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2y + xy − y2 . . . . . . . . . . . . . . . . 27

List of Tables



Chapter 14

Two-Dimensional Phase Flows

We’ve seen how, for one-dimensional dynamical systems u̇ = f(u), the possibilities in terms of the
behavior of the system are in fact quite limited. Starting from an arbitrary initial condition u(0), the
phase flow is monotonically toward the first stable fixed point encountered. (That point may lie at
infinity.) No oscillations are possible1. For N = 2 phase flows, a richer set of possibilities arises, as we
shall now see.

14.1 Harmonic Oscillator and Pendulum

14.1.1 Simple harmonic oscillator

A one-dimensional harmonic oscillator obeys the equation of motion,

m
d2x

dt2
= −kx , (14.1)

where m is the mass and k the force constant (of a spring). If we define v = ẋ, this may be written as the
N = 2 system,

d

dt

(
x
v

)
=

(
0 1

−Ω2 0

)(
x
v

)
=

(
v

−Ω2 x

)
, (14.2)

where Ω =
√

k/m has the dimensions of frequency (inverse time). The solution is well known:

x(t) = x0 cos(Ωt) +
v0
Ω

sin(Ωt)

v(t) = v0 cos(Ωt)−Ω x0 sin(Ωt) .
(14.3)

The phase curves are ellipses:

Ω x2(t) +Ω−1 v2(t) = C , (14.4)

1If phase space itself is multiply connected, e.g. a circle, then the system can oscillate by moving around the circle.

1
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Figure 14.1: Phase curves for the harmonic oscillator.

where the constant C = Ω x20 +Ω−1 v20 . A sketch of the phase curves and of the phase flow is shown in
Fig. 14.1. Note that the x and v axes have different dimensions. Note also that the origin is a fixed point,
however, unlike the N = 1 systems studied in the first lecture, here the phase flow can avoid the fixed
points, and oscillations can occur.

Incidentally, eqn. 14.2 is linear, and may be solved by the following method. Write the equation as
ϕ̇ = Mϕ, with

ϕ =

(
x
ẋ

)
and M =

(
0 1

−Ω2 0

)
(14.5)

The formal solution to ϕ̇ = Mϕ is

ϕ(t) = eMtϕ(0) . (14.6)

What do we mean by the exponential of a matrix? We mean its Taylor series expansion:

eMt = I+Mt+ 1
2! M

2 t2 + 1
3! M

3 t3 + . . . . (14.7)

Note that

M2 =

(
0 1

−Ω2 0

)(
0 1

−Ω2 0

)

=

(
−Ω2 0
0 −Ω2

)
= −Ω2

I ,

(14.8)

hence

M2k = (−Ω2)k I , M2k+1 = (−Ω2)k M . (14.9)
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Thus,

eMt =
∞∑

k=0

1

(2k)!
(−Ω2t2)k · I+

∞∑

k=0

1

(2k + 1)!
(−Ω2t2)k ·Mt

= cos(Ωt) · I+Ω−1 sin(Ωt) ·M

=

(
cos(Ωt) Ω−1 sin(Ωt)

−Ω sin(Ωt) cos(Ωt)

)
.

(14.10)

Plugging this into eqn. 14.6, we obtain the desired solution.

For the damped harmonic oscillator, we have

ẍ+ 2βẋ+Ω2x = 0 =⇒ M =

(
0 1

−Ω2 −2β

)
. (14.11)

The phase curves then spiral inward to the fixed point at (0, 0).

14.1.2 Pendulum

Next, consider the simple pendulum, composed of a mass point m affixed to a massless rigid rod of
length ℓ.

mℓ2 θ̈ = −mgℓ sin θ . (14.12)

This is equivalent to
d

dt

(
θ
ω

)
=

(
ω

−Ω2 sin θ

)
, (14.13)

where ω = θ̇ is the angular velocity, and where Ω =
√

g/ℓ is the natural frequency of small oscillations.

The phase curves for the pendulum are shown in Fig. 14.2. The small oscillations of the pendulum are
essentially the same as those of a harmonic oscillator. Indeed, within the small angle approximation,
sin θ ≈ θ, and the pendulum equations of motion are exactly those of the harmonic oscillator. These
oscillations are called librations. They involve a back-and-forth motion in real space, and the phase
space motion is contractable to a point, in the topological sense. However, if the initial angular velocity
is large enough, a qualitatively different kind of motion is observed, whose phase curves are rotations. In
this case, the pendulum bob keeps swinging around in the same direction, because, as we’ll see in a later
lecture, the total energy is sufficiently large. The phase curve which separates these two topologically
distinct motions is called a separatrix.

14.2 General N = 2 Systems

The general form to be studied is

d

dt

(
x
y

)
=

(
Vx(x, y)

Vy(x, y)

)
. (14.14)
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Figure 14.2: Phase curves for the simple pendulum. The separatrix divides phase space into regions of
vibration and libration.

Special cases include autonomous second order ODEs, viz.

ẍ = f(x, ẋ) =⇒ d

dt

(
x
v

)
=

(
v

f(x, v)

)
, (14.15)

of the type which occur in one-dimensional mechanics.

