
PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #3

[1] Consider the matrix

M =

(

4 4
−1 9

)

.

(a) Find the characteristic polynomial P (λ) = det(λI−M) and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigenvector Rα
i and left eigenvector

Lα
i . Normalize your eigenvectors so that 〈Lα |Rβ 〉 = δαβ.

(c) Show explicitly that Mij =
∑

α λαR
α
i L

α
j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(

λ− 4 −4
1 λ− 9

)

= λ2 − 13λ+ 40 = (λ− 5)(λ − 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(

Rα
1

Rα
2

)

and the left eigenvectors as ~Lα =
(

Lα
1 Lα

2

)

. Having found the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations

〈Lα |Rβ 〉 = Lα
i R

β
i = δαβ . We then find

~R1 =

(

1
1
4

)

, ~R2 =

(

1
1

)

, ~L1 =
(

4
3 −4

3

)

, ~L2 =
(

−1
3

4
3

)

.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =





4
3 −4

3

1
3 −1

3



 , P2 = |R2 〉〈L2 | =





−1
3

4
3

−1
3

4
3



 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(

4 4
−1 9

)

,

as expected.

[2] Consider a three-state system with the following transition rates:

W12 = 0 , W21 = γ , W23 = 0 , W32 = 3γ , W13 = γ , W31 = γ .
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(a) Find the matrix Γ such that Ṗi = −ΓijPj .

(b) Find the equilibrium distribution P eq
i .

(c) Does this system satisfy detailed balance? Why or why not?

Solution :

(a) Following the prescription in Eq. 3.3 of the Lecture Notes, we have

Γ = γ





2 0 −1
−1 3 0
−1 −3 1



 .

(b) Note that summing on the row index yields
∑

i Γij = 0 for any j, hence (1, 1, 1) is a
left eigenvector of Γ with eigenvalue zero. It is quite simple to find the corresponding right
eigenvector. Writing ~ψ t = (a, b, c), we obtain the equations c = 2a, a = 3b, and a+ 3b = c,
the solution of which, with a+ b + c = 1 for normalization, is a = 3

10 , b =
1
10 , and c =

6
10 .

Thus,

P eq =





0.3
0.1
0.6



 .

(c) The equilibrium distribution does not satisfy detailed balance. Consider for example
the ratio P eq

1 /P eq
2 = 3. According to detailed balance, this should be the same as W12/W21,

which is zero for the given set of transition rates.

[3] A Markov chain is a process which describes transitions of a discrete stochastic variable
occurring at discrete times. Let Pi(t) be the probability that the system is in state i at
time t. The evolution equation is

Pi(t+ 1) =
∑

j

Qij Pj(t) .

The transition matrix Qij satisfies
∑

iQij = 1 so that the total probability
∑

i Pi(t) is
conserved. The element Qij is the conditional probability that for the system to evolve to
state i at time t+1 given that it was in state j at time t. Now consider a group of Physics
graduate students consisting of three theorists and four experimentalists. Within each
group, the students are to be regarded as indistinguishable. Together, the students rent two
apartments, A and B. Initially the three theorists live in A and the four experimentalists
live in B. Each month, a random occupant of A and a random occupant of B exchange
domiciles. Compute the transition matrix Qij for this Markov chain, and compute the
average fraction of the time that B contains two theorists and two experimentalists, averaged
over the effectively infinite time it takes the students to get their degrees. Hint: Q is a 4×4
matrix.
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Solution:

There are four states available, and they are listed together with their degeneracies in Table
2.

| j 〉 room A room B gA

j gB

j gTOT

j

| 1 〉 TTT EEEE 1 1 1

| 2 〉 TTE EEET 3 4 12

| 3 〉 TEE EETT 3 6 18

| 4 〉 EEE ETTT 1 4 4

Table 1: States and their degeneracies.

Let’s compute the transition probabilities. First, we compute the transition probabilities out
of state | 1 〉, i.e. the matrix elements Qj1. Clearly Q21 = 1 since we must exchange a theorist
(T) for an experimentalist (E). All the other probabilities are zero: Q11 = Q31 = Q41 = 0.
For transitions out of state | 2 〉, the nonzero elements are

Q12 =
1
4 × 1

3 = 1
12 , Q22 =

3
4 × 1

3 + 1
4 × 2

3 = 5
12 , Q32 =

1
2 .

To compute Q12, we must choose the experimentalist from room A (probability 1
3) with the

theorist from room B (probability 1
4). For Q22, we can either choose E from A and one of

the E’s from B, or one of the T’s from A and the T from B. This explains the intermediate
steps written above. For transitions out of state | 3 〉, the nonzero elements are then

Q23 =
1
3 , Q33 =

1
2 , Q43 =

1
6 .

