
PHYSICS 211B: CONDENSED MATTER PHYSICS

HW ASSIGNMENT #1 PROBLEMS

These problems draw upon material that should have been covered in Physics 211A. If you
encounter any difficulties, please consult chapters 3, 4, and 5 of the lecture notes.

(1) For each of the following structures, indicate whether or not it is a Bravais lattice. If it
is, give the three primitive vectors. If not, describe it as a Bravais lattice with the smallest
possible basis.

(a) Base-centered cubic (simple cubic with additional points in the centers of the two hori-
zontal faces).

(b) Side-centered cubic (simple cubic with additional points in the centers of the four ver-
tical faces).

(c) Edge-centered cubic (simple cubic with additional points at the midpoints of all nearest-
neighbor links).

(2) Polycrystalline specimens of three different monatomic cubic crystals are analyzed with
a Debye-Scherrer camera. It is known that one sample is fcc, one is bcc, and one has a
diamond structure. The approximate angular position φ of the first four diffraction rings
are found to be

A : 42.2◦, 49.2◦, 72.0◦, 87.3◦

B : 28.8◦, 41.0◦, 50.8◦, 59.6◦

C : 42.8◦, 73.2◦, 89.0◦, 115◦

(a) Identify the crystal structures A, B, and C.

(b) If the wavelength of the incident X-ray is λ = 1.5Å, what is the length of the side of the
cubic cell in each case?

(c) If the (monatomic) diamond structure were replaced by a (binary) zincblende structure,
at what angles would the first four rings be observed?

(3) A monolayer of atoms is deposited on a surface. The atoms form a regular hexagonal
lattice. This problem deals with the vibrations of these atoms.

(a) Suppose the surface is perfectly smooth. The atoms interact by a potential

Φ = 1

2

∑

R,R′

v
(

|R+ u⊥(R)−R′ − u⊥(R
′)|
)

+ 1

2
Kz

∑

R

u2z(R)

where u
⊥

= ux x̂ + uy ŷ is the displacement along the surface (perpendicular to the sur-
face normal ẑ), R and R′ denote sites of the hexagonal Bravais lattice, and the last term
describes the binding of the atoms to the surface (uz is the displacement along the surface
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normal). Show that the dynamical matrix for the lattice vibrations takes the form

Φ̂(k) =





Φ̂xx(k) Φ̂xy(k) 0

Φ̂yx(k) Φ̂yy(k) 0

0 0 Φ̂zz(k)





where the upper left 2× 2 block is given by

Φαβ(k) = 2
∑

R

sin2(1
2
k ·R)

{

(δαβ − R̂αR̂β)R−1v′(R) + R̂αR̂βv′′(R)
}

with α, β = 1 or 2, and Φ̂zz(k) = Kz independent of k. You may find it useful to invoke
Eqn. 3.54 of the lecture notes (you don’t have to derive it!).

(b) Assuming that the above sum for Φ̂αβ(k) is dominated by the nearest neighbor terms,
compute the phonon dispersions along the (1, 0) axis in reciprocal space. You should use
M for the ionic mass, a for the lattice constant, and abbreviate A ≡ a−1v′(a) and B ≡ v′′(a).

(c) Find the general form of the dynamical matrix for arbitrary phonon wavevector k. For
the acoustic modes, find the sound velocities c± for k ≈ 0.

(4) Consider a one-dimensional chain of s-orbitals separated by a distance a0, with

H =
∑

n

(

εA |An 〉〈An |+ εB |Bn 〉〈Bn |

− t
∑

n

(

|An 〉〈Bn |+ |Bn 〉〈An+1 |+ |Bn 〉〈An |+ |An+1 〉〈Bn |
)

.

(a) How many atoms are there per unit cell? What is the length of the Wigner-Seitz cell?

(b) Find the dispersions Ea(k) of the energy bands.

(c) Sketch the band structure over the one-dimensional Brillouin zone.

(d) Show that for ε
A
= ε

B
that you recover the correct energy band for the uniform one-

dimensional nearest-neighbor chain.

