
2 Thermodynamics : Worked Examples

(2.1) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 1. Section AB is an adiabatic free
expansion; section BC is an isotherm at temperature TA = TB = TC; CD is an isobar, and DA is an isochore. The
volume at B is given by VB = (1− x)VA + xVC, where 0 ≤ x ≤ 1.

(a) Find an expression for the total work Wcycle in terms of ν, TA, VA, VC, and x.

(b) Suppose VA = 1.0 L, VC = 5.0 L, TA = 500K, and ν = 5. What is the volume VB such that Wcycle = 0?

Figure 1: Engine cycle for problem 1, consist-
ing of adiabatic free expansion (AB), isotherm
(BC), isobar (CD), and isochore (DA).

Solution :

(a) We have WAB = WDA = 0, and

WBC =

C∫

B

p dV = νRTA

C∫

B

dV

V
= νRTA ln

(
VC

VB

)

WCD =

D∫

C

p dV = pC(VD − VC) = −νRTA

(

1− VA

VC

)

.

Thus,

WCYC = νRTA

[

ln

(
VC

VB

)

− 1 +
VA

VC

]

.

(b) Setting VB = (1 − x)VA + xVC, and defining r ≡ VA/VC, we have

WCYC = νRTA

(

− ln
(
x+ (1− x) r

)
+ 1− r

)

,

and setting WCYC = 0 we obtain x = x∗, with

x∗ =
er−1 − r

1− r
.

For VA = 1.0 L and VC = 5.0 L, we have r = 1
5

and x∗ = 0.31, corresponding to VB = 2.2 L.
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(2.2) A strange material obeys the equation of state E(S, V,N) = aS7/V 4N2, where a is a dimensionful constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(
∂V
∂T

)

p
and the isothermal compressibility κT = − 1

V

(
∂V
∂p

)

T
.

Express your answers in terms of p and T .

(d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures T1 and T2. Find the heat
Q and work W for each leg of the cycle, and find the cycle efficiency η.

A

B

C
D

Figure 2: The Carnot cycle.

Solution :

(a) Clearly [a] = K7m12/J6 where K are Kelvins, m are meters, and J
are Joules.

(b) We have

T = +

(
∂E

∂S

)

V,N

=
7aS6

N2V 4

p = −
(
∂E

∂V

)

S,N

=
4aS7

N2V 5
.

We must eliminate S. Dividing the second of these equations by the
first, we find S = 7pV/4T , and substituting this into either equation,
we obtain the equation of state,

p = c ·
(
N

V

)1/3

T 7/6 ,

with c = 6
77/6

a−1/6.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp

p
+

dV

3V
− 7 dT

6T
− dN

3N
= 0 .

Thus,

αp =
1

V

(
∂V

∂T

)

p,N

=
7

2T
, κT = − 1

V

(
∂V

∂p

)

T,N

=
3

p
.

(d) From the results of part (b), we have that dS = 0 means d(N2V 4T ) = 0, so with N constant the equation for
adiabats is d(TV 4) = 0. Thus, for the Carnot cycle of Fig. 2, we have

T2 V
4
A = T1 V

4
D , T2 V

4
B = T1 V

4
C .

We shall use this relation in due time. Another relation we shall use is obtained by dividing out the S7 factor
common in the expressions for E and for p, then substituting for p using the equation of state:

E = 1
4
pV = 1

4
cN1/3 V 2/3 T 7/6 .
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AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the isotherm to find

WAB =

VB∫

V
A

dV p = 3
2
cN1/3 T

7/6
2

(
V

2/3
B − V

2/3
A

)
.

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy along this leg:

(∆E)AB = EB − EA = 1
4
cN1/3 T

7/6
2

(
V

2/3
B − V

2/3
A

)
.

Finally, the heat absorbed by the engine material during this leg is

QAB = (∆E)AB +WAB = 7
4
cN1/3 T

7/6
2

(
V

2/3
B − V

2/3
A

)
.

