1 Probability Distributions : Summary

e Discrete distributions: Let n label the distinct possible outcomes of a discrete random
process, and let p, be the probability for outcome n. Let A be a quantity which takes
values which depend on n, with A, being the value of A under the outcome n. Then the
expected value of Ais (A) = >, p, A,, where the sum is over all possible allowed values
of n. We must have that the distribution is normalized, i.e. (1) =) p, = 1.

e Continuous distributions: When the random variable ¢ takes a continuum of values, we
define the probability density P () to be such that P(¢) dy is the probability for the outcome
to lie within a differential volume du of ¢, where du = W () [[i-, dp;, were ¢ is an n-
component vector in the configuration space (2, and where the function W (¢) accounts for
the possibility of different configuration space measures. Then if A(¢) is any function on
Q, the expected value of A is (4) = [du P(p) A(p).
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o Central limit theorem: If {x,... x5} are each independently distributed according to
P(z), then the distribution of the sum X = Sz is
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where P(k) = [dx P(x) e~™** is the Fourier transform of P(z). Assuming that the lowest
moments of P(z) exist, In[P(k)] = —iuk — 162k* + O(k®), where u = (z) and o2 =
(x?) — (z)? are the mean and standard deviation. Then for N — oo,

Py(X) = (27TN0’2)_1/2 o~ (X=Nu)?/2No? ’

which is a Gaussian with mean (X) = N and standard deviation /(X2) — (X)2 = /N o.
Thus, X is distributed as a Gaussian, even if P(x) is not a Gaussian itself.

e Entropy: The entropy of a statistical distributionis {p,}is S = — > p, Inp,. (Sometimes
the base 2 logarithm is used, in which case the entropy is measured in bits.) This has the
interpretation of the information content per element of a random sequence.

e Distributions from maximum entropy: Given a distribution {p,,} subject to (K + 1) con-
straints of the form X* = Y X%p, witha € {0,..., K}, where X = X! = 1 (normal-
ization), the distribution consistent with these constraints which maximizes the entropy
function is obtained by extremizing the multivariable function
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with respect to the probabilities {p,,} and the Lagrange multipliers {\,}. This results in a

Gibbs distribution,
K
P, = %exp{— Z)\QXZ} ,



where Z = ¢! is determined by normalization, i.e. >, p, = 1 (i.e. the a = 0 constraint)
and the K remaining multipliers determined by the K additional constraints.

o Multidimensional Gaussian integral:
[T (2m)m\ /2 1
/dml"-/dmn exp <— %l’iAij:L'j +bl-:ni> = (detA) exp (%bZAZ_j bj) .

e Bayes’ theorem: Let the conditional probability for B given A be P(B|A). Then Bayes’ theo-
rem says P(A|B) = P(A) - P(B|A) / P(B). If the 'event space’ is partitioned as {4,}, then
we have the extended form,

_ P(BJA) - P(A)
P(Aj|B) = > P(BJA;) - P(A;)

When the event space is a ‘binary partition” {A, ~A}, as is often the case in fields like
epidemiology (i.e. test positive or test negative), we have

P(BJA) - P(A)
(B|A) - P(A) + P(B|-A) - P(-A)

P(AB) =

Note that P(A|B) + P(—A|B) = 1 (which follows from ——A = A).



2 Thermodynamics : Summary

e Extensive and intensive variables: The equilibrium state of a thermodynamic system is char-
acterized by specifying a number of state variables which can be either extensive (scaling lin-
early with system size), or intensive (scaling as the zeroth power of system size). Extensive
quantities include: energy F, entropy S, particle number N, magnetization M, etc. Inten-
sive quantities include temperature 7', pressure p, number density n, magnetic field H,
etc. The ratio of two extensive quantities is intensive, e.g. n = N/V. In the thermodynamic
limit, all extensive state variables tend to infinity (in whatever units are appropriate), while
their various ratios are all finite. A full description of the state of any thermodynamic sys-
tem must involve at least one extensive variable (but may or may not include intensive
variables).

e Work: The internal energy of a thermodynamic system can change as a result of a gener-
alized displacement dX;, as a result of work W done by the system. We write the differential
form of W as

dw = _ZyidXi_Z:uadNa7

where —y; is the generalized force conjugate to the generalized displacement X, and 1, is
the chemical potential of species a, which is conjugate to the number of particles of that
species, N,. Think of chemical work as the work required to assemble particles out of
infinitely remote constituents. The slash through the differential symbol indicates that a\V’
is an inexact differential, i.e. there is no function W (T, p,V,...).

e Heat: Aside from work done by or on the system, there is another way of changing
the system’s internal energy, which is by transferring heat, . Heat is a form of energy
contained in the random microscopic motions of the constituent particles. Like dV, the
differential d@ is also inexact, and there is no heat function Q(7, p,V,...). Transfer of heat
under conditions of constant volume or pressure and constant particle number results in a
change of the the thermodynamic state via a change in temperature: dI' = dQ /C, where C
is the heat capacity of the system at fixed volume/pressure and particle number.

e First Law: The First Law of Thermodynamics is a statement of energy conservation which
accounts for both types of energies: AE = () — W, or in differential form dE = d@Q — dW'.

e Single component systems: A single component system is completely specified by three
state variables, which can be taken to be £, V, and N, and writing dW = pdV — pndN, we
have

dQ =dE +pdV — pdN .

