and the higher energy deformed state is B. Applying tension induces more monomers
to enter the B state.

Similarly, the length is

L̂ =

N∑

j=1

[
ℓA δσj ,+1 + ℓB δσj ,−1

]
. (4.209)

The Gibbs partition function is Y = Tr e−K̂/k
B
T , with K̂ = Ĥ − τL̂ :

K̂ =
N∑

j=1

[
ε̃
A
δσ

j
,+1 + ε̃

B
δσ

j
,−1

]
, (4.210)

where ε̃A ≡ εA − τℓA and ε̃B ≡ εB − τℓB. At τ = 0 the A state is preferred for each monomer, but when τ
exceeds τ∗, defined by the relation ε̃A = ε̃B, the B state is preferred. One finds

τ∗ =
ε
B
− ε

A

ℓ
B
− ℓ

A

. (4.211)

Once again, we have a set of N noninteracting spins. The partition function is Y = ζN , where ζ is the
single monomer partition function, ζ = Tr exp(−βĥ), where

ĥ = ε̃
A
δσj ,1

+ ε̃
B
δσj ,−1 (4.212)

is the single “spin” Hamiltonian. Thus,

ζ = Tr e−βĥ = e−βε̃
A + e−βε̃

B , (4.213)

It is convenient to define the differences

∆ε = ε
B
− ε

A
, ∆ℓ = ℓ

B
− ℓ

A
, ∆ε̃ = ε̃

B
− ε̃

A
(4.214)

in which case the partition function Y and Gibbs free energy G are

Y (T, τ,N) = e−Nβ ε̃
A

[
1 + e−β∆ε̃

]N

G(T, τ,N) = Nε̃
A
−Nk

B
T ln

[
1 + e−∆ε̃/kBT

] (4.215)

The average length is

L = 〈L̂〉 = −
(
∂G

∂τ

)

T,N

= Nℓ
A
+

N∆ℓ

e(∆ε−τ∆ℓ)/k
B
T + 1

.

(4.216)
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Figure 4.9: Upper panel: length L(τ, T ) for kBT/ε̃ = 0.01 (blue), 0.1 (green), 0.5 (dark red), and 1.0 (red).
Bottom panel: dimensionless force constant k/N(∆ℓ)2 versus temperature.

The polymer behaves as a spring, and for small τ the spring constant is

k =
∂τ

∂L

∣∣∣∣
τ=0

=
4k

B
T

N(∆ℓ)2
cosh2

(
∆ε

2kBT

)
. (4.217)

The results are shown in fig. 4.9. Note that length increases with temperature for τ < τ∗ and decreases
with temperature for τ > τ∗. Note also that k diverges at both low and high temperatures. At low T , the
energy gap ∆εdominates andL = Nℓ

A
, while at high temperatures k

B
T dominates andL = 1

2N(ℓ
A
+ℓ

B
).

4.8.5 Noninteracting spin dimers

Consider a system of noninteracting spin dimers as depicted in fig. 4.10. Each dimer contains two spins,
and is described by the Hamiltonian

Ĥdimer = −J σ1σ2 − µ0H (σ1 + σ2) . (4.218)

Here, J is an interaction energy between the spins which comprise the dimer. If J > 0 the interaction
is ferromagnetic, which prefers that the spins are aligned. That is, the lowest energy states are |↑↑ 〉 and
|↓↓ 〉. If J < 0 the interaction is antiferromagnetic, which prefers that spins be anti-aligned: |↑↓ 〉 and
|↓↑ 〉.9

9Nota bene we are concerned with classical spin configurations only – there is no superposition of states al-
lowed in this model!
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Figure 4.10: A model of noninteracting spin dimers on a lattice. Each red dot represents a classical spin
for which σj = ±1.

Suppose there are Nd dimers. Then the OCE partition function is Z = ζNd , where ζ(T,H) is the single
dimer partition function. To obtain ζ(T,H), we sum over the four possible states of the two spins,
obtaining

ζ = Tr e−Ĥ
dimer

/kBT = 2 e−J/kBT + 2 eJ/kBT cosh

(
2µ0H

kBT

)
. (4.219)

Thus, the free energy is

F (T,H,Nd) = −Nd kBT ln 2−Nd kBT ln

[
e−J/k

B
T + eJ/kBT cosh

(
2µ0H

kBT

)]
. (4.220)

The magnetization is

M = −
(
∂F

∂H

)

T,N
d

= 2Nd µ0 ·
eJ/kBT sinh

(
2µ0H
k
B
T

)

e−J/k
B
T + eJ/kBT cosh

(
2µ0H
k
B
T

) (4.221)

It is instructive to consider the zero field isothermal susceptibility per spin,

χ
T =

1

2Nd

∂M

∂H

∣∣∣∣
H=0

=
µ20
kBT

· 2 eJ/kBT

eJ/kBT + e−J/k
B
T

. (4.222)

The quantity µ20/kBT is simply the Curie susceptibility for noninteracting classical spins. Note that we
correctly recover the Curie result when J = 0, since then the individual spins comprising each dimer
are in fact noninteracting. For the ferromagnetic case, if J ≫ kBT , then we obtain

χ
T (J ≫ kBT ) ≈

2µ20
k
B
T

. (4.223)

This has the following simple interpretation. When J ≫ k
B
T , the spins of each dimer are effectively

locked in parallel. Thus, each dimer has an effective magnetic moment µeff = 2µ0. On the other hand,
there are only half as many dimers as there are spins, so the resulting Curie susceptibility per spin is
1
2 × (2µ0)

2/kBT .
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When −J ≫ k
B
T , the spins of each dimer are effectively locked in one of the two antiparallel configu-

rations. We then have

χ
T (−J ≫ k

B
T ) ≈ 2µ20

kBT
e−2|J |/kBT . (4.224)

In this case, the individual dimers have essentially zero magnetic moment.