BC: Next, consider the BC leg. Clearly QBC = 0 since BC is an adiabat. Thus,

WBC = −(∆E)BC = EB − EC = 1
4
cN1/3

(
T

7/6
2 V

2/3
B − T

7/6
1 V

2/3
C

)
.

But the fact that BC is an adiabat guarantees V
2/3
C = (T2/T1)

1/6 V
2/3
B , hence

WBC = 1
4
cN1/3 V

2/3
B T

1/6
2 (T2 − T1) .

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

WCD = 3
2
cN1/3 T

7/6
2

(
V

2/3
D − V

2/3
C

)
.

We now use the adiabat conditions V
2/3
C = (T2/T1)

1/6 V
2/3
B and V

2/3
D = (T2/T1)

1/6 V
2/3
A to write WCD as

WCD = 3
2
cN1/3 T1 T

1/6
2

(
V

2/3
A − V

2/3
B

)
.

We therefore have
QCD = 7

4
cN1/3 T1 T

1/6
2

(
V

2/3
A − V

2/3
B

)
.

Note that both WCD and QCD are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat conditions. We find QDA = 0
and

WDA = 1
4
cN1/3 V

2/3
A T

1/6
2 (T2 − T1) .

For the cycle, we therefore have

Wcyc = WAB +WBC +WCD +WDA = 7
4
cN1/3 T

1/6
2 (T2 − T1)

(
V

2/3
B − V

2/3
A

)
.

and thus

η =
Wcyc

QAB

= 1− T1

T2

.

This is the same result as for an ideal gas, as must be the case as per the Second Law of Thermodynamics.
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(2.3) For each of the following situations, explain clearly and fully why it is or is not thermodynamically possible.

(a) Energy function E(S, V,N) = aS V N with a constant.

(b) Equation of state V = aN pT with a constant.

(c) A system where
(
∂V
∂T

)

p,N
< 0 over some range of T and p.

(d) The phase diagram for a single component system depicted in Fig. 3 (left panel). (You only need know that
a superfluid is a distinct thermodynamic phase.)

(e) The phase diagram for a single component system in Fig. 3 (right panel). (You only need know that BCC,
HCP, and FCC solids are distinct phases.)

(f) E(S, V,N) = aN2 V −1 exp(S/Nb) with a and b constant.

(g) 15 Joules of heat energy are required to raise the temperature of a system by ∆T = 1◦C at constant volume.
10 Joules of heat energy are required to raise the temperature of the same system by ∆T = 1◦F at constant
pressure.

(h) A heat engine operating between reservoirs at temperatures T1 = 400K and T2 = 600K. During each cycle,
the engine does work W = 300 J and the entropy of the upper reservoir decreases by 2.00 J/K.

Figure 3: Phase diagrams for parts (d) and (e) of problem 3.

Solution :

(a) No! E(λS, λV, λN) = λ3E(S, V,N) is homogeneous of degree 3 – not extensive.

(b) No! The isothermal compressibility κT = − 1
V

(
∂V
∂p

)

T
= −1/p is negative, which violates κT > κS > 0.

(c) Yes! Many systems, such as water, contract upon a temperature increase over some range of temperature.

(d) No! This one is tricky. From the Clapeyron equation, we have
(
dp
dT

)

coex
= ∆s

∆v . Nernst’s law says that the
entropy of both the solid and superfluid phases must vanish at T = 0. Therefore all coexistence curves which
intersect the pressure axis at T = 0 must do so with zero slope.
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(e) No! The Gibbs phase rule d = 2 + σ − ϕ gives the dimension of thermodynamic space over which ϕ distinct
phases among σ species can coexist. For σ = 1 we have ϕ ≤ 3, since d ≥ 0. So four phase coexistence with a single
component is impossible.

(f) Yes! E is properly extensive and convex. One can derive E = pV = NbT , which is the ideal gas law with k
B

replaced by b.

