
5 Quantum Statistics : Worked Examples

(5.1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε).

(b) Determine the critical temperature for Bose-Einstein condensation in three dimensions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If not, explain why. If so,

compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫

ddk

(2π)d
δ(ε− ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞
∫

0

dε
g(ε)

eε/kB
Tc − 1

=
1

2π2(~v)3

∞
∫

0

dε
ε2

eε/kB
Tc − 1

=
ζ(3)

π2

(

k
B
Tc

~v

)3

.

Thus,

k
B
Tc =

(

π2

ζ(3)

)1/3

~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(

k
B
T

~v

)3

⇒ n0

n
= 1−

(

T

Tc(n)

)3

.

(d) In d = 2 we have

n =
1

2π(~v)2

∞
∫

0

dε
ε

eε/kB
Tc − 1

=
ζ(2)

2π

(

k
B
Tc

~v

)2

⇒ k
B
T (d=2)
c = ~v

√

2πn

ζ(2)
.
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(5.2) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion relation ε(k) = A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity at low temperatures.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low temperatures. I.e. compute
the O(T 2) term in µ(T ).

Solution :

(a) The density of states in d = 3, with g = 2S+1 = 2, is given by

g(ε) =
1

π2

∞
∫

0

dk k2 δ
(

ε− ε(k)
)

=
1

π2
k2(ε)

dk

dε

∣

∣

∣

∣

∣

k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
Rg(ε

F
) k

B
T =

π2R

4
· kB

T

εF

,

where ε
F
= ~

2k2
F
/2m can be expressed in terms of the density using kF = (3π2n)1/3, which is valid for any isotropic

dispersion in d = 3. In deriving this formula we had to express the density n, which enters in the denominator in
the above expression, in terms of ε

F
. But this is easy:

n =

εF
∫

0

dε g(ε) =
1

3π2

(

ε
F

A

)3/4

.

(c) We have (Lecture Notes, ch. 5)

δµ = −π2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)
=

π2

24
· (kB

T )2

εF

.

Thus,

µ(n, T ) = ε
F
(n) +

π2

24
· (kB

T )2

ε
F
(n)

+O(T 4) ,

where ε
F
(n) = A (3π2n)4/3.
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(5.3) A bosonic gas is known to have a power law density of states g(ε) = Aεσ per unit volume, where σ is a real
number.

(a) Experimentalists measure Tc as a function of the number density n and make a log-log plot of their results.
They find a beautiful straight line with slope 3

7 . That is, Tc(n) ∝ n3/7. Assuming the phase transition they
observe is an ideal Bose-Einstein condensation, find the value of σ.

(b) For T < Tc, find the heat capacity CV .

(c) For T > Tc, find an expression for p(T, z), where z = eβµ is the fugacity. Recall the definition of the polylog-
arithm (or generalized Riemann zeta function)1,

Liq(z) ≡
1

Γ(q)

∞
∫

0

dt
tq−1

z−1et − 1
=

∞
∑

n=1

zn

nq
,

where Γ(q) =
∞
∫

0

dt tq−1 e−t is the Gamma function.

(d) If these particles were fermions rather than bosons, find (i) the Fermi energy ε
F
(n) and (ii) the pressure p(n)

as functions of the density n at T = 0.

Solution :

(a) At T = Tc, we have µ = 0 and n0 = 0, hence

n =

∞
∫

−∞

dε
g(ε)

eε/kB
Tc − 1

= Γ(1 + σ) ζ(1 + σ)A (k
B
Tc)

1+σ .

Thus, Tc ∝ n
1

1+σ = n3/7 which means σ = 4
3 .

(b) For T < Tc we have µ = 0, but the condensate carries no energy. Thus,

E = V

∞
∫

−∞

dε
ε g(ε)

eε/kB
T − 1

= Γ(2 + σ) ζ(2 + σ)A (k
B
T )2+σ

= Γ
(

10
3

)

ζ
(

10
3

)

A (k
B
T )10/3 .

Thus,
CV = Γ

(

13
3

)

ζ
(

10
3

)

A (k
B
T )7/3 ,

where we have used z Γ(z) = Γ(z + 1).

(c) The pressure is p = −Ω/V , which is

p(T, z) = −k
B
T

∞
∫

−∞

dε g(ε) ln
(

1− z e−ε/kBT
)

= −Ak
B
T

∞
∫

0

dε εσ ln
(

1− z e−ε/kBT
)

=
A

1 + σ

∞
∫

0

dε
ε1+σ

z−1 eε/kB
T − 1

= Γ(1 + σ)A (k
B
T )2+σ Li2+σ(z)

= Γ
(

7
3

)

A (k
B
T )10/3 Li10/3(z) .

1Some sources use the notation ζ
q
(z) for the polylogarithm, but for those of you who have yet to master the scribal complexities of the

Greek ζ , you can use the notation Liq(z) instead.
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(d) The Fermi energy is obtained from

n =

εF
∫

0

dε g(ε) =
Aε1+σ

F

1 + σ
⇒ ε

F
(n) =

(

(1 + σ)n

A

)
1

1+σ

=

(

7n

3A

)3/7

.

We obtain the pressure from p = −
(

∂E
∂V

)

N
. The energy is

E = V

εF
∫

0

dε g(ε) ε = V · Aε2+σ
F

2 + σ
∝ V − 1

1+σ .

Thus, p = 1
1+σ · E

V , i.e.

p(n) =
Aε2+σ

F

(1 + σ)(2 + σ)
= 3

10

(

7
3

)3/7
A−3/7n10/7 .
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(5.4) At low energies, the conduction electron states in graphene can be described as fourfold degenerate fermions
with dispersion ε(k) = ~v

F
|k|. Graphene is a two-dimensional sheet of carbon. Using the Sommerfeld expension,

(a) Find the density of single particle states g(ε).

(b) Find the chemical potential µ(T, n) up to terms of order T 4.

(c) Find the energy density E(T, n) = E/V up to terms of order T 4.

Solution :

(a) The DOS per unit volume is

g(ε) = 4

∫

d2k

(2π)2
δ(ε− ~v

F
k) =

2ε

π(~v
F
)2

.

(b) The Sommerfeld expansion is

∞
∫

−∞

dε f(ε− µ) φ(ε) =

µ
∫

−∞

dε φ(ε) +
π2

6
(kT )2 φ′(µ) +

7π4

360
(k

B
T )4 φ′′′(µ) + . . . .