If, for example, we want to use variables (7, V, N), we write
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Proceeding in this way, one can derive expressions like
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e Equations of state: An equation of state is a relation among state variables. Examples
include the familiar ideal gas law, pV' = Nk,T, and the van der Waals equation of state,

(p+ S2)(V — Nb) = Nk, T.

e Ideal gases: For ideal gases, one has pV = Nk,T and £ = % fNE,T, where f is the
number of kinetic degrees of freedom (f = 3 for monatomic, f = 5 for diatomic, and f =6
for polyatomic gases, assuming only translational and rotational freedoms are excited).

e Special thermodynamic processes: Remember adiabatic (dQ) = 0), isothermal (d1" = 0), iso-
baric (dp = 0), and isochoric (dV = 0). A reversible process is one which follows a continu-
ous path is a space of state variables infinitely slowly, so that the system is in equilibrium
at any instant.

e Heat engines and the Second Law: A heat bath heat bath

heat engine takes a thermodynamic sys- - Ty T
tem through a repeated cycle of equilib- eatin heatTQQ
rium states A — B — C — --- — A, the W=0s_0, W=0,-0,
net result of which is to convert heat into E———— R
mechanical work, or vice versa. A perfect
engine, which would extract heat () from a heatlgl heat 1 Q,
large thermal reservoir?, such as the ocean, /

heat bath heat bath

and convert it into work W = @ each cy-
cle, is not possible, according to the Second (a) engine (b) refrigerator

Law of Thermodynamics. Real engines ex- Figure 1: An engine (left) extracts heat Q> from
tract heat (), from an upper reservoir at a reservoir at temperature T, and deposits a
temperature 7,,, dump heat Q, into alower smaller amount of heat Q; into a reservoir at a
reservoir at temperature T}, and transform lower temperature Ty, during each cycle. The dif-

the difference into useful mechanical work ference W= Q2 — Q, is transformed into me-
W =0Q Q,. A refrigerator is simply an chanical work. A refrigerator (right) performs
=Gy = &y

. . . . the inverse process, drawing heat @); from a low
engine operating in reverse: work is done

) temperature reservoir and depositing heat Q; =
m ordel" to extract heat @, from the lower Q1 + W into a high temperature reservoir, where
reservoir, and Q, = W+Q); isdumped into )y is the work done per cycle.

the upper reservoir in each cycle. The effi-

ciency of the engine cycle is defined tobe n = 1 — cQg_; The engine efficiency is bounded
from above by the efficiency of a reversible cycle operating between those two reservoirs,
such as the Carnot cycle (two adiabats and two isotherms). Thus, n <7 =1 — %

e Entropy: The Second Law guarantees that an engine operating between two reservoirs
must satisfy %1 + %2 < 0, with the equality holding for reversible cycles. Here Q; = —Q,

is the (negative) heat transferred to the engine from reservoir #1. Since an arbitrary curve
in the p-V plane (at fixed V) can be composed of a combination of Carnot cycles, one
concludes f % < 0, again with equality holding for reversible cycles. Clausius, in 1865,

! A thermal reservoir, or heat bath, is any very large object with a fixed temperature. Because it is so large, the
change in temperature AT = @) /C which results from a heat transfer @) is negligible, since the heat capacity
C'is an extensive quantity.



realized that one could thereby define a new state function, the entropy, S, with dS = %.
Thus, dQ) < T' dS, with equality holding for reversible processes. The entropy is extensive,
with units [S] = J/K.

e Gibbs-Duhem relation: For reversible processes, we now have

dE =TdS+Y ydX;+ Y p,dN,,

which says E = E(S,{X;},{N,}), which is to say E is a function of all the extensive vari-
ables. It therefore must be homogeneous of degree one, i.e. \E = E(AS, {A\X,},{\N,}),
and from Euler’s theorem it then follows that

E:TS—i-Zy,-X,-—FZuaN

0=28dl+ Y X;dy,+ > N,dp, .

This means that there is one equation of state which can be written as a function of all the
‘proper’ intensive variables.

e Thermodynamic potentials: Under equilibrium conditions, one can make Legendre trans-
forms to an appropriate or convenient system of thermodynamic variables. Some common
examples:

E(S,V,N)=FE dE =TdS — pdV + pdN
F(T,V,N)=E-TS dF = —SdT — pdV + pdN
H(S,p,N) = E+pV dH =TdS + Vdp + pdN
G(T,p,N)=E—-TS+pV dG = —=SdT + Vdp+ pdN
QT,V,p)=E—-TS — uN df) = —-SdT — pdV — Ndu

