PHYSICS 140A : STATISTICAL PHYSICS HW SOLUTIONS #1

(1) For each of the following differentials, determine whether it is exact or inexact. If it is exact, find the function whose differential it represents.

- (a) $xy^2 dx + x^2y dy$
- (b) $z dx + x dy + y dz$
- (c) $x^{-2} dx 2x^{-3} dy$
- (d) $e^x dx + \ln(y) dy$

Solution :

We will represent each differential as $dA = \sum_{\mu} A_{\mu} dx^{\mu}$.

(a) $A_x=xy^2$ and $A_y=x^2y$, so $\frac{\partial A_x}{\partial y}=2xy=\frac{\partial A_y}{\partial x}.$ The differential is exact, and is dA , where $A(x,y) = \frac{1}{2}x^2y^2 + C$, where C is a constant.

(b) With $A_x = z$, $A_y = x$, and $A_z = y$, we have $\frac{\partial A_x}{\partial y} = 0$ and $\frac{\partial A_y}{\partial x} = 1$, as well as $\frac{\partial A_x}{\partial z} = 1$ while $\frac{\partial A_z}{\partial x} = 0$. So the differential is inexact.

(c) $A_x = x^{-2}$ and $A_y = -2x^{-3}$, so $\frac{\partial A_x}{\partial y} = 0$ and $\frac{\partial A_y}{\partial x} = 6x^{-4}$, so the differential is inexact.

(d) $A_x = e^x$ and $A_y = \ln y$, so $\frac{\partial A_x}{\partial y} = 0 = \frac{\partial A_y}{\partial x} = 0$. The differential is exact, with $A(x, y) =$ $e^x + y \ln y - y + C.$

2) Consider an engine cycle which follows the thermodynamic path in Fig. 1. The work material is ν moles of a diatomic ideal gas. BC is an isobar $(dp = 0)$, CA is an isochore $(dV = 0)$, and along AB one has

$$
p(V) = p_{\rm B} + (p_{\rm A} - p_{\rm B}) \cdot \sqrt{\frac{V_{\rm B} - V}{V_{\rm B} - V_{\rm A}}}.
$$

- (a) Find the heat acquired Q_{AB} and the work done W_{AB} .
- (b) Find the heat acquired Q_{BC} and the work done W_{BC} .
- (c) Find the heat acquired Q_{CA} and the work done W_{CA} .
- (d) Find the work W done per cycle.

Figure 1: Thermodynamic path for problem 2.

Solution :

Note that $p_C = p_B$ and $V_C = V_{A_C}$ so we will only need to use $\{p_A, p_B, V_A, V_B\}$ in our analysis. For a diatomic ideal gas, $E = \frac{5}{2} pV$.

(a) We first compute the work done along AB. Let's define u such that $V = V_A + (V_B - V_A) u$. Then along AB we have $p = p_{\text{B}} + (p_{\text{A}} - p_{\text{B}})\sqrt{1 - u}$, and

$$
\begin{split} W_{\text{AB}} & = \int\limits_{\text{A}}^{\text{B}} dV \, p \\ & = (V_{\text{B}} - V_{\text{A}}) \int\limits_{0}^{1} du \, \Big\{ p_{\text{B}} + (p_{\text{A}} - p_{\text{B}}) \sqrt{1-u} \Big\} \\ & = p_{\text{B}} (V_{\text{B}} - V_{\text{A}}) + \tfrac{2}{3} (V_{\text{B}} - V_{\text{A}}) (p_{\text{A}} - p_{\text{B}}) \,. \end{split}
$$

The change in energy along AB is

$$
(\Delta E)_{\rm AB} = E_{\rm B} - E_{\rm A} = \frac{5}{2} (p_{\rm B} V_{\rm B} - p_{\rm A} V_{\rm A}) \; ,
$$

hence

$$
\begin{split} Q_{\mathsf{AB}} &= (\Delta E)_{\mathsf{AB}} + W_{\mathsf{AB}} \\ &= \tfrac{17}{6} p_{\mathsf{B}} V_{\mathsf{B}} - \tfrac{19}{6} p_{\mathsf{A}} V_{\mathsf{A}} + \tfrac{2}{3} p_{\mathsf{A}} V_{\mathsf{B}} - \tfrac{1}{3} p_{\mathsf{B}} V_{\mathsf{A}} \ . \end{split}
$$

(b) Along BC we have

$$
W_{\rm BC} = p_{\rm B} (V_{\rm A} - V_{\rm B})
$$

$$
(\Delta E)_{\rm BC} = \frac{5}{2} p_{\rm B} (V_{\rm A} - V_{\rm B})
$$

$$
Q_{\rm BC} = (\Delta E)_{\rm BC} + W_{\rm BC} = \frac{7}{2} p_{\rm B} (V_{\rm A} - V_{\rm B})
$$
.

