PHYSICS 200B : CLASSICAL MECHANICS
SOLUTION SET #2

[1] Consider the standard map on the unit torus,

\[x_{n+1} = x_n + y_n \mod 1 \]
\[y_{n+1} = y_n + \kappa \sin(2\pi x_{n+1}) \mod 1. \]

Find all the fixed points and identify their stability as a function of the control parameter \(\kappa \).

[2] Write a computer program to iterate the map from problem [1]. For each value of \(\kappa \) you consider, iterate starting from \(N^2 \) initial conditions \((x_0, y_0) = (j/N, k/N)\), where \(j \) and \(k \) each run from 0 to \(N - 1 \). You can take \(N = 10 \).

(a) By experimenting, see if you can find the value of \(\kappa \) where there are no unbroken KAM tori which span the \(x \)-direction \(x \in [0, 1] \).

(b) Next, consider the standard map on the cylinder,

\[x_{n+1} = x_n + y_n \mod 1 \]
\[y_{n+1} = y_n + \kappa \sin(2\pi x_{n+1}) \mod 1, \]

where the \(y \) variable now may take values on the entire real line. For each given \(\kappa \), plot \(\langle y^2_n \rangle \) versus \(n \), where the average is over the \(N^2 \) initial conditions. Assuming the evolution is diffusive in the chaotic regime, compute the diffusion constant \(D(\kappa) \) from the formula \(\langle y^2_n \rangle = 2Dn \). Plot \(D(\kappa) \) versus \(\kappa \) over the range \(\kappa \in [1, 10] \). Compare to the value from the quasilinear approximation, \(D_{\text{ql}} = \frac{1}{4}\kappa^2 \).

[3] For the logistic map \(x_{n+1} = f(x_n) \) with \(f(x) = rx(1-x) \), plot the functions \(f^{(n)}(x) \) for \(n = 1, 2, \) and \(3 \) and plot the intersections of \(y = f^{(n)}(x) \) with \(y = x \). Show how varying the control parameter \(r \) results in bifurcations corresponding to the appearance of 2-cycles and 4-cycles.