4.9 Statistical Mechanics of Molecular Gases

4.9.1 Separation of translational and internal degrees of freedom

The states of a noninteracting atom or molecule are labeled by its total momentum p and its internal
quantum numbers, which we will simply write with a collective index α, specifying rotational, vibra-
tional, and electronic degrees of freedom. The single particle Hamiltonian is then

ĥ =
p2

2m
+ ĥint , (4.225)

with

ĥ |k , α 〉 =
(
~
2k2

2m
+ εα

)
|k , α 〉 . (4.226)

The partition function is

ζ = Tr e−βĥ =
∑

p

e−βp2/2m
∑

j

gj e
−βεj . (4.227)

Here we have replaced the internal label α with a label j of energy eigenvalues, with gj being the de-
generacy of the internal state with energy εj . To do the p sum, we quantize in a box of dimensions
L1 × L2 × · · · × Ld, using periodic boundary conditions. Then

p =

(
2π~n1
L1

,
2π~n2
L2

, . . . ,
2π~nd
Ld

)
, (4.228)

where each ni is an integer. Since the differences between neighboring quantized p vectors are very tiny,
we can replace the sum over p by an integral:

∑

p

−→
∫

ddp

∆p1 · · ·∆pd
(4.229)

where the volume in momentum space of an elementary rectangle is

∆p1 · · ·∆pd =
(2π~)d

L1 · · ·Ld

=
(2π~)d

V
. (4.230)

Thus,

ζ = V

∫
ddp

(2π~)d
e−p2/2mk

B
T
∑

j

gj e
−εj/kBT = V λ−d

T ξ(T )

ξ(T ) =
∑

j

gj e
−εj/kBT .

(4.231)
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Here, ξ(T ) is the internal coordinate partition function. The full N -particle ordinary canonical partition
function is then

ZN =
1

N !

(
V

λdT

)N
ξN (T ) . (4.232)

Using Stirling’s approximation, we find the Helmholtz free energy F = −k
B
T lnZ is

F (T, V,N) = −NkBT

[
ln

(
V

NλdT

)
+ 1 + ln ξ(T )

]

= −NkBT

[
ln

(
V

NλdT

)
+ 1

]
+Nϕ(T ) ,

(4.233)

where
ϕ(T ) = −k

B
T ln ξ(T ) (4.234)

is the internal coordinate contribution to the single particle free energy. We could also compute the
partition function in the Gibbs (T, p,N) ensemble:

Y (T, p,N) = e−βG(T,p,N) =
1

V0

∞∫

0

dV e−βpV Z(T, V,N)

=

(
kBT

pV0

)(
kBT

pλdT

)N
ξN (T ) .

(4.235)

Thus, in the thermodynamic limit,

µ(T, p) =
G(T, p,N)

N
= k

B
T ln

(
p λdT
kBT

)
− k

B
T ln ξ(T )

= k
B
T ln

(
p λdT
kBT

)
+ ϕ(T ) .

(4.236)

4.9.2 Ideal gas law

Since the internal coordinate contribution to the free energy is volume-independent, we have

V =

(
∂G

∂p

)

T,N

=
NkBT

p
, (4.237)

and the ideal gas law applies. The entropy is

S = −
(
∂G

∂T

)

p,N

= NkB

[
ln

(
k
B
T

pλdT

)
+ 1 + 1

2d

]
−Nϕ′(T ) , (4.238)

and therefore the heat capacities are

Cp = T

(
∂S

∂T

)

p,N

=
(
1
2d+ 1

)
Nk

B
−NT ϕ′′(T )

CV = T

(
∂S

∂T

)

V,N

= 1
2dNkB

−NT ϕ′′(T ) .

(4.239)
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Thus, any temperature variation in Cp must be due to the internal degrees of freedom.

4.9.3 The internal coordinate partition function

At energy scales of interest we can separate the internal degrees of freedom into distinct classes, writing

ĥint = ĥrot + ĥvib + ĥelec (4.240)

as a sum over internal Hamiltonians governing rotational, vibrational, and electronic degrees of free-
dom. Then

ξint(T ) = ξrot(T ) · ξvib(T ) · ξelec(T ) . (4.241)

Associated with each class of excitation is a characteristic temperature Θ. Rotational and vibrational
temperatures of a few common molecules are listed in table tab. 4.1.

4.9.4 Rotations

Consider a class of molecules which can be approximated as an axisymmetric top. The rotational Hamil-
tonian is then

ĥrot =
L2a + L2b
2I1

+
L2c

2I3

=
~
2L(L+ 1)

2I1
+

(
1

2I3
− 1

2I1

)
L2c ,

(4.242)

where n̂a.b,c(t) are the principal axes, with n̂c the symmetry axis, and La,b,c are the components of the
angular momentum vector L about these instantaneous body-fixed principal axes. The components of
L along space-fixed axes {x, y, z} are written as Lx,y,z. Note that

[
Lµ , Lc

]
= nνc

[
Lµ , Lν

]
+
[
Lµ , nνc

]
Lν = iǫµνλ n

ν
c L

λ + iǫµνλ n
λ
c L

ν = 0 , (4.243)

which is equivalent to the statement that Lc = n̂c · L is a rotational scalar. We can therefore simul-
taneously specify the eigenvalues of {L2, Lz, Lc}, which form a complete set of commuting observ-
ables (CSCO)10. The eigenvalues of Lz are m~ with m ∈ {−L, . . . , L}, while those of Lc are k~ with
k ∈ {−L, . . . , L}. There is a (2L+ 1)-fold degeneracy associated with the Lz quantum number.