Under general nonequilibrium conditions, the Second Law says that each of the equalities
on the right is replaced by an inequality, i.e. dG < —SdT 4+ V dp + pndN. Thus, under
conditions of constant temperature, pressure, and particle number, the Gibbs free energy
G will achieve its minimum possible value via spontaneous processes. Note that Gibbs-
Duhem says that G = pNV and 2 = —pV.

e Maxwell relations: Since the various thermodynamic potentials are state variables, we
have that the mixed second derivatives can each be expressed in two ways. This leads to

relations of the form
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e Thermodynamic stability: Suppose T, p, and N are fixed. Then
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and since in equilibrium G is at a minimum, AG > 0 requires that the corresponding
Hessian matrix of second derivatives be positive definite:
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o Response coefficients: In addition to heat capacities C}, = T (43),, and C,, = T (%3 ) one
defines the isothermal compressibility x, = — (%—‘;

kg = —v (%) g, as well as the thermal expansion coefficient a,, = (%5 ) Invoking the

Maxwell relations, one derives certain identities, such as

) and the adiabatic compressibility

VToz?, VToz?,
Cp_CV: /QT s KJT—KJS: Cp

e Entropy of mixing: The entropy of any substance obeying the ideal gas law is given by the
expression S(T,V,N) = Nk, In(V/N) + N¢(T'). If different ideal gases at the same p and
T were separated via physical barriers, and the barriers were then removed, the change in
entropy would be AS = —Nk, > x,Inz,, where xz, = N,/N with N = 3" N, being the
total number of particles over all species. This is called the entropy of mixing.

e Weak solutions and osmotic pressure: If one species is much more plentiful than the others,
we give it a particle label a = 0 and call it the solvent. The Gibbs free energy of a weak
solution is then

N, 1
G(T7p7N0>{Na}) NO.gO T P +ZN {k T1H< N >+wa(T p)}—I—W ZAab(Tvp) NaNb'
0 a,b

Assuming z, = N, /N, < 1 for a > 0, we have p, = gy — zk,T and p, = kT Inx, + ¢, If
x > 0 on the right side of a semipermeable membrane and x = 0 on the left, then assuming
the membrane is permeable to the solvent, we musthave p, = go(7,p;) = 9o(T, pr) —xkT.
This leads to a pressure difference, 7, called the osmotic pressure, given by m = p, — p, =
vk, T/ (8“ O)T v+ Since a Maxwell relation guarantees (%—‘?)T N = (%)Tp, we have the
equation of state v = xRT, where v is the molar volume of the solvent.

e Binary solutions: In a mixture of A and B species, let = Ng/(N, + Ng). The Gibbs free
energy per particle is



If A\pg > 0, the A and B components repel, NI IR L L L
SINGLE PHASE REGION

©
o))

and the mixture becomes unstable. There is
a local instability, corresponding to spinodal
decomposition, when ¢”(x) = 0. This occurs
at a temperature k, 7™ = 2\ ,g (1 — z). But
for a given z, an instability toward phase
separation survives to even higher temper-
ature, and is described by the Maxwell con-
struction. The coexistence boundary is ob- o B =

tained from [g(z,) — g(z)]/(zy — 1) = : 0.6

d(zy) = ¢(z,), and from the symmetry concentration x
under r < 1 — 2. one finds k.T Figure 2: Phase diagram for the binary system.
’ B

Ans(1 — 20)/In(z~" — 1), where nuccfee;tioz The black curve is the coexistence curve, and the
?Bh ority bh . dark red curve is the spinodal. A-rich material is
of the minority phase sets m. to the left and B-rich to the right.

e Miscible fluids and liquid-vapor coexistence: If A\yg < 0,
there is no instability toward phase separation, and the
A and B fluids are said to be completely miscible. Exam-
ple: benzene CsHg and toluene C¢HsCHs. At higher
temperatures, near the liquid gas transition, there is
an instability toward phase separation. In the vapor
phase, )\XB ~ 0, while for the liquid )‘IAB < 0. The
free energy curves g, (T, p,z) and g,/(T,p,x) are then
both convex as a function of z, but choosing the min- (. Ty)
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a Maxwell construction, hence phase coexistence. In

the case of “ideal liquids” with different boiling points, 0 )

we can even take \ip ~ 0. By successively boilin concentration & 1
AB y Y & (puren) (pure B)

and then s?parating and cqndensing th§ resulting va- Figure 3: Phase diagram and distil-
por, the mixture may be distilled (see Fig. 3). When jation sequence for an ideal mixture.
)\kB # 0, the mixture may be azeotropic in which case

the extremum of the boiling point occurs at an intermediate concentration (see Fig. 4).

e Thermochemistry: A chemical reaction among o species may be represented
GAL+ QA+ + (A, =0,

where A, is a chemical formula, and (, is a stoichiometric coefficient. If (, > 0, then A, is a
product, while for ¢, < 0, A, is a reactant. Chemical equilibrium requires Y o_; (, p, = 0.
For a mixture of ideal gases, one has the law of mass action,
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When Ah < 0, the reaction is exothermic. R A T T .
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At finite pressure, this means that heat is
transferred to the environment: Q) = AE +
p AV = AH < 0, where H = E +pV. When
Ah > 0, the reaction is endothermic, and requires heat be transferred from the environment.

