PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) The entropy for a peculiar thermodynamic system has the form

$$S(E, V, N) = Nk_{\rm B} \left\{ \left(\frac{E}{N\varepsilon_0} \right)^{1/3} + \left(\frac{V}{Nv_0} \right)^{1/2} \right\},\,$$

where ε_0 and v_0 are constants with dimensions of energy and volume, respectively.

(a) Find the equation of state p = p(T, V, N).

(b) Find the work done along an isotherm in the (V, p) plane between points A and B in terms of the temperature *T*, the number of particles *N*, and the pressures p_A and p_B .

(c) Find $\mu(T, p)$.

(2) The Dieterici equation of state is

$$p\left(v-b\right) = RT \, e^{-a/vRT}$$

,

with *v* the molar volume and with *a* and *b* constants.

(a) Wha are the dimensions of *a* and *b*?

(b) Find the coefficient of isobaric volume expansion, $\alpha_p = v^{-1} (\partial v / \partial T)_p$

(c) Find the conditions for the inversion temperature of throttling, $T\alpha_p = 1$ in terms of T and v.

(d) Define the temperature and pressure scales $RT_0 \equiv 2a/b$ and $p_0 \equiv 2a/b^2$. Define also the dimensionless temperature $\tau \equiv T/T_0$ and dimensionless pressure $\pi \equiv p/p_0$. Find and sketch the inversion curve $\pi(\tau)$.

(3) Consider the analog of the van der Waals equation of state for a gas if diatomic particles with *repulsive* long-ranged interactions,

$$p = \frac{RT}{v-b} + \frac{a}{v^2} \quad ,$$

where v is the molar volume.

(a) Find the molar energy $\varepsilon(T, v)$.

(b) Find the coefficient of volume expansion $\alpha_p = v^{-1} (\partial v / \partial T)_p$ as a function of v and T.

(c) Find the adiabatic equation of state in terms of v and T. If at temperature T_1 a volume $v_1 = 3b$ of particles undergoes reversible adiabatic expansion to a volume $v_2 = 5b$, what is the final temperature T_2 ?