We assume the molecule is prolate, so that I3 < I1. We can the define two temperature scales,

Θ =
~
2

2I1kB

, Θ̃ =
~
2

2I3kB

. (4.244)

Prolateness then means Θ̃ > Θ. We conclude that the rotational partition function for an axisymmetric
molecule is given by

ξrot(T ) =
∞∑

L=0

(2L+ 1) e−L(L+1)Θ/T
L∑

k=−L

e−k2 (Θ̃−Θ)/T (4.245)
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molecule Θrot(K) Θvib(K)

H2 85.4 6100

N2 2.86 3340

H2O 13.7 , 21.0 , 39.4 2290 , 5180 , 5400

Table 4.1: Some rotational and vibrational temperatures of common molecules.

In diatomic molecules, I3 is extremely small, and Θ̃ ≫ kBT at all relevant temperatures. Only the k = 0
term contributes to the partition sum, and we have

ξrot(T ) =
∞∑

L=0

(2L+ 1) e−L(L+1)Θ/T . (4.246)

When T ≪ Θ, only the first few terms contribute, and

ξrot(T ) = 1 + 3 e−2Θ/T + 5 e−6Θ/T + . . . (4.247)

In the high temperature limit, we have a slowly varying summand. The Euler-MacLaurin summation
formula may be used to evaluate such a series:

n∑

k=0

Fk =

n∫

0

dk F (k) + 1
2

[
F (0) + F (n)

]
+

∞∑

j=1

B2j

(2j)!

[
F (2j−1)(n)− F (2j−1)(0)

]
(4.248)

where Bj is the jth Bernoulli number where

B0 = 1 , B1 = −1
2 , B2 =

1
6 , B4 = − 1

30 , B6 =
1
42 . (4.249)

Thus,
∞∑

k=0

Fk =

∞∫

0

dxF (x) + 1
2F (0) − 1

12F
′(0)− 1

720
F ′′′(0) + . . . . (4.250)

We have F (x) = (2x+ 1) e−x(x+1)Θ/T , for which
∞∫
0

dxF (x) = T
Θ , hence

ξrot =
T

Θ
+

1

3
+

1

15

Θ

T
+

4

315

(
Θ

T

)2
+ . . . . (4.251)

Recall that ϕ(T ) = −k
B
T ln ξ(T ). We conclude that ϕrot(T ) ≈ −3k

B
T e−2Θ/T for T ≪ Θ and ϕrot(T ) ≈

−k
B
T ln(T/Θ) for T ≫ Θ. We have seen that the internal coordinate contribution to the heat capacity

is ∆CV = −NTϕ′′(T ). For diatomic molecules, then, this contribution is exponentially suppressed for

10Note that while we cannot simultaneously specify the eigenvalues of two components of L along axes fixed
in space, we can simultaneously specify the components of L along one axis fixed in space and one axis rotating
with a body. See Landau and Lifshitz, Quantum Mechanics, §103.
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T ≪ Θ, while for high temperatures we have ∆CV = Nk
B

. One says that the rotational excitations are
‘frozen out’ at temperatures much below Θ. Including the first few terms, we have

∆CV (T ≪ Θ) = 12NkB

(
Θ

T

)2
e−2Θ/T + . . .

∆CV (T ≫ Θ) = NkB

{
1 +

1

45

(
Θ

T

)2
+

16

945

(
Θ

T

)3
+ . . .

}
.

(4.252)

Note that CV overshoots its limiting value of Nk
B

and asymptotically approaches it from above.

Special care must be taken in the case of homonuclear diatomic molecules, for then only even or odd L
states are allowed, depending on the total nuclear spin. This is discussed below in §4.9.7.

For polyatomic molecules, the moments of inertia generally are large enough that the molecule’s rota-
tions can be considered classically. We then have

ε(La, Lb, Lc) =
L2a

2I1
+

L2b
2I2

+
L2c

2I3
. (4.253)

We then have

ξrot(T ) =
1

grot

∫
dLa dLb dLc dφ dθ dψ

(2π~)3
e−ε(La Lb Lc)/kBT , (4.254)

where (φ, θ ψ) are the Euler angles. Recall φ ∈ [0, 2π], θ ∈ [0, π], and ψ ∈ [0, 2π]. The factor grot ac-
counts for physically indistinguishable orientations of the molecule brought about by rotations, which
can happen when more than one of the nuclei is the same. We then have

ξrot(T ) =

(
2kBT

~2

)3/2√
πI1I2I3 . (4.255)

This leads to ∆CV = 3
2NkB.

4.9.5 Vibrations

Vibrational frequencies are often given in units of inverse wavelength, such as cm−1, called a wavenum-
ber. To convert to a temperature scale T ∗, we write kBT

∗ = hν = hc/λ, hence T ∗ = (hc/kB)λ
−1, and we

multiply by
hc

kB

= 1.436K · cm . (4.256)

For example, infrared absorption (∼ 50 cm−1 to 104 cm−1) reveals that the ‘asymmetric stretch’ mode of
the H2O molecule has a vibrational frequency of ν = 3756 cm−1. The corresponding temperature scale
is T ∗ = 5394K.