Figure 4: Phase diagram for the positive
azeotrope chloroform plus methanol.

e Clapeyron relation: Across a coexistence curve p(1') separating two phases, the chemical
potential y is continuous. This says dg; = —s; dT' + v dp = —s, dT + v, dp = dg,, where g,
s, and v are the Gibbs free energy, entropy, and volume per mole, respectively. Then

@ _Sy—s8; A

Ot Jooow Va—vy TAv’
where ¢ = T As = T (s, — s;) is the molar latent heat of transition which must be supplied in
order to change from phase #1 to phase #2, even without changing 7" or p.

e Gibbs phase rule: For a system with o species, Gibbs-Duhem says pi, = (T, D, ft1,- - s fig_1),
s0 a maximum of 2+ (o —1) intensive quantities may be specified. If a system with o species
has equilibrium among ¢ phases, then there are o (¢ — 1) independent equilibrium condi-
tions ,ugj ) = ut(lj /), where a labels species and j labels phases, among the 2 + (o — 1) inten-
sive variables, and so ¢-phase equilibrium can exist over a space of dimension d = 2+o0—.
Since this cannot be negative, we have ¢ < 24 0. Thus, for a single species, we can at most
have three phase coexistence, which would then occur on a set of dimension zero, as is the
case for the triple point of water, for example.



3 Approach to Equilibrium : Summary

e Distributions: Equilibrium statistical mechanics describes systems of particles in terms
of time-independent statistical distributions. Where do these distributions come from?
How does a system with a given set of initial conditions come to have time-independent
properties which can be described in this way?

e Master equation: Let P,(t) be the probability that a system is in state |i) at time ¢. The
evolution of the P;(t) is given by % =>;(WyP, =W, P) = =5, I; P;, where the rates

77 Jr
W;; > 0 are nonnegative. Conservation of probability means _; I';; = 0 for all j, hence
Y'=(1,1,...,1)is a left eigenvector with eigenvalue zero. The corresponding right eigen-

vector is the equilibrium distribution: I';; P; = 0. Detailed balance, W;; P = W, P9, is
a more stringent condition than the requirement of a stationary distribution alone. Boltz-
mann’s H-theorem: H < 0, where H = Y, P,In(P,/P{"). Thus, the ME dynamics are
irreversible. But the underlying microscopic laws are reversible!

e Hamiltonian evolution: ¢, = J,, 4

i D, where ¢ = (¢y,...,4,,p1,---,Dp,) is a point in 2r-

_OH g) Phase space flow is then incompressible:

V - ¢ = 0, hence phase space densities o(¢, t) obey Liouville’s equation, 9, o + ¢ - Vo =0
(follows from continuity and incompressibility). Any function o(4,,..., A, ), where each
A, is conserved by the phase space dynamics, will be a stationary solution to Liouville’s
equation. In particular, the microcanonical distribution, o5 (¢) = §(E — H(g))/D(E) is
such a solution, where D(E) = Tr§(E — H(yp)) is the density of states.

dimensional phase space, and J = <

e Poincaré Recurrence: Let g, ¢(t) = ¢(t + 7) be the T-advance mapping for a dynamical
system ¢ = V(). If (i) g, is invertible, (ii) g, preserves phase space volumes, and (iii) the
volume of phase accessible given the dynamics and initial conditions is finite, then in any
finite neighborhood R, of phase space there exists a point ¢, € R, such that g”¢, € R,
with n finite. This means all the perfume molecules eventually go back inside the bottle (if
it is opened in a sealed room).

e Kac ring model: Normally the recurrence time is orders of magnitude greater than the age
of the Universe, but for the Kac ring model, one can simulate the recurrence phenomenon
easily. The model consists of a ring of IV sites, and a quenched (i.e. fixed) random distribu-
tion of flippers on F' of the links (F' < V). On each site lies a discrete spin variable which is
polarized either up or down. The system evolves discretely by all spins advancing clock-
wise by one site during a given time step. All spins which pass through a flipper reverse
their polarization. Viewed probabilistically, if p,, is the probability any given spin is up at
time 7, then under the assumptions of the Stosszahlansatz p, ., = (1 — x)p, + (1 — p,),
where z = F'/N is the flipper density. This leads to exponential relaxation with a time scale
7 = —1/In|1 — 2|, but the recurrence time is clearly N (if F'is even) or 2N (if F'is odd).



e Ergodicity and mixing: A dynamical system is ergodic if

T

(F(@))y = lim — /dtf(so<t>>
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Tr oE—H

Tr 6(E — H(p)

This means long time averages are equal to phase space averages. This does not necessarily
mean that the phase space distribution will converge to the microcanonical distribution.
A stronger condition, known as mixing, means that the distribution spreads out "evenly’
over the phase space hypersurface consistent with all conservation laws. Thus, if g is a
phase space map, and if v(A) = D,(F)/D(E) is the fraction of the energy hypersurface
(assume no conserved quantities other than H = FE) contained in A, then ¢ is mixing if
lim,, oo ¥ (g"ANB) = v(A)v(B). An example of a mixing map on a two-dimensional
torus is the Arnold "cat map’,

