28.

The energy of the 2p to 1s Lyman transition is

E = (~13.60570 V) (——11) 10.20428 eV

and its wavelength (in the absence of fine structure) is

. m _ 1239.842 eV -nm _121.5022 eV

E 10.20428 eV

With the fine structure energy splitting of 4.5 x 10 eV, the wavelength splitting is

2
A = /1—AE mm 5x107° eV) = 0.00054 nm
hc 1240eV -nm

The fine structure splits one level up by 0.5AE and the other down by the same amount,
so the wavelengths are

A+5A4=121.5024 nm and A—-$A1=121.5019 nm



1. (a) Fora2pelectron,n=2,1=1, m =0,£1 and m_ = %, so the possible sets of

quantum numbers (n,l,m;,m,) are:
(2,1,+1,+%), (2,1,+1,—%), (2,1,0,+ ¥2), (2,1,0,-%2), (2,1,-1,+%), (2,1,-1,-%%)

(b) There are 6 possible sets of quantum numbers for each electron, so the total number
of possibilities for 2 electrons is 6 x 6 = 36.
(c) The Pauli principle prevents the two sets from being identical. There will be 6
combinations in which the two sets are identical; eliminating these combinations leaves
30 allowed combinations.
(d) Because the n values are different, the Pauli principle does not restrict the number of
combinations, to there will be 36 possible combinations.

2. (a) The two electrons in the 1s level have m, of +1/2 and —1/2, so they do not contribute
to the total m, and the same is true for the two electrons in the 2s level. In the 2p level,
there are three different possible values of m,, and for each of those values we can assign
a set of quantum numbers with m_ = +1/2, so the maximum possible value of the total m
IS +3/2.

() (n, I, m;, m) = (2,1, +1, +1/2), (2, 1, 0, +1/2), (2, 1, -1, +1/2)

(c) There is only one possible value of the total m, in the states that maximize m, and
from the states listed in (b) that value is +1 + 0 + (-1) = 0.

(d) We could maximize the total m, by giving the first 2p electron m, = +1, and the
second electron can also have m, = +1 if we give these two electrons opposite values of
m,. The third electron cannot have m, = +1, so we must assign it m, = 0 and the
maximum total m, is +2.



4. (a) In beryllium (1s°2s%) the smallest energy jump is from 2s to 2p.
(b) In neon (1s2s°2p°) the smallest energy jump is from 2p to 3s.
(c) From Figure 8.1 we see that the 2s—2p energy difference is smaller than the 2p—3s
difference, so the minimum absorption energy would be smaller for beryllium.



11.

Singly ionized lithium has two electrons. When one of those is excited to a higher level,
it is screened by the one electron remaining in the 1s level soZ, =3-1=2. The
expected energy when the outer electron is excited to the 2p level is

2 2
Zeff = (-13. 69V)2—=—13.6 eV

E, =(-13.6eV)

which agrees very well with the measured value of —13.4 eV. When the outer electron is
in the 3d level, its expected energy is

2 2
E =(- 136eV)Zeﬁ =(-13.6 ¢ V)—=—6.0eV

in excellent agreement with the measured value.



8. (a) [He]2s’2p*  (b) [He]2s%2p*  (c) [Ne]3s%3p° (d) [Ar]4s?3d™°



16. Solving Equation 8.4 for Z with AE = % = 1240eV-nm =6392 eV, we obtain

0.1940 nm

5 _q1, |_AE :1+\/6392 eV _ 26
10.2eV 10.2 eV

so the element is iron.

17. Ca(Z=20): AE=(10.2eV)(Z-1)? =(10.2 eV)(19)? = 3.68 keV
Zr(Z=40): AE =(10.2eV)(Z -1)° = (10.2 V)(39)% =15.5 keV
Hg (Z=80): AE =(10.2eV)(Z -1)> = (10.2 eV)(79) = 63.7 keV

The values computed from Moseley’s law are smaller than the measured values, and the
discrepancy increases as Z increases.



217.

(a) For the 3s outer electron of sodium, inserting E,; = —-5.14 eV into Equation 8.1 gives

Zoon| B _g[Blaev g,
~136eV  \-136eV

The simple screening model predicts Z . = 1, so clearly the 3s electron is slightly
penetrating the inner orbits and so is less screened by the inner electrons.

(b) For the 4f state,
Z_ —n E, _4 -0.85eV 100
-13.6eV -13.6eV

so the screening is complete, with the 11 positive charges in the nucleus screened by the
10 electrons in the n = 1 and n = 2 shells.




30.

The wavelength difference is AA = 0.59 nm. By taking differentials of E = hc/A, we can
find the corresponding energy difference:

B thb_1240eV-nm

AE = 2 - 2
A (590 nm)

(0.59 nm) = 2.1x107°% eV

This energy difference comes from the interaction of a magnetic field B with a magnetic
moment that we assume is of the order of 1 x;. The energy difference between the cases
with the magnetic moment parallel to B and antiparallel to B is (see Figure 7.25)
AE=24,B,s0

AE  21x10%eV
2u,  2(5.8x10°eV/T)

18T

This is quite a large magnetic field, of the order of the largest that can be produced in the
laboratory with superconducting electromagnets.