Vibrations are normal modes of oscillations. A single normal mode Hamiltonian is of the form

ĥ =
p2

2m
+ 1

2mω
2q2 = ~ω

(
a†a+ 1

2

)
. (4.257)
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In general there are many vibrational modes, hence many normal mode frequencies ωα. We then must
sum over all of them, resulting in

ξvib =
∏

α

ξ
(α)
vib . (4.258)

For each such normal mode, the contribution is

ξ =
∞∑

n=0

e−(n+ 1
2
)~ω/kBT = e−~ω/2kBT

∞∑

n=0

(
e−~ω/kBT

)n

=
e−~ω/2k

B
T

1− e−~ω/k
B
T

=
1

2 sinh(Θ/2T )
,

(4.259)

where Θ = ~ω/kB. Then

ϕ = k
B
T ln

(
2 sinh(Θ/2T )

)
= 1

2kB
Θ + k

B
T ln

(
1− e−Θ/T

)
. (4.260)

The contribution to the heat capacity is

∆CV = Nk
B

(
Θ

T

)2 eΘ/T

(eΘ/T − 1)2
=

{
NkB (Θ/T )

2 exp(−Θ/T ) (T → 0)

Nk
B

(T → ∞)
(4.261)

4.9.6 Two-level systems : Schottky anomaly

Consider now a two-level system, with energies ε0 and ε1. We define ∆ ≡ ε1 − ε0 and assume without
loss of generality that ∆ > 0. The partition function is

ζ = e−βε0 + e−βε1 = e−βε0
(
1 + e−β∆

)
. (4.262)

The free energy is

f = −k
B
T ln ζ = ε0 − k

B
T ln

(
1 + e−∆/kBT

)
. (4.263)

The entropy for a given two level system is then

s = − ∂f

∂T
= k

B
ln
(
1 + e−∆/kBT

)
+

∆

T
· 1

e∆/k
B
T + 1

(4.264)

and the heat capacity is = T (∂s/∂T ), i.e.

c(T ) =
∆2

kBT
2
· e∆/k

B
T

(
e∆/k

B
T + 1

)2 . (4.265)

Thus,

c (T ≪ ∆) =
∆2

kBT
2
e−∆/kBT , c (T ≫ ∆) =

∆2

4kBT
2

. (4.266)

We find that c(T ) has a characteristic peak at T ∗ ≈ 0.42∆/k
B

. The heat capacity vanishes in both the
low temperature and high temperature limits. At low temperatures, the gap to the excited state is much
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Figure 4.11: Heat capacity per molecule as a function of temperature for (a) heteronuclear diatomic
gases, (b) a single vibrational mode, and (c) a single two-level system.

greater than kBT , and it is not possible to populate it and store energy. At high temperatures, both
ground state and excited state are equally populated, and once again there is no way to store energy.

If we have a distribution of independent two-level systems, the heat capacity of such a system is a sum
over the individual Schottky functions:

C(T ) =
∑

i

c̃ (∆i/kBT ) = N

∞∫

0

d∆P (∆) c̃(∆/T ) , (4.267)

whereN is the number of two level systems, c̃(x) = kB x
2 ex/(ex+1)2, and where P (∆) is the normalized

distribution function, which satisfies the normalization condition

∞∫

0

d∆P (∆) = 1 . (4.268)

N is the total number of two level systems. If P (∆) ∝ ∆r for ∆ → 0, then the low temperature heat
capacity behaves as C(T ) ∝ T 1+r. Many amorphous or glassy systems contain such a distribution
of two level systems, with r ≈ 0 for glasses, leading to a linear low-temperature heat capacity. The
origin of these two-level systems is not always so clear but is generally believed to be associated with
local atomic configurations for which there are two low-lying states which are close in energy. The
paradigmatic example is the mixed crystalline solid (KBr)1−x(KCN)x which over the range 0.1<∼x<∼ 0.6
forms an ‘orientational glass’ at low temperatures. The two level systems are associated with different
orientation of the cyanide (CN) dipoles.

4.9.7 Electronic and nuclear excitations

For a monatomic gas, the internal coordinate partition function arises due to electronic and nuclear
degrees of freedom. Let’s first consider the electronic degrees of freedom. We assume that kBT is small
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compared with energy differences between successive electronic shells. The atomic ground state is then
computed by filling up the hydrogenic orbitals until all the electrons are used up. If the atomic number
is a ‘magic number’ (A = 2 (He), 10 (Ne), 18 (Ar), 36 (Kr), 54 (Xe), etc.) then the atom has all shells filled
and L = 0 and S = 0. Otherwise the last shell is partially filled and one or both of L and S will be
nonzero. The atomic ground state configuration 2J+1LS is then determined by Hund’s rules:

1. The LS multiplet with the largest S has the lowest energy.

2. If the largest value of S is associated with several multiplets, the multiplet with the largest L has
the lowest energy.

3. If an incomplete shell is not more than half-filled, then the lowest energy state has J = |L− S|. If
the shell is more than half-filled, then J = L+ S.

The last of Hund’s rules distinguishes between the (2S+1)(2L+1) states which result upon fixing S and
L as per rules #1 and #2. It arises due to the atomic spin-orbit coupling, whose effective Hamiltonian
may be written Ĥ = ΛL · S, where Λ is the Russell-Saunders coupling. If the last shell is less than or
equal to half-filled, then Λ > 0 and the ground state has J = |L − S|. If the last shell is more than
half-filled, the coupling is inverted, i.e. Λ < 0, and the ground state has J = L+ S.11

The electronic contribution to ξ is then

ξelec =
L+S∑

J=|L−S|

(2J + 1) e−∆ε(L,S,J)/kBT (4.269)

where
∆ε(L,S, J) = 1

2Λ
[
J(J + 1)− L(L+ 1)− S(S + 1)

]
. (4.270)

At high temperatures, k
B
T is larger than the energy difference between the different J multiplets, and we

have ξelec ∼ (2L+1)(2S+1) e−βε0 , where ε0 is the ground state energy. At low temperatures, a particular
value of J is selected – that determined by Hund’s third rule – and we have ξelec ∼ (2J + 1) e−βε0 . If, in
addition, there is a nonzero nuclear spin I , then we also must include a factor ξnuc = (2I +1), neglecting
the small hyperfine splittings due to the coupling of nuclear and electronic angular momenta.

