1. Introduction to Dynamics (Sept. 23 and 26)
 essential elements of dynamics
 discrete and differential equations
 deterministic versus stochastic
 dynamical systems
 examples

2. Motion in $d = 1$: Two-Dimensional Phase Flows (Sept. 28)
 (x, v) phase space
 dynamical system $\frac{d}{dt} \{ x \ v \} = \{ a(x,v) \}$
 two-dimensional phase flows
 examples: harmonic oscillator and pendulum
 fixed points in two-dimensional phase space; separatrices

3. Solution of the Equations of One-Dimensional Motion (Sept. 30 and Oct. 3)
 potential energy $U(x)$
 conservation of energy
 sketching phase flows from $U(x)$
 solution by quadratures
 turning points; period of orbit

4. Linear Oscillations (Oct. 5)
 Taylor’s theory and the ubiquity of harmonic motion
 the damped harmonic oscillator: $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = 0$
 reduction to algebraic equation
 generalization to all autonomous homogeneous linear ODEs
 solution to the damped harmonic oscillator: underdamped and overdamped behavior

5. Forced Linear Oscillations (Oct. 7)
 $\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = f(t)$
 solution for harmonic forcing $f(t) = A \cos(\Omega t)$
 presence of homogeneous solution: transients
 amplitude resonance and phase lag; Q factor

6. Green’s Functions for Autonomous Linear ODEs (Oct. 10)
 Fourier transform
 physical meaning of $G(t - t')$; causality
 response to a pulse
7. Systems of Particles (Oct. 12 and 14)
 kinetic, potential, and interaction potential energies
 forces; Newton’s third law
 momentum conservation
 torque and angular momentum
 kinetic energy and the work-energy theorem

8. MIDTERM EXAMINATION (Oct. 17)

9. Calculus of Variations I (Oct. 19)
 Snell’s law for refraction at an interface
 continuum limit of many interfaces
 functionals
 variational calculus: extremizing \(\int dx \, L(y, y', x) \)
 preview: Newton’s second law from \(L = T - U \)

10. Calculus of Variations II (Oct. 21 and 24)
 Examples
 surfaces of revolution
 geodesics
 brachistochrone
 generalization to several dependent and independent variables
 Constrained Extremization
 Lagrange undetermined multipliers in calculus: review
 systems with integral constraints
 hanging rope of fixed length
 holonomic constraints

11. Lagrangian Dynamics (Oct. 26 and 28)
 generalized coordinates
 action functional
 equations of motion: Newton’s second law
 examples: spring, pendulum, etc.
 double pendulum: Lagrangian and equations of motion
 Lagrangian for a charged particle interacting with an electromagnetic field
 Lorentz force law

12. Noether’s Theorem and Conservation Laws (Oct. 31 and Nov. 2)
 continuous symmetries
 “one-parameter family of diffeomorphisms” \(q_i \to h_i^\lambda(q_1, \ldots, q_N) \)
 Noether’s theorem and the conserved “charge” \(Q = \sum_i \frac{\partial L}{\partial \dot{q}_i} \frac{\partial h_i^\lambda}{\partial \lambda} \bigg|_{\lambda=0} \)
 linear and angular momentum

13. Constrained Dynamical Systems (Nov. 4 and 7)
 undetermined multipliers as forces of constraints
 simple pendulum with \(r = l \) or \(x^2 + y^2 = l^2 \) constraint
 Examples
15. The Two-Body Central Force Problem (Nov. 9, 11, and 14)
CM and relative coordinates
angular momentum conservation and Kepler’s law $\dot{A} = \text{const.}$
ergy conservation
the effective potential
radial equation of motion for the relative coordinate
the effective potential and its interpretation
phase curves
solution for $r(t)$ and $\phi(t)$ by quadratures

16. The Shape of the Orbit (Nov. 16 and 18)
equation for $r(\phi)$, the geometric shape of the orbit
$s = 1/r$ substitution
examples
almost circular orbits: bound versus closed motion, precession

17. Coupled Oscillations I: The Double Pendulum (Nov. 21 and 23)
review: Lagrangian for the double pendulum
equations of motion
linearization
solution of two coupled linear equations
normal modes

18. Coupled Oscillations II: General Theory (Nov. 25 and 28)
harmonic potentials
T and V matrices
normal modes
the mathematical problem: simultaneous diagonalization of T and V

19. Coupled Oscillations III: The Recipe (Nov. 30 and Dec. 2)
eigenvalues: $\det(\omega^2 T - V) = 0$
eigenvectors: $(\omega^2 T_{ij} - V_{ij})a_j^{(s)} = 0$
ormalization: $a_i^{(s)} T_{ij} a_j^{(s')} = \delta_{ss'}$
modal matrix: $A_{js} = a_j^{(s)}$
examples

• COMPREHENSIVE FINAL EXAMINATION (Dec. 6)