
8 Nonequilibrium and Transport Phenomena : Summary

• Boltzmann equation: The full phase space distribution for a Hamiltonian system, ̺(ϕ, t),
where ϕ =

(
{qσ}, {pσ}

)
, satisfies ˙̺ + ϕ̇ ·∇̺ = 0. This is not true, however, for the one-

particle distribution f(q,p, t). Rather, ḟ is related to two-, three-, and higher order particle
number distributions in a chain of integrodifferential equations known as the BBGKY hi-
erarchy. We can lump our ignorance of these other terms into a collision integral and write

∂f

∂t
=

streaming
︷ ︸︸ ︷

− ṙ · ∂f
∂r

− ṗ · ∂f
∂p

+

collision
︷ ︸︸ ︷
(
df

dt

)

coll

.

In the absence of collisions, the distribution evolves solely due to the streaming term with
ṙ = p/m and ṗ = −∇Uext . If ṗ = Fext is constant, we have the general solution

f(r,p, t) = φ

(

r − p t

m
+

Fextt
2

2m
, p− Fextt

m

)

,

valid for any initial condition f(r,p, t = 0) = φ(r,p). We write the convective derivative as
D
Dt =

∂
∂t + ṙ · ∂

∂r + ṗ · ∂
∂p . Then the Boltzmann equation may be written Df

Dt =
(∂f
∂t

)

coll
.

• Collisions: We are concerned with two types of collision processes: single-particle scatter-
ing, due to a local potential, and two-particle scattering, due to interparticle forces. Let Γ
denote the set of single particle kinematic variables, e.g. Γ = (px, py, pz) for point particles
and Γ = (p,L) for diatomic molecules. Then

(
df

dt

)

coll

=

∫

dΓ ′
{

w(Γ |Γ ′) f(r, Γ ′; t)− w(Γ ′ |Γ ) f(r, Γ ; t)
}

for single particle scattering, and

(
df

dt

)

coll

=

∫

dΓ1

∫

dΓ ′
∫

dΓ ′
1

{

w
(
ΓΓ1 |Γ ′Γ ′

1

)
f2(r, Γ

′; r, Γ ′
1; t)− w

(
Γ ′Γ ′

1 |ΓΓ1
)
f2(r, Γ ; r, Γ1; t)

}

≈
∫

dΓ1

∫

dΓ ′
∫

dΓ ′
1

{

w
(
ΓΓ1 |Γ ′Γ ′

1

)
f(r, Γ ′; t) f(r, Γ ′

1; t)

− w
(
Γ ′Γ ′

1 |ΓΓ1
)
f(r, Γ ; t) f(r, Γ1; t)

}

.

for two-body scattering, where f2 is the two-body distribution, and where the approxi-
mation f2(r, Γ

′; r′, Γ ′; t) ≈ f(r, Γ ; t) f(r′, Γ ′; t) in the second line closes the equation. A
quantity A(r, Γ ) which is preserved by the dynamics between collisions then satisfies

dA

dt
≡ d

dt

∫

ddr dΓ A(r, Γ ) f(r, Γ, t) =

∫

ddr dΓ A(r, Γ )

(
df

dt

)

coll

.

Quantities which are conserved by collisions satisfy Ȧ = 0 and are called collisional invari-
ants. Examples include A = 1 (particle number), A = p (linear momentum, if translational
invariance applies), and A = εp (energy).
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• Time reversal, parity, and detailed balance: With Γ = (p,L), we define the actions of time
reversal and parity as

Γ T = (−p,−L) , Γ P = (−p,L) , ΓC = (p,−L) ,

where C = PT is the combined operation. Time reversal symmetry of the underlying
equations of motion requires w

(
Γ ′Γ ′

1 |ΓΓ1
)
= w

(
Γ TΓ T

1 |Γ ′TΓ ′
1
T
)
. Under conditions of de-

tailed balance, this leads to f0(Γ ) f0(Γ1) = f0(Γ ′T ) f0(Γ ′
1
T ), where f0 is the equilibrium dis-

tribution. For systems with both P and T symmetries,w
(
Γ ′Γ ′

1 |ΓΓ1
)
= w

(
ΓCΓC

1 |Γ ′CΓ ′
1
C
)
,

whence w(p′,p′
1 |p,p1) = w(p,p1 |p′,p′

1) for point particles.