For the particle density, set φ(ε) = g(ε), in which case

n =
1

π

(

µ

~v
F

)2

+
π

3

(

k
B
T

~v
F

)2

.

The expansion terminates after the O(T 2) term. Solving for µ,

µ(T, n) = ~v
F
(πn)1/2

[

1− π

3n

(

k
B
T

~v
F

)2
]1/2

= ~v
F
(πn)1/2

{

1− π

6n

(

k
B
T

~v
F

)2

− π2

72n2

(

k
B
T

~v
F

)4

+ . . .

}

(c) For the energy density E , we take φ(ε) = ε g(ε), whence

E(T, n) = 2µ

3π

[

(

µ

~v
F

)2

+

(

πk
B
T

~v
F

)2
]

= 2
3

√
π ~v

F
n3/2

{

1 +
π

2n

(

k
B
T

~v
F

)2

− π2

8n2

(

k
B
T

~v
F

)4

+ . . .

}
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(5.5) Consider a system of N spin- 12 particles occupying a volume V at temperature T . Opposite spin fermions
may bind in a singlet state to form a boson:

f ↑ + f ↓ ⇋ b

with a binding energy −∆ < 0. Assume that all the particles are nonrelativistic; the fermion mass is m and the
boson mass is 2m. Assume further that spin-flip processes exist, so that the ↑ and ↓ fermion species have identical

chemical potential µf .

(a) What is the equilibrium value of the boson chemical potential, µb? Hint : the answer is µb = 2µf .

(b) Let the total mass density be ρ. Derive the equation of state ρ = ρ(µf , T ), assuming the bosons have not
condensed. You may wish to abbreviate

Lip(z) ≡
∞
∑

n=1

zn

np
.

(c) At what value of µf do the bosons condense?

(d) Derive an equation for the Bose condensation temperature Tc. Solve this equation for Tc in the limits ε0 ≪ ∆

and ε0 ≫ ∆, respectively, where

ε0 ≡ π~2

m

(

ρ/2m

ζ
(

3
2

)

)2/3

.

(e) What is the equation for the condensate fraction ρ0(T, ρ)/ρ when T < Tc?

Solution :

(a) The chemical potential is the Gibbs free energy per particle. If the fermion and boson species are to coexist at
the same T and p, the reaction f ↑ +f ↓⇋ b must result in ∆G = µb − 2µf = 0.

(b) For T > Tc,

ρ = −2mλ−3
T Li3/2

(

− eµf/kBT
)

+ 2
√
8mλ−3

T Li3/2
(

e(2µf+∆)/kBT
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength for particles of mass m. This formula accounts for both

fermion spin polarizations, each with number density nf↑ = nf↓ = −λ−3
T Li3/2(−zf) and the bosons with number

density
√
8λ−3

T Li3/2(zb e
β∆), with zb = z2f due to chemical equilibrium among the species. The factor of 23/2 =

√
8

arises from the fact that the boson mass is 2m, hence the boson thermal wavelength is λT /
√
2.

(c) The bosons condense when µb = −∆, the minimum single particle energy. This means µf = − 1
2∆. The

equation of state for T < Tc is then

ρ = −2mλ−3
T Li3/2

(

− e−∆/2kBT
)

+ 4
√
2 ζ
(

3
2

)

mλ−3
T + ρ0 ,

where ρ0 is the condensate mass density.

(d) At T = Tc we have ρ0 = 0, hence

ρ

2m

(

2π~2

mk
B
Tc

)3/2

=
√
8 ζ
(

3
2

)

− Li3/2
(

− e−∆/2kBTc

)

,

which is a transcendental equation. Om. In the limit where ∆ is very large, we have

Tc(∆ ≫ ε0) =
π~2

mk
B

(

ρ/2m

ζ
(

3
2

)

)2/3

=
ε0
k

B

.
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In the opposite limit, we have ∆ → 0+ and −Li3/2(−1) = η(3/2), where η(s) is the Dirichlet η-function,

η(s) =

∞
∑

j=1

(−1)j−1 j−s =
(

1− 21−s
)

ζ(s) .

Then

Tc(∆ ≪ ε0) =
2ε0/kB

(

1 + 3
2

√
2
)2/3

.

(e) The condensate fraction is

ν =
ρ0
ρ

= 1−
(

T

Tc

)3/2

·
√
8 ζ
(

3
2

)

− Li3/2
(

− e−∆/2kBT
)

√
8 ζ
(

3
2

)

− Li3/2
(

− e−∆/2k
B
Tc

) .

Note that as ∆ → −∞ we have −Li3/2
(

− e−∆/2kBT
)

→ 0 and the condensate fraction approaches the free boson

result, ν = 1− (T/Tc)
3/2. In this limit there are no fermions present.
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(5.6) A three-dimensional system of spin-0 bosonic particles obeys the dispersion relation

ε(k) = ∆ +
~
2
k
2

2m
.

The quantity ∆ is the formation energy and m the mass of each particle. These particles are not conserved –
they may be created and destroyed at the boundaries of their environment. (A possible example: vacancies in a
crystalline lattice.) The Hamiltonian for these particles is

H =
∑

k

ε(k) n̂
k
+

U

2V
N̂2 ,

where n̂
k

is the number operator for particles with wavevector k, N̂ =
∑

k
n̂
k

is the total number of particles, V
is the volume of the system, and U is an interaction potential.

(a) Treat the interaction term within mean field theory. That is, define N̂ = 〈N̂〉+δN̂ , where 〈N̂〉 is the thermody-

namic average of N̂ , and derive the mean field self-consistency equation for the number density ρ = 〈N̂〉/V
by neglecting terms quadratic in the fluctuations δN̂ . Show that the mean field Hamiltonian is

H
MF

= − 1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k

,

(b) Derive the criterion for Bose condensation. Show that this requires ∆ < 0. Find an equation relating Tc, U ,
and ∆.

Solution :

(a) We write

N̂2 =
(

〈N̂〉+ δN̂
)2

= 〈N̂〉2 + 2〈N̂〉 δN̂ + (δN̂)2

= −〈N̂〉2 + 2〈N̂〉 N̂ + (δN̂)2 .

We drop the last term, (δN̂)2, because it is quadratic in the fluctuations. This is the mean field assumption. The
Hamiltonian now becomes

H
MF

= − 1
2V Uρ2 +

∑

k

[

ε(k) + Uρ
]

n̂
k

,

where ρ = 〈N̂〉/V is the number density. This, the dispersion is effectively changed, to

ε̃(k) =
~
2
k
2

2m
+∆+ Uρ .

