
PHYSICS 140A : STATISTICAL PHYSICS

HW SOLUTIONS #6

(1) Consider a two-dimensional gas of identical classical, noninteracting, massive relativis-

tic particles with dispersion ε(p) =
√

p2c2 +m2c4.

(a) Compute the free energy F (T, V,N).

(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/kBT to the temperature T and the
pressure p.

Solution :

(a) We have Z = ζN/N ! where A is the area and

ζ(T ) =

∫

d2x d2p

h2
e−β

√
p2c2+m2c4 =

2πA

(βhc)2
(

1 + βmc2
)

e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√

p2c2 +m2c4, in which
case p dp = u du/β2c2, and the lower limit on u is mc2. The free energy is then

F = −k
B
T lnZ = −Nk

B
T ln

(

k2
B
T 2A

2π~2c2N

)

−Nk
B
T ln

(

1 +
mc2

k
B
T

)

−Nk
B
T +Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F

∂T
= Nk

B
ln

(

k2
B
T 2A

2π~2c2N

)

+Nk
B
ln

(

1 +
mc2

k
B
T

)

+
Nk2

B
T

mc2 + k
B
T

+ 2Nk
B

.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =
∞
∑

N=0

ZN (T, V,N) eβµN .

We then find Ξ = exp
(

ζA eβµ
)

, and

p =
(k

B
T )3

2π(~c)2

(

1 +
mc2

k
B
T

)

e(µ−mc2)/k
B
T .

Note that our system obeys the ideal gas law, viz.

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .
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(2) A box of volume V contains N1 identical atoms of mass m1 and N2 identical atoms of
mass m2.

(a) Compute the density of states D(E,V,N1, N2).

(b) Let x1 ≡ N1/N be the fraction of particles of species #1. Compute the statistical entropy
S(E,V,N, x1).

(c) Under what conditions does increasing the fraction x1 result in an increase in statistical
entropy of the system? Why?

Solution :

(a) Following the method outlined in ch. 4 of the Lecture Notes, we rescale all the momenta
pi with particle labels i ∈ {1, . . . , N1} as pαi =

√

2m1E uαi , and all the momenta pj with

particle labels j ∈ {N1 + 1, . . . , N1 +N2} as pαj =
√

2m2E uαj . We then have

D(E,V,N1, N2) =
V N

1
+N

2

N1!N2!

(

√

2m1E

h

)N
1
d(

√

2m2E

h

)N
2
d

E−1 · 1
2Ω(N

1
+N

2
)d ,

where ΩM = 2πM/2/Γ(M/2) is the surface area of a unit sphere in M dimensions. Thus,

D(E,V,N1, N2) =
V N

N1!N2!

(

m

2π~2

)
1

2
Nd E

1

2
Nd−1

Γ(Nd/2)
,

where N = N1 +N2 and m ≡ m
N

1
/N

1 m
N

2
/N

2 has dimensions of mass. Note that the N1!N2!
term in the denominator, in contrast to N !, appears because only particles of the same
species are identical.

(b) Using Stirling’s approximation lnK! ≃ K lnK −K +O(lnK), we find

S

k
B

= lnD = N ln

(

V

N

)

+1
2Nd ln

(

2E

Nd

)

−N
(

x1 lnx1+x2 lnx2
)

+1
2Nd ln

(

m
x
1

1 m
x
2

2

2π~2

)

+N
(

1+1
2d

)

,

where x2 = 1− x1.

(c) Using x2 = 1− x1, we have

∂S

∂x1
= N ln

(

1− x1
x1

)

+ 1
2Nd ln

(

m1

m2

)

.

Setting ∂S/∂x1 to zero at the solution x = x∗1, we obtain

x∗1 =
m

d/2
1

m
d/2
1 +m

d/2
2

, x∗2 =
m

d/2
2

m
d/2
1 +m

d/2
2

.

Thus, an increase of x1 will result in an increase in statistical entropy if x1 < x∗1. The reason
is that x1 = x∗1 is optimal in terms of maximizing S. When m1 = m2 , we have x∗1 = x∗2 =

1
2 .
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(3) Consider a monatomic gas of N identical particles of mass m in three space dimensions.
The Hamiltonian of each particle is

ĥ =
p
2

2m
+ ĥel ,

where ĥel is an electronic Hamiltonian with (g + 1) levels: a nondegenerate ground state
at energy ε0 = 0 and a g-fold degenerate excited state at energy ε1 = ∆.

(a) What is the single particle partition function ζ . Assume the system is confined to a box
of volume V .

(b) What is the Helmholtz free energy F (T, V,N)?

(c) What is the heat capacity at constant volume CV (T, V,N)? Interpret your result.

Solution :

(a) Integrating over momentum and summing over electronic states,

ζ(T, V ) =
V

λ3
T

(

1 + g e−∆/k
B
T
)

,

where λT =
√

2π~2/mk
B
T is the thermal de Broglie wavelength.