(d) Yes! The heat capacity at constant volume is CV =
(
d̄Q
dT

)

V
= 15 J/K. The heat capacity at constant pressure is

Cp =
(
d̄Q
dT

)

p
= 10 J/ 5

9
K = 18 J/K. Stability requires Cp > CV , which is satisfied.

(h) Yes! The only possible obstacle here is whether the engine’s efficiency is greater than that of the corresponding

Carnot cycle, for which η
C

= 1 − T
1

T
2

= 1
3

. We have η = W
Q

2

and ∆S2 = −Q
2

T
2

. Thus, η = W/
[
T2(−∆S2)

]
=

300 J/
[
(600K)(2.00 J/K)

]
= 1

4
< η

C
.
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(2.4) Using the chain rule from multivariable calculus (see §2.17 of the lecture notes), solve the following:

(a) Find (∂N/∂T )S,p in terms of T , N , S, and Cp,N .

(b) Experimentalists can measure CV,N but for many problems it is theoretically easier to work in the grand
canonical ensemble, whose natural variables are (T, V, µ). Show that

CV,N =

(
∂E

∂T

)

V,z

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

/(
∂N

∂z

)

T,V

,

where z = exp(µ/k
B
T ) is the fugacity.

Solution :

(a) We have
(
∂N

∂T

)

S,p

=
∂(N,S, p)

∂(T, S, p)
=

∂(N,S, p)

∂(N, T, p)
· ∂(N, T, p)

∂(T, S, p)
= −

NCp,N

TS
.

(b) Using the chain rule,

CV,N =
∂(E, V,N)

∂(T, V,N)
=

∂(E, V,N)

∂(T, V, z)
· ∂(T, V, z)

∂(T, V,N)

=

[(
∂E

∂T

)

V,z

(
∂N

∂z

)

T,V

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

]

·
(

∂z

∂N

)

T,V

=

(
∂E

∂T

)

V,z

−
(
∂E

∂z

)

T,V

(
∂N

∂T

)

V,z

/(
∂N

∂z

)

T,V

.
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(2.5) The entropy of a thermodynamic system S(E, V,N) is given by

S(E, V,N) = r Eα V β Nγ ,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on (α, β, γ). Find this constraint.

(b) Even with the extensivity condition satisfied, the system may violate one or more stability criteria. Find the
general conditions on (α, β, γ) which are thermodynamically permissible.

Solution :

(a) Clearly we must have α+ β + γ = 1 in order for S to be extensive.

(b) The Hessian is

Q =
∂2S

∂Xi ∂Xj

=





α(α − 1)S/E2 αβ S/EV αγ S/EN
αβ S/EV β(β − 1)S/V 2 βγ S/VN
αγ S/EN βγ S/VN γ(γ − 1)S/N2



 .

As shown in the notes, for any 2 × 2 submatrix of Q, obtained by eliminating a single row and its corresponding

column, and written

(
a b
b c

)

, we must have a < 0, c < 0, and ac > b2. For example, if we take the upper left 2× 2

submatrix, obtained by eliminating the third row and third column of Q, we have a = α(α−1)S/E2, b = αβ S/EV ,
and c = β(β − 1)S/V 2. The condition a < 0 requires α ∈ (0, 1). Similarly, b < 0 requires β ∈ (0, 1). Finally, ac > b2

requires α + β < 1. Since α + β + γ = 1, this last condition requires γ > 0. Obviously we must have γ < 1 as
well, else either α or β would have to be negative. An examination of either of the other two submatrices yields
the same conclusions. Thus,

α ∈ (0, 1) , β ∈ (0, 1) , γ ∈ (0, 1) .
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(2.6) Consider the equation of state,

p =
R2T 2

a+ vRT
,

where v = N
A
V/N is the molar volume and a is a constant.

(a) Find an expression for the molar energy ε(T, v). Assume that in the limit v → ∞, where the ideal gas law
pv = RT holds, that the gas is ideal with ε(v → ∞, T ) = 1

2
fRT .

