PHYSICS 200B : CLASSICAL MECHANICS SOLUTION SET \#4

[1] Blasius' theorem says that the force per unit length of a body of constant cross-sectional profile Σ is given by

$$
\overline{\mathcal{F}}=\mathcal{F}_{x}-i \mathcal{F}_{y}=\frac{i}{2} \rho \oint_{\mathcal{C}} d z\left(\frac{d W}{d z}\right)^{2}
$$

where $\mathcal{C}=\partial \Sigma$ is a closed curve which traces the boundary of Σ, and $W(z)$ is the complex potential.

Consider a 2D flow with stream function $\psi(x, y)=A(x-c) y$, where A and c are real constants. A circular cylinder of radius a is introduced into this flow, with its center at the origin. Find $W(z)$ for the resulting flow. Use Blasius' theorem to calculate the force per unit length exerted on the cylinder.

We first find the conjugate harmonic function $\phi(x, y)$ satisfying

$$
\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y}=A(x-c) \quad, \quad \frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x}=-A y .
$$

We conclude

$$
\phi(x, y)=\frac{1}{2} A x^{2}-A c x-\frac{1}{2} A y^{2},
$$

and thus

$$
w(z)=\phi(x, y)+i \psi(x, y)=\frac{1}{2} A z^{2}-A c z .
$$

Now we introduce a cylinder of radius a. The boundary of the circle must be a streamline, but as $|z| \rightarrow \infty$ we have $\boldsymbol{v}=\boldsymbol{\nabla} \phi$ where $\phi(x, y)$ is given above. To make this so, we invert $w(z)$ in the circle $|z|=a$ and write

$$
\begin{aligned}
W(z) & =w(z)+\overline{w\left(a^{2} / \bar{z}\right)} \\
& =\frac{1}{2} A z^{2}-A c z+\frac{A a^{2}}{2 z^{2}}-\frac{A c a^{2}}{z} .
\end{aligned}
$$

Using Cauchy's theorem, we then find

$$
\begin{aligned}
\overline{\mathcal{F}} & =\frac{i}{2} \rho \oint_{\mathcal{C}} d z\left(\frac{d W}{d z}\right)^{2} \\
& =\frac{i}{2} \rho \oint_{|z|=a} d z\left(A z-A c+\frac{A c a^{2}}{z^{2}}-\frac{A a^{2}}{2 z^{3}}\right)^{2} \\
& =\frac{i}{2} \rho \cdot 2 \pi i \cdot 2 A^{2} c a^{2}=-2 \pi \rho A^{2} c a^{2} .
\end{aligned}
$$

Thus, $\mathcal{F}_{x}=-2 \pi \rho A^{2} c a^{2}$ and $\mathcal{F}_{y}=0$.
[2] Show that the Joukowski transformation $Z=z+a^{2} / z$ can be written in the form

$$
\frac{Z-2 a}{Z+2 a}=\left(\frac{z-a}{z+a}\right)^{2}
$$

so that

$$
\begin{equation*}
\arg (Z-2 a)-\arg (Z+2 a)=2\{\arg (z-a)-\arg (z+a)\} . \tag{1}
\end{equation*}
$$

Consider the circle in the (x, y) plane which passes through $z=-a$ and a with its center at $z_{0}=i a \operatorname{ctn} \beta$. Show that the above transformation takes this circle into a circular arc between $Z=-2 a$ and $Z=+2 a$, with subtended angle 2β (see figure). Obtain an expression for the complex potential in the Z plane when the flow is uniform at speed V and parallel to the real axis. Show that the velocity will be finite at both the leading and tailing edges if $\Gamma--4 \pi V a \operatorname{ctn} \beta$.

Figure 1: Geometry of the circle and its image in problem 2.
We have

$$
\frac{Z-2 a}{Z+2 a}=\frac{z+a^{2} z^{-1}-2 a}{z+a^{2} z^{-1}+2 a}=\frac{(z-a)^{2} / z}{(z+a)^{2} / z}=\frac{(z-a)^{2}}{(z+a)^{2}} .
$$

Taking the argument and using $\arg \left(z_{1} / z_{2}\right)=\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$ the desired result follows immediately.