(b) We have F = −k
B
T lnZ(T, V,N) where Z = ζN/N !. Thus,

F (T, V,N) = −Nk
B
T ln

(

1 + g e−∆/k
B
T
)

− 3
2Nk

B
T ln

(

mk
B
T

2π~2

)

−Nk
B
T ln

(

V

N

)

−Nk
B
T .

where we have used Stirling’s rule lnK! = K lnK −K +O(lnK) for K large.

(c) The heat capacity is

CV = T

(

∂S

∂T

)

V,N

= −T
∂2F

∂T 2
=

N∆2

k
B
T 2

(

1

g−1 + exp(∆/k
B
T )

)2

+ 3
2Nk

B
.

This expression is a linear sum of the Schottky-like peak from the electronic degrees of
freedom and the usual monatomic ideal gas heat capacity.

(4) A surface consisting of Ns adsorption sites is in thermal and particle equilibrium with
an ideal monatomic gas. Each adsorption site can accommodate either zero particles (en-
ergy 0), one particle (two states, each with energy ε), or two particles (energy 2ε+ U ).

(a) Find the grant partition function of the surface, Ξsurf(T,Ns, µ). and the surface grand
potential Ωsurf(T,Ns, µ).

(b) Find the fraction of adsorption sites with are empty, singly occupied, and double occu-
pied. Express your answer in terms of the temperature, the density of the gas, and other
constants.
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Solution :

(a) The grand partition function is

Ξsurf(T,Ns, µ) =
(

1 + 2 eβ(µ−ε) + eβ(2µ−2ε−U)
)Ns

,

hence

Ωsurf(T,Ns, µ) = −k
B
T ln Ξsurf = −NskB

T ln
(

1 + 2 eβ(µ−ε) + eβ(2µ−2ε−U)
)

.

(b) Thermal and particle equilibrium with the gas means that the fugacities of the gas and
surface are identical, and for the gas we have z = nλ3

T . Thus,

ν0 =
1

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

ν1 =
2nλ3

T e−ε/k
B
T

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

ν2 =
n2λ6

T e−(2ε+U)/k
B
T

1 + 2nλ3
T e−ε/k

B
T + n2λ6

T e−(2ε+U)/k
B
T

.

(5) A classical gas of indistinguishable particles in three dimensions is described by the
Hamiltonian

Ĥ =

N
∑

i=1

{

A |pi|3 − µ0HSi

}

,

where A is a constant, and where Si ∈ {−1 , 0 , +1} (i.e. there are three possible spin po-
larization states).

(a) Compute the free energy Fgas(T,H, V,N).

(b) Compute the magnetization density mgas = Mgas/V as a function of temperature, pres-
sure, and magnetic field.

The gas is placed in thermal contact with a surface containing NS adsorption sites, each
with adsorption energy −∆. The surface is metallic and shields the adsorbed particles
from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, Ωsurf(T,NS, µ).

(d) Find the fraction f0(T, µ) of empty adsorption sites.

(e) Find the gas pressure p∗(T,H) at which f0 =
1
2 .
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Solution :

(a) The single particle partition function is

ζ(T, V,H) = V

∫

d3p

h3
e−Ap3/k

B
T

1
∑

S=−1

eµ0
HS/k

B
T =

4πV k
B
T

3Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

.

The N -particle partition function is Zgas(T,H, V,N) = ζN/N ! , hence

Fgas = −Nk
B
T

[

ln

(

4πV k
B
T

3NAh3

)

+ 1

]

−Nk
B
T ln

(

1 + 2 cosh(µ0H/k
B
T )

)

(b) The magnetization density is

mgas(T, p,H) = − 1

V

∂F

∂H
=

pµ0

k
B
T

· 2 sinh(µ0H/k
B
T )

1 + 2 cosh(µ0H/k
B
T )

We have used the ideal gas law, pV = Nk
B
T here.

(c) There are four possible states for an adsorption site: empty, or occupied by a particle
with one of three possible spin polarizations. Thus, Ξsurf(T,Ns, µ) = ξNs , with

ξ(T, µ) = 1 + 3 e(µ+∆)/k
B
T .

Thus,

Ωsurf(T,Ns, µ) = −NskB
T ln

(

1 + 3 e(µ+∆)/k
B
T
)

(d) The fraction of empty adsorption sites is 1/ξ, i.e.

f0(T, µ) =
1

1 + 3 e(µ+∆)/k
B
T

(e) Setting f0 =
1
2 , we obtain the equation 3 e(µ+∆)/k

B
T = 1, or

eµ/kBT = 1
3 e

−∆/k
B
T .

We now need the fugacity z = eµ/kBT in terms of p, T , and H . To this end, we compute the
Landau free energy of the gas,

Ωgas = −pV = −k
B
T ζ eµ/kBT .

Thus,

p∗(T,H) =
k
B
T ζ

V
eµ/kBT =

4π(k
B
T )2

9Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

e−∆/k
B
T
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