(b) Find the molar specific heat cV,N .

Solution :

(a) We fix N throughout the analysis. As shown in §2.11.2 of the lecture notes,

(
∂E

∂V

)

T,N

= T

(
∂p

∂T

)

V,N

− p .

Defining the molar energy ε = E/ν = N
A
E/N and the molar volume v = V/ν = N

A
V/N , we can write the above

equation as
(
∂ε

∂v

)

T

= T

(
∂p

∂T

)

v

− p = p

[(
∂ ln p

∂ lnT

)

v

− 1

]

.

Now from the equation of state, we have

ln p = 2 lnT − ln(a+ vRT ) + 2 lnR ,

hence (
∂ ln p

∂ lnT

)

v

= 2− vRT

a+ vRT
.

Plugging this into our formula for
(
∂ε
∂v

)

T
, we have

(
∂ε

∂v

)

T

=
a p

a+ vRT
=

aR2T 2

(a+ vRT )2
.

Now we integrate with respect to v at fixed T , using the method of partial fractions. After some grinding, we
arrive at

ε(T, v) = ω(T )− aRT

(a+ vRT )
.

In the limit v → ∞, the second term on the RHS tends to zero. This is the ideal gas limit, hence we must have
ω(T ) = 1

2
fRT , where f = 3 for a monatomic gas, f = 5 for diatomic, etc. Thus,

ε(T, v) = 1
2
fRT − aRT

a+ vRT
= 1

2
fRT − a

v
+

a2

v(a+ vRT )
.

(b) To find the molar specific heat, we compute

cV,N =

(
∂ε

∂T

)

v

= 1
2
fR− a2R

(a+ vRT )2
.
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(2.7) A diatomic gas obeys the equation of state

p =
RT

v − b
− a

v2
+

cRT

v3
,

where a, b, and c are constants.

(a) Find the adiabatic equation of state relating temperature T and molar volume v.

(b) What is the internal energy per mole, ε(T, v)?

(c) What is the Helmholtz free energy per mole, f(T, v)?

Solution :

(a) Let ε be the molar internal energy and v the molar volume. We have already shown (see Lecture Notes, §2.11.2)

(
∂ε

∂v

)

T

= T

(
∂p

∂T

)

v

− p .

Thus, for our system,
(
∂ε

∂v

)

T

=
a

v2
⇒ ε(T, v) = 5

2
RT − a

v
,

where the first term is the result for the rarefied limit v → ∞, where the gas presumably becomes ideal. Now if
s = S/ν is the molar entropy (ν = N/NA is the number of moles), then

T ds = dε+ p dv = 5
2
RdT +RT

dv

v − b
+ cRT

dv

v3
.

Dividing by T and then integrating, we have

s(T, v) = R ln
[

T 5/2(v − b) e−c/2v2
]

+ const. .

Thus, the equation of the adiabat is

T 5/2(v − b) e−c/2v2

= const.

(b) We have already obtained the result

ε(T, v) = 5
2
RT − a

v
.

(c) From f = ε− Ts, where f = F/ν is the Helmholtz free energy per mole, we have

f(T, v) = 5
2
RT − a

v
− 5

2
RT ln

(
bRT

a

)

−RT ln

(
v − b

b

)

+
cRT

2v2
− Ts0 .

Here we have inserted constants with the proper dimensions in order to render our expression for f with the
appropriate dimensions. Thus, the constant s0 has dimensions of J/mol ·K, the same as the gas constant R. Since
c/b2 is dimensionless, there is more than one way to do this. Any resulting differences will show up in a different
expression for s0.
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(2.8) A van der Waals gas undergoes an adiabatic free expansion from initial volume Vi to final volume Vf . The
equation of state is given in §2.11.3 of the lecture notes. The number of particles N is held constant.

(a) If the initial temperature is Ti, what is the final temperature Tf?