For heteronuclear diatomic molecules, i.e. molecules composed from two different atomic nuclei, the in-

ternal partition function simply receives a factor of ξelec · ξ
(1)
nuc · ξ(2)nuc, where the first term is a sum over

molecular electronic states, and the second two terms arise from the spin degeneracies of the two nuclei.
For homonuclear diatomic molecules, the exchange of nuclear centers is a symmetry operation, and does
not represent a distinct quantum state. To correctly count the electronic states, we first assume that the
total electronic spin is S = 0. This is generally a very safe assumption. Exchange symmetry now puts re-
strictions on the possible values of the molecular angular momentum L, depending on the total nuclear
angular momentum Itot. If Itot is even, then the molecular angular momentum L must also be even.
If the total nuclear angular momentum is odd, then L must be odd. This is so because the molecular
ground state configuration is 1Σ+

g .12

11See e.g. §72 of Landau and Lifshitz, Quantum Mechanics.
12Ibid. §86.
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2I gg gu

odd I(2I + 1) (I + 1)(2I + 1)

even (I + 1)(2I + 1) I(2I + 1)

Table 4.2: Number of even (gg) and odd (gu) total nuclear angular momentum states for a homonuclear
diatomic molecule. I is the ground state nuclear spin.

The total number of nuclear states for the molecule is (2I + 1)2, of which some are even under nuclear
exchange, and some are odd. The number of even states, corresponding to even total nuclear angular
momentum is written as gg, where the subscript conventionally stands for the (mercifully short) German
word gerade, meaning ‘even’. The number of odd (Ger. ungerade) states is written gu. Table 4.2 gives the
values of gg,u corresponding to half-odd-integer I and integer I .

The final answer for the rotational component of the internal molecular partition function is then

ξrot(T ) = gg ζg(T ) + gu ζu(T ) , (4.271)

where

ζg(T ) =
∑

L even

(2L+ 1) e−L(L+1)Θrot/T , ζu(T ) =
∑

L odd

(2L+ 1) e−L(L+1)Θrot/T . (4.272)

For hydrogen, the molecules with the larger nuclear statistical weight are called orthohydrogen and those
with the smaller statistical weight are called parahydrogen. For H2, we have I = 1

2 hence the ortho state
has gu = 3 and the para state has gg = 1. In D2, we have I = 1 and the ortho state has gg = 6 while the
para state has gu = 3. In equilibrium, the ratio of ortho to para states is then

Northo
H2

Npara
H2

=
gu ζu(T )

gg ζg(T )
=

3 ζu(T )

ζg(T )
,

Northo
D2

Npara
D2

=
gg ζg(T )

gu ζu(T )
=

2 ζg(T )

ζu(T )
. (4.273)

Incidentally, how do we derive the results in Tab. 4.2 ? The total nuclear angular momentum Itot is
the quantum mechanical sum of the two individual nuclear angular momenta, each of which are of
magnitude I . From elementary addition of angular momenta, we have

I ⊗ I = 0⊕ 1⊕ 2⊕ · · · ⊕ 2I . (4.274)

The right hand side of the above equation lists all the possible multiplets. Thus, Itot ∈ {0, 1, . . . , 2I}.
Now let us count the total number of states with even Itot. If 2I is even, which is to say if I is an integer,
we have

g(2I=even)
g =

I∑

n=0

{
2 · (2n) + 1

}
= (I + 1)(2I + 1) , (4.275)

because the degeneracy of each multiplet is 2Itot + 1. It follows that

g(2I=even)
u = (2I + 1)2 − gg = I(2I + 1) . (4.276)
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On the other hand, if 2I is odd, which is to say I is a half odd integer, then

g(2I=odd)
g =

I− 1
2∑

n=0

{
2 · (2n) + 1

}
= I(2I + 1) . (4.277)

It follows that

g(2I=odd)
u = (2I + 1)2 − gg = (I + 1)(2I + 1) . (4.278)

4.10 Appendix I : Constrained Extremization of Functions

Given F (x1, . . . , xn) to be extremized subject to k constraints of the form Gj(x1, . . . , xn) = 0 where
j = 1, . . . , k, construct

F ∗
(
x1, . . . , xn;λ1, . . . , λk

)
≡ F (x1, . . . , xn) +

k∑

j=1

λj Gj(x1, . . . , xn) (4.279)

which is a function of the (n+k) variables
{
x1, . . . , xn;λ1, . . . , λk

}
, where the quantities {λ1, . . . , λk} are

Lagrange undetermined multipliers. We now freely extremize the extended function F ∗:

dF ∗ =
n∑

σ=1

∂F ∗

∂xσ
dxσ +

k∑

j=1

∂F ∗

∂λj
dλj

=

n∑

σ=1


 ∂F

∂xσ
+

k∑

j=1

λj
∂Gj

∂xσ


 dxσ +

k∑

j=1

Gj dλj = 0

(4.280)

This results in the (n+ k) equations

∂F

∂xσ
+

k∑

j=1

λj
∂Gj

∂xσ
= 0 (σ = 1, . . . , n)

Gj = 0 (j = 1, . . . , k) .