• Boltzmann’s H-theorem: Let h(r, t) =
∫
dΓf(r, Γ, t) ln f(r, Γ, t). Invoking the Boltzmann

equation, it can be shown that ∂h
∂t ≤ 0, which means dH

dt ≤ 0, where H(t) =
∫
ddr h(r, t) is

Boltzmann’s H-function. h(r, t) is everywhere decreasing or constant, due to collisions.

• Weakly inhomogeneous gas: Under equilibrium conditions, f0 can be a function only of
collisional invariants, and takes the Gibbs form f0(r,p) = Ce(µ+V·p−εΓ )/k

B
T . Assume now

that µ, V , and T are all weakly dependent on r and t. f0 then describes a local equilibrium
and as such is annihilated by the collision term in the Boltzmann equation, but not by the
streaming term. Accordingly, we seek a solution f = f0 + δf . A lengthy derivation results
in
{

εΓ − h

T
v ·∇T +mvαvβ Qαβ −

εΓ − h+ Tcp
cV /kB

∇·V − F ext · v
}

f0

k
B
T

+
∂ δf

∂t
=

(
df

dt

)

coll

,

where v = ∂ε
∂p is the particle velocity, h is the enthalpy per particle, Qαβ = 1

2

(
∂V α

∂xβ
+ ∂V β

∂xα

)

,

and F ext is an external force. For an ideal gas, h = cpT . The RHS is to be evaluated to first
order in δf . The simplest model for the collision integral is the relaxation time approximation,

where
(∂f
∂t

)

coll
= − δf

τ . Note that this form does not preserve any collisional invariants. The
scattering time is obtained from the relation nv̄relστ = 1, where σ is the two particle total
scattering cross section and v̄rel is the average relative speed of a pair of particles. This
says that there is on average one collision within a tube of cross sectional area σ and length

v̄relτ . For the Maxwellian distribution, v̄rel =
√
2 v̄ =

√
16 k

B
T

πm , so τ(T ) ∝ T−1/2. The mean

free path is defined as ℓ = v̄τ = 1√
2nσ

.

• Transport coefficients: Assuming F ext
α = Qαβ = 0 and steady state, Eq. 8 yields

δf = −
τ(ε− cp T )

k
B
T 2

(v ·∇T ) f0 .

The energy current is given by

jαε =

∫

dΓ εΓ v
α δf = −

thermal conductivity καβ

︷ ︸︸ ︷

nτ

k
B
T 2

〈
vαvβ εΓ (εΓ − cpT )

〉 ∂T

∂xβ
.
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For a monatomic gas, one finds καβ = κ δαβ with κ(T ) = π
8nℓv̄cp ∝ T 1/2. A similar result

follows by considering any intensive quantity φ which is spatially dependent through the
temperature T (r). The φ-current across the surface z = 0 is

jφ = nẑ

∫

vz>0

d3v P (v) vz φ(z − ℓ cos θ) + nẑ

∫

vz<0

d3v P (v) vz φ(z + ℓ cos θ) = −1
3n v̄ ℓ

∂φ

∂z
ẑ .

Thus, jφ = −K∇T , with K = 1
3n ℓ v̄

∂φ
∂T the associated transport coefficient. If φ = 〈εΓ 〉,

then ∂φ
∂T = cp, yielding κ = 1

3nℓv̄cp. If φ = 〈px〉, then jzpx = Πxz = −1
3nmℓv̄

∂Vx
∂z ≡ −η ∂Vx∂z ,

where η is the shear viscosity. Using the Boltzmann equation in the relaxation time ap-
proximation, one obtains η = π

8nmℓv̄. From κ and η, we can form a dimensionless quan-
tity Pr = ηcp/mκ, known as the Prandtl number. Within the relaxation time approximation,

Pr = 1. Most monatomic gases have Pr ≈ 2
3 .