Next let $z_{0}=i a \operatorname{ctn} \beta$. The radius of the circle in the z-plane is b, where

$$
b^{2}=a^{2}+(a \operatorname{ctn} \beta)^{2}=a^{2} \csc ^{2} \beta,
$$

so $b=a / \sin \beta$. The locus of points on this circle may be written as $z(\theta)=z_{0}-i b e^{i \theta}$, where $\theta \in[0,2 \pi)$. Thus,

$$
z \pm a=\left(e^{\mp i \beta}-e^{i \theta}\right) \cdot i a \csc \beta
$$

and we have

$$
\frac{Z+2 a}{Z-2 a}=\left(\frac{e^{-i \beta}-e^{i \theta}}{e^{i \beta}-e^{i \theta}}\right)^{2} .
$$

Now

$$
\begin{aligned}
\frac{e^{-i \beta}-e^{i \theta}}{e^{i \beta}-e^{i \theta}} & =-e^{-i \beta} \cdot \frac{e^{i(\beta+\theta)}-1}{e^{i \beta}-e^{i \theta}} \\
& =-e^{-i \beta} \cdot \frac{e^{i(\beta+\theta) / 2}-e^{-i(\beta+\theta) / 2}}{e^{i(\beta-\theta) / 2}-e^{-i(\beta-\theta) / 2}} \cdot \frac{e^{i(\beta+\theta) / 2}}{e^{i(\beta+\theta) / 2}} \\
& =-e^{-i \beta} \cdot \frac{\sin \left[\frac{1}{2}(\beta+\theta)\right]}{\sin \left[\frac{1}{2}(\beta-\theta)\right]}
\end{aligned}
$$

Thus,

$$
\arg (Z+2 a)-\arg (Z-2 a)=2 \pi-2 \beta,
$$

which says that the circle in the z-plane maps to an arc in the Z-plane as shown in fig. 1 .
Now consider the complex potential

$$
W(z)=V\left(z-z_{0}\right)+\frac{V b^{2}}{z-z_{0}}+\frac{\Gamma}{2 \pi i} \log \left(z-z_{0}\right)
$$

corresponding to uniform flow at infinity with a streamline along $|z|=b$. Then the complex potential in the Z-plane is $\mathcal{W}(Z)=W(F(Z))$ where

$$
F(Z)=z=\frac{1}{2}\left(Z \pm \sqrt{Z^{2}-4 a^{2}}\right) .
$$

Thus the complex velocity

$$
\overline{\mathcal{V}}(Z)=\mathcal{W}^{\prime}(Z)=W^{\prime}(z) F^{\prime}(Z)
$$

Consider the case $Z=2 a$, corresponding to $z=a$. Since

$$
F^{\prime}(Z)=\frac{1}{2} \pm \frac{Z}{2 \sqrt{Z^{2}-4 a^{2}}}= \pm \frac{z}{\sqrt{Z^{2}-4 a^{2}}}
$$

we have that $F(Z)$ diverges with an inverse square root singularity as Z approaches $\pm 2 a$. We now show that $W^{\prime}(z)$ vanishes when $Z= \pm 2 a$, cancelling the singularity, provided $\Gamma=-4 \pi V a \operatorname{ctn} \beta$. In this case,

$$
\begin{aligned}
W^{\prime}(z=a) & =V\left\{1-\frac{b^{2} / a^{2}}{(1-i \operatorname{ctn} \beta)^{2}}+\frac{\Gamma / a V}{2 \pi i} \frac{1}{1-i \operatorname{ctn} \beta}\right\} \\
& =V\left\{1-\frac{1}{(\sin \beta-i \cos \beta)^{2}}+\frac{2 i \cos \beta}{\sin \beta-i \cos \beta}\right\} \\
& =V\left\{1+e^{-2 i \beta}-2 \cos \beta e^{-i \beta}\right\}=0,
\end{aligned}
$$

which vanishes! To find out the value of the velocity at the leading and trailing edges, set $z=a+\delta z$. An intelligent parameterization here is to take $\delta z=-i \epsilon a \csc \beta e^{i \beta}$ and see what happens for complex ϵ. We then have

$$
\begin{aligned}
z-z_{0}=z-i a \operatorname{ctn} \beta & =a-i a \operatorname{ctn} \beta-i \epsilon a \csc \beta e^{i \beta} \\
& =-\frac{i a}{\sin \beta}(1+\epsilon) e^{i \beta} .
\end{aligned}
$$