(4.281)

The interpretation of all this is as follows. The first n equations in 4.281 can be written in vector form as

∇F +

k∑

j=1

λj ∇Gj = 0 . (4.282)

This says that the (n-component) vector ∇F is linearly dependent upon the k vectors ∇Gj . Thus, any
movement in the direction of ∇F must necessarily entail movement along one or more of the directions

∇Gj . This would require violating the constraints, since movement along ∇Gj takes us off the level

set Gj = 0. Were ∇F linearly independent of the set {∇Gj}, this would mean that we could find a
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differential displacement dx which has finite overlap with ∇F but zero overlap with each ∇Gj . Thus

x+ dx would still satisfy Gj(x+ dx) = 0, but F would change by the finite amount dF = ∇F (x) · dx.

Put another way, when we extremize F (x) without constraints, we identify points x ∈ R
n where the

gradient ∇F vanishes. However, when we have k constraints of the form Gj(x) = 0, the subset

Σ =
{
x ∈ R

n |Gj(x) = 0 ∀ j ∈ {1, . . . , k}
}

(4.283)

is a hypersurface of dimension n− k. Generically we should not expect any of the solutions to ∇F = 0
to lie within the subspace Σ. Extremizing F (x) subject to the k constraints Gj(x) = 0 means that we
must find the extrema of F (x) for x ∈ Σ ⊂ R

n. All such extrema satisfy that ∇F (x) is perpendicular to
the hypersurface Σ, i.e. ∇F (x) must lie in the k-dimensional subspace spanned by the vectors ∇Gj(x).

4.10.1 Example : volume of a cylinder

To see how this formalism works in practice, let’s extremize the volume V = πa2h of a cylinder of radius
a and height h, subject to the constraint

G(a, h) = 2πa+
h2

b
− ℓ = 0 . (4.284)

Here, b and ℓ are constant parameters, each of which has dimensions of length.

Following Lagrange’s method, we define the extended function

V ∗(a, h, λ) ≡ V (a, h) + λG(a, h) , (4.285)

and set

∂V ∗

∂a
= 2πah+ 2πλ = 0

∂V ∗

∂h
= πa2 + 2λ

h

b
= 0

∂V ∗

∂λ
= 2πa+

h2

b
− ℓ = 0 .

(4.286)

Solving these three equations simultaneously gives

a =
2ℓ

5π
, h =

√
bℓ

5
, λ = − 2

53/2π
b1/2 ℓ3/2 , V ∗ =

4

55/2 π
ℓ5/2 b1/2 . (4.287)

4.11 Appendix II : Additional Examples of Statistical Ensembles

4.11.1 Three state system

Consider a spin-1 particle where σ = −1, 0,+1. We model this with the single particle Hamiltonian

ĥ = −µ0H σ +∆(1− σ2) . (4.288)
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We can also interpret this as describing a spin if σ = ±1 and a vacancy if σ = 0. The parameter ∆ then
represents the vacancy formation energy. The single particle partition function is

ζ = Tr e−βĥ = e−β∆ + 2cosh(βµ0H) . (4.289)

With N distinguishable noninteracting spins (e.g. at different sites in a crystalline lattice), we have Z =
ζN and

F ≡ Nf = −kBT lnZ = −NkBT ln
[
e−β∆ + 2cosh(βµ0H)

]
, (4.290)

where f = −kBT ln ζ is the free energy of a single particle. Note that

n̂V = 1− σ2 =
∂ĥ

∂∆
, m̂ = µ0 σ = − ∂ĥ

∂H
, (4.291)

are the vacancy number and magnetization, respectively. Thus,

n
V
=
〈
n̂

V

〉
=
∂f

∂∆
=

e−∆/kBT

e−∆/k
B
T + 2cosh(µ0H/kBT )

(4.292)

and

m =
〈
m̂
〉
= − ∂f

∂H
=

2µ0 sinh(µ0H/kB
T )

e−∆/k
B
T + 2cosh(µ0H/kB

T )
. (4.293)

At weak fields we can compute

χ
T =

∂m

∂H

∣∣∣∣
H=0

=
µ20
k
B
T

· 2

2 + e−∆/k
B
T

. (4.294)

We thus obtain a modified Curie law. At temperatures T ≪ ∆/k
B

, the vacancies are frozen out and we
recover the usual Curie behavior. At high temperatures, where T ≫ ∆/k

B
, the low temperature result

is reduced by a factor of 2
3 , which accounts for the fact that one third of the time the particle is in a

nonmagnetic state with σ = 0.

4.11.2 Spins and vacancies on a surface

PROBLEM: A collection of spin-12 particles is confined to a surface with N sites. For each site, let σ = 0 if
there is a vacancy, σ = +1 if there is particle present with spin up, and σ = −1 if there is a particle present
with spin down. The particles are non-interacting, and the energy for each site is given by ε = −Wσ2,
where −W < 0 is the binding energy.

(a) Let Q = N↑ + N↓ be the number of spins, and N0 be the number of vacancies. The surface mag-

netization is M = N↑ − N↓. Compute, in the microcanonical ensemble, the statistical entropy
S(Q,M).

(b) Let q = Q/N and m = M/N be the dimensionless particle density and magnetization density,
respectively. Assuming that we are in the thermodynamic limit, where N , Q, and M all tend to
infinity, but with q and m finite, Find the temperature T (q,m). Recall Stirling’s formula

ln(N !) = N lnN −N +O(lnN) .
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(c) Show explicitly that T can be negative for this system. What does negative T mean? What physical
degrees of freedom have been left out that would avoid this strange property?