()= 2) () ooz

o Thermalization of quantum systems: This is a current research topic. One proposal, due to
Deutsch (1991) and Srednicki (1994) is the eigenstate thermalization hypothesis (ETH). This
says that thermal information is encoded in each eigenstate, such thatif £, € [E, E+ AE],
then

<\Ila |A|\Ila> = <*’4>Ea ’

i.e. the expectation value of some local, translationally-invariant, few-body operator A in
the state | ¥, ), is given by its average over a small energy window containing F,,. If this
is the case, then so long as we prepare an initial state such that the spread of energies is
within AE of some value E, where AE < E — E, with E|, the ground state energy, then
(A)p = (A) p, and time averages become energy averages. Equivalently, the reduced density
matrix pg corresponding to a system S which is a subset of a universe U, with WUS = U (W
is the ‘world’), is a thermal density matrix: pg = Zg'e %s, where Hg is the Hamiltonian
restricted to S, and with temperature fixed by the requirement Tr(p sﬁ g) =E-(Vg/Vy),
where the last factor is a ratio of volumes. ETH does not hold for so-called integrable mod-
els with an extensive number of independent conserved quantities. But it has been shown,
both perturbatively as well as numerically, to hold for certain model nonintegrable sys-
tems. An interesting distinction between classical and quantum thermalization: in the
quantum case, time evolution does not create the thermal state. Rather, it reveals the ther-
mal distribution which is encoded in each eigenstate after sufficient time that dephasing has
occurred and all correlations between the different wavefunction expansion coefficients is
lost.



4 Statistical Ensembles : Summary

e Distributions: Let o(¢) be a normalized distribution on phase space. Then

(F(@)) = Tr [ol@) £(9)] = / dps () ()

where dp = W(p) [, dg; is the phase space measure. For a Hamiltonian system of N
identical indistinguishable point particles in d space dimensions, we have

dp, d;

N'H (2mh)d

The  prefactor accounts for indistinguishability. Normalization means Tro = 1.

e Microcanonical ensemble (uCE): o(¢) = 6(E — H(yp))/D(E), where D(E) = Tr §(E —
H (¢)) is the density of states and H(p) = H(q,p) is the Hamiltonian. The energy FE,
volume V, and particle number N are held fixed. Thus, the density of states D(E,V, N)
is a function of all three variables. The statistical entropy is S(E,V,N) = k;In D(E,V,N),
where k, is Boltzmann’s constant. Since D has dimensions of E~!, an arbitrary energy
scale is necessary to convert D to a dimensionless quantity before taking the log. In the
thermodynamic limit, one has

S(E,V,N) = Nkqu(E K) .

N’ N
The differential of  is defined to be dE = T'dS — pdV + pdN, thus T = (95),,  is the
temperature, p = — (9¢)  is the pressure, and y = (4% ), is the chemical potential.

Note that £, S, V, and N are all extensive quantities, i.e. they are halved when the system
itself is halved.

e Ordinary canonical ensemble (OCE): In the OCE, energy fluctuates, while V, N, and the
temperature T are fixed. The distribution is o = Z~'e ¥, where 3 = 1/k,T and Z =
Tr e P is the partition function. Note that Z is the Laplace transform of the density of
states: Z = [dFE D(E)e PE. The Boltzmann entropy is S = —k; Tr (oIn o). This entails
F = FE —TS,where F = —k,T In Z is the Helmholtz free energy, a Legendre transform of
the energy E. From this we derive dFF = —SdT — pdV + pdN.

e Grand canonical ensemble (GCE): In the GCE, both EAandA N fluctuate, while TV, gnd
chemical potential y remain fixed. Then o = =71 e BH=1N) where = = Tr e PH—1N) jg
the grand partition function and {2 = —k,T In Z is the grand potential. Assuming [H, N] =
0, we can label states | n ) by both energy and particle number. Then P, = =1 ¢~ #(Fn—#No),

We also have 2 = F — TS — uN, hence df2 = —SdT — pdV — N dp.

e Thermodynamics: From E = Tr (¢ H), we have dE = Tr (H do) + Tr(0dH) = dQ — dW,
where dQ = T dS and

dW = —Tr(odH) = ZP




with P, = Z e En/keT. Here F, = —( g§_> is the generalized force conjugate to the

(3

generalized displacement X;,.

e Thermal contact: In equilibrium, two systems which can exchange energy satisty 7| = T5,.
Two systems which can exchange volume satisfy p; /7| = py/T,. Two systems which can
exchange particle number satisfy p; /T = p15/T5.

e Gibbs-Duhem relation: Since E(S,V,N) is extensive, Euler’s theorem for homogeneous
functions guarantees that £ = T'S — pV + uN. Taking the differential, we obtain the
equation S dT'—Vdp+ Ndpu = 0, so there must be a relation among any two of the intensive
quantities 7', p, and .

o Generalized susceptibilities: Within the OCE!, let H(A) = H, — 3, \; Q;, where Q, are
observables with [Q;, Q ;] = 0. Then

2
o\,

The quantities X, are the generalized susceptibilities.