(b) Find an expression for the change in entropy ∆S of the gas.

Solution :

(a) This part is done for you in §2.10.5 of the notes. One finds

∆T = Tf − Ti =
2a

fR

(
1

vf
− 1

vi

)

.

(b) Consider a two-legged thermodynamic path, consisting first of a straight leg from (Ti, Vi) to (Ti, Vf), and second
of a straight leg from (Ti, Vf) to (Tf , Vf). We then have

∆S =

∆S
1

︷ ︸︸ ︷

V
f∫

V
i

dV

(
∂S

∂V

)

T
i
,N

+

∆S
2

︷ ︸︸ ︷

T
f∫

T
i

dT

(
∂S

∂T

)

V
f
,N

.

Along the first leg we use
(
∂S

∂V

)

T,N

=

(
∂p

∂T

)

V,N

=
R

v − b

and we then find

∆S1 = R ln

(
vf − b

vi − b

)

.

Along the second leg, we have

∆S2 =

T
f∫

T
i

dT

(
∂S

∂T

)

V
f
,N

=

T
f∫

T
i

dT
CV

f
,N

T
= 1

2
fR

T
f∫

T
i

dT

T
= 1

2
fR ln

(
Tf

Ti

)

.

Thus,

∆S = R ln

(
vf − b

vi − b

)

+ 1
2
fR ln

[

1 +
2a

fRTi

(
1

vf
− 1

vi

)]

.
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(2.9) Recall that a van der Waals gas obeys the equation of state

(

p+
a

v2

)(
v − b

)
= RT ,

where v is the molar volume. We showed that the energy per mole of such a gas is given by

ε(T, v) = 1
2
fRT − a

v
,

where T is temperature and f is the number of degrees of freedom per particle.

(a) For an ideal gas, the adiabatic equation of state is v T f/2 = const. Find the adiabatic equation of state (at fixed
particle number) for the van der Waals gas.

(b) One mole of a van der Waals gas is used as the working substance in a Carnot engine (see Fig. 1). Find the
molar volume at vC in terms of vB , T1 , T2 , and constants.

(c) Find the heat QAB absorbed by the gas from the upper reservoir.

(d) Find the work done per cycle, Wcyc. Hint: you only need to know QAB and the cycle efficiency η.

Solution :

(a) We have

0 = T ds = dε+ p dv

= 1
2
fR dT +

(

p+
a

v2

)

dv

= 1
2
fR dT +

RT dv

v − b
= 1

2
fRT d ln

[
(v − b)T f/2

]
,

where s = N
A
S/N is the molar entropy. Thus, the adiabatic equation of state for the van der Waals gas is

ds = 0 ⇒ (v − b)T f/2 = const.

Setting b = 0, we recover the ideal gas result.

(b) Since BC is an adiabat, we have

(vB − b)T
f/2
2 = (vC − b)T

f/2
1 ⇒ vC = b+ (vB − b)

(
T2

T1

)f/2

(c) We have, from the First Law,

QAB = EB − EA +WAB

= ν

(
a

vA
− a

vB

)

+ ν

vB∫

v
A

dv p

= ν

(
a

vA
− a

vB

)

+ ν

vB∫

v
A

dv

[
RT2

v − b
− a

v2

]

,

hence

QAB = νRT2 ln

(
vB − b

vA − b

)
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with ν = 1.

(d) Since the cycle is reversible, we must have

η =
Wcyc

QAB

⇒ Wcyc = νR(T2 − T1) ln

(
vB − b

vA − b

)
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(2.10) The triple point of a single component thermodynamic system is an isolated point (Tt, pt) in the (T, p) plane
where there is three phase coexistence between solid, liquid, and vapor. Consider three phase coexistence between
a pure solid, a pure vapor, and a solution where the solute fraction is x. Find the shift (∆Tt,∆pt) as a function of
x, Tt , and the quantities s

S,L,V
and v

S,L,V
, i.e. the molar entropies and volumes of the three respective phases.