The average number of particles in state
∣

∣k
〉

is given by the Bose function,

〈n̂
k
〉 = 1

exp
[

ε̃(k)/k
B
T
]

− 1
.

Summing over all k states, and using
1

V

∑

k

−→
∫

d3k

(2π)3
,
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we obtain

ρ =
1

V

∑

k

〈n̂
k
〉

= ρ0 +

∫

d3k

(2π)3
1

e~
2k2/2mk

B
T e(∆+Uρ)/k

B
T − 1

= ρ0 +

∞
∫

0

dε
g(ε)

e(ε+∆+Uρ)/k
B
T − 1

where ρ0 = 〈n̂
k=0

〉/V is the number density of the k = 0 state alone, i.e. the condensate density. When there is no

condensate, ρ0 = 0. The above equation is the mean field equation. It is equivalent to demanding ∂F/∂ρ = 0, i.e.
to extremizing the free energy with respect to the mean field parameter ρ. Though it is not a required part of the
solution, we have here written this relation in terms of the density of states g(ε), defined according to

g(ε) ≡
∫

d3k

(2π)3
δ

(

ε− ~
2
k
2

2m

)

=
m3/2

√
2π2~3

√
ε .

(b) Bose condensation requires
∆+ Uρ = 0 ,

which clearly requires ∆ < 0. Writing ∆ = −|∆|, we have, just at T = Tc,

ρ(Tc) =
|∆|
U

=

∫

d3k

(2π)3
1

e~2k2/2mkBTc − 1
,

since ρ0(Tc) = 0. This relation determines Tc. Explicitly, we have

|∆|
U

=

∞
∫

0

dε g(ε)

∞
∑

j=1

e−jε/kBTc

= ζ
(

3
2

)

(

mk
B
Tc

2π~2

)3/2

,

where ζ(ℓ) =
∑∞

n=1 n
−ℓ is the Riemann zeta function. Thus,

Tc =
2π~2

mk
B

( |∆|
ζ
(

3
2

)

U

)2/3

.
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(5.7) A three-dimensional gas of particles obeys the dispersion ε(k) = Ak5/2. There are no internal degrees of
freedom (i.e. the degeneracy factor is g = 1). The number density is n.2

(a) Compute the single particle density of states g(ε).

(b) For bosons, compute the condensation temperature T
BEC

(n).

(c) For fermions, compute the ground state energy density e0(n).

(d) For photon statistics, compute the temperature T (n).

(e) For photon statistics, compute the entropy density s(n) = S/V .

(f) For bosons and fermions, compute the second virial coefficient B2(T ).

Solution :

(a) With ε = Akσ we have k(ε) = (ε/A)1/σ , and

g(ε) =
1

2π2

k2

ε′(k)

∣

∣

∣

∣

k=k(ε)

=
ε

3
σ−1

2π2σA3/σ
=

ε1/5

5π2A6/5
.

(b) The number density n(T, z, n0) for bosons, in the grand canonical ensemble, is

n(T, z, n0) =

∞
∫

0

dε
g(ε)

z−1eε/kB
T − 1

+ n0 ,

where n0 is the condensate density. For T < T
BEC

, we have z = 1 and n0 > 0. For T > T
BEC

, we have z < 1 and
n0 = 0. Precisely at T = T

BEC
, both conditions apply: z = 1 and n0 = 0. Thus,

n =

∞
∫

0

dε
g(ε)

eε/kB
Tc − 1

=
Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
Tc

A

)3/σ

=
Γ
(

6
5

)

ζ
(

6
5

)

5π2

(

k
B
Tc

A

)6/5

.

Thus,

T
BEC

(n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB
=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB
.

(c) The ground state energy density for spinless (i.e. g = 1) fermions is

ε0 =
E0

V
=

∫

d3k

(2π)3
Akσ Θ(k

F
− k) =

A

2π2

k3+σ
F

3 + σ
.

The number density is

n =
N

V
=

∫

d3k

(2π)3
Θ(k

F
− k) =

k3
F

6π2
=⇒ k

F
=
(

6π2n
)1/3

.

Thus,

ε0(n) =

(

6π2
)σ/3

1 + σ
3

·An1+σ
3 = 6

11

(

6π2
)5/6 · An11/6 .

2We will solve the problem for the more general dispersion ε(k) = Akσ and then indicate the result for σ = 5

2
.
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(d) The photon density is

n =

∞
∫

0

dε
g(ε)

eε/kB
T − 1

,

which is the same expression as in part (b) above! Thus,

T (n) =

(

2π2σ n

Γ
(

3
σ

)

ζ
(

3
σ

)

)σ/3

· A

kB
=

(

5π2n

Γ
(

6
5

)

ζ
(

6
5

)

)5/6

· A

kB
.

(e) The grand potential is

Ω(T, V ) = V k
B
T

∞
∫

0

dε g(ε) ln
(

1− e−ε/kBT
)

= −V

∞
∫

0

dε
H(ε)

eε/kB
T − 1

,

where g(ε) = H ′(ε). Integrating g(ε) to obtain H(ε), we have

Ω(T, V ) = − V

6π2A3/σ

∞
∫

0

dε
ε3/σ

eε/kB
T − 1

= −Γ
(

3
σ + 1

)

ζ
(

3
σ

)

6π2A3/σ
V
(

k
B
T
)1+ 3

σ

The entropy density is then

s(T ) = − 1

V

∂Ω

∂T
=

Γ
(

3
σ + 2

)

ζ
(

3
σ + 1

)

6π2

(

k
B
T

A

)3/σ

k
B

,

The number density, as we have seen, is

n(T ) =
Γ
(

3
σ

)

ζ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

,

hence

s(n) =
ζ
(

3
σ + 1

)

ζ
(

3
σ

) ·
(

3
σ + 1

)

nk
B
=

ζ
(

11
5

)

ζ
(

6
5

) · 11
5 nk

B
.

On dimensionful grounds, we knew a priori that s(n) ∝ nk
B

.