14.2.1 The damped driven pendulum

Another example is that of the damped and driven harmonic oscillator,

d2φ

ds2
+ γ

dφ

ds
+ sinφ = j . (14.16)

This is equivalent to a model of a resistively and capacitively shunted Josephson junction, depicted in fig.
14.3. If φ is the superconducting phase difference across the junction, the current through the junction

is given by IJ = Ic sinφ, where Ic is the critical current. The current carried by the resistor is IR = V/R

from Ohm’s law, and the current from the capacitor is IC = Q̇. Finally, the Josephson relation relates the

voltage V across the junction to the superconducting phase difference φ: V = (~/2e) φ̇. Summing up the
parallel currents, we have that the total current I is given by

I =
~C

2e
φ̈+

~

2eR
φ̇+ Ic sinφ , (14.17)
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Figure 14.3: . The resistively and capacitively shunted Josephson junction. The Josephson junction is the
X element at the bottom of the figure.

which, again, is equivalent to a damped, driven pendulum.

This system also has a mechanical analog. Define the ‘potential’

U(φ) = −Ic cosφ− Iφ . (14.18)

The equation of motion is then
~C

2e
φ̈+

~

2eR
φ̇ = −∂U

∂φ
. (14.19)

Thus, the combination ~C/2e plays the role of the inertial term (mass, or moment of inertia), while the
combination ~/2eR plays the role of a damping coefficient. The potential U(φ) is known as the tilted
washboard potential, for obvious reasons. (Though many of you have perhaps never seen a washboard.)

The model is adimensionalized by defining the Josephson plasma frequency ωp and the RC time con-
stant τ :

ωp ≡
√

2eIc
~C

, τ ≡ RC . (14.20)

The dimensionless combination ωpτ then enters the adimensionalized equation as the sole control pa-
rameter:

I

Ic
=

d2φ

ds2
+

1

ωpτ

dφ

ds
+ sinφ , (14.21)

where s = ωpt. In the Josephson junction literature, the quantity β ≡ 2eIcR2C/~ = (ωpτ)2, known
as the McCumber-Stewart parameter, is a dimensionless measure of the damping (large β means small

damping). In terms of eqn. 14.16, we have γ = (ωpτ)−1 and j = I/Ic.

We can write the second order ODE of eqn. 14.16 as two coupled first order ODEs:

d

dt

(
φ
ω

)
=

(
ω

j − sinφ− γ ω

)
, (14.22)
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Figure 14.4: Phase flows for the equation φ̈+ γ−1φ̇+sinφ = j. Left panel: 0 < j < 1; note the separatrix
(in black), which flows into the stable and unstable fixed points. Right panel: j > 1. The red curve
overlying the thick black dot-dash curve is a limit cycle.

where ω = φ̇. Phase space is a cylinder, S1 × R
1.

The quantity ωpτ typically ranges from 10−3 to 103 in Josephson junction applications. If ωpτ is small,
then the system is heavily damped, and the inertial term d2φ/ds2 can be neglected. One then obtains the
N = 1 system

γ
dφ

ds
= j − sinφ . (14.23)

If |j| < 1, then φ(s) evolves to the first stable fixed point encountered, where φ∗ = sin−1(j) and cosφ∗ =√
1− j2. Since φ(s) → φ∗ is asymptotically a constant, the voltage drop V must then vanish, as a

consequence of the Josephson relation V = (~/2e) φ̇. This, there is current flowing with no voltage drop!

If |j| > 1, the RHS never vanishes, in which case φ(s) is monotonic. We then can integrate the differential
equation

dt =
~

2eR
· dφ

I − Ic sinφ
. (14.24)

Asymptotically the motion is periodic, with the period T obtained by integrating over the interval φ ∈
[0, 2π]. One finds

T =
~

2eR
· 2π√

I2 − I2c
. (14.25)
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The time-averaged voltage drop is then

〈V 〉 = ~

2e
〈φ̇〉 = ~

2e
· 2π
T

= R
√

I2 − I2c . (14.26)

This is the physics of the current-biased resistively and capacitively shunted Josephson junction in the strong
damping limit. It is ‘current-biased’ because we are specifying the current I . Note that Ohm’s law is
recovered at large values of I .

For general ωpτ , we can still say quite a bit. At a fixed point, both components of the vector field V (φ, ω)
must vanish. This requires ω = 0 and j = sinφ. Therefore, there are two fixed points for |j| < 1, one a
saddle point and the other a stable spiral. For |j| > 1 there are no fixed points, and asymptotically the

function φ(t) tends to a periodic limit cycle φLC(t). The flow is sketched for two representative values of
j in Fig. 14.4.

14.2.2 Classification of N = 2 fixed points

Suppose we have solved the fixed point equations Vx(x
∗, y∗) = 0 and Vy(x

∗, y∗) = 0. Let us now expand
about the fixed point, writing

ẋ =
∂Vx

∂x

∣∣∣∣∣
(x∗,y∗)

(x− x∗) +
∂Vx

∂y

∣∣∣∣∣
(x∗,y∗)

(y − y∗) + . . .

ẏ =
∂Vy

∂x

∣∣∣∣∣
(x∗,y∗)

(x− x∗) +
∂Vy

∂y

∣∣∣∣∣
(x∗,y∗)

(y − y∗) + . . . .

(14.27)

We define

u1 = x− x∗ , u2 = y − y∗ , (14.28)

which, to linear order, satisfy

d

dt



u1

u2


 =

M︷ ︸︸ ︷

a b

c d





u1

u2


+O(u2) . (14.29)

The formal solution to u̇ = Mu is

u(t) = exp(Mt)u(0) , (14.30)

where exp(Mt) =
∑

∞

n=0
1
n! (Mt)n is the exponential of the matrix Mt.