SOLUTION: There is a constraint on N↑, N0, and N↓:

N↑ +N0 +N↓ = Q+N0 = N . (4.295)

The total energy of the system is E = −WQ.

(a) The number of states available to the system is

Ω =
N !

N↑!N0!N↓!
. (4.296)

FixingQ andM , along with the above constraint, is enough to completely determine {N↑, N0, N↓}:

N↑ =
1
2 (Q+M) , N0 = N −Q , N↓ =

1
2 (Q−M) , (4.297)

whence

Ω(Q,M) =
N ![

1
2 (Q+M)

]
!
[
1
2 (Q−M)

]
! (N −Q)!

. (4.298)

The statistical entropy is S = kB ln Ω:

S(Q,M) = kB ln(N !)− kB ln
[
1
2(Q+M)!

]
− kB ln

[
1
2(Q−M)!

]
− kB ln

[
(N −Q)!

]
. (4.299)

(b) Now we invoke Stirling’s rule,

ln(N !) = N lnN −N +O(lnN) , (4.300)

to obtain

ln Ω(Q,M) = N lnN −N − 1
2(Q+M) ln

[
1
2(Q+M)

]
+ 1

2(Q+M) (4.301)

− 1
2 (Q−M) ln

[
1
2 (Q−M)

]
+ 1

2 (Q−M)− (N −Q) ln(N −Q) + (N −Q)

= N lnN − 1
2Q ln

[
1
4(Q

2 −M2)
]
− 1

2M ln

(
Q+M

Q−M

)

(4.302)

Combining terms,

ln Ω(Q,M) = −Nq ln
[
1
2

√
q2 −m2

]
− 1

2Nm ln

(
q +m

q −m

)
−N(1− q) ln(1− q) , (4.303)

where Q = Nq and M = Nm. Note that the entropy S = kB ln Ω is extensive. The statistical
entropy per site is thus

s(q,m) = −k
B
q ln

[
1
2

√
q2 −m2

]
− 1

2kB
m ln

(
q +m

q −m

)
− k

B
(1− q) ln(1− q) . (4.304)
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The temperature is obtained from the relation

1

T
=

(
∂S

∂E

)

M

=
1

W

(
∂s

∂q

)

m

=
1

W
ln(1 − q)− 1

W
ln
[
1
2

√
q2 −m2

]
.

(4.305)

Thus,

T =
W/k

B

ln
[
2(1− q)/

√
q2 −m2

] . (4.306)

(c) We have 0 ≤ q ≤ 1 and −q ≤ m ≤ q, so T is real (thank heavens!). But it is easy to choose {q,m}
such that T < 0. For example, when m = 0 we have T = W/kB ln(2q

−1 − 2) and T < 0 for all
q ∈

(
2
3 , 1
]
. The reason for this strange state of affairs is that the entropy S is bounded, and is not an

monotonically increasing function of the energy E (or the dimensionless quantity Q). The entropy

is maximized for N ↑= N0 = N↓ = 1
3 , which says m = 0 and q = 2

3 . Increasing q beyond this
point (with m = 0 fixed) starts to reduce the entropy, and hence (∂S/∂E) < 0 in this range, which
immediately gives T < 0. What we’ve left out are kinetic degrees of freedom, such as vibrations
and rotations, whose energies are unbounded, and which result in an increasing S(E) function.

4.11.3 Fluctuating interface

Consider an interface between two dissimilar fluids. In equilibrium, in a uniform gravitational field, the
denser fluid is on the bottom. Let z = z(x, y) be the height the interface between the fluids, relative to
equilibrium. The potential energy is a sum of gravitational and surface tension terms, with

Ugrav =

∫
d2x

z∫

0

dz′ ∆ρ g z′ , Usurf =
1
2σ

∫
d2x (∇z)2 . (4.307)

We won’t need the kinetic energy in our calculations, but we can include it just for completeness. It isn’t
so clear how to model it a priori so we will assume a rather general form

T =

∫
d2x

∫
d2x′ 12µ(x,x

′)
∂z(x, t)

∂t

∂z(x′, t)

∂t
. (4.308)

We assume that the (x, y) plane is a rectangle of dimensions Lx × Ly . We also assume µ(x,x′) = µ
(
|x−

x′|
)
. We can then Fourier transform

z(x) =
(
LxLy

)−1/2
∑

k

zk e
ik·x , (4.309)

where the wavevectors k are quantized according to

k =
2πnx
Lx

x̂+
2πny
Ly

ŷ , (4.310)
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with integer nx and ny, if we impose periodic boundary conditions (for calculational convenience). The
Lagrangian is then

L =
1

2

∑

k

[
µk
∣∣żk
∣∣2 −

(
g∆ρ+ σk2

) ∣∣zk
∣∣2
]

, (4.311)

where

µk =

∫
d2xµ

(
|x|
)
e−ik·x . (4.312)

Since z(x, t) is real, we have the relation z−k = z∗k, therefore the Fourier coefficients at k and −k are not
independent. The canonical momenta are given by

pk =
∂L

∂ż∗k
= µk żk , p∗k =

∂L

∂żk
= µk ż

∗
k (4.313)

The Hamiltonian is then

Ĥ =
∑

k

′[
pk z

∗
k + p∗k zk

]
− L

=
∑

k

′
[ |pk|2
µk

+
(
g∆ρ+ σk2

)
|zk|2

]
,

(4.314)

where the prime on the k sum indicates that only one of the pair {k,−k} is to be included, for each k.