(f) We have

n =

∞
∫

0

dε
g(ε)

z−1eε/kB
T − 1

= ± Γ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

Li 3
σ
(±z)

p

k
B
T

=

∞
∫

0

dε
H(ε)

z−1eε/kB
T − 1

= ± Γ
(

3
σ

)

2π2σ

(

k
B
T

A

)3/σ

Li 3
σ+1(±z) ,

where the top sign is for bosons and the bottom for fermions. It helps to define the thermal wavelength

λT ≡
(

2π2σ

Γ
(

3
σ

)

)1/3

·
(

k
B
T

A

)1/σ

=

(

5π2

Γ
(

6
5

)

)1/3(
A

k
B
T

)2/5

,

so

nλ3
T = ± Li 3

σ
(±z) = z ± 2−3/σz2 +O

(

z3
)

pλ3
T

k
B
T

= ± Li 3
σ+1(±z) = z ± 2−1−(3/σ)z2 +O

(

z3
)

.
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From the first of these, we have
z = nλ3

T ∓ 2−3/σn2λ6
T +O

(

n3λ9
T

)

.

Substituting this into the second equation, we obtain the lowest nontrivial term in the virial expansion of the
equation of state:

p

k
B
T

= n∓ 2−1−(3/σ) n2λ3
T +O

(

n3λ6
T

)

.

The second virial coefficient is then

B2(T ) = ∓2−1−(3/σ) λ3
T = ∓ 5π2

211/5 Γ
(

6
5

)

(

A

k
B
T

)6/5

.

12



(5.8) Consider a three-dimensional gas of noninteracting quantum particles with dispersion ε(k) = A |k|3/2.

(a) Find the single particle density of states per unit volume g(ε).

(b) Find expressions for n(T, z) and p(T, z), each expressed as power series in the fugacity z, for both Bose-
Einstein and Fermi-Dirac statistics.

(c) Find the virial expansion for the equation of state up to terms of order n3, for both bosons and fermions.

Solution :

(a) The density of states for dispersion ε(k) = A |k|σ is

g(ε) = g

∫

ddk

(2π)d
δ
(

ε−Akσ
)

=
gΩd

(2π)d

∞
∫

0

dk kd−1 δ
(

k − (ε/A)1/σ
)

σAkσ−1
= D ε

d
σ−1 ,

with

D =
2g

(2
√
π)d σΓ(d/2)

A−d/σ .

(b) We have

n(T, z) =

∞
∑

j=1

(±1)j−1 Cj(T ) z
j

p(T, z) = k
B
T

∞
∑

j=1

(±1)j−1 zj j−1 Cj(T ) z
j ,

where

Cj(T ) =

∞
∫

0

dε g(ε) e−jε/kBT = D Γ(d/σ)

(

k
B
T

j

)d/σ

.

Thus, we have

±nvT =

∞
∑

j=1

j−r (±z)j

± pvT/kB
T =

∞
∑

j=1

j−(r+1) (±z)j ,

where r = d/σ and

vT =
1

D Γ(d/σ) (k
B
T )d/σ

=
(2
√
π)dσ Γ(d/2)

2gD Γ(d/σ)

(

A

k
B
T

)d/σ

.

has dimensions of volume.

(c) We now let x = ±z, and interrogate Mathematica:

In[1]= y = InverseSeries [ x + x^2/2^r + x^3/3^r + x^4/4^r + O[x]^5 ]

In[2]= w = y + y^2/2^(r+1) + y^3/3^(r+1) + y^4/4^(r+1) + O[y]^5 .

13



The result is
p = nk

B
T
[

1 +B2(T )n+B3(T )n
2 + . . .

]

,

where

B2(T ) = ∓2−(r+1) vT

B3(T ) =
(

2−2r − 2 · 3−(r+1)
)

v2T

B4(T ) = ±2−(3r+1) 31−r
(

22r+1 − 5 · 3r−1 − 2r−1 3r
)

v3T .

Substitute σ = 3
2 to find the solution for the conditions given.

14



(5.9) You know that at most one fermion may occupy any given single-particle state. A parafermion is a particle
for which the maximum occupancy of any given single-particle state is k, where k is an integer greater than zero.
(For k = 1, parafermions are regular everyday fermions; for k = ∞, parafermions are regular everyday bosons.)
Consider a system with one single-particle level whose energy is ε, i.e. the Hamiltonian is simply H = εn, where
n is the particle number.

(a) Compute the partition function Ξ(µ, T ) in the grand canonical ensemble for parafermions.

(b) Compute the occupation function n(µ, T ). What is n when µ = −∞? When µ = ε? When µ = +∞? Does
this make sense? Show that n(µ, T ) reduces to the Fermi and Bose distributions in the appropriate limits.

(c) Sketch n(µ, T ) as a function of µ for both T = 0 and T > 0.

Solution:

The general expression for Ξ is

Ξ =
∏

α

∑

nα

(

z e−βεα
)nα .

Now the sum on n runs from 0 to k, and
k
∑

n=0

xn =
1− xk+1

1− x
.

(a) Thus,

Ξ =
1− e(k+1)β(µ−ε)

1− eβ(µ−ε)
.

(b) We then have

n = −∂Ω

∂µ
=

1

β

∂ ln Ξ

∂µ

=
1

eβ(ε−µ) − 1
− k + 1

e(k+1)β(ε−µ) − 1

Figure 1: labelpara k = 3 parafermion occupation number versus ε − µ for kBT = 0, kBT = 0.25, kBT = 0.5, and
kBT = 1.
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(c) A plot of n(ε, T, µ) for k = 3 is shown in Fig. ??. Qualitatively the shape is that of the Fermi function f(ε− µ).
At T = 0, the occupation function is n(ε, T = 0, µ) = kΘ(µ− ε). This step function smooths out for T finite.

(d) For each k < ∞, the occupation number n(z, T ) is a finite order polynomial in z, and hence an analytic function
of z. Therefore, there is no possibility for Bose condensation except for k = ∞.

16



(5.10) A gas of quantum particles with photon statistics has dispersion ε(k) = A |k|4.

(a) Find the single particle density of states per unit volume g(ε).

(b) Repeat the arguments of §5.5.2 in the Lecture Notes for this dispersion.

(c) Assuming our known values for the surface temperature of the sun, the radius of the earth-sun orbit, and
the radius of the earth, what would you expect the surface temperature of the earth to be if the sun radiated
particles with this dispersion instead of photons?

Solution :

(a) See the solution to part (a) of problem 8 above. For d = 3 and σ = 4 we have

g(ε) =
g

2π2
A−3/4 ε−1/4 .

(b) Scaling volume by λ scales the lengths by λ1/3, the quantized wavevectors by λ−1/3, and the energy eigenval-
ues by λ−4/3, since ε ∝ k4. Thus,

p = −
(

∂E

∂V

)

S

=
4E

3V
,

which says
(

∂E

∂V

)

T

= T

(

∂p

∂T

)

V

− p = 3
4 p ⇒ p(T ) = B T 7/4 .