The behavior of the system is determined by the eigenvalues of M , which are roots of the characteristic
equation P (λ) = 0, where

P (λ) = det(λI−M)

= λ2 − Tλ+D ,
(14.31)
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Figure 14.5: Fixed point zoo for N = 2 systems. Not shown: unstable versions of node, spiral, and star
(reverse direction of arrows to turn stable into unstable).

with T = a+ d = Tr(M) and D = ad− bc = det(M). The two eigenvalues are therefore

λ± = 1
2

(
T ±

√
T 2 − 4D

)
. (14.32)

To see why the eigenvalues control the behavior, let us expand u(0) in terms of the eigenvectors of M .
Since M is not necessarily symmetric, we should emphasize that we expand u(0) in terms of the right
eigenvectors of M , which satisfy

Mψa = λaψa , (14.33)

where the label a runs over the symbols + and −, as in (14.32). We write

u(t) =
∑

a

Ca(t)ψa . (14.34)

Since (we assume) the eigenvectors are linearly independent, the equation u̇ = Mu becomes

Ċa = λaCa , (14.35)

with solution

Ca(t) = eλat Ca(0) . (14.36)

Thus, the coefficients of the eigenvectorsψa will grow in magnitude if |λa| > 1, and will shrink if |λa| < 1.
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Figure 14.6: Complete classification of fixed points for the N = 2 system.

14.2.3 The fixed point zoo

• Saddles : When D < 0, both eigenvalues are real; one is positive and one is negative, i.e. λ+ > 0

and λ− < 0. The right eigenvector ψ− is thus the stable direction while ψ+ is the unstable direction.

• Nodes : When 0 < D < 1
4T

2, both eigenvalues are real and of the same sign. Thus, both right
eigenvectors correspond to stable or to unstable directions, depending on whether T < 0 (stable;

λ− < λ+ < 0) or T < 0 (unstable; λ+ > λ− > 0). If λ± are distinct, one can distinguish fast and
slow eigendirections, based on the magnitude of the eigenvalues.

• Spirals : When D > 1
4T

2, the discriminant T 2 − 4D is negative, and the eigenvalues come in a

complex conjugate pair: λ− = λ∗
+. The real parts are given by Re(λ±) = 1

2T , so the motion is
stable (i.e. collapsing to the fixed point) if T < 0 and unstable (i.e. diverging from the fixed point) if
T > 0. The motion is easily shown to correspond to a spiral. One can check that the spiral rotates
counterclockwise for a > d and clockwise for a < d.

• Degenerate Cases : When T = 0 we have λ± = ±
√
−D. For D < 0 we have a saddle, but for

D > 0 both eigenvalues are imaginary: λ± = ±i
√
D. The orbits do not collapse to a point, nor do

they diverge to infinity, in the t → ∞ limit, as they do in the case of the stable and unstable spiral.
The fixed point is called a center, and it is surrounded by closed trajectories.

When D = 1
4T

2, the discriminant vanishes and the eigenvalues are degenerate. If the rank of M is
two, the fixed point is a stable (T < 0) or unstable (T > 0) star. If M is degenerate and of rank one,
the fixed point is a degenerate node.

When D = 0, one of the eigenvalues vanishes. This indicates a fixed line in phase space, since any
point on that line will not move. The fixed line can be stable or unstable, depending on whether
the remaining eigenvalue is negative (stable, T < 0), or positive (unstable, T > 0).
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Figure 14.7: Stable, unstable, and half-stable limit cycles.

Putting it all together, an example of a phase portrait is shown in Fig. 14.8. Note the presence of an
isolated, closed trajectory, which is called a limit cycle. Many self-sustained physical oscillations, i.e. oscil-
lations with no external forcing, exhibit limit cycle behavior. Limit cycles, like fixed points, can be stable
or unstable, or partially stable. Limit cycles are inherently nonlinear. While the linear equation ϕ̇ = M ϕ

can have periodic solutions if M has purely imaginary eigenvalues, these periodic trajectories are not
isolated, because λϕ(t) is also a solution. The amplitude of these linear oscillations is fixed by the initial
conditions, whereas for limit cycles, the amplitude is inherent from the dynamics itself, and the initial
conditions are irrelevant (for a stable limit cycle).

In fig. 14.7 we show simple examples of stable, unstable, and half-stable limit cycles. As we shall see
when we study nonlinear oscillations, the Van der Pol oscillator,

ẍ+ µ(x2 − 1) ẋ+ x = 0 , (14.37)

with µ > 0 has a stable limit cycle. The physics is easy to apprehend. The coefficient of the ẋ term in
the equation of motion is positive for |x| > 1 and negative for |x| < 1. Interpreting this as a coefficient
of friction, we see that the friction is positive, i.e. dissipating energy, when |x| > 1 but negative, i.e.
accumulating energy, for |x| < 1. Thus, any small motion with |x| < 1 is amplified due to the negative
friction, and would increase without bound were it not for the fact that the friction term reverses its sign
and becomes dissipative for |x| > 1. The limit cycle for µ ≫ 1 is shown in fig. 14.9.

14.2.4 Fixed points for N = 3 systems

For an N = 2 system, there are five generic types of fixed points. They are classified according to the
eigenvalues of the linearized dynamics at the fixed point. For a real 2 × 2 matrix, the eigenvalues must
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Figure 14.8: Phase portrait for an N = 2 flow including saddles (A,C), unstable spiral (B), and limit
cycle (D).

be real or else must be a complex conjugate pair. The five types of fixed points are then

λ1 > 0 , λ2 > 0 : (1) unstable node

λ1 > 0 , λ2 < 0 : (2) saddle point

λ1 < 0 , λ2 < 0 : (3) stable node

Reλ1 > 0 , λ2 = λ∗
1 : (4) unstable spiral

Reλ1 < 0 , λ2 = λ∗
1 : (5) stable spiral

(14.38)

How many possible generic fixed points are there for an N = 3 system?