Then

$$
\begin{aligned}
W^{\prime}(z) & =V\left\{1+\frac{e^{-2 i \beta}}{(1+\epsilon)^{2}}-\frac{2 \cos \beta e^{-i \beta}}{1+\epsilon}\right\} \\
& =V\left\{1-\frac{e^{-2 i \beta}}{1+\epsilon}\right\} \cdot \frac{\epsilon}{1+\epsilon}=2 i V \sin \beta e^{-i \beta} \epsilon+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

Next, we have $F^{\prime}(Z)=z / \sqrt{Z^{2}-4 a^{2}}$. We write $Z^{2}-4 a^{2}=(Z+2 a)(Z-2 a)$. For $Z \approx 2 a$ we may write $Z+2 a=4 a+\mathcal{O}(\epsilon)$, and

$$
Z-2 a=z+\frac{a^{2}}{z}-2 a=\frac{(z-a)^{2}}{z}=a\left(-i \epsilon \csc \beta e^{i \beta}\right)^{2} .
$$

Thus,

$$
F^{\prime}(Z)=\frac{z}{\sqrt{Z+2 a}} \cdot \frac{1}{\sqrt{Z-2 a}}=\frac{a}{2 \sqrt{a}} \cdot \frac{1}{-i \epsilon \sqrt{a} \csc \beta e^{i \beta}}=\frac{i e^{-i \beta}}{2 \epsilon \csc \beta} .
$$

Thus we see that $W^{\prime}(z)$ vanishes as ϵ^{1} and $F^{\prime}(Z)$ diverges as ϵ^{-1}. Multiplying and taking the limit $\epsilon \rightarrow 0$, we obtain the complex velocity at the edge $Z=2 a$ to be

$$
\overline{\mathcal{V}}=-V \sin ^{2} \beta e^{-2 i \beta}
$$

[3] Show that an array of N identical point vortices of circulation Γ, placed equally about a circle of radius a, will rotate at a constant angular frequency Ω. Find the value of Ω.

Let $\omega=e^{2 \pi i / N}$. The locations of the vortices are taken to be $z_{n}=a \omega^{n}$ where $n \in\{1, N\}$; note that $z_{n+N}=z_{n}$. The complex potential for a vortex located at the origin is $W(z)=$ $(\Gamma / 2 \pi i) \log z$, and the corresponding complex velocity field is $\bar{v}(z)=\Gamma / 2 \pi i z$. The complex velocity of the $j^{\text {th }}$ vortex is a sum of contributions for all the others and is given by

$$
\bar{v}_{j}=\frac{\Gamma \bar{\omega}^{j}}{2 \pi i a} \sum_{n=1}^{N-1} \frac{1}{1-\omega^{n}} .
$$

Suppose N is odd. Then we pair the terms in the above sum: n with $N-n$. Note that

$$
\frac{1}{1-\omega^{n}}+\frac{1}{1-\omega^{N-n}}=\frac{1}{1-\omega^{n}}+\frac{\omega^{n}}{\omega^{n}-1}=1
$$

since $\omega^{N}=1$. There are $(N-1) / 2$ such pairs, so we conclude that

$$
\bar{v}_{j}=\frac{N-1}{4 \pi i a} \Gamma \bar{\omega}^{j} .
$$

When N is even, we again pair n with $N-n$. The value $n=N / 2$ is its own mate, and there are $(N-2) / 2$ bona fide pairs. Thus,

$$
\sum_{n=1}^{N-1} \frac{1}{1-\omega^{n}}=\frac{N-2}{2}+\frac{1}{1-\omega^{N / 2}}=\frac{N-1}{2},
$$