Indeed,

p(T ) = −k
B
T

∞
∫

−∞

g(ε) ln
(

1− e−ε/kBT
)

= − g

2π2A3/4
(k

B
T )7/4

∞
∫

−∞

du u−1/4 ln(1 − e−u) .

(c) See §5.5.5 of the Lecture Notes. Assume a dispersion of the form ε(k) for the (nonconserved) bosons. Then the
energy current incident on a differential area dA of surface normal to ẑ is

dP = dA ·
∫

d3k

(2π)3
Θ(cos θ) · ε(k) · 1

~

∂ε(k)

∂kz
· 1

eε(k)/kB
T − 1

.

Note that
∂ε(k)

∂kz
=

kz
k

∂ε

∂k
= cos θ ε′(k) .

Now let us assume a power law dispersion ε(k) = Akα. Changing variables to t = Akα/k
B
T , we find

dP

dA
= σ T 2+ 2

α ,

where

σ = ζ
(

2 + 2
α

)

Γ
(

2 + 2
α

)

· g k
2+ 2

α

B A− 2
α

8π2~
.

One can check that for g = 2, A = ~c, and α = 1 that this result reduces to Stefan’s Law. Equating the power

17



incident on the earth to that radiated by the earth,

4πR2
⊙ · σT 2(1+α−1)

⊙ · πR
2
e

4πa2e
= 4πR2

e · σT 2(1+α−1)
e ,

which yields

Te =

(

R⊙

2ae

)
α

α+1

T⊙ .

Plugging in the appropriate constants and setting α = 4, we obtain Te = 45.2K. Brrr!
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(5.11) Consider a three-dimensional ultrarelativistic gas, with dispersion ε = ~c|k|. Find the viral expansion of
the equation of state p = p(n, T ) to order n3 for both bosons and fermions.

Solution : We have

βp = ∓g

∫

d3k

(2π)3
ln
(

1∓ z e−βε(k)
)

z = g

∫

d3k

(2π)3
1

z−1 eβε(k) ∓ 1
,

where g is the degeneracy of each k mode. WIth ε(k) = ~ck, we change variables to t = β~ck and find

βp =
g

6π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t3

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j4

n =
g

2π2

(

k
B
T

~c

)3
∞
∫

−∞

dt
t2

z−1 et ∓ 1
=

g

π2

(

k
B
T

~c

)3 ∞
∑

j=1

(±1)j−1 zj

j3
,

where we have integrated by parts in the first of these equations. Now it’s time to ask Mathematica :

In[1] = y = InverseSeries [ x + x^2/2^3 + x^3/3^3 + x^4/4^3 + x^5/5^3 + O[x]^6 ]

Out[1] = x -
x^2

8
-

5 x^3

864
-

31 x^4

13 824
-

56 039 x^5

62 208 000
+ O[x]^6

In[2] = w = y + y^2/2^4 + y^3/3^4 + y^4/4^4 + y^5/5^4

Out[2] = x -
x^2

16
-

47 x^3

5184
-

25 x^4

9216
-

2 014 561 x^5

1 866 240 000
+ O[x]^6

So with the definition

λT = π2/3 g−1/3 ~c

k
B
T

,

we have
p = nk

B
T
(

1 +B2 n+B3 n
2 + . . .

)

,

where
B2 = ∓ 1

16 λ3
T , B3 = − 47

5184 λ6
T , B4 = ∓ 25

9216 λ9
T , B4 = − 2014561

1866240000 λ12
T .
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(5.12) Almost all elements freeze into solids well before they can undergo Bose condensation. Setting the Linde-
mann temperature equal to the Bose condensation temperature, show that this implies a specific ratio of k

B
Θ

D
to

~
2/Ma2, where M is the atomic mass and a is the lattice spacing. Evaluate this ratio for the noble gases He, Ne,

Ar, Kr, and Xe. (You will have to look up some numbers.)

Solution : The Lindemann melting temperature TM and the Bose condensation temperature Tc for monatomic
solids are given by

TM = x2 · Mk
B
Θ2

D
a2

9~2
, Tc =

2π~2

Mk
B

(

n

ζ(3/2)

)2/3

,

where a is the lattice constant, M the atomic mass, and Θ
D

the Debye temperature. For a simple cubic lattice, the
number density is n = a−3. Helium solidifies into a hexagonal close packed (HCP) structure, while Neon, Argon,
Krypton, and Xenon solidify into a face-centered cubic (FCC) structure. The unit cell volume for both HCP and
FCC is a3/

√
2, where a is the lattice spacing, so n =

√
2 a−3 for the rare gas solids. Thus, we find

TM

Tc

=
x

α
·
(

k
B
Θ

D

~2/Ma2

)2

.

where

α = 18π

(
√
2

ζ(3/2)

)2/3

≈ 40 .

If we set x = 0.1 we find x
α ≈ 1

400 . Now we need some data for Θ
D

and a. The most convenient table of data
I’ve found is from H. Glyde’s article on solid helium in the Encyclopedia of Physics. The table entry for 4He is for
the BCC structure at a pressure p = 25 bar. For a BCC structure the unit cell volume is 4a3/3

√
3. Define the ratio

R ≡ k
B
Θ

D
/(~2/Ma2).

As one can see from Tab. 1 and from the above equation for TM/Tc. the R values are such that the melting
temperature is predicted to be several orders of magnitude higher than the ideal Bose condensation temperature
in every case except 4He, where the ratio is on the order of unity (and is less than unity if the actual melting
temperature is used). The reason that 4He under high pressure is a solid rather than a Bose condensate at low
temperatures is because the 4He atoms are not free particles.

crystal a (Å) M (amu) Θ
D

(K) T actual
M (K) Tc ~

2/Ma2k
B

(K) R
4He 3.57 4.00 25 1.6 3.9 0.985 25
Ne 4.46 20.2 66 24.6 0.50 0.125 530
Ar 5.31 39.9 84 83.8 0.18 0.0446 1900
Kr 5.65 83.8 64 161.4 0.076 0.0188 3400
Xe 6.13 131 55 202.0 0.041 0.0102 20000

Table 1: Lattice constants for Ne, Ar, Kr, and Xe from F. W. de Wette and R. M. J. Cotterill, Solid State Comm. 6, 227
(1968). Debye temperatures and melting temperatures from H. Glyde, Solid Helium in Encyclopedia of Physics.
4He data are for p = 25 bar, in the bcc phase (from Glyde).
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(5.13) A nonrelativistic Bose gas consists of particles of spin S = 1. Each boson has mass m and magnetic moment

µ0. A gas of these particles is placed in an external field H .