For a general real 3×3matrix M , the characteristic polynomial P (λ) = det(λ−M) satisfiesP (λ∗) = P (λ).
Thus, if λ is a root then so is λ∗. This means that the eigenvalues are either real or else come in complex
conjugate pairs. There are then ten generic possibilities for the three eigenvalues:

(1) unstable node : λ1 > λ2 > λ3 > 0

(2) (+ +−) saddle : λ1 > λ2 > 0 > λ3

(3) (+ −−) saddle : λ1 > 0 > λ2 > λ3

(4) stable node : 0 > λ1 > λ2 > λ3

(5) unstable spiral-node : λ1 > Reλ2,3 > 0 ; Imλ2 = −Imλ3

(6) unstable spiral-node : Reλ1,2 > λ3 > 0 ; Imλ1 = −Imλ2

(7) stable spiral-node : 0 > λ1 > Reλ2,3 ; Imλ2 = −Imλ3

(8) stable spiral-node : 0 > Reλ1,2 > λ3 ; Imλ1 = −Imλ2

(9) (+−−) spiral-saddle : λ1 > 0 > Reλ2,3 ; Imλ2 = −Imλ3

(10) (+ +−) spiral-saddle : Reλ1,2 > 0 > λ3 ; Imλ1 = −Imλ2 .
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Figure 14.9: Limit cycle of the Van der Pol oscillator for µ ≫ 1. (Source: Wikipedia)

14.3 Andronov-Hopf Bifurcation

A bifurcation between a spiral and a limit cycle is known as an Andronov-Hopf bifurcation. As a simple
example, consider the N = 2 system,

ẋ = ax− by − C(x2 + y2)x

ẏ = bx+ ay − C(x2 + y2) y ,
(14.39)

where a, b, and C are real. Clearly the origin is a fixed point, at which one finds the eigenvalues λ = a±ib.
Thus, the fixed point is a stable spiral if a < 0 and an unstable spiral if a > 0.

Written in terms of the complex variable z = x+ iy, these two equations collapse to the single equation

ż = (a+ ib) z − C |z|2 z . (14.40)

The dynamics are also simple in polar coordinates r = |z|, θ = arg(z):

ṙ = ar − Cr3

θ̇ = b .
(14.41)

The phase diagram, for fixed b > 0, is depicted in Fig. 14.10. For positive a/C , there is a limit cycle at
r =

√
a/C . In both cases, the limit cycle disappears as a crosses the value a∗ = 0 and is replaced by a

stable (a < 0, C > 0) or unstable (a > 0, C < 0) spiral.
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Figure 14.10: Hopf bifurcation: for C > 0 the bifurcation is supercritical, between stable spiral and
stable limit cycle. For C < 0 the bifurcation is subcritical, between unstable spiral and unstable limit
cycle. The bifurcation occurs at a = 0 in both cases.

This example also underscores the following interesting point. Adding a small nonlinear term C has
no fundamental effect on the fixed point behavior so long as a 6= 0, when the fixed point is a stable or
unstable spiral. In general, fixed points which are attractors (stable spirals or nodes), repellers (unstable
spirals or nodes), or saddles are robust with respect to the addition of a small nonlinearity. But the fixed
point behavior in the marginal cases – centers, stars, degenerate nodes, and fixed lines – is strongly
affected by the presence of even a small nonlinearity. In this example, the FP is a center when a = 0.
But as the (r, θ) dynamics shows, a small nonlinearity will destroy the center and turn the FP into an
attractor (C > 0) or a repeller (C < 0).

14.4 Population Biology: Lotka-Volterra Models

Consider two species with populations N1 and N2, respectively2. We model the evolution of these
populations by the coupled ODEs

dN1

dt
= aN1 + bN1N2 + cN2

1

dN2

dt
= dN2 + eN1N2 + fN2

2 ,

(14.42)

2This discussion is adapted from S. Strogatz, Nonlinear Dynamics and Chaos.
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where {a, b, c, d, e, f} are constants. We can eliminate some constants by rescaling N1,2. This results in
the following:

ẋ = x
(
r − µx− ky

)

ẏ = y
(
r′ − µ′y − k′x

)
,

(14.43)

where µ, and µ′ can each take on one of three possible values {0,±1}. By rescaling time, we can eliminate
the scale of either of r or r′ as well. Typically, intra-species competition guarantees µ = µ′ = +1. The
remaining coefficients (r, k, k′) are real may also be of either sign. The values and especially the signs of
the various coefficients have a physical (or biological) significance. For example, if k < 0 it means that
x grows due to the presence of y. The effect of y on x may be of the same sign (kk′ > 0) or of opposite
sign (kk′ < 0).

14.4.1 Rabbits and foxes

As an example, consider the model

ẋ = x− xy

ẏ = −βy + xy .
(14.44)

The quantity x might represent the (scaled) population of rabbits and y the population of foxes in an
ecosystem. There are two fixed points: at (0, 0) and at (β, 1). Linearizing the dynamics about these fixed
points, one finds that (0, 0) is a saddle while (β, 1) is a center. Let’s do this explicitly.