Finally, for transitions out of state | 4 〉, the nonzero elements are

Q34 =
3
4 , Q44 =

1
4 .

The full transition matrix is then

Q =





















0 1
12 0 0

1 5
12

1
3 0

0 1
2

1
2

3
4

0 0 1
6

1
4





















.

Note that
∑

iQij = 1 for all j = 1, 2, 3, 4. This guarantees that φ(1) = (1 , 1 , 1 , 1) is a
left eigenvector of Q with eigenvalue 1. The corresponding right eigenvector is obtained

by setting Qij ψ
(1)
j = ψ

(1)
i . Simultaneously solving these four equations and normalizing so

that
∑

j ψ
(1)
j = 1, we easily obtain

ψ(1) =
1

35









1
12
18
4









.
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This is the state we converge to after repeated application of the transition matrix Q. If we
decompose Q =

∑4
α=1 λα |ψ(α) 〉〈φ(α) |, then in the limit t→ ∞ we have Qt ≈ |ψ(1) 〉〈φ(1) |,

where λ1 = 1, since the remaining eigenvalues are all less than 1 in magnitude1. Thus, Qt

acts as a projector onto the state |ψ(1) 〉. Whatever the initial set of probabilities Pj(t = 0),

we must have 〈φ(1) |P (0) 〉 =
∑

j Pj(0) = 1. Therefore, limt→∞ Pj(t) = ψ
(1)
j , and we find

P3(∞) = 18
35 . Note that the equilibrium distribution satisfies detailed balance:

ψ
(1)
j =

gTOT

j
∑

l g
TOT

l

.

[4] Consider a modified version of the Kac ring model where each spin exists in one of three
states: A, B, or C. The flippers rotate the internal states cyclically: A→B→C→A.

(a) What is the Poincaré recurrence time for this system? Hint: the answer depends on
whether or not the total number of flippers is a multiple of 3.

(b) Simulate the system numerically. Choose a ring size on the order of N = 10, 000 and
investigate a few flipper densities: x = 0.001, x = 0.01, x = 0.1, x = 0.99. Remember
that the flippers are located randomly at the start, but do not move as the spins
evolve. Starting from a configuration where all the spins are in the A state, plot
the probabilities pA(t), pB(t), and pC(t) versus the discrete time coordinate t, with t
ranging from 0 to the recurrence time. If you can, for each value of x, plot the three
probabilities in different colors or line characteristics (e.g. solid, dotted, dashed) on
the same graph.

(c) Let’s call at = p
A
(t), etc. Explain in words why the Stosszahlansatz results in the

equations

at+1 = (1− x) at + x ct

bt+1 = (1− x) bt + x at

ct+1 = (1− x) ct + x bt .

This describes what is known as a Markov process, which is governed by coupled
equations of the form Pi(t + 1) =

∑

j Qij Pj(t), where Q is the transition matrix .
Find the 3× 3 transition matrix for this Markov process.

(d) Show that the total probability is conserved by a Markov process if
∑

iQij = 1 and
verify this is the case for the equations in (c).

(e) One can then eliminate ct = 1 − at − bt and write these as two coupled equations.
Show that if we define

ãt ≡ at − 1
3 , b̃t ≡ bt − 1

3 , c̃t ≡ ct − 1
3

1One can check that λ1 = 1, λ2 = 5

12
, λ3 = −

1

4
. and λ4 = 0.
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that we can write
(

ãt+1

b̃t+1

)

= R

(

ãt
b̃t

)

,

and find the 2 × 2 matrix R. Note that this is not a Markov process in A and B,
since total probability for the A and B states is not itself conserved. Show that the
eigenvalues of R form a complex conjugate pair. Find the amplitude and phase of
these eigenvalues. Show that the amplitude never exceeds unity.

(f) The fact that the eigenvalues of R are complex means that the probabilities should
oscillate as they decay to their equilibrium values p

A
= p

B
= p

C
= 1

3 . Can you see
this in your simulations?

Solution :

(a) If the number of flippers Nf is a multiple of 3, then each spin will have made an integer
number of complete cyclic changes A→B→C→A after one complete passage around the
ring. The recurrence time is then N , where N is the number of sites. If the number of
flippers Nf is not a multiple of 3, then the recurrence time is simply 3N .

(b) See figs. 1, 2, 3.