Solution :

At the triple point, we have µ
S
(Tt, pt) = µ

L
(Tt, pt) = µ

V
(Tt, pt), which gives two equations for the two unknowns

Tt and pt. We write Tt = T 0
t +∆T and pt = p0t +∆p, and we solve

µ0
L
(T 0

t +∆T, p0t +∆p)− xk
B
(T 0

t +∆T ) = µ0
V
(T 0

t +∆T, p0t +∆p)

µ0
V
(T 0

t +∆T, p0t +∆p) = µ0
S
(T 0

t +∆T, p0t +∆p) ,

where the 0 superscript indicates the value for a pure phase. We now expand in the notionally small quantities
∆T and ∆p, and we use

(
∂µ

∂T

)

p,N

= −
(
∂S

∂N

)

p,T

= − s

N
A

,

(
∂µ

∂p

)

T,N

=

(
∂V

∂N

)

p,T

=
v

N
A

,

where s and v are the molar entropy and molar volume, respectively. This yields the linear system,

(
s
V
− s

L
v
L
− v

V

s
S
− s

V
v
V
− v

S

)(
∆T
∆p

)

=

(
xRT 0

t

0

)

.

This yields

∆T =
(v

V
− v

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

∆p =
(s

V
− s

S
) · xRT 0

t

s
V
(v

L
− v

S
) + s

L
(v

S
− v

V
) + s

S
(v

V
− v

L
)

.

Note that we do not retain terms of order x∆T , because we have assumed x is small, i.e. a weak solution.
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(2.11) A grocer starts his day with 4 boxes of pears, 5 boxes of oranges, and 6 boxes of apples. Each box contains
24 fruit and is initially completely filled.

(a) At some time, the grocer notes that exactly half the pears, a third of the oranges, and a quarter of the apples
have been sold. Assuming that customers take fruit from random positions in each of the boxes, find the
dimensionless entropy lnW of the fruit distribution.

(b) A clumsy customer then topples the table on which the fruit boxes rest, and all the fruit fall to the ground.
The customer cleans up the mess, putting all the fruit back into the boxes, but into random locations. What
is the entropy of the final state?

Solution :

(a) The grocer starts with 96 pears, 120 oranges, and 144 apples. By the time the grocer checks, 48 pears, 40 oranges,
and 36 apples have been removed. The number of ways of doing this is

W =

(
96

48

)(
120

40

)(
144

36

)

= 8.303× 1093 .

Thus, lnW = 216.3.

(b) There are a total of 96 + 120 + 144 = 360 slots for the fruit, which contain the remaining 48 pears, 120 oranges,
and 108 apples. The rest of the slots, which amount to 360− 48− 120− 108 = 84 in total, are empty. Therefore,

W ′ =
360!

84! · 48! · 120! · 108! = 1.093× 10205 ,

and the dimensionless entropy is lnW ′ = 472.1.
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(2.12) In a chemical reaction among σ species,

ζ1 A1 + ζ2 A2 + · · ·+ ζσ Aσ = 0 ,

where Aa is a chemical formula and ζa is a stoichiometric coefficient. When ζa > 0, the corresponding Aa is a
product; when ζa < 0, Aa is a reactant. (See §2.13.1 of the Lecture Notes.) The condition for equilibrium is

σ∑

a=1

ζa µa = 0 ,

where µa is the chemical potential of the ath species. The equilibrium constant for the reaction is defined as

κ(T, p) =
σ∏

a=1

x
ζa
a ,

where xa = na

/∑σ
b=1 nb is the fraction of species a.

(a) Working in the grand canonical ensemble, show that

κ(T, p) =

σ∏

a=1

(
k

B
T ξa(T )

pλ3
a

)ζa

.

Note that the above expression does not involve any of the chemical potentials µa.