The first step is to find the fixed points (x∗, y∗). To do this, we set ẋ = 0 and ẏ = 0. From ẋ = x(1−y) = 0
we have that x = 0 or y = 1. Suppose x = 0. The second equation, ẏ = (x− β)y then requires y = 0. So
P1 = (0, 0) is a fixed point. The other possibility is that y = 1, which then requires x = β. So P2 = (β, 1)
is the second fixed point. Those are the only possibilities.

We now compute the linearized dynamics at these fixed points. The linearized dynamics are given by
ϕ̇ = Mϕ, with

M =



∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y


 =



1− y −x

y x− β


 . (14.45)

Evaluating M at P1 and P2, we find

M1 =



1 0

0 −β


 , M2 =



0 −β

1 0


 . (14.46)

The eigenvalues are easily found:

P1 : λ+ = 1 , λ− = −β

P2 : λ+ = i
√

β , λ− = −i
√

β .
(14.47)

Thus P1 is a saddle point and P2 is a center.
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Figure 14.11: Phase flow for the rabbits vs. foxes Lotka-Volterra model of eqs. 14.44.

As we saw earlier, generally speaking we expect nonlinear terms to transform centers to stable or un-
stable spirals, possibly with a limit cycle. However for the Lotka-Volterra system there is a conserved
quantity. Consider the general predator-prey system

ẋ = (a− b y)x

ẏ = −(c− dx) y ,
(14.48)

where a, b, c, and d are all positive constants. Now consider the function

H ≡ dx+ b y − c log x− a log y . (14.49)

Then
∂H

∂x
= d− c

x
,

∂H

∂y
= b− a

y
. (14.50)

Thus, we have ẋ = −xy ∂H
∂y and ẏ = xy ∂H

∂x . If we define p ≡ log x and q ≡ log y, then we have

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(14.51)

with
H(q, p) = d ep + b eq − c p− a q . (14.52)

So the system is a Hamiltonian system in disguise, and we know that for Hamiltonian systems the only
possible fixed points are saddles and centers. The phase curves are level sets of the function H .

14.4.2 Rabbits and sheep

In the rabbits and foxes model of eqs. 14.44, the rabbits are the food for the foxes. This means k = 1
but k′ = −1, i.e. the fox population is enhanced by the presence of rabbits, but the rabbit population
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is diminished by the presence of foxes. Consider now a model in which the two species (rabbits and
sheep, say) compete for food:

ẋ = x (r − x− ky)

ẏ = y (1− y − k′x) ,
(14.53)

with r, k, and k′ all positive. Note that when either population x or y vanishes, the remaining population
is governed by the logistic equation, i.e. it will flow to a nonzero fixed point.

The matrix of derivatives, which is to be evaluated at each fixed point in order to assess its stability, is

M =



∂ẋ/∂x ∂ẋ/∂y

∂ẏ/∂x ∂ẏ/∂y


 =



r − 2x− ky −kx

−k′y 1− 2y − k′x


 . (14.54)

At each fixed point, we must evaluate D = det(M) and T = Tr (M) and apply the classification scheme
of Fig. 14.6.

• P1 = (0, 0) : This is the trivial state with no rabbits (x = 0) and no sheep (y = 0). The linearized

dynamics gives M1 =

(
r 0
0 1

)
, which corresponds to an unstable node.

• P2 = (r, 0) : Here we have rabbits but no sheep. The linearized dynamics gives M2 =

(
−r −rk
0 1− rk′

)
.

For rk′ > 1 this is a stable node; for rk′ < 1 it is a saddle point.

• P3 = (0, 1) : Here we have sheep but no rabbits. The linearized dynamics gives M3 =

(
r − k 0
−k′ −1

)
.

For k > r this is a stable node; for k < r it is a saddle.

• There is one remaining fixed point – a nontrivial one where both x and y are nonzero. To find it,
we set ẋ = ẏ = 0, and divide out by x and y respectively, to get

x+ ky = r

kx′ + y = 1 .
(14.55)

This is a simple rank 2 inhomogeneous linear system. If the fixed point P4 is to lie in the physical
quadrant (x > 0, y > 0), then either (i) k > r and k′ > r−1 or (ii) k < r and k′ < r−1. The solution
is

P4 =

(
1 k
k′ 1

)−1(
r
1

)
=

1

1− kk′

(
r − k
1− rk′

)
. (14.56)

The linearized dynamics then gives

M4 =
1

1− kk′




k − r k(k − r)

k′(rk′ − 1) rk′ − 1


 , (14.57)
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Figure 14.12: Two possible phase flows for the rabbits vs. sheep model of eqs. 14.53. Left panel:
k > r > k′−1. Right panel: k < r < k′−1.

yielding

T =
rk′ − 1 + k − r

1− kk′

D =
(k − r)(rk′ − 1)

1− kk′
.

(14.58)

The classification of this fixed point can vary with parameters. Consider the case r = 1. If k = k′ = 2
then both P2 and P3 are stable nodes. At P4, one finds T = −2

3 and D = −1
3 , corresponding to a saddle

point. In this case it is the fate of one population to die out at the expense of the other, and which
one survives depends on initial conditions. If instead we took k = k′ = 1

2 , then T = −4
3 and D = 1

3 ,
corresponding to a stable node (node D < 1

4T
2 in this case). The situation is depicted in Fig. 14.12.