Qu(T.V,N;X) = (@) = — Vorn -V aron
1 k l

o Ideal gases: For H = Y"I* | P one finds Z(T,V,N) = %(%)N, where A\, = T?LZZ;
: T

is the thermal wavelength. Thus F = Nk,T'In(N/V) — 2dNk,TInT + Na, where a is a

constant. From this one finds p = — (§—€)T N

n = & the number density. The distribution of velocities in d = 3 dimensions is given by

o\ 32
)=(5 Z‘“’—”> <27r1<; T) e T

and this leads to a speed distribution f(v) = 4wv? f(v).

= nkyT, which is the ideal gas law, with

e Example: For N noninteracting spins in an external magnetic field H, the Hamiltonian is

H = —pyHYN | 0, where 5, = +1. The spins, if on a lattice, are regarded as distinguish-
able. Then Z = ¢V, where( = > et eProllo = 2 cosh(BpgH). The magnetization and
magnetic susceptibility are then

 or JH _OM _ Npg oo
M__<8_H>T,N_N,u0tanh<k T> ) X_O—H_ kBT ech <k‘ T)

e Example: For noninteracting particles with kinetic energy % and internal degrees of

freedom, Zy = 77(54 ) ¢N(T), where £(T) = Tr e~ is the partition function for the
internal degrees of freedom, which include rotational, vibrational, and electronic excita-
tions. One still has pV' = Nk, T, but the heat capacities at constant 1 and p are

oS

Cy,=T <§> = 1dNk, — NTY"(T) , C,=T (
VN oT

or P
where o(T') = —k,TIn&(T).

> _CV+N]€B7

The generalization to the GCE is straightforward.



5 Quantum Statistics : Summary

o Second-quantized Hamiltonians: A noninteracting quantum system is described by a Hamil-
tonian i = Y ¢, 7, where ¢, is the energy eigenvalue for the single particle state 1,
(possibly degenerate), and 7, is the number operator. Many-body eigenstates |i7) are la-
beled by the set of occupancies i = {n,, }, with i, |7i) = n,,|7i). Thus, H |7) = E_|i), where

Eﬁ =) aNata

e Bosons and fermions: The allowed values for n, are n, € {0,1,2,...,00} for bosons and
n, € {0,1} for fermions.

e Grand canonical ensemble: Because of the constraint ) n, = N, the ordinary canonical

ensemble is inconvenient. Rather, we use the grand canonical ensemble, in which case

AT, V) = £k, T 1n(1 = e—(ga—u)/kBT> 7

where the upper sign corresponds to bosons and the lower sign to fermions. The average
number of particles occupying the single particle state v, is then

.00 1
() = 9. eEa—1)/kgT +1 )

«

In the Maxwell-Boltzmann limit, u < —k,T and (n,) = ze /87, where z = e#/*sT is
the fugacity. Note that this low-density limit is common to both bosons and fermions.

e Single particle density of states: The single particle density of states per unit volume is
defined to be

1
g(s):vTr e—h Zés—a
where 7 is the one-body Hamiltonian. If 7 is isotropic, then & = £(k), where k = |k| is the

magnitude of the wavevector, and

( )_ de k.d—l
K= 2m)d dejdk

where g is the degeneracy of each single particle energy state (due to spin, for example).

e Quantum virial expansion: From (2 = —pV, we have
n(T, 2) dsL i(ﬂ)ﬂ L2 Cy(T)
-1 a/k T F1 et

p(T, 2) —e/k T > 7
T = :F/de g(e) ln(l Fze e/kp z:l (£1) i= Cj(T) )
]:



where
o

C,(T) = /d&? g(e) e77e/ksT |

—0o0
One now inverts n = n(T, z) to obtain z = z(T,n), then substitutes this into p = p(T, z) to
obtain a series expansion for the equation of state,

p(T,n) = nkBT(l + By(T)n+ By(T)n? + ... ) .
The coefficients B, (T") are the virial coefficients. One finds

Cy C3 20

By = $2—012 o Gy= [aTe
e Photon statistics: Photons are bosonic excitations whose number is not conserved, hence
p = 0. The number distribution for photon statistics is then n(e) = 1/(e* — 1). Examples
of particles obeying photon statistics include phonons (lattice vibrations), magnons (spin
waves), and of course photons themselves, for which (k) = hck with g = 2. The pressure
and number density for the photon gas obey p(T') = C, 7% and n(T) = C/, T, where d
is the dimension of space and C,; and C/, are constants.

e Blackbody radiation: The energy density per unit frequency of a three-dimensional black-
body is givenP by
8mh v

3 ghw/kgT _ 1

e, T) =

The total power emitted per unit area of a blackbody is 45 = oT*, where o = w2k /60h3¢? =
5.67 x 1078 W/m? K* is Stefan’s constant.

e Ideal Bose gas: For Bose systems, we must have ¢, > p for all single particle states. The
number density is