• Linearized Boltzmann equation: To go beyond the phenomenological relaxation time ap-
proximation, one must grapple with the collision integral,

(
df

dt

)

coll

=

∫

d3p1

∫

d3p′
∫

d3p′1 w(p
′,p′

1 |p,p1)
{

f(p′) f(p′
1)− f(p) f(p1)

}

,

which is a nonlinear functional of the distribution f(p, t) (we suppress the t index here).

Writing f(p) = f0(p) + f0(p)ψ(p), we have
(∂f
∂t

)

coll
= f0(p) L̂ψ +O(ψ2), with

L̂ψ(p) =

∫

d3p1

∫

dΩ |v − v1|
∂σ

∂Ω
f0(p1)

{

ψ(p′) + ψ(p′
1)− ψ(p)− ψ(p1)

}

.

The linearized Boltzmann equation (LBE) then takes the form
(
L̂− ∂

∂t

)
ψ = Y , where

Y =
1

k
B
T

{

ε(p)− 5
2kB

T

T
v ·∇T +mvαvβ Qαβ −

kB ε(p)

cV
∇·V − F · v

}

.

for point particles. To solve the LBE, we must invert the operator L̂ − ∂
∂t . Various useful

properties follow from defining the inner product 〈ψ1|ψ2〉 ≡
∫
d3p f0(p)ψ1(p)ψ2(p), such

as the self-adjointness of L̂: 〈ψ1|L̂ψ2〉 = 〈L̂ψ1|ψ2〉. We then have L̂|φn〉 = −λn|φn 〉, with
〈φm|φn〉 = δmn and real eigenvalues λn. There are five zero eigenvalues corresponding to
the collisional invariants:

φ1(p) =
1√
n

, φ2,3,4(p) =
pα

√

nmk
B
T

, φ5(p) =

√

2

3n

(
ε(p)

k
B
T

− 3

2

)

.

When Y = 0, the formal solution to ∂ψ
∂t = L̂ψ is ψ(p, t) =

∑

nCn φn(p) e
−λnt. Aside from

the collisional invariants, all the eigenvalues λn must be positive, corresponding to relax-
ation to the equilibrium state. One can check that the particle, energy, and heat currents
are given by j = 〈v |ψ 〉, jε = 〈v ε |ψ 〉, and jq = 〈v (ε− µ) |ψ 〉.
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In steady state, the solution to L̂ψ = Y is ψ = L̂−1Y . This is valid provided Y is orthogonal
to each of the collisional invariants, in which case

ψ(p) =
∑

n/∈CI

λ−1
n 〈φn |Y 〉φn(p) .

Once we have |ψ 〉, we may obtain the various transport coefficients by computing the
requisite currents. For example, to find the thermal conductivity κ and shear viscosity η,

κ : Y =
1

k
B
T 2

∂T

∂x
Xκ , Xκ ≡

(
ε− 5

2kB

)
vx ⇒ κ = −〈Xκ |ψ 〉

∂T/∂x

η : Y =
m

k
B
T

∂Vx
∂y

Xη , Xη ≡ vx vy ⇒ η = −
m 〈Xη |ψ 〉
∂Vx/∂y

.

• Variational approach: The Schwarz inequality, 〈ψ | − L̂ |ψ 〉 · 〈φ | Ĥ |φ 〉 ≥ 〈φ | Ĥ |ψ 〉2,
holds for the positive semidefinite operator Ĥ ≡ −L̂. One therefore has

κ ≥ 1

k
B
T 2

〈φ |Xκ 〉2

〈φ | Ĥ |φ 〉
, η ≥ m2

k
B
T

〈φ |Xη 〉2

〈φ | Ĥ |φ 〉
.