since $\omega^{N / 2}=-1$. Thus once again we have $\bar{v}_{j}=(N-1) \Gamma \omega^{j} / 4 \pi i a$. Note that uniform rotation in the (x, y) plane about the origin with angular frequency Ω means

$$
\boldsymbol{v}(\boldsymbol{r})=\Omega \hat{\boldsymbol{z}} \times \boldsymbol{r}=\Omega(x \hat{\boldsymbol{y}}-y \hat{\boldsymbol{x}}),
$$

and thus the complex velocity is $\bar{v}=\Omega(-y-i x)=-i \Omega \bar{z}$. For the $j^{\text {th }}$ vortex, $z_{j}=a \bar{\omega}^{j}$. Thus, we conclude $\Omega=(N-1) \Gamma / 4 \pi a^{2}$.
[4] Consider a large circular disk of radius R executing a prescribed angular motion $\theta(t)$. The disk is immersed in a fluid under conditions of constant pressure. Let the plane of the disk lie at $z=0$. Assume that the fluid velocity takes the form

$$
\begin{equation*}
v_{\phi}(r, \phi, z, t)=r \Omega(z, t), \tag{2}
\end{equation*}
$$

with $v_{r}=v_{z}=0$.
(a) Write down the Navier-Stokes equations for the fluid. Assume you can neglect the $(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}$ term. (Under what conditions is this true?) Show that you obtain the diffusion equation. What are the boundary conditions on the fluid motion?

The Navier-Stokes equations are

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=-\nabla p+\nu \nabla^{2} \boldsymbol{v} \tag{3}
\end{equation*}
$$

If we neglect the nonlinear term, we have the diffusion equation,

$$
\begin{equation*}
\frac{\partial \Omega}{\partial t}=\nu \frac{\partial^{2} \Omega}{\partial z^{2}} . \tag{4}
\end{equation*}
$$

In deriving this, it is useful to write

$$
\begin{equation*}
\boldsymbol{v}=r \Omega(z, t) \hat{\boldsymbol{\phi}}=(x \hat{\boldsymbol{y}}-y \hat{\boldsymbol{x}}) \Omega(z, t) . \tag{5}
\end{equation*}
$$

The nonlinear term is

$$
\begin{equation*}
(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}=-\frac{\hat{\boldsymbol{r}}}{r} v_{\phi}^{2}=-\Omega^{2} \boldsymbol{r} . \tag{6}
\end{equation*}
$$

This may be neglected if

$$
\begin{equation*}
|\Omega| \ll \frac{\nu}{R^{2}}, \tag{7}
\end{equation*}
$$

which is equivalent to $\operatorname{Re} \ll 1$, where the Reynolds number is $\operatorname{Re}=R v_{\phi} / \nu$.
(b) Our goal is next to find a complete solution to $\Omega(z, t)$ in terms of the function $\theta(t)$. To this end, we perform the following analysis. Define the spatial Laplace transform,

$$
\begin{equation*}
\check{\Omega}_{\mathrm{L}}(\kappa, t) \equiv \int_{0}^{\infty} d z e^{-\kappa z} \Omega(z, t) \tag{8}
\end{equation*}
$$

You may assume in this problem that the fluid motion is symmetric about $z=0$, i.e. $\Omega(z, t)=\Omega(-z, t)$, so we only have to consider the region $z \geq 0$. The inverse Laplace transform is

$$
\begin{equation*}
\Omega(z, t)=\int_{c-i \infty}^{c+i \infty} \frac{d \kappa}{2 \pi i} e^{+\kappa z} \check{\Omega}_{\mathrm{L}}(\kappa, t) \tag{9}
\end{equation*}
$$

where the contour lies to the left of any branch cut or singularity on the $\operatorname{line} \operatorname{Im}(\kappa)=0$. Later on we will see that we can take $c=0$, so the contour lies along the axis $\operatorname{Re}(\kappa)=0$. Show directly that

$$
\begin{equation*}
\left(\partial_{t}-\nu \kappa^{2}\right) \check{\Omega}_{\mathrm{L}}(\kappa, t)=F_{\kappa}(t), \tag{10}
\end{equation*}
$$

where the function $F_{\kappa}(t)$ on the RHS depends on $\Omega(0, t)$ and $\Omega^{\prime}(0, t)$ (prime denotes differentiation with respect to z). Find $F_{\kappa}(t)$.

