PHYSICS 200B : CLASSICAL MECHANICS

FINAL EXAM : due $12: 00 \mathrm{pm}$ Sunday, March 20 by email
Instructions: You may consult only the course lecture notes but no other written or human sources. You are expected to use a computer and whatever software you find convenient for the numerical work.
[1] Consider the time-dependent 'kicked' Hamiltonian $H(t)=T(p)+V(q) K(t)$, where $K(t)=\tau \sum_{n} \delta(t-n \tau)$ is a Dirac comb. Let $q_{n}=q\left(n \tau^{-}\right)$and $p_{n}=p\left(n \tau^{-}\right)$, i.e. just before each kick.
(a) Find the matrix

$$
M=\frac{\partial\left(q_{n+1}, p_{n+1}\right)}{\partial\left(q_{n}, p_{n}\right)},
$$

and show that it is symplectic.
(b) Find the condition that a fixed point $\left(q^{*}, p^{*}\right)$ is unstable.
(c) Define the function

$$
g(x)=x-\operatorname{nint}(x),
$$

where $\operatorname{nint}(x)$ is the nearest integer to x. Thus $g(\pm 0.4)= \pm 0.4$ since $\operatorname{nint}(\pm 0.4)=0$, but $g(0.6)=-0.4, g(-3.7)=0.3$, etc. Now consider the case

$$
T(p)=\frac{P^{2}}{2 m} \cdot[g(p / P)]^{2} \quad, \quad V(q)=\frac{1}{2} k Q^{2} \cdot[g(q / Q)]^{2} .
$$

This effectively renders the phase space a torus of area $P Q$. Find the conditions for all fixed points of the map $\left(q_{n}, p_{n}\right) \rightarrow\left(q_{n+1}, p_{n+1}\right)$. Which fixed points are unstable?
[2] Consider the 1D map $x_{n+1}=f\left(x_{n}\right)$, where

$$
f(x)=r x(1-x)(1-2 x)^{2} .
$$

(a) Numerically explore the stability of the fixed 1-cycle by plotting cobweb diagrams for various values of r. Note that $f(x)=f(1-x), f^{\prime}(0)=r$, but $f\left(\frac{1}{2}\right)=0$. Thus, as r changes, new solutions to the fixed point equation $f(x)=x$ may appear discontinuously. Can you numerically identify the ranges of stability?
(b) Another way to investigate is the following. Write a computer program which makes a plot like in fig. 2.10 of the lecture notes. Here is how I made that figure:
i. The outer loop is over the r values. For this problem, choose $r \in[1,16]$. Loop over at least 500 values.
ii. For each r value, iterate the map $x^{\prime}=f(x)$ one thousand times, but do not plot the results. Start with a random seed x_{0}. (You can even try using the same seed for each r value.)
iii. After iterating so many times, your program should have settled in on a stable cycle or else it is in a regime of chaos. Plot the next 400 iterates of the map.
iv. Advance r to its next value $r+\Delta r$ and go back to step (ii). Terminate after $r=16$.
(c) Analytically obtain the region of stability in the control parameter r and the corresponding set of fixed points $x^{*}(r)$. Hint: Simultaneously set $f(x)=x$ and $f^{\prime}(x)= \pm 1$.
(d) Show that for $r=16$, if we define $x \equiv \sin ^{2} \theta$, with $\theta \in[0, \pi]$, there is a simple relationship between θ_{n+1} and θ_{n}. Writing the binary expansion of $\theta_{n=0}$ as

$$
\theta_{0}=\pi \sum_{k=1}^{\infty} \frac{b_{k}}{2^{k}}
$$

and given that $\sin ^{2} \theta$ is periodic under $\theta \rightarrow \theta+\pi$, find the corresponding binary expansion of θ_{n}.
[3] The Burgers vortex - Seek an exact, steady state solution to the Navier-Stokes equations (with $\zeta=0$) of the form

$$
\boldsymbol{v}(r, \phi, z)=-\frac{1}{2} \alpha r \hat{\boldsymbol{e}}_{r}+v_{\phi}(r) \hat{\boldsymbol{e}}_{\phi}+\alpha z \hat{\boldsymbol{e}}_{z} .
$$

(a) Verify that $\boldsymbol{\nabla} \cdot \boldsymbol{v}=0$ and that $\boldsymbol{\omega}=\omega(r) \hat{\boldsymbol{e}}_{z}$. Show that the equations of motion imply a first order ODE for the vorticity $\omega(r)$. Obtain that equation.
(b) Find $\omega(r)$ and $v_{\phi}(r)$.