(5) Hexagonal boron nitride, BN, has a honeycomb lattice structure, with boron atoms at
A sites and nitrogen atoms at B sites. The tight binding Hamiltonian is

H =
∑

R

(

εA |AR 〉〈AR |+ εB |BR 〉〈BR |
)

− t
∑

R

(

|AR 〉〈BR |+ |AR 〉〈BR+a
1

|+ |AR 〉〈BR−a
2

|+H.c.
)

.

(a) Find the 2 × 2 Hamiltonian matrix Ĥ(k). You may find it convenient to write the

wavevector as k =
θ
1

2π
b1 +

θ
2

2π
b2 and express your answer in terms of θ1,2.
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(b) Find expressions for the band energies at high symmetry points Γ, K, and M.

(c) Find an expression for the band gap ∆. Is the gap direct or indirect?

(6) Consider a tight binding model of (px, py) orbitals on a triangular lattice. The hopping
is restricted to nearest neighbor links. Recall that the hopping matrix elements are given
by

tµν(η̂) = tw δµν − (ts + tw) η̂µ η̂ν ,

where the link direction is η̂.

(a) Find the matrix t̂µν(k). You may find it convenient to write k =
θ
1

2π
b1 +

θ
2

2π
b2 and

express your answer in terms of θ1,2.

(b) Find expressions for the band energies at the high symmetry points Γ, K, and M.

(c) For ts = 1 and tw = 1

2
, plot the dispersions E±(k) along the path ΓMKΓ.

(7) Make a sketch of the extended Brillouin zones like in Fig. 5.2 of the lecture notes, but for
the triangular lattice. Then make plots the free electron Fermi surface for valences Z = 2
and Z = 3, such as in Fig. 2.3.

(8) Cyclotron resonance in Si and Ge – This problem is based on the following figures:

Both Si and Ge are indirect gap semiconductors with anisotropic conduction band minima
and doubly degenerate valence band maxima. In Si, the conduction band minima occur
along the 〈100〉 (〈ΓX〉) directions, and are six-fold degenerate. The equal energy surfaces
are cigar-shaped, and the effective mass along the 〈ΓX〉 principal axes (the ‘longitudinal’

effective mass) is m∗

l
≃ 1.0me, while the effective mass in the plane perpendicular to

this axis (the ‘transverse’ effective mass) is m∗
t ≃ 0.20me. The valence band maximum

occurs at the unique Γ point, and there are two isotropic hole branches: a ‘heavy’ hole

with m∗

hh
≃ 0.49me, and a ‘light’ hole with m∗

lh
≃ 0.16me.

In Ge, the conduction band minima occur at the fourfold degenerate L point (along the

eight 〈111〉 directions) with effective masses m∗

l
≃ 1.6me and m∗

t ≃ 0.08me. The valence

band maximum again occurs at the Γ point, where the hole masses are m∗

hh
≃ 0.34me and

m∗

lh
≃ 0.044me. Use the following figures to interpret the cyclotron resonance data shown

below. Verify whether the data corroborate the quoted values of the effective masses in Si
and Ge.
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Figure 1: (a) Left: Constant energy surfaces near the conduction band minima in silicon.
There are six symmetry-related ellipsoidal pockets whose long axes run along the 〈100〉
directions. Right: Cyclotron resonance data in Si (G. Dresselhaus et al., Phys, Rev, 98, 368
(1955).) The field lies in a (110) plane and makes an angle of 30◦ with the [001] axis. (b)
Left: Constant energy surfaces near the conduction band minima in germanium. There
are eight symmetry-related half-ellipsoids whose long axes run along the 〈111〉 directions,
and are centered on the midpoints of the hexagonal zone faces. With a suitable choice of
primitive cell in k-space, these can be represented as four ellipsoids, the half-ellipsoids
on opposite faces being joined together by translations through suitable reciprocal lattice
vectors. Right: Cyclotron resonance data in Ge (G. Dresselhaus et al., Phys, Rev, 98, 368
(1955).) The field lies in a (110) plane and makes an angle of 60◦ with the [001] axis.
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