T g0

This is an increasing function of ;1 and an increasing function of 7. For fixed T, the
largest value n (7, 1) can attain is n(T,¢,), where ¢, is the lowest possible single parti-
cle energy, for which g(¢) = 0 for ¢ < ¢,. If n(T) = n(T,e,) < oo, this establishes
a critical density above which there is Bose condensation into the energy ¢, state. Con-
versely, for a given density n there is a critical temperature T,(n) such that n, is finite for
T <T.. ForT < T,,n = ng+n/(T), with p = ¢,. ForT > T, n(T,u) is given
by the integral formula above, with n, = 0. For a ballistic dispersion e(k) = h?k?/2m,
one finds n\}. = g((d/2), ie kT, = 2l (n/gC(d/2))2/d. For T < T.(n), one has
ny = n—gl(3d)A\;? = n(1—(T/T,)%?) and p = gC(1 + Ld) k,TAZ% For T > T,(n),
one hasn = gLi% (2) )\;d and p = gLi%H(z) kT )\;d, where

[oe)
>4
n?’

n=1

Li,(2)

N



e Ideal Fermi gas: The Fermi distribution is n(e) = f(e — p) = 1/(6(5_“)/kBT +1). At
w
T = 0, this is a step function: n(¢) = O(u —¢), and n = [ de g(e). The chemical potential

at ' = 0 is called the Fermi energy: p(T° = 0,n) = ep(n). If the dispersion is £(k), the
locus of k values satisfying (k) = ¢ is called the Fermi surface. For an isotropic and
monotonic dispersion £(k), the Fermi surface is a sphere of radius ky, the Fermi wavevector.
For isotropic three-dimensional systems, k, = (67%n/g)'/3.

e Sommerfeld expansion: Let ¢(c) = fl—f. Then
[ 1 = 1 6(0) = eD esc(xD) (1)

2 d? Tt d*
=1+ — (kTP —=+— (k) '—+...} D

where D = k,T %. One then finds, for example, Cy, = 7V T with v = $72k2 g(ep).



6 Interacting Classical Systems : Summary

e Lattice-based models: Amongst the many lattice-based models of physical interest are

IA{Ising = —JZO’i 0; — HZO'Z ; 0; € {_1>+1}
(i) i

HPotts = _‘]Zéai,aj - H250,1 ) o; € {1, - ,q}
(i) i

HO(n) :—JZﬁi-ﬁj_H.Zﬁi : ﬁiESn_l.
(ig) i

Here J is the coupling between neighboring sites and H (or H) is a polarizing field which
breaks a global symmetry (groups Z,, S,, and O(n), respectively). J > 0 describes a
ferromagnet and J < 0 an antiferromagnet. One can generalize to include further neighbor
interactions, described by a matrix of couplings .J;;. When J = 0, the degrees of freedom
at each site are independent, and Z(T,N,J = 0,H) = ¢V, where ((T, H) is the single
site partition function. When J # 0 it is in general impossible to compute the partition
function analytically, except in certain special cases.

o Transfer matrix solution in d = 1: One such special case is that of one-dimensional systems.
In that case, one can write Z = Tr(RN ), where R is the transfer matrix. Consider a general
one-dimensional model with nearest-neighbor interactions and Hamiltonian

ﬁ = — Z U(an,anH) - Z W(an) ’

where «,, describes the local degree of freedom, which could be discrete or continuous,
single component or multi-component. Then
R — Ula) kT JW(a!) kT

oo

The form of the transfer matrix is not unique, although its eigenvalues are. We could
have taken R, = "V()/2ksT U(@a)/kgT (W(e')/2k5T  for example. The interaction matrix
U(a, /) may or may not be symmetric itself. On a ring of N sites, one has Z = 1 AN,
where {);} are the eigenvalues and K the rank of R. In the thermodynamic limit, the

partition function is dominated by the eigenvalue with the largest magnitude.

e Higher dimensions: For one-dimensional classical systems with finite range interactions,
the thermodynamic properties vary smoothly with temperature for all 7 > 0. The lower
critical dimension d, of a model is the dimension at or below which there is no finite temper-
ature phase transition. For models with discrete global symmetry groups, d, = 1, while for
continuous global symmetries d, = 2. In zero external field the (d = 2) square lattice Ising
model has a critical temperature 7, = 2.269 J. On the honeycomb lattice, 7, = 1.519J.
For the O(3) model on the cubic lattice, 7, = 4.515 J. In general, for unfrustrated systems,
one expects for d > d, that T, < z, where z is the lattice coordination number (i.e. number of
nearest neighbors).



e Nonideal classical gases: For H = SN, % + zlqu(lwz — xj|), one has Z(T,V,N) =
A VQ (T, V), where

1
Qn(T, V) = i /ddxl . "/dd:L'N He—u(rij)/kBT

1<J

is the configuration integral. For the one-dimensional Tonks gas of N hard rods of length a
confined to the region z € [0, L], one finds Q (T, L) = (L — Na)", whence the equation of
state p = nk;T/(1 — na). For more complicated interactions, or in higher dimensions, the
configuration integral is analytically intractable.