(a) What is the relationship of the Bose condensation temperature Tc(H) to Tc(H = 0) when µ0H ≫ k
B
T ?

(b) Find the magnetization M for T < Tc when µ0H ≫ k
B
T . Calculate through order exp(−µ0H/k

B
T ).

Solution :

The number density of bosons is given by

n(T, z) = λ−3
T

{

Li3/2
(

z eµ0H/kBT
)

+ Li3/2
(

z
)

+ Li3/2
(

z e−µ0H/kBT
)

}

.

The argument of Liz(z) cannot exceed unity, thus Bose condensation occurs for z = exp(−µ0H/k
B
T ) (assuming

H > 0). Thus, the condition for Bose condensation is given by

nλ3
Tc

= ζ(3/2) + Li3/2
(

e−µ0H/kBTc

)

+ Li3/2
(

e−2µ0H/kBTc

)

.

This is a transcendental equation for T = Tc(n,H). In the limit µ0H ≫ k
B
Tc, the second two terms become

negligible, since

Lis(z) =

∞
∑

j=1

zj

js
.

Thus,

Tc(H → ∞) =
2π~2

m

(

n

ζ(3/2)

)2/3

.

When H = 0, we have Thus,

Tc(H → 0) =
2π~2

m

(

n

3 ζ(3/2)

)2/3

.

Thus,
Tc(H → ∞)

Tc(H → 0)
= 32/3 = 2.08008 . . .

The magnetization density is

M = µ0 λ
−3
T

{

Li3/2
(

z eµ0H/kBT
)

− Li3/2
(

z e−µ0H/kBT
)

}

.

For T < Tc, we have z = exp(−µ0H/k
B
T ) and therefore

M = µ0 λ
−3
T

{

ζ(3/2)−
∞
∑

j=1

j−3/2 e−2jµ0H/kBT
}

= nµ0

{

1− e−2µ0H/kBT

ζ(3/2)
+O

(

e−4µ0H/kBT
)

}
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(5.14) Consider a set of N noninteracting S = 1
2 fermions in a one-dimensional harmonic oscillator potential. The

oscillator frequency is ω. For k
B
T ≪ ~ω, find the lowest order nontrivial contribution to the heat capacity C(T ),

using the ordinary canonical ensemble. The calculation depends on whether N is even or odd, so be careful! Then
repeat your calculation for S = 3

2 .

Solution :

The partition function is given by

Z = g0 e
−βE0 + g1E

−βE1 + . . . ,

where gj and Ej are the degeneracy and energy of the jth energy level, respectively. From this, we have

F = −k
B
T lnZ = E0 − k

B
T ln

(

g0 + g1 e
−∆1/kBT + . . .

)

,

where ∆j ≡ Ej −E0 is the excitation energy for energy level j>1. Suppose that the spacings between consecutive
energy levels are much larger than the temperature, i.e. Ej+1 − Ej ≫ k

B
T . This is the case for any harmonic

oscillator system so long as ~ω ≫ k
B
T , where ω is the oscillator frequency. We then have

F = E0 − k
B
T ln g0 −

g1
g0

k
B
T e−∆1/kBT + . . .

The entropy is

S = −∂F

∂T
= ln g0 +

g1
g0

e−∆1/kBT +
g1
g0

∆1

T
e−∆1/kBT + . . .

and thus the heat capacity is

C(T ) = T
∂S

∂T
=

g1
g0

∆2
1

k
B
T 2

e−∆1/kBT + . . .

With g0 = g1 = 1, this recovers what we found in §4.10.6 of the Lecture Notes for the low temperature behavior of
the Schottky two level system.
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.
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.
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.
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.
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.
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.
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.
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.
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.
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.
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.

..
.
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.

..
.

..
.

..
.

..
.
N even :

N odd :

g0=1 g1=2

g0=2 g1=4

Figure 2: Ground states and first excited states for the S = 1
2 one-dimensional simple harmonic oscillator.
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ground
state

excited
state

excited
state

Figure 3: Ground states and first excited states for the general S case, with K = 2S+1.

OK, so now let us consider the problem at hand, which is the one-dimensional harmonic oscillator, whose energy
levels lie at Ej = (j + 1

2 )~ω, hence ∆j = j~ω is the jth excitation energy. For S = 1
2 , each level is twofold degen-

erate. When N is even, the ground state is unique, and we occupy states | j , ↑ 〉 and | j , ↓ 〉 for j ∈
{

0 , . . . , N
2 −1

}

.
Thus, the ground state is nondegenerate and g0 = 1. The lowest energy excited states are then made, at fixed
total particle number N , by promoting either of the | j = N

2 −1 , σ 〉 levels (σ =↑ or ↓) to j = N
2 . There are g1 = 2

ways to do this, each of which increases the energy by ∆1 = ~ω. When N is odd, we fill one of the spin species
up to level j = N−1

2 and the other up to level j = N+1
2 . In this case g0 = 2. What about the excited states? It

turns out that g1 = 4, as can be seen from the diagrams in Fig. 2. For N odd, in either of the two ground states,
the highest occupied oscillator level is j = N+1

2 , which is only half-occupied with one of the two spin species. To

make an excited state, one can either (i) promote the occupied state to the next oscillator level j = N+3
2 , or (ii) fill

the unoccupied state by promoting the occupied state from the j = N−1
2 level. So g1 = 2 · 2 = 4. Thus, for either

possibility regarding the parity of N , we have g1/g0 = 2, which means

C(T ) =
2(~ω)2

k
B
T 2

e−~ω/kBT + . . .

This result is valid for N > 1.

An exception occurs when N = 1, where the lone particle is in the n = 0 oscillator level. Since there is no n = −1
level, the excited state degeneracy is then g1 = 2, and the heat capacity is half the above value. Of course, for
N = 0 we have C = 0.

What happens for general spin S? Now each oscillator level has a K ≡ 2S+1 spin degeneracy. We may write
N = rK + s, where r and s are integers and s ∈ {0 , 1 , . . . , K− 1}. The ground states are formed by fully
occupying all | j , m 〉 states, with m ∈ {1, . . . ,K}, from j = 0 to j = r−1. The remaining s particles must all be

placed in the K degenerate levels at j = r, and there are
(

K
s

)

ways of achieving this. Thus, g0 =
(

K
s

)

.

