PHYSICS 140A: STATISTICAL PHYSICS MIDTERM EXAM

(1) ν moles of an ideal diatomic gas are used as the working material for a reversible engine whose cycle ABCDA is depicted in fig. 1. Segments AB and CD are isotherms at temperatures T_2 and T_1 , while segments BC and DA are isochores at volumes V_2 and V_1 .

Important: Express all your answers in terms of ν , T_1 , T_2 , V_1 , and V_2 (and not either of the pressures p_1 or p_2).

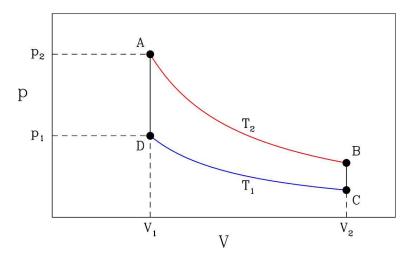


Figure 1: The engine cycle.

- (a) What is the work $W_{\rm AB}$ done by the engine and the heat $Q_{\rm AB}$ absorbed by the engine on segment AB? [10 points]
- (b) What is the work $W_{\rm BC}$ done by the engine and the heat $Q_{\rm BC}$ absorbed by the engine on segment BC? [10 points]
- (c) What is the work $W_{\rm CD}$ done by the engine and the heat $Q_{\rm CD}$ absorbed by the engine on segment CD? [10 points]
- (d) What is the work $W_{\rm DA}$ done by the engine and the heat $Q_{\rm DA}$ absorbed by the engine on segment DA? [10 points]
- (e) What is the efficiency $\eta = W_{\rm cyc}/Q_{\rm AB} ?$ [10 points]

(2) Consider the equation of state for a monatomic nonideal gas,

$$\left(p + \frac{\sigma N^2}{V^2} k_{\rm B} T\right) (V - N\omega) = N k_{\rm B} T \quad ,$$

where σ and ω are constants. (Note that this is not quite the van der Waals equation of state.)

- (a) What are the dimensions of σ and ω ? [10 points]
- (b) Show that the equation of state can be rearranged in the form $p(T,V,N)=k_{\rm B}T\phi(V/N)$, and find the function $\phi(u)$ (where u=V/N). [15 points]
- (c) Find E(T, V, N). Hint: Consider the low density limit after you ascertain the volume dependence. [15 points]
- (d) Find S(E, V, N). [10 points]
- (e) N atoms of this gas undergo adiabatic free expansion from an initial volume $V_1=5N\omega$ to a final volume $V_2=2V_1=10N\omega$. Find ΔS . [100 quatloos extra credit]