(b) Compute the equilibrium constant κ(T, p) for the dissociative reaction N2 ⇋ 2N at T = 5000K, assum-
ing the following: the characteristic temperature of rotation and that of vibration of the N2 molecule are
Θrot = 2.84K and Θvib = 3350K. The dissociation energy, including zero point contributions, is ∆ =
169.3 kcalmol−1. The electronic ground state of N2 has no degeneracy, but that of the N atom is 4 due to
electronic spin.

Solution :

(a) In the GCE, we have

Ω
(
T, V, {µa}

)
= −k

B
T V

σ∑

a=1

λ−3
a eµa/kB

T ξa ,

where λa = (2π~2/makB
T )1/2 the thermal wavelength for species a and ξa(T ) is the internal coordinate partition

function for species a. We then have

na = − 1

V

(
∂Ω

∂µa

)

T,V,µb6=a

= za λ
−3
a ξa ,

where za = eµa/kB
T . OK, so we now define

xa =
na

∑σ
b=1 nb

=
zaλ

−3
a ξa

p/k
B
T

=
k

B
T ξa za
p λ3

a

,

since
∑

b nb = −Ω/V k
B
T = p/k

B
T . (Remember Ω = −pV ). Therefore

κ(T, p) ≡
σ∏

a=1

x
ζa
a

=

σ∏

a=1

(
k

B
T ξa
pλ3

a

)ζa

·
σ∏

a=1

z
ζa
a .
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However,
σ∏

a=1

z
ζa
a =

σ∏

a=1

eζaµa/kB
T = exp

(
1

k
B
T

σ∑

a=1

ζa µa

)

= 1 ,

since
∑σ

a=1 ζa µa = 0.

(b) The internal partition function for N is just ξN = (2S +1)(2I +1), where S = 3
2

is the total electronic spin from
Hund’s rules, and I = 1 is the nuclear spin. It turns out that we will never need to know the value of I . For N2

the internal partition function is

ξN
2
= (2I + 1)2 · T

2Θrot

· e∆/T

1− e−Θ
vib

/T
.

This formula requires some explanation. We appeal to Eqs. 4.292 in the Lecture Notes. Since T ≫ Θrot, we have

ζg ≈ ζu ≈ 1
2

∞∫

0

du e−uΘ
rot

/T =
T

2Θrot

,

where the factor of 1
2

comes from summing only over half the allowed L values, i.e. either all even or all odd, and
where u = L(L + 1) so du = (2L + 1) dL. We then have ξrot = (2I + 1)2T/2Θrot because gg + gu = (2I + 1)2.

The vibrational partition function was derived to be ξvib = 1
2
csch (Θvib/2T ), however since we are including the

zero point vibrational energy 1
2
~ωvib = 1

2
k

B
Θvib in the dissociation energy, we get the above expression for ξN

2

.

According to our result from part (a), we have

κ(T, p) = 32k
B
Θrot · e−∆/T ·

(
1− e−Θ

vib
/T

)
·
λ3
N

2

pλ6
N

= 16
√
2 · kB

Θrot

pλ3
N

· e−∆/T ·
(
1− e−Θ

vib
/T

)
.

Now we need to evaluate some quantities. The gas constant is

R = N
A
k

B
= 8.314 J/mol ·K = 1.986× 10−3 kcal/mol ·K ,

hence at T = 5000K, we have

∆

k
B
T

=
(169.3 kcal/mol)(4184 J/kcal)

(8.314 J/mol ·K)(5000K)
= 17.0 .

Furthermore, Θvib/T = 0.670. The thermal wavelength of N at this temperature is found to be

λN =

(
2π · (1.055× 10−27 g cm2/s)2

(14 g/6.02× 1023) · (1.38× 10−16 erg/K) · 5000K

)1/2

= 6.60 Å .