Now consider the excited states. We first assume r > 0. There are then two ways to make an excited state. If
s > 0, we can promote one of the s occupied states with j = r to the next oscillator level j = r+1. One then has
s−1 of the K states with j = r occupied, and one of the K states with j = r+1 occupied. The degeneracy for this

configuration is g =
(

K
1

)(

K
s−1

)

= K
(

K
s−1

)

. Another possibility is to promote one of the filled j = r−1 levels to the
j = r level, resulting in K − 1 occupied states with j = r−1 and s+1 occupied states with j = r. This is possible
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for any allowed value of s. The degeneracy of this configuration is g =
(

K
K−1

)(

K
s+1

)

= K
(

K
s+1

)

. Thus,

g1 = K

(

K

s+ 1

)

+K

(

K

s− 1

)

,

and thus for r > 0 and s > 0 we have

C(T ) =
g1
g0

k
B

(

~ω

k
B
T

)2

e−~ω/kBT + . . .

= K ·
{

K − s

s+ 1
+

s

K − s+ 1

}

· k
B

(

~ω

k
B
T

)2

e−~ω/kBT + . . .

The situation is depicted in Fig. 3. Upon reflection, it becomes clear that this expression is also valid for s = 0,
since the second term in the curly brackets in the above equation, which should be absent, yields zero anyway.

The exceptional cases occur when r = 0, in which case there is no j = r−1 level to depopulate. In this case,

g1 = K
(

K
s−1

)

and g1/g0 = Ks/(K − s + 1). Note that all our results are consistent with the K = 2 case studied
earlier.
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(5.15) A noninteracting Bose gas in d = 3 dimensions has dispersion ε(k) = ~c|k|.

(a) Find Tc(n).

(b) For T < Tc, find n(T, n0) and p(T ).

(c) For T > Tc, find n(T, z) and p(T, z).

(d) Find and plot the molar heat capacity at constant volume as a function of T/Tc. Comment on its noteworthy
features.

Solution :

(a) The density of states is obtained from g(ε) dε = d3k
(2π)3 , which yields

g(ε) =
ε2

2π2(~c)3
.

The critical temperature is then determined by

n =

∞
∫

0

dε
g(ε)

eε/kB
Tc − 1

=
ζ(3)

π2

(

k
B
Tc

~c

)3

,

hence

Tc(n) =
~c

k
B

(

π2n

ζ(3)

)1/3

.

One has ζ(3) ≈ 1.2020569.

(b) For T < Tc, we have

n(T, n0) = n0 +
ζ(3)

π2

(

k
B
T

~c

)3

p(T ) =
ζ(4)

π2

(k
B
T )4

(~c)3
.

One has ζ(4) = π4

90 ≈ 1.0823232.

(c) For T > Tc, we have

n(T, z) =
1

π2

(

k
B
T

~c

)3

Li3(z)

p(T, z) =
1

π2

(k
B
T )4

(~c)3
Li4(z) .

(d) The energy is given by E − µN = − ∂
∂β ln Ξ. With ln Ξ = −βΩ = βpV , the energy for T > Tc is

E(T, V, z) = µN − V
∂

∂β

(

βp
)

=
3V

π3

(k
B
T )4

(~c)3
Li4(z) .
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The particle number for T > Tc is

N(T, V, z) =
V

π2

(

k
B
T

~c

)3

Li3(z) .

When T < Tc, we have

E(T, V ) =
3 ζ(4)V

π3

(k
B
T )4

(~c)3
, N(T, V, n0) = V n0 +

ζ(3)V

π2

(

k
B
T

~c

)3

.

We may now compute cV,N , the molar heat capacity at constant volume. For T < Tc,

cV,N(T, z) =
N

A

N

(

∂E

∂T

)

V,N

=
12 ζ(4)

ζ(3)

(

T

Tc(n)

)3

R .

For T > Tc, we write

dN
∣

∣

V
=

3V

π2

(

k
B
T

~c

)3

Li3(z)
dT

T
+

V

π2

(

k
B
T

~c

)3

Li2(z)
dz

z
,

so setting dN |V = 0 requires a relation between dz and dT , viz.

dz

z
= −dT

T
· 3 Li3(z)
Li2(z)

.

We next differentiate the energy E, obtaining

dE
∣

∣

V
=

12 k
B

π2
V

(

k
B
T

~c

)3

Li4(z) dT +
3

π2

(k
B
T )4

(~c)3
Li2(z)

dz

z

=
3 k

B

π2
V

(

k
B
T

~c

)3
{

4 Li4(z)−
3 Li23(z)

Li2(z)

}

dT .

Thus, dividing through by dT and then by N/N
A

,

cV,N (T, z) = 3R

[

4 Li4(z)

Li3(z)
− 3 Li3(z)

Li2(z)

]

,

along with

n(T, z) =
1

π2

(

k
B
T

~c

)3

Li3(z) ⇒ Li3(z) = ζ(3)

(

Tc(n)

T

)3

.

Note that z → 0 as T → ∞, in which case cV,N → 3R, which is the appropriate Dulong-Petit result for the case of
a linear dispersion in d = 3 dimensions.

One remarkable aspect to our result is that

lim
T→T−

c (n)
cV,N (T ) =

12 ζ(4)

ζ(3)
R ≈ 10.80471R

lim
T→T+

c (n)
cV,N (T ) =

[

12 ζ(4)

ζ(3)
− 9 ζ(3)

ζ(2)

]

R ≈ 4.227845R ,

which says that cV,N (T ) exhibits a discontinuous drop at the critical temperature Tc(n).
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(5.16) Consider free fermions with density of states g(ε) = Aεα and number density n.

(a) Find the Fermi energy ε
F
(n).

(b) Find the chemical potential shift at finite temperature up to terms of order T 4.

(c) Find the heat capacity at constant volume CV,N to first order in T .

Solution :

(a) We have

n =

εF
∫

0

dε g(ε) =
Aεα+1

F

α+ 1
⇒ ε

F
=

(

(α+ 1)n

A

)
1

α+1

.

(b) Invoking the Sommerfeld expansion,

n =

εF
∫

0

dε g(ε) + π2

6 g′(ε
F
) (k

B
T )2 + 7π4

360 g′′′(ε
F
) (k

B
T )4 + . . .