(c) According to the Stosszahlansatz , the probability at+1 that a given spin will be in state
A at time (t+1) is the probability at it was in A at time t times the probability (1−x) that
it did not encounter a flipper, plus the probability ct it was in state C at time t times the
probability x that it did encounter a flipper. This explains the first equation. The others
follow by cyclic permutation. The transition matrix is

Q =





1− x 0 x
x 1− x 0
0 x 1− x



 .

(d) The total probability is
∑

i Pi. Assuming
∑

iQij = 1, we have

∑

i

Pi(t+ 1) =
∑

i

∑

j

Qij Pj(t) =
∑

j

(

∑

i

Qij

)

Pj(t) =
∑

j

Pj(t)

and the total probability is conserved. That’s a Good Thing.

(e) Substituting at = ãt +
1
3 , etc. into the Markov process and eliminating c̃t = −

(

ãt + b̃t
)

,
we obtain

R =

(

1− 2x −x
x 1− x

)

.

The characteristic polynomial for R is

P (λ) = det
(

λ · 1−R
)

= (λ− 1 + 2x)(λ− 1 + x) + x2

= λ2 − (2− 3x)λ+ (1− 3x+ 3x2) .
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Figure 1: Simulation of three state Kac ring model with initial conditions at=0 = 0.7,
bt=0 = 0.2, ct=0 = 0.1. Note the oscillations as equilibrium is approached.

The eigenvalues are the two roots of P (λ):

λ± = 1− 3
2 x± i

√
3
2 x .

Note that we can write
λ±(x) = e−1/τ(x) e±iφ(x)

where

τ(x) = − 2

ln
(

1− 3x+ 3x2
) , φ(x) = tan−1

(
√
3x

2− 3x

)

.

Since x(1− x) achieves its maximum volume on the unit interval x ∈ [0, 1] at x = 1
2 , where

x(1− x) = 1
4 , we see that 1

2 ≤ |λ(x)| ≤ 1, hence 0 ≤ τ(x) ≤ ln 2. We plot τ(x) and φ(x) in
fig. 3.

If you managed to get this far, then you’ve done all that was asked. However, one can
go farther and analytically solve the equations for the Markov chain. In so doing, we will
discuss the linear algebraic aspects of the problem.

The matrix R is real but not symmetric. For such a matrix, the characteristic polynomial
satisfies

[

P (λ)
]∗

= P (λ∗), hence if λ is a root of P (λ = 0), which is to say λ is an eigenvalue,
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Figure 2: Simulation of three state Kac ring model with initial conditions at=0 = 0.7,
bt=0 = 0.2, ct=0 = 0.1.

then so is λ∗. Accordingly, the eigenvalues of a real asymmetric matrix are either real or
come in complex conjugate pairs. We can decompose such a matrix R as a sum over its
eigenvectors,

Rij =
∑

α

λα ψ
α
i φ

α
j ,

where
∑

j

Rij ψ
α
j = λα ψ

α
i

∑

i

φαi Rij = λα φ
α
j .

Thus, ψα
j is the jth component of the αth right eigenvector of R, while φαi is the ith component

of the αth left eigenvector of R. Note that φα is a right eigenvector for the transposed matrix
Rt. We can further impose the normalization condition,

〈

φα
∣

∣ψβ
〉

=
∑

i

ψα
i φ

β
i = δαβ .
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Figure 3: Phase angle and relaxation time for the three state Kac ring model with
Stosszahlansatz .

One can check that the following assignment of eigenvectors is valid for our R(x) matrix:

~ψ+ =

(

1

−eiπ/3
)

~φ+ = 1√
3
eiπ/6

(

1 eiπ/3
)

.

and

~ψ− =

(

1

−e−iπ/3

)

~φ+ = 1√
3
e−iπ/6

(

1 e−iπ/3
)

.

Let us write the vector

~ηt =

(

ãt
b̃t

)

.

We then may expand ~ηt in the right eigenvectors of R, writing

~ηt =
∑

α

Cα λ
t
α
~ψα .
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Suppose we begin in a state where at=0 = 1 and bt=0 = ct=0 = 0. Then we have ãt=0 = 2
3

and b̃t=0 = −1
3 , hence

Cα =
〈

~φα
∣

∣

(

+2/3

−1/3

)

〉

.

We thereby find C+ = C− = 1
3 , and

ãt =
2
3 e

−t/τ cos
(

t φ
)

b̃t =
2
3 e

−t/τ sin
(

t φ− π
6

)

,

with c̃t = −
(

ãt + b̃t
)

.

(f) Yes! The oscillation is particularly clear in the lower panel of fig. 1.
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