We also have
k

B
Θrot

pλ3
N

=
(1.38× 10−16 erg/K) · (2.84K)

(1.013× 106 g/cm · s2)(6.60× 10−8 cm)3
· p0
p

=
1.35 p0

p
,

where p0 = 1.013× 105 Pa is atmospheric pressure. Putting it all together, we obtain

κ(T = 5000K, p) = 6.2× 10−7 · p0
p

.
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(2.13) The phase diagram for a binary eutectic system is depicted in Fig. 4. The liquid phase is completely
miscible, but the solid phase separates into A-rich α and B-rich β phases over a broad range of temperatures
and compositions. There is a single chemical composition which solidifies at a temperature lower than any other
for this system - the eutectic composition. You are invited to model such a system using the Gibbs free energy
densities

gL(T, p, x) = (1− x)µA
L (T, p) + xµB

L (T, p) + k
B
T
[

x lnx+ (1 − x) ln(1 − x)
]

+ λL x(1 − x)

gS(T, p, x) = (1− x)µA
S (T, p) + xµB

S (T, p) + k
B
T
[

x lnx+ (1 − x) ln(1 − x)
]

+ λS x(1− x) ,

Figure 4: Eutectic phase diagram (from Wikipedia).
L denotes the liquid phase, and α and β are two solid
phases.

where λL < 0 and λS > 0. For simplicity, you may assume

µA
L (T, p) ≈ µB

L (T, p) ≡ µL(T, p)

µA
S (T, p) ≈ µB

S (T, p) ≡ µS(T, p) ,

with µS(T, p) = µL(T, p) + rk
B
(T − T0), where r > 0.

(a) By sketching the free energies, show that the phase dia-
gram is as shown in Fig. 4.

(b) Solve numerically for the eutectic temperature assuming
λL = −1, λS = +1, and k

B
T0 = 1, and r = 0.8.

Solution :

Figure 5: Gibbs free energies for liquid (blue)
and solid (red) phases at different temperatures,
with Maxwell constructions shown.

(a) A set of curves illustrating the phenomenon is shown in Fig.
5. We have taken the valus in part (b) of the problem and varied
the quantity k

B
T (in dimensionless units). For our system, both the

liquid and solid free energies are symmetric in x about the point
x = 1

2
. At high temperatures, gL < gS for all x, as shown in the

upper left panel of Fig. 5. As the temperature is lowered, gS starts
to dip below gL at the endpoints x = 0, 1. For our model and pa-
rameters, this happens for k

B
T = k

B
T0 = 1. Because λL > λS,

the curvature of gL(x) is greater than that of gS(x), which means
that initially there will be two intersections where gL(x) = gS(x), at
x = x∗ < 1

2
and x = 1−x∗ > 1

2
. To guarantee thermodynamics sta-

bility, one must invoke the Maxwell construction which connects
the solid curve at some point x1 < x∗ to the liquid curve at point
x2 > x∗, with x2 < 1

2
. A similar construction follows on the second

half of the curve, between gL(1 − x2) and gS(1 − x1). These two
phase regions represent mixtures of the liquid at intermediate con-
centration and a low or high concentration solid phase. Furthering
lower the temperature, the solid curve develops a negative curva-
ture at x = 1

2
for k

B
T < 1

2
λS. Eventually, the temperature gets so

low that gS(x) lies below gL(x) for all x ∈ [0, 1]. The system is then in the solid phase, but one must nevertheless
invoke a Maxwell construction, as shown in the lower left panel in Fig. 5, between a low-concentration solid at
x = x3 < 1

2
and a high-concentration solid at x = 1−x3 > 1

2
. At such temperatures, the solid is in a homogeneous

phase for x < x3 or x > 1− x3 , and in a mixed phase for x3 < x < 1− x3.

Figure 6: Gibbs free energies for the liquid (blue)
and solid (red) phases at the eutectic temperature.

(b) A crude numerical experiment is performed by successively
lowering k

B
T until the minima of the gL(x) and gS(x) curves cross,

and then iterating to find the temperature where the minima coin-
cide. In this manner, I find a eutectic temperature k

B
Te = 0.3948, as

shown in Fig. 6.
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