We now write µ = ε
F
+δµ and solve for δµ(ε

F
, T ), using n =

εF
∫

0

dε g(ε). We write the double power series expansion

of the above result, up to orders (k
B
T )4 and (k

B
T )2 δµ:

0 = g(ε
F
) δµ+ 1

2g
′(ε

F
) (δµ)2 + π2

6 g′(ε
F
) (k

B
T )2 + π2

6 g′′(ε
F
) (k

B
T )2 δµ+ 7π4

360 g′′′(ε
F
) (k

B
T )4 + . . .

We now solve for the coefficients of the order (k
B
T )2 and (k

B
T )4 terms in δµ(T ), yielding

δµ(T ) = −π2

6

g′(ε
F
)

g(ε
F
)
(k

B
T )2 − π4

360

{

7 g′′′(ε
F
)

g(ε
F
)

− 10 g′(ε
F
) g′′(ε

F
)

g2(ε
F
)

+
5 g′3(ε

F
)

g3(ε
F
)

}

(k
B
T )4 + . . .

Substituting g(ε) = Aεα into the above expression, we find

δµ(T ) = −απ2

6

(k
B
T )2

εF

− α(α− 2)(2α− 7)π4

360

(k
B
T )4

ε3
F

+ . . .

(c) The heat capacity is

CV,N = π2

3 V g(ε
F
) k2

B
T = π2

3 VAεα
F
k2

B
T ,

where ε
F
(n) is given in the solution to part (a).
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(5.17) In an n-type semiconductor, the donor levels lie a distance ∆ below the bottom of the conduction band.
Suppose there are M such donor levels. Due to the fact that such donor levels are spatially localized, one can
ignore the possibility of double occupancy. Thus, each donor level can be occupied by at most one electron, but of
either spin polarization. Assume the conduction band dispersion is isotropic, given by ε

k
= ~

2
k
2/2m∗. You may

set the conduction band minimum to εc(0) ≡ 0.

(a) Assuming that the conduction band is very sparsely populated, find an expression for the conduction elec-
tron density nc(T, µ).

(b) Suppose there are Nd electrons sitting on the donor sites, i.e. Nd of the M donor levels are singly occupied.
Find the entropy of these electrons.

(c) Find the chemical potential of the donor electrons.

(d) Use the fact that the donor electrons and the conduction band electrons are in thermal equilibrium to elimi-
nate µ from the problem, and find the conduction electron density nc(T ) and the fraction νd(T ) of occupied
donor sites. Assume that the donor concentration is ρd, and that all conduction electrons are due to singly
ionized donors.

Solution :

(a) We have

nc = 2

∫

d3k

(2π)d
1

eβ(εk−µc) + 1
≈ 2λ−3

c eµc/kBT ,

where µc is the chemical potential and λc = (2π~2/m∗k
B
T )1/2 thermal de Broglie wavelength for the conduction

electrons.

(b) We assume that each donor site can either be empty, or else occupied by an electron in one of two possible
polarization states. We forbid double occupancy of the donors, due to the large Coulomb energy associated with
such a state. The number of configurations for Nd occupied donor sites is then

Ω(Nd,M) = 2Nd

(

M

Nd

)

,

and therefore

Sd = k
B
ln

(

2Nd M !

Nd! (M −Nd)!

)

.

The free energy of the donor system is then

F (T,Nd,M) = −Nd∆− k
B
T ln

(

2Nd M !

Nd! (M −Nd)!

)

≈ −Nd∆−Nd kB
T ln 2 +Mk

B
T

{

Nd

M
ln

(

Nd

M

)

+

(

M −Nd

M

)

ln

(

M −Nd

M

)

}

,

where we have invoked Stirling’s approximation. The chemical potential for the donor level electrons, which we
will need later, is then

µd =

(

∂F

∂Nd

)

T,M

= −∆− k
B
T ln 2 + k

B
T ln

(

fd
1− fd

)

,

where fd = Nd/M is the fraction of donor sites which are occupied.
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(c) Invoking our results from part (a) and (b), and setting µc = µd ≡ µ, we have

eµ/kBT = 1
2 ncλ

3
c = 1

2 e
−∆/kBT fd

1− fd
,

Thus,
(

f−1
d − 1

)

nc = λ−3
c e−∆/kBT .

Now suppose the donor site density is ρd. All the conduction electrons must come from ionized donor sites. The
fraction of such sites is 1− fd , hence nc = (1 − fd) ρd. Therefore, we have

(1− fd)
2

fd
=

e−∆/kBT

ρdλ
3
c

≡ b(T ) .

This yields a quadratic equation for 1− fd , whose solution is

1− fd = − 1
2b+

√

1
4b

2 + b ⇒ nc =

{

− 1
2b+

√

1
4b

2 + b

}

ρd .

Note that fd → 1 as b → 0. In this limit, which is achieved when k
B
T ≪ ∆, or when ρdλ

3
c ≫ 1, or by some

combination of these two conditions, all the donor sites are occupied, and the conduction electron density is zero.
It is energetically/entropically two costly for the donors to donate an electron to the conduction band. In the

T → 0 limit, we have 1− fd ≃
√
b , hence the chemical potential becomes

µ(T → 0) = − 1
2∆+ k

B
T ln

[

1
2ρd

(

2π~2

m∗k
B
T

)3/2
]

,

which ultimately ends up exactly halfway between the donor levels and the bottom of the conduction band.

This problem is very similar to the adsorption model considered in §4.9.3 of the Lecture Notes. There, we consid-
ered a surface of adsorption sites in equilibrium with a classical gas. The only difference here is that the adsorbate
particles can exist in one of two energetically degenerate polarization states. One can also solve for the donor
density in the grand canonical ensemble. The donors are independent, hence the partition function for the donor
electrons is

Ξd =
(

1 + 2 eµ/kBT e∆/kBT
)M

.

Note the factor of two, due to the degeneracy of the spin polarization states. If we were to include the possibility
of doubly occupied donors, we would have instead

Ξd =
(

1 + 2 eµ/kBT e∆/kBT + e2µ/kBT e(2∆−U)/kBT
)M

,

where the energy of the doubly occupied level is −2∆ + U , with U being the Coulomb repulsion energy for two
electrons to sit on the same localized donor site. Again, we have assumed U is much larger than every other
energy scale in this problem, meaning we can ignore the possibility of double occupancy. The grand potential for
the donor electrons is then Ωd = −k

B
T ln Ξd , and so

fd = − 1

M

(

∂Ωd

∂µ

)

T,M

=
1

1
2e

−(µ+∆)/k
B
T + 1

,

which recovers the result previously obtained in part (a).
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