14.5 Poincaré-Bendixson Theorem

Although N = 2 systems are much richer than N = 1 systems, they are still ultimately rather impov-
erished in terms of their long-time behavior. If an orbit does not flow off to infinity or asymptotically
approach a stable fixed point (node or spiral or nongeneric example), the only remaining possibility is
limit cycle behavior. This is the content of the Poincaré-Bendixson theorem, which states:

• IF Ω is a compact (i.e. closed and bounded) subset of phase space,

• AND ϕ̇ = V (ϕ) is continuously differentiable on Ω,

• AND Ω contains no fixed points (i.e. V (ϕ) never vanishes in Ω),

• AND a phase curve ϕ(t) is always confined to Ω,

⋄ THEN ϕ(t) is either closed or approaches a closed trajectory in the limit t → ∞.
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Figure 14.13: Two singularities with index +1. The direction field V̂ = V /
∣∣V
∣∣ is shown in both cases.

Thus, under the conditions of the theorem, Ω must contain a closed orbit.

One way to prove that ϕ(t) is confined to Ω is to establish that V · n̂ ≤ 0 everywhere on the boundary
∂Ω, which means that the phase flow is always directed inward (or tangent) along the boundary. Let’s
analyze an example from the book by Strogatz. Consider the system

ṙ = r(1− r2) + λ r cos θ

θ̇ = 1 ,
(14.59)

with 0 < λ < 1. Then define

a ≡
√
1− λ , b ≡

√
1 + λ (14.60)

and

Ω ≡
{
(r, θ)

∣∣ a < r < b
}

. (14.61)

On the boundaries of Ω, we have

r = a ⇒ ṙ = λa
(
1 + cos θ

)

r = b ⇒ ṙ = −λ b
(
1− cos θ

)
.

(14.62)

We see that the radial component of the flow is inward along both r = a and r = b. Thus, any trajectory
which starts inside Ω can never escape. The Poincaré-Bendixson theorem tells us that the trajectory will
approach a stable limit cycle in the limit t → ∞.

It is only with N ≥ 3 systems that the interesting possibility of chaotic behavior emerges.
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14.6 Index Theory

Consider a smooth two-dimensional vector field V (ϕ). The angle that the vector V makes with respect

to the ϕ̂1 and ϕ̂2 axes is a scalar field,

Θ(ϕ) = tan−1

(
V2(ϕ)

V1(ϕ)

)
. (14.63)

So long as V has finite length, the angle Θ is well-defined. In particular, we expect that we can integrate
∇Θ over a closed curve C in phase space to get

∮

C

dϕ ·∇Θ = 0 . (14.64)

However, this can fail if V (ϕ) vanishes (or diverges) at one or more points in the interior of C. In general,
if we define

W
C
(V ) =

1

2π

∮

C

dϕ ·∇Θ , (14.65)

then W
C
(V ) ∈ Z is an integer valued function of C, which is the change in Θ around the curve C. This

must be an integer, because Θ is well-defined only up to multiples of 2π. Note that differential changes of
Θ are in general well-defined.

Thus, if V (ϕ) is finite, meaning neither infinite nor infinitesimal, i.e. V neither diverges nor vanishes

anywhere in int(C), then W
C
(V ) = 0. Assuming that V never diverges, any singularities in Θ must arise

from points where V = 0, which in general occurs at isolated points, since it entails two equations in

the two variables (ϕ1 , ϕ2).

The index of a two-dimensional vector field V (ϕ) at a point ϕ is the integer-valued winding of V about
that point:

ind
ϕ0

(V ) = lim
a→0

1

2π

∮

Ca(ϕ0)

dϕ ·∇Θ

= lim
a→0

1

2π

∮

Ca(ϕ0)

dϕ · V1∇V2 − V2∇V1

V 2
1 + V 2

2

,

(14.66)

where Ca(ϕ0) is a circle of radius a surrounding the point ϕ0. The index of a closed curve C is given by
the sum of the indices at all the singularities enclosed by the curve:3

W
C
(V ) =

∑

ϕi ∈ int(C)

ind
ϕi

(V ) . (14.67)

3Technically, we should weight the index at each enclosed singularity by the signed number of times the curve C encloses that
singularity. For simplicity and clarity, we assume that the curve C is homeomorphic to the circle S

1.
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Figure 14.14: Two singularities with index −1.

As an example, consider the vector fields plotted in fig. 14.13. We have:

V = (x , y) ⇒ Θ = θ

V = (−y , x) ⇒ Θ = θ + 1
2π .

(14.68)

The index is the same, +1, in both cases, even though the first corresponds to an unstable node and the
second to a center. Any N = 2 fixed point with detM > 0 has index +1.

Fig. 14.14 shows two vector fields, each with index −1:

V = (x , −y) ⇒ Θ = −θ

V = (y , x) ⇒ Θ = −θ + 1
2π .

(14.69)

In both cases, the fixed point is a saddle.

As an example of the content of eqn. 14.67, consider the vector fields in eqn. 14.15. The left panel shows
the vector field V = (x2 − y2 , 2xy), which has a single fixed point, at the origin (0 , 0), of index +2. The
right panel shows the vector field V = (1 + x2 − y2 , x+ 2xy), which has fixed points (x∗ , y∗) at (0 , 1)
and (0 , −1). The linearized dynamics is given by the matrix

M =




∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y


 =




2x −2y

1 + 2y 2x


 . (14.70)

Thus,

M
(0,1)

=

(
0 −2
2 0

)
, M

(0,−1)
=

(
0 2
−2 0

)
. (14.71)
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Figure 14.15: Left panel: a singularity with index +2. Right panel: two singularities each with index
+1. Note that the long distance behavior of V is the same in both cases.

At each of these fixed points, we have T = 0 and D = 4, corresponding to a center, with index +1. If
we consider a square-ish curve Caround the periphery of each figure, the vector field is almost the same

along such a curve for both the left and right panels, and the winding number is W
C
(V ) = +2.