We have that

$$
\begin{align*}
0 & =\int_{0}^{\infty} d z e^{-\kappa z}\left\{\frac{\partial \Omega}{\partial t}-\nu \frac{\partial^{2} \Omega}{\partial z^{2}}\right\} \\
& =\left(\partial_{t}-\nu \kappa^{2}\right) \check{\Omega}_{\mathrm{L}}(\kappa, t)+\nu\left[\Omega^{\prime}(0, t)+\kappa \Omega(0, t)\right] . \tag{11}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left(\partial_{t}-\nu \kappa^{2}\right) \check{\Omega}_{\mathrm{L}}(\kappa, t)=-\nu\left[\Omega^{\prime}(0, t)+\kappa \Omega(0, t)\right] . \tag{12}
\end{equation*}
$$

(c) Integrate the above first order equation from some arbitrary initial time $t=t_{0}$ to final time t and obtain $\Omega(z, t)$ in terms of the functions $\Omega\left(z, t_{0}\right), \Omega(0, t)$, and $\Omega^{\prime}(0, t)$. Show that the term involving $\Omega\left(z, t_{0}\right)$ is a transient which decays to zero in the limit $t_{0} \rightarrow-\infty$. Dropping the transient, performing the inverse Laplace transform, and rotating the κ contour so that $\kappa=i k$, where k runs along the real axis, show that

$$
\begin{equation*}
\Omega(z, t)=-\nu \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k z} \int_{-\infty}^{t} d t^{\prime} e^{-\nu k^{2}\left(t-t^{\prime}\right)}\left[\Omega^{\prime}\left(0, t^{\prime}\right)+i k \Omega\left(0, t^{\prime}\right)\right] . \tag{13}
\end{equation*}
$$

Integrating, we obtain

$$
\begin{equation*}
\check{\Omega}_{\mathrm{L}}(\kappa, t)=e^{\nu \kappa^{2}\left(t-t_{0}\right)} \check{\Omega}_{\mathrm{L}}\left(\kappa, t_{0}\right)-\nu \int_{t_{0}}^{t} d t^{\prime} e^{\nu \kappa^{2}\left(t-t^{\prime}\right)}\left[\Omega^{\prime}\left(0, t^{\prime}\right)+i k \Omega\left(0, t^{\prime}\right)\right] . \tag{14}
\end{equation*}
$$

The first term is a transient which is negligible in the limit $t_{0} \rightarrow-\infty$. Remember that κ is purely imaginary along its integration contour, so we can set $\kappa \equiv i k$ with k real. Applying the inverse Laplace transform, we recover the desired result.
(d) Find the total torque on the disk $N(t)$. You will need to integrate $\boldsymbol{r} \times \boldsymbol{f}$ over the surface of the disk, using the viscous stress tensor of the fluid. Show that

$$
\begin{equation*}
N_{\text {fluid }}(t)=\pi \eta R^{4} \Omega^{\prime}(0, t), \tag{15}
\end{equation*}
$$

where $\eta=\rho \nu$ is the shear viscosity.
The viscous force per unit surface area is $f_{i}=\tilde{\sigma}_{i j} n_{j}$, where n_{j} is the surface normal and

$$
\begin{equation*}
\tilde{\sigma}_{i j}=\eta\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}-\frac{2}{3} \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{v}\right)+\zeta \delta_{i j} \boldsymbol{\nabla} \cdot \boldsymbol{v} \tag{16}
\end{equation*}
$$

is the viscous stress tensor. For the flow $\boldsymbol{v}=r \Omega(z, t) \hat{\boldsymbol{\phi}}$, the divergence vanishes. The differential viscous torque $d \boldsymbol{N}=d N \hat{\boldsymbol{z}}$ on the disk is then

$$
\begin{align*}
d N & =\left(x f_{y}-y f_{x}\right) d A \\
& =\eta\left(x \frac{\partial v_{y}}{\partial z}-y \frac{\partial v_{x}}{\partial z}\right) d A=\eta r \frac{\partial \Omega}{\partial z} d A . \tag{17}
\end{align*}
$$

