5 Quantum Statistics : Summary

o Second-quantized Hamiltonians: A noninteracting quantum system is described by a Hamil-
tonian H = Y, ¢, i, Where ¢, is the energy eigenvalue for the single particle state 1),
(possibly degenerate), and 7, is the number operator. Many-body eigenstates |7i) are la-
beled by the set of occupancies 7 = {n,,}, with @, |@) = n,|i). Thus, H |7) = E_|i), where
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e Bosons and fermions: The allowed values for n, are n,, € {0,1,2,...,00} for bosons and
n, € {0,1} for fermions.

e Grand canonical ensemble: Because of the constraint ) n, = N, the ordinary canonical
ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case
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where the upper sign corresponds to bosons and the lower sign to fermions. The average
number of particles occupying the single particle state 1, is then
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In the Maxwell-Boltzmann limit, y < —k,T and (n,) = ze /87, where z = e#/*sT is

the fugacity. Note that this low-density limit is common to both bosons and fermions.

e Single particle density of states: The single particle density of states per unit volume is
defined to be
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where h is the one-body Hamiltonian. If his isotropic, then € = ¢(k), where k = |k| is the

magnitude of the wavevector, and
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where g is the degeneracy of each single particle energy state (due to spin, for example).

o Quantum virial expansion: From {2 = —pV, we have
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where
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One now inverts n = n(T, z) to obtain z = z(T,n), then substitutes this into p = p(T, z) to
obtain a series expansion for the equation of state,

p(T,n) = nkBT(l + Byo(T)n + B3(T)n? + ... >
The coefficients B, (T") are the virial coefficients. One finds
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o Photon statistics: Photons are bosonic excitations whose number is not conserved, hence
p = 0. The number distribution for photon statistics is then n(e) = 1/(e¢ — 1). Examples
of particles obeying photon statistics include phonons (lattice vibrations), magnons (spin
waves), and of course photons themselves, for which (k) = hck with g = 2. The pressure
and number density for the photon gas obey p(T) = A, 7% and n(T) = A, T, where d
is the dimension of space and A, and A, are constants.

e Blackbody radiation: The energy density per unit frequency of a three-dimensional black-
body is givenP by
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The total power emitted per unit area of a blackbody is 45 = oT*, where o = w2k /60h3¢? =
5.67 x 1078 W /m? K* is Stefan’s constant.

o Ideal Bose gas: For Bose systems, we must have ¢, > p for all single particle states. The
number density is
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This is an increasing function of ;1 and an increasing function of 7. For fixed T, the
largest value n (7, 1) can attain is n(T,¢,), where ¢, is the lowest possible single parti-
cle energy, for which g(¢) = 0 for ¢ < ¢,. If n(T) = n(T,e,) < oo, this establishes
a critical density above which there is Bose condensation into the energy ¢, state. Con-
versely, for a given density n there is a critical temperature T,(n) such that n, is finite for
T <T.. ForT < T,,n = ng+n/(T), with p = ¢,. ForT > T,, n(T,u) is given
by the integral formula above, with n, = 0. For a ballistic dispersion (k) = h?k?/2m,
one finds n\}. = g((d/2), ie kT, = 2mhi2 (n/g((d/2))2/d. For T < T.(n), one has
ny = n—gl(3d)A\;t = n(1—(T/T,)%?) and p = g¢(1 + Ld) k,TAZ% For T > T,(n),
one hasn = gLi% (2) )\;d and p = gLi%H(z) kT )\;d, where
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e Ideal Fermi gas: The Fermi distribution is n(¢) = f(e — u) = 1/(6(5_“)/kBT +1). At
w
T = 0, this is a step function: n(¢) = O(u —¢), and n = [ de g(e). The chemical potential

at ' = 0 is called the Fermi energy: p(T = 0,n) = ep(n). If the dispersion is £(k), the
locus of k values satisfying ¢(k) = ¢ is called the Fermi surface. For an isotropic and
monotonic dispersion (k), the Fermi surface is a sphere of radius ky, the Fermi wavevector.
For isotropic three-dimensional systems, k, = (67%n/g)'/3.

e Sommerfeld expansion: Let ¢() = &'(¢). Then
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where D = k,T %. One then finds, for example, C;, = yVT with v = %wzk‘g g(ep)-
Note that nonanalytic terms proportional to exp(—u/k,T') are invisible in the Sommerfeld
expansion.