Finally, consider the vector field shown in fig. 14.16, with V = (x2 − y2 , −2xy). Clearly Θ = −2θ, and
the index of the singularity at (0 , 0) is −2.

To recapitulate some properties of the index / winding number:

• The index ind
ϕ0
(V ) of an N = 2 vector field V at a point ϕ0 is the winding number of V about

that point.

• The winding number W
C
(V ) of a curve C is the sum of the indices of the singularities enclosed by

that curve.

• Smooth deformations of C do not change its winding number. One must instead “stretch” C over

a fixed point singularity in order to change W
C
(V ).

• Uniformly rotating each vector in the vector field by an angle β has the effect of sendingΘ → Θ+β;
this leaves all indices and winding numbers invariant.

• Nodes and spirals, whether stable or unstable, have index +1 (ss do the special cases of centers,
stars, and degenerate nodes). Saddle points have index −1.

• Clearly any closed orbit must lie on a curve C of index +1.
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Figure 14.16: A vector field with index −2.

14.6.1 Gauss-Bonnet theorem

There is a deep result in mathematics, the Gauss-Bonnet theorem, which connects the local geometry of
a two-dimensional manifold to its global topological structure. The content of the theorem is as follows:

∫

M

dA K = 2π χ(M) = 2π
∑

i

ind
ϕ

i

(V ) , (14.72)

where M is a 2-manifold (a topological space locally homeomorphic to R
2), κ is the local Gaussian cur-

vature of M, which is given by K = (R1 R2)
−1, where R1,2 are the principal radii of curvature at a given

point, and dA is the differential area element. The quantity χ(M) is called the Euler characteristic of M
and is given by χ(M) = 2− 2g, where g is the genus of M, which is the number of holes (or handles) of

M. Furthermore, V (ϕ) is any smooth vector field on M, and ϕi are the singularity points of that vector
field, which are fixed points of the dynamics ϕ̇ = V (ϕ).

To apprehend the content of the Gauss-Bonnet theorem, it is helpful to consider an example. Let M = S
2

be the unit 2-sphere, as depicted in fig. 14.17. At any point on the unit 2-sphere, the radii of curvature
are degenerate and both equal to R = 1, hence K = 1. If we integrate the Gaussian curvature over the
sphere, we thus get 4π = 2π χ

(
S
2
)
, which says χ(S2) = 2 − 2g = 2, which agrees with g = 0 for the

sphere. Furthermore, the Gauss-Bonnet theorem says that any smooth vector field on S
2 must have a

singularity or singularities, with the total index summed over the singularities equal to +2. The vector
field sketched in the left panel of fig. 14.17 has two index +1 singularities, which could be taken at the
north and south poles, but which could be anywhere. Another possibility, depicted in the right panel of
fig. 14.17, is that there is a one singularity with index +2.
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Figure 14.17: Two smooth vector fields on the sphere S
2, which has genus g = 0. Left panel: two index

+1 singularities. Right panel: one index +2 singularity.

In fig. 14.18 we show examples of manifolds with genii g = 1 and g = 2. The case g = 1 is the
familiar 2-torus, which is topologically equivalent to a product of circles: T

2 ≃ S
1 × S

1, and is thus

coordinatized by two angles θ1 and θ2. A smooth vector field pointing in the direction of increasing θ1
never vanishes, and thus has no singularities, consistent with g = 1 and χ

(
T
2
)
= 0. Topologically, one

can define a torus as the quotient space R
2/Z2, or as a square with opposite sides identified. This is

what mathematicians call a ‘flat torus’ – one with curvature K = 0 everywhere. Of course, such a torus
cannot be embedded in three-dimensional Euclidean space; a two-dimensional figure embedded in a
three-dimensional Euclidean space inherits a metric due to the embedding, and for a physical torus, like
the surface of a bagel, the Gaussian curvature is only zero on average.

The g = 2 surface M shown in the right panel of fig. 14.18 has Euler characteristic χ(M) = −2, which
means that any smooth vector field on M must have singularities with indices totalling −2. One pos-
sibility, depicted in the figure, is to have two saddle points with index −1; one of these singularities is
shown in the figure (the other would be on the opposite side).

14.6.2 Singularities and topology

For any N = 1 system ẋ = f(x), we can identify a ‘charge’ Q with any generic fixed point x∗ by setting

Q = sgn
[
f ′(x∗)

]
, (14.73)

where f(x∗) = 0. The total charge contained in a region
[
x1, x2

]
is then

Q12 =
1
2 sgn

[
f(x2)

]
− 1

2 sgn
[
f(x1)

]
. (14.74)

It is easy to see that Q12 is the sum of the charges of all the fixed points lying within the interval
[
x1, x2

]
.
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Figure 14.18: Smooth vector fields on the torus T2 (g = 1), and on a 2-manifold M of genus g = 2.

In higher dimensions, we have the following general construction. Consider an N -dimensional dynam-
ical system ẋ = V (x), and let n̂(x) be the unit vector field defined by

n̂(x) =
V (x)

|V (x)| . (14.75)

Consider now a unit sphere in n̂ space, which is of dimension (N − 1). If we integrate over this surface,
we obtain

ΩN =

∮
dσa n

a =
2π(N−1)/2

Γ
(
N−1
2

) , (14.76)

which is the surface area of the unit sphere S
N−1. Thus, Ω2 = 2π, Ω3 = 4π, Ω4 = 2π2, etc.