Integrating, we find the total viscous torque:

$$
\begin{equation*}
N=2 \int_{0}^{R} d r 2 \pi r r \eta \frac{\partial v_{\phi}}{\partial z}=\pi \eta R^{4} \Omega^{\prime}(0, t) . \tag{18}
\end{equation*}
$$

Note the factor of two, which arises from integration over both sides of the disk.
(e) By going to Fourier space in frequency, the k integral can be done. Show that

$$
\begin{equation*}
\hat{\Omega}(z, \omega)=-\frac{i e^{i k_{+} z}}{k_{+}-k_{-}}\left\{\hat{\Omega}^{\prime}(0, \omega)+i k_{+} \hat{\Omega}(0, \omega)\right\} \tag{19}
\end{equation*}
$$

where $k_{ \pm}= \pm e^{i \pi / 4} \sqrt{\omega / \nu}$. Thus, setting $z \rightarrow 0^{+}$, we obtain

$$
\begin{equation*}
\hat{\Omega}^{\prime}(0, \omega)=-i k_{-} \hat{\Omega}(0, \omega) . \tag{20}
\end{equation*}
$$

Taking the Fourier transform, we have

$$
\begin{align*}
\hat{\boldsymbol{\Omega}}(z, \omega) & =-\nu \int_{-\infty}^{\infty} d t e^{i \omega t} \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k z} \int_{-\infty}^{t} d t^{\prime} e^{-\nu k^{2}\left(t-t^{\prime}\right)}\left[\Omega^{\prime}\left(0, t^{\prime}\right)+i k \Omega\left(0, t^{\prime}\right)\right] \tag{21}\\
& =-\nu \int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k z} \int_{0}^{\infty} d s e^{-\nu k^{2} s} e^{i \omega s} \int_{-\infty}^{\infty} d t e^{i \omega(t-s)}\left[\Omega^{\prime}(0, t-s)+i k \Omega(0, t-s)\right] \\
& =-\int_{-\infty}^{\infty} \frac{d k}{2 \pi} \frac{e^{i k z}}{k^{2}-\frac{i \omega}{\nu}}\left[\hat{\boldsymbol{\Omega}}^{\prime}(0, \omega)+i k \hat{\boldsymbol{\Omega}}(0, \omega)\right]=\frac{-i e^{i k_{+} z}}{k_{+}-k_{-}}\left[\hat{\boldsymbol{\Omega}}^{\prime}(0, \omega)+i k_{+} \hat{\boldsymbol{\Omega}}(0, \omega)\right],
\end{align*}
$$

where we assume $z>0$ in the last line. There is a subtlety here which is worth mentioning. In the above derivation, we have assumed ω is real and positive. For general ω, the roots are $k= \pm \sqrt{i \omega / \nu}$ and we define k_{+}to be the root with the positive imaginary part.
(f) Suppose the disk is suspended from a torsional fiber. Let the disk's moment of inertia be I and the restoring torque due to the fiber be $N_{\text {fiber }}=-K \theta$. Show that the equation for the oscillation frequency of the disk is

$$
\begin{equation*}
\omega^{2}+e^{i \pi / 4} \omega_{\nu}^{1 / 2} \omega^{3 / 2}-\omega_{0}^{2}=0, \tag{22}
\end{equation*}
$$

where $\omega_{0}=(K / I)^{1 / 2}$, and

$$
\begin{equation*}
\omega_{\nu}=\frac{\pi^{2} \rho^{2} R^{8} \nu}{I^{2}} . \tag{23}
\end{equation*}
$$

Analyze this equation in the limits $\omega_{0} \ll \omega_{\nu}$ and $\omega_{0} \gg \omega_{\nu}$, and find the frequency of damped oscillations. Hint: The former case is easy - simply neglect the ω^{2} term. For the latter case, perturb about the $\omega_{\nu}=0$ solutions $\omega= \pm \omega_{0}$. Find the real and imaginary parts of the oscillation frequency ω in each case.