Using variational functions φκ =
(
ε − 5

2kB
T
)
vx and φη = vx vy , one finds, after tedious

calculations,

κ ≥ 75 k
B

64
√
π d2

(
k
B
T

m

)1/2

, η ≥ 5 (mk
B
T )1/2

16
√
π d2

.

Taking the lower limit in each case, we obtain a Prandtl number Pr =
η cp
mκ = 2

3 , which is
close to what is observed for monatomic gases.

• Quantum transport: For quantum systems, the local equilibrium distribution is of the
Bose-Einstein or Fermi-Dirac form,

f0(r,k, t) =

{

exp

(
ε(k)− µ(r, t)

k
B
T (r, t)

)

∓ 1

}−1

,

with k = p/~, and

(
df

dt

)

coll

=

∫
d3k1
(2π)3

∫
d3k′

(2π)3

∫
d3k′1
(2π)3

w
{

f ′f ′1 (1± f) (1± f1)− ff1 (1± f ′) (1 ± f ′1)
}

where w = w(k,k1 |k′,k′
1), f = f(k), f1 = f(k1), f

′ = f(k′), and f ′1 = f(k′
1), and where

we have assumed time-reversal and parity symmetry. The most important application is to
electron transport in metals and semiconductors, in which case f0 is the Fermi distribution.
With f = f0 + δf , one has, within the relaxation time approximation,

∂ δf

∂t
− e

~c
v ×B · ∂ δf

∂k
− v ·

[

eE+
ε− µ

T
∇T

]
∂f0

∂ε
= −δf

τ
,
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where E = −∇(φ − µ/e) = E − e−1∇µ is the gradient of the ‘electrochemical potential’
φ− e−1µ. For steady state transport with B = 0, one has

j = −2e

∫

Ω̂

d3k

(2π)3
v δf ≡ L11 E− L12∇T

jq = 2

∫

Ω̂

d3k

(2π)3
(ε− µ)v δf ≡ L21 E− L22∇T

where Lαβ11 = e2J αβ
0 , Lαβ21 = TLαβ12 = −eJ αβ

1 , and Lαβ22 = 1
T J αβ

2 , with

J αβ
n ≡ 1

4π3~

∫

dε τ(ε) (ε − µ)n
(

−∂f
0

∂ε

)∫

dSε
vα vβ

|v| .

These results entail

E= ρ j +Q∇T , jq = ⊓ j − κ∇T ,

or, in terms of the Jn,

ρ =
1

e2
J−1
0 , Q = − 1

e T
J−1
0 J1 , ⊓ = −1

e
J1 J−1

0 , κ =
1

T

(

J2 − J1 J−1
0 J1

)

.

These results describe the following physical phenomena:

Electrical resistance (∇T = B = 0): An electrical current j will generate an electric field
E= ρj, where ρ is the electrical resistivity.

Peltier effect (∇T = B = 0): An electrical current j will generate an heat current jq = ⊓j,
where ⊓ is the Peltier coefficient.

Thermal conduction (j = B = 0): A temperature gradient ∇T gives rise to a heat current
jq = −κ∇T , where κ is the thermal conductivity.

Seebeck effect (j = B = 0): A temperature gradient ∇T gives rise to an electric field
E= Q∇T , where Q is the Seebeck coefficient.