Now consider a change of variables over the surface of the sphere, to the set (ξ1, . . . , ξN−1). We then
have

ΩN =

∮

SN−1

dσa n
a =

∮
dN−1ξ ǫa1···aN

na1
∂na2

∂ξ1
· · · ∂na

N

∂ξN−1

(14.77)

The topological charge is then

Q =
1

ΩN

∮
dN−1ξ ǫa1···aN

na1
∂na2

∂ξ1
· · · ∂naN

∂ξN−1

(14.78)

The quantity Q is an integer topological invariant which characterizes the map from the surface (ξ1, . . . , ξN−1)
to the unit sphere |n̂| = 1. In mathematical parlance, Q is known as the Pontrjagin index of this map.

This analytical development recapitulates some basic topology. Let M be a topological space and con-
sider a map from the circle S

1 to M. We can compose two such maps by merging the two circles, as
shown in fig. 14.19. Two maps are said to be homotopic if they can be smoothly deformed into each other.
Any two homotopic maps are said to belong to the same equivalence class or homotopy class. For general
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Figure 14.19: Composition of two circles. The same general construction applies to the merging of
n-spheres Sn, called the wedge sum.

M, the homotopy classes may be multiplied using the composition law, resulting in a group structure.
The group is called the fundamental group of the manifold M, and is abbreviated π1(M). If M = S

2, then
any such map can be smoothly contracted to a point on the 2-sphere, which is to say a trivial map. We
then have π1(M) = 0. If M = S

1, the maps can wind nontrivially, and the homotopy classes are labeled
by a single integer winding number: π1(S

1) = Z. The winding number of the composition of two such
maps is the sum of their individual winding numbers. If M = T

2, the maps can wind nontrivially
around either of the two cycles of the 2-torus. We then have π1(T

2) = Z
2, and in general π1(T

n) = Z
n.

This makes good sense, since an n-torus is topologically equivalent to a product of n circles. In some
cases, π1(M) can be nonabelian, as is the case when M is the genus g = 2 structure shown in the right
hand panel of fig. 14.18.

In general we define the nth homotopy group πn(M) as the group under composition of maps from S
n to

M. For n ≥ 2, πn(M) is abelian. If dim(M) < n, then πn(M) = 0. In general, πn(S
n) = Z. These nth

homotopy classes of the n-sphere are labeled by their Pontrjagin index Q.

Finally, we ask what is Q in terms of the eigenvalues and eigenvectors of the linearized map

Mij =
∂Vi

∂xj

∣∣∣∣
x∗

. (14.79)

For simple cases where all the λi are nonzero, we have

Q = sgn

(
N∏

i=1

λi

)
. (14.80)
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14.7 Appendix: Example Problem

Consider the two-dimensional phase flow,

ẋ = 1
2x+ xy − 2x3

ẏ = 5
2y + xy − y2 .

(14.81)

(a) Find and classify all fixed points.

Solution : We have

ẋ = x
(
1
2 + y − 2x2

)

ẏ = y
(
5
2 + x− y

)
.

(14.82)

The matrix of first derivatives is

M =




∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y


 =




1
2 + y − 6x2 x

y 5
2 + x− 2y


 . (14.83)

There are six fixed points.

(x, y) = (0, 0) : The derivative matrix is

M =

(
1
2 0
0 5

2

)
. (14.84)

The determinant is D = 5
4 and the trace is T = 3. Since D < 1

4T
2 and T > 0, this is an unstable node.

(Duh! One can read off both eigenvalues are real and positive.) Eigenvalues: λ1 =
1
2 , λ2 =

5
2 .

(x, y) = (0, 52 ) : The derivative matrix is

M =

(
3 0
5
2 −5

2

)
, (14.85)

for which D = −15
2 and T = 1

2 . The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −5
2 ,

λ2 = 3.

(x, y) = (−1
2 , 0) : The derivative matrix is

M =

(
−1 −1

2
0 2

)
, (14.86)

for which D = −2 and T = +1. The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −1,
λ2 = 2.

(x, y) = (12 , 0) : The derivative matrix is

M =

(
−1 1

2
0 3

)
, (14.87)
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Figure 14.20: Sketch of phase flow for ẋ = 1
2x+ xy − 2x3, ẏ = 5

2y + xy − y2. Fixed point classifications
are in the text.

for which D = −3 and T = +2. The determinant is negative, so this is a saddle. Eigenvalues: λ1 = −1,
λ2 = 3.

(x, y) = (32 , 4) : This is one root obtained by setting y = x+ 5
2 and the solving 1

2+y−2x2 = 3+x−2x2 = 0,
giving x = −1 and x = +3

2 . The derivative matrix is

M =

(
−9 3

2
4 −4

)
, (14.88)

for which D = 30 and T = −13. Since D < 1
4 T

2 and T < 0, this corresponds to a stable node.
Eigenvalues: λ1 = −10, λ2 = −3.

(x, y) = (−1, 32) : This is the second root obtained by setting y = x + 5
2 and the solving 1

2 + y − 2x2 =
3 + x− 2x2 = 0, giving x = −1 and x = +3

2 . The derivative matrix is

M =

(
−4 −1
3
2 −3

2

)
, (14.89)

for which D = 15
2 and T = −11

2 . Since D < 1
4 T

2 and T < 0, this corresponds to a stable node.
Eigenvalues: λ1 = −3, λ2 = −5

2 .

(b) Sketch the phase flow.

Solution : The flow is sketched in fig. 14.20. Thanks to Evan Bierman for providing the Mathematica

code.
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