o Mayer cluster expansion: Writing the Mayer function f,; = e "is ks _ 1, and assuming

[d% f(r) is finite, one can expand the pressure p(T, z) and n(T), z) as power series in the
fugacity z = exp(u/kpT), viz.

p/k,T = Z (A7) ™ b,

S
n = Zn,y (z/\;d)n7 b7 .
2

The sum is over unlabeled connected clusters v, and n., is the number of vertices in . The
cluster integral b, (T') is obtained by assigning labels {1, ... n. } to all the vertices, and com-
puting

_ L1 i T
v i<j

where f;; appears in the product if there is a link between vertices i and j. s, is the sym-

metry factor of the cluster, defined to be the number of elements from the symmetric group

Sn., which, acting on the labels, would leave the product []/_; f;; invariant. Translational

invariance implies b, (7') o VY. One then inverts n(T, z) to obtain z(T,n), and inserting the
result into the equation for p(T', z) one obtains the virial expansion of the equation of state,

p:nszT{l—|—B2(T)n+B3(T)n2—|—...}.

By definition, a cluster consisting of a single site has b, = 1.

e Liquids: In the ordinary canonical ensemble,

1
P(xy,...,zy) = QN - =i e AW (@, @y)

where W is the total potential energy, and @ is the configuration integral,

QN(T, V) = % /ddl'l e /dde e—ﬁW(il?17...,:1:N) ]



We can use P, or its grand canonical generalization, to compute thermal averages, such as
the average local density

= N/ddxz"-/ddmN P(r,x,,...,xzy)
and the two particle density matrix, two-particle density matrix ny(r;,7,) is defined by

o(T1,79) Zé —wj)>

i#]
= N(N — 1)/ddw3---/ddeP(rl,rz,asg,...,a:N).

e Pair distribution function: For translationally invariant simple fluids consisting of iden-
tical point particles interacting by a two-body central potential u(r), the thermodynamic
properties follow from the behavior of the pair distribution function (pdf),

Zér—w +x;)),

where V' is the total volume and n = N/V the average density. The average energy per

particle is then
oo

e(n,T) = % =3k, T + 27m/dr 2 g(r)u(r) .
0

Here ¢(r) is implicitly dependent on n and T as well In the grand canonical ensemble, the
pdf satisfies the compressibility sum rule, [d* [g(r) — 1] = k;T k; — n~t, where k. is the
isothermal compressibility. Note g(co) = 1. The pdf also implies the virial equation of state,

o0

p=nk,T — %an/dr 3 g(r)d (r) .
0

e Scattering: Scattering experiments are sensitive to momentum transfer hq and energy
transfer iw, and allow determination of the dynamic structure factor

/dt zwt Z ezq wl(O —iq- ml,( )>T

Ly

- XR XK jwzew P6E, ~ i+ o)



where |i) and | j ) are (quantum) states of the system being studied, and P, is the equilib-
rium probability for state i.! Integrating over all frequency, one obtains the static structure
factor,

[e.e]

dw 1 iq-(x,—x,,
S(q)Z/gs(q,w)ZN;@q“ v)

— 00

=Nibgo+1+ n/ddr e T [g(r) — 1] .

e Theories of fluid structure — The BBGKY hi- 3 ! ‘ ' ‘ '

1 1 1 1al e EXPERIMENTAL DATA
erarchy is set of coupled 1ntegrod1fferen.t1al A o
equations relating k- and (k + 1)-particle '
L R g 2 | —— MOLECULAR DYNAMICS
distribution functions. In order to make T—866K , n=002138)A°

progress, a truncation must be performed, §
expressing higher order distributions in
terms of lower order ones. This results in
various theories of fluids, known by their
defining equations for the pdf g(r). Ex- 0 . . ‘ 1
amples include the Born-Green-Yvon equa- .1
tion, the Percus-Yevick equation, the hy- q[A]

pernetted chains equation, the Ornstein- Figure 1: Comparison of the static structure fac-
Zernike approximation, efc. Except in the tor as determined by neutron scattering work of
simplest cases (such as the OZ approxima- J. L. Yarnell et al., I.Dhys. Rev. A 7,2130 (1973) with
tion), these equations must be solved nu- molecular dynamics ca-lculatlons by Verlet (1967)
merically. OZ approximation deserves spe- for a Lennard-Jones fluid.

cial mention. There we write S(q) ~ W for small g, where £(T') is the correlation
length and R(T) is related to the range of interactions.

e Debye-Hiickel theory — Due to the long-ranged nature of the Coulomb interaction, the
Mayer function decays so slowly as  — oo that it is not integrable, so the virial expansion
is problematic. Progress can be made by a self-consistent mean field approach. For a sys-
tem consisting of charges +e, one assumes a local electrostatic potential ¢(r). Boltzmann
statistics then gives a charge density

p(r) — 6)\_T_d2’+ e—ed)(r)/kBT - 6)\:d2’_ ee¢>(7‘)/kBT ’

where A, and z, are the thermal de Broglie wavelengths and fugacities fo