We have $\Omega(0, t)=\dot{\theta}(t)$, hence $\hat{\boldsymbol{\Omega}}(0, \omega)=-i \omega \hat{\theta}(\omega)$. Then

$$
\begin{align*}
\hat{\boldsymbol{\Omega}}^{\prime}(0, \omega) & =i e^{i \pi / 4} \sqrt{\frac{\omega}{\nu}} \hat{\boldsymbol{\Omega}}(0, \omega) \\
& =e^{i \pi / 4} \frac{\omega^{3 / 2}}{\nu^{1 / 2}} \hat{\theta}(\omega) . \tag{24}
\end{align*}
$$

The Fourier transform of the torque is then

$$
\begin{equation*}
\hat{N}(\omega)=\pi \rho R^{4} \cdot e^{i \pi / 4} \nu^{1 / 2} \omega^{3 / 2} \hat{\theta}(\omega) . \tag{25}
\end{equation*}
$$

Newton's second law for the disk is then

$$
\begin{equation*}
-I \omega^{2} \hat{\theta}(\omega)=-K \hat{\theta}(\omega)+\hat{N}(\omega), \tag{26}
\end{equation*}
$$

from which we obtain the desired result of eqn. ??. To be perfectly correct, we should write this as

$$
\begin{equation*}
\omega^{2}+e^{i \pi / 4} \omega_{\nu}^{1 / 2} \omega^{3 / 2} \operatorname{sgn}(\operatorname{Re} \omega)-\omega_{0}^{2}=0 \tag{27}
\end{equation*}
$$

Suppose $\omega_{0}=0$. Then we have two solutions, $\omega=0$ and $\omega=-i \omega_{\nu}$. For small ω_{0}, the latter will continue to be highly overdamped. The former solution becomes finite, and neglecting the $\mathcal{O}\left(\omega^{2}\right)$ term (since ω is small), we find

$$
\begin{equation*}
\omega=e^{-i \pi / 6} \omega_{0}^{4 / 3} \omega_{\nu}^{-1 / 3} \tag{28}
\end{equation*}
$$

The damping rate is then $\gamma=-\operatorname{Im} \omega=\frac{1}{2} \omega_{0}^{4 / 3} \omega_{\nu}^{-1 / 3}$.
In the opposite limit, where $\omega_{\nu} \ll \omega_{0}$, write $\omega=\omega_{0}+\delta \omega$ and solve to first order in $\delta \omega$, obtaining

$$
\begin{equation*}
\delta \omega=-\frac{1}{2} e^{i \pi / 4} \sqrt{\omega_{0} \omega_{\nu}} \tag{29}
\end{equation*}
$$

The viscous damping leads to a frequency shift and damping rate $-\Delta \omega=\gamma=\sqrt{\omega_{0} \omega_{\nu} / 8}$. Note that $\Delta \omega<0$, as is the case with a simple damped harmonic oscillator.

Note: There is an easier way to solve this problem, if we use some intuition. The diffusion equation $\Omega_{t}=\nu \Omega_{z z}$ and the boundary conditions are linear, which suggests we write our solution as

$$
\begin{equation*}
\Omega(z, t)=A(\omega) e^{-Q|z|} e^{-i \omega t} . \tag{30}
\end{equation*}
$$

This is a solution to the diffusion equation if $\nu Q^{2}=-i \omega$. Of the two roots for $Q(\omega)$, we need the one with the positive real part, so $Q=e^{-i \pi / 4} \sqrt{\omega / \nu}$. Setting $z=0$ and using $\dot{\Omega}=\theta$, we find $A(\omega)=-i \omega \hat{\theta}(\omega)$. The Fourier component of the viscous torque on the disk is then

$$
\begin{align*}
\hat{N}_{\text {fluid }}(\omega) & =\pi \rho \nu R^{4} \cdot(-Q)(-i \omega) \hat{\theta}(\omega) \tag{31}\\
& =e^{i \pi / 4} \pi \rho R^{4} \nu^{1 / 2} \omega^{3 / 2} \hat{\theta}(\omega), \tag{32}
\end{align*}
$$

which when plugged into the equation of motion for the disk yields the above equation for the oscillation frequency.