(c) Along CA we have

$$
W_{\rm CA} = 0
$$

\n
$$
(\Delta E)_{\rm CA} = \frac{5}{2}(p_{\rm A} - p_{\rm B})V_{\rm A}
$$

\n
$$
Q_{\rm CA} = (\Delta E)_{\rm CA} + W_{\rm CA} = \frac{5}{2}(p_{\rm A} - p_{\rm B})V_{\rm A}.
$$

(d) The work done per cycle is

$$
W = W_{AB} + W_{BC} + W_{CA}
$$

= $\frac{2}{3}(V_B - V_A)(p_A - p_B)$.

(3) $\nu = 8$ moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse lies at $(V_0, p_0) = (0.25 \,\text{m}^3, 1.0 \,\text{bar})$. The semimajor axes of the ellipse are $\Delta V = 0.10 \,\text{m}^3$ and $\Delta p = 0.20$ bar.

- (a) What is the temperature at $(V, p) = (V_0 + \Delta V, p_0)$?
- (b) Compute the net work per cycle done by the gas.
- (c) Compute the internal energy difference $E(V_0 \Delta V, p_0) E(V_0, p_0 \Delta p)$.
- (d) Compute the heat Q absorbed by the gas along the upper half of the cycle.

Solution :

(a) The temperature is $T=pV/\nu R.$ With $V=V_0+\Delta V=0.35\,\mathrm{m}^3$ and $p=p_0=1.0\,\mathrm{bar}$, we have

$$
T = \frac{(10^5 \text{ Pa})(0.35 \text{ m}^3)}{(8 \text{ mol})(8.31 \text{ J/mol K})} = 530 \text{ K}.
$$

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

$$
\oint p \, dV = \pi \, (\Delta p)(\Delta V) = \pi \, (0.20 \times 10^6 \,\text{bar}) \, (0.10 \,\text{m}^3) = 6.3 \,\text{kJ} \, .
$$

(c) For a diatomic ideal gas, $E = \frac{5}{2} pV$. Thus,

$$
\Delta E = \frac{5}{2} \big(V_0 \, \Delta p - p_0 \, \Delta V \big) = \frac{5}{2} \, (-0.05 \times 10^5 \, \text{J}) = -13 \, \text{kJ} \; .
$$

(d) We have $Q = \Delta E + W$, with

$$
W = 2 p_0 \,\Delta V + \frac{\pi}{2} (\Delta p)(\Delta V) = 23 \,\text{kJ},
$$

which is the total area under the top half of the ellipse. The difference in energy is given by $\Delta E = \frac{5}{2}$ $\frac{5}{2}p_0 \cdot 2\Delta V = 5p_0 \, \Delta V$, so

$$
Q = \Delta E + W = 7 p_0 \Delta V + \frac{\pi}{2} (\Delta p)(\Delta V) = 73 \,\text{kJ} \,.
$$

(4) A gas obeys the thermodynamic relation $E(T, V, N) = aNT$ and the equation of state $p = bN^2T/V^2$ where a and b are constants.

- (a) What is the isothermal compressibility $\kappa_T = -V^{-1} (\partial V/\partial p)_{T,N}$?
- (b) What is the adiabatic equation of state in terms of T , V , and N ?
- (c) A container of volume V_0 contains N particles of this gas at an initial temperature $T_0.$ The container is opened and the gas expands adiabatically to a volume $V_1=2V_0.$ Compute the final temperature T_1 .

Solution :

(a) We have $V = N(bT)^{1/2}p^{-1/2}$ and thus

$$
\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_N = \frac{N}{2V} \frac{(bT)^{1/2}}{p^{3/2}} = \frac{1}{2p} .
$$

(b) We have $\bar{d}Q = C_V dT + p dV = 0$ with $C_V = (\partial E / \partial T)_{V,N} = aN$. Thus

$$
dQ = aN dT + \frac{bN^2}{V^2} T dV = 0 \quad ,
$$

and dividing by bN^2 we obtain

$$
\frac{dT}{T} - \frac{b}{a} d\left(\frac{N}{V}\right) = 0 \quad ,
$$

with $\mathcal N$ held constant. Integrating, we have

$$
\log T = \frac{bN}{aV} + \text{const.} \quad .
$$

(c) Setting $V_1 = 2V_0$, we have

$$
T_1 = T_0 \exp(-Nb/aV_0) .
$$