For a parabolic band with effective electron mass m∗, one finds

ρ =
m∗

ne2τ
, Q = −π

2k2
B
T

2e ε
F

, κ =
π2nτk2

B
T

3m∗

with ⊓ = TQ, where ε
F

is the Fermi energy. The ratio κ/σT = π2

3 (k
B
/e)2 = 2.45 ×

10−8V2K−2 is then predicted to be universal, a result known as the Wiedemann-Franz law.
This also predicts all metals to have negative thermopower, which is not the case. In the
presence of an external magnetic field B, additional transport effects arise:

Hall effect (∂T∂x = ∂T
∂y = jy = 0): An electrical current j = jx x̂ and a field B = Bz ẑ yield

an electric field E. The Hall coefficient is RH = Ey/jxBz.
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Ettingshausen effect (∂T∂x = jy = jq,y = 0): An electrical current j = jx x̂ and a field

B = Bz ẑ yield a temperature gradient ∂T∂y . The Ettingshausen coefficient is P = ∂T
∂y

/
jxBz .

Nernst effect (jx = jy =
∂T
∂y = 0): A temperature gradient ∇T = ∂T

∂x x̂ and a field B = Bz ẑ

yield an electric field E. The Nernst coefficient is Λ = Ey
/
∂T
∂x Bz.

Righi-Leduc effect (jx = jy = Ey = 0): A temperature gradient ∇T = ∂T
∂x x̂ and a field

B = Bz ẑ yield an orthogonal gradient ∂T∂y . The Righi-Leduc coefficient is L = ∂T
∂y

/
∂T
∂xBz.

• Stochastic processes: Stochastic processes involve a random element, hence they are not
wholly deterministic. The simplest example is the Langevin equation for Brownian mo-
tion, ṗ+γp = F +η(t), where p is a particle’s momentum, γ a damping rate due to friction,
F an external force, and η(t) a stochastic random force. We can integrate this first order
equation to obtain

p(t) = p(0) e−γt +
F

γ

(
1− e−γt

)
+

t∫

0

ds η(s) eγ(s−t) .

We assume that the random force η(t) has zero mean, and furthermore that

〈
η(s) η(s′)

〉
= φ(s− s′) ≈ Γ δ(s − s′) ,

in which case one finds 〈p2(t)〉 = 〈p(t)〉2 + Γ
2γ (1 − e−2γt). If there is no external force, we

expect the particle thermailzes at long times, i.e. 〈 p22m〉 = 1
2kB

T . This fixes Γ = 2γmk
B
T ,

where m is the particle’s mass. One can integrate again to find the position. At late times
t ≫ γ−1, one finds 〈x(t)〉 = const. + Ft

γm , corresponding to a mean velocity 〈p/m〉 = F/γ.
The RMS fluctuations in position, however, grow as

〈x2(t)〉 − 〈x(t)〉2 =
2k

B
T t

γm
≡ 2Dt ,

where D = k
B
T/γm is the diffusion constant. Thus, after the memory of the initial condi-

tions is lost (t ≫ γ−1), the mean position advances linearly in time due to the external
force, and the RMS fluctuations in position also increase linearly.

• Fokker-Planck equation: Suppose x(t) is a stochastic variable, and define

δx(t) ≡ x(t+ δt)− x(t) .

Furthermore, assume 〈δx(t)〉 = F1

(
x(t)

)
δt and

〈
[δx(t)]2

〉
= F2

(
x(t)

)
δt, but that

〈
[δx(t)]n

〉
−

O(δt2) for n > 2. One can then show that the probability density P (x, t) =
〈
δ
(
x − x(t)

)〉

satisfies the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

1

2

∂2

∂x2
[
F2(x)P (x, t)

]
.
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For Brownian motion, F1(x) = F/γm ≡ u and F2(x) = 2D. The resulting Fokker-Planck

equation is then Pt = −uPx + DPxx, where Pt =
∂P
∂t , Pxx = ∂2P

∂x2 , etc. The Galilean trans-
formation x → x − ut then results in Pt = DPxx, which is known as the diffusion equation,

a general solution to which is given by P (x, t) =
∞∫

−∞
dx′K(x− x′, t− t′)P (x′, t′), where

K(∆x,∆t) = (4πD∆t)−1/2e−(∆x)2/4D∆t

is the diffusion kernel. Thus, ∆x
RMS

=
√
2D∆t.
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