We may now compute the ordinary canonical partition function:

Z =
∏

k

′
∫
d2pk d

2zk
(2π~)2

e−|p
k
|2/µ

k
k
B
T e−(g∆ρ+σk2) |z

k
|2/k

B
T

=
∏

k

′
(
k
B
T

2~

)2( µk
g∆ρ+ σk2

)
.

(4.315)

Thus,

F = −kBT
∑

k

ln

(
k
B
T

2~Ωk

)
, (4.316)

where13

Ωk =

(
g∆ρ+ σk2

µk

)1/2
. (4.317)

is the normal mode frequency for surface oscillations at wavevector k. For deep water waves, it is
appropriate to take µk = ∆ρ

/
|k|, where ∆ρ = ρ

L
− ρ

G
≈ ρ

L
is the difference between the densities of

water and air.

It is now easy to compute the thermal average

〈
|zk|2

〉
=

∫
d2zk |zk|2 e−(g∆ρ+σk2) |z

k
|2/k

B
T

/∫
d2zk e

−(g∆ρ+σk2) |z
k
|2/k

B
T

=
k
B
T

g∆ρ+ σk2
.

(4.318)

13Note that there is no prime on the k sum for F , as we have divided the logarithm of Z by two and replaced
the half sum by the whole sum.
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Note that this result does not depend on µk, i.e. on our choice of kinetic energy. One defines the correlation
function

C(x) ≡
〈
z(x) z(0)

〉
=

1

LxLy

∑

k

〈
|zk|2

〉
eik·x =

∫
d2k

(2π)2

(
kBT

g∆ρ+ σk2

)
eik·x

=
kBT

4πσ

∞∫

0

dq
eik|x|√
q2 + ξ2

=
kBT

4πσ
K0

(
|x|/ξ

)
,

(4.319)

where ξ =
√
g∆ρ/σ is the correlation length, and where K0(z) is the Bessel function of imaginary

argument. The asymptotic behavior of K0(z) for small z is K0(z) ∼ ln(2/z), whereas for large z one has
K0(z) ∼ (π/2z)1/2 e−z . We see that on large length scales the correlations decay exponentially, but on
small length scales they diverge. This divergence is due to the improper energetics we have assigned
to short wavelength fluctuations of the interface. Roughly, it can cured by imposing a cutoff on the
integral, or by insisting that the shortest distance scale is a molecular diameter.

4.11.4 Dissociation of molecular hydrogen

Consider the reaction
H −⇀↽− p+ + e− . (4.320)

In equilibrium, we have
µH = µp + µe . (4.321)

What is the relationship between the temperature T and the fraction x of hydrogen which is dissociated?

Let us assume a fraction x of the hydrogen is dissociated. Then the densities of H, p, and e are then

nH = (1− x)n , np = xn , ne = xn . (4.322)

The single particle partition function for each species is

ζ =
gN

N !

(
V

λ3T

)N
e−Nεint/kBT , (4.323)

where g is the degeneracy and εint the internal energy for a given species. We have εint = 0 for p and
e, and εint = −∆ for H, where ∆ = e2/2a

B
= 13.6 eV, the binding energy of hydrogen. Neglecting

hyperfine splittings14, we have gH = 4, while ge = gp = 2 because each has spin S = 1
2 . Thus, the

associated grand potentials are

ΩH(T, V, µH) = −gH V kBT λ
−3
T,H e

(µ
H
+∆)/k

B
T

Ωp(T, V, µp) = −gp V kBT λ
−3
T,p e

µp/kBT

Ωe(T, V, µe) = −ge V kBT λ
−3
T,e e

µe/kBT ,

(4.324)

14The hyperfine splitting in hydrogen is on the order of (me/mp)α
4mec

2 ∼ 10−6 eV, which is on the order of
0.01K. Here α = e2/~c is the fine structure constant.
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where

λT,a =

√
2π~2

makBT
(4.325)

for species a. The corresponding number densities are

n =
1

V

(
∂Ω

∂µ

)

T,V

= g λ−3
T e(µ−εint)/kBT , (4.326)

and the fugacity z = eµ/kBT of a given species is thus given by

z = g−1nλ3T e
εint/kBT . (4.327)

We now invoke µH = µp + µe, which says zH = zp ze, or

g−1
H nH λ

3
T,H e

−∆/k
B
T =

(
g−1
p np λ

3
T,p

)(
g−1
e ne λ

3
T,e

)
, (4.328)

which yields (
x2

1− x

)
nλ̃3T = e−∆/kBT , (4.329)

where λ̃T =
√

2π~2/m∗k
B
T , with m∗ = mpme/mH ≈ me. Note that

λ̃T = a
B

√
4πmH

mp

√
∆

kBT
, (4.330)

where aB = 0.529 Å is the Bohr radius. Thus, we have

(
x2

1− x

)
· (4π)3/2 ν =

(
T

T0

)3/2
e−T0/T , (4.331)

where T0 = ∆/k
B
= 1.578 × 105 K and ν = na3

B
. Consider for example a temperature T = 3000K, for

which T0/T = 52.6, and assume that x = 1
2 . We then find ν = 1.69 × 10−27, corresponding to a density

of n = 1.14 × 10−2 cm−3. At this temperature, the fraction of hydrogen molecules in their first excited
(2s) state is x′ ∼ e−T0/2T = 3.8 × 10−12. This is quite striking: half the hydrogen atoms are completely
dissociated, which requires an energy of ∆, yet the number in their first excited state, requiring energy
1
2∆, is twelve orders of magnitude smaller. The student should reflect on why this can be the case.
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