PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #2

- (1) A substance obeys the thermodynamic relation $E=aS^4/VN^2$.
 - (a) Compute the heat capacity $C_{V,N}$ in terms of N, V, and T.
 - (b) Compute the equation of state relating p, V, N, and T.
 - (c) Compute the ratio $C_{\varphi,N}/C_{V,N}$, where $C_{\varphi,N}$ is the heat capacity at constant φ and N, with $\varphi = V^2/T$.
- (2) A strange material satisfies $E(S, V, N) = a S^6/V^3N^2$.
 - (a) What are the SI dimensions of a?
 - (b) Find the equation of state relating p, T, and n = N/V.
 - (c) Find the coefficient of thermal expansion $\alpha_{\rm p}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_p$. Express your answer in terms of T.
 - (d) Find the coefficient of isothermal compressibility $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$. Express your answer in terms of p.
- (3) ν moles of the substance in problem 2 execute a Carnot cycle between reservoirs at temperatures T_1 and T_2 . The top isotherm extends from volume $V_{\rm A}$ to $V_{\rm B}$. Find the heat Q and work W for each leg of the cycle, and compute the cycle efficiency. Suggestion: It is useful to use §2.6.6 of the Lecture Notes as a template.
- (4) An interacting diatomic gas obeys the equation of state

$$p(v-b) = RT e^{-a/v} ,$$

1

where $v=N_{\scriptscriptstyle \rm A} V/N$ is the molar volume.

- (a) Show that $E(T, V, N) = \frac{1}{2} f N k_{\rm B} T$, the same as for an ideal gas.
- (b) Find the molar specific heat c_p as a function of the specific volume v.