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How rapidly is a passive scalar mixed within closed 
streamlines? 
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(Received 19 October 1982 and in revised form 9 March 1983) 

The homogenization of a passive ‘tracer ’ in a flow with closed mean streamlines occurs 
in two stages: first, a rapid phase dominated by shear-augmented diffusion over a 
time z @ ( L / U ) ,  where the €’Met number P =  LU/K (L,  U and K are lengthscale, 
velocity scale and diffusivity), in which initial values of the tracer are replaced by 
their (generalized) average about a streamline ; second, a slow phase requiring the full 
diffusion time x L 2 / K .  The diffusion problem for the second phase, where tracer 
isopleths are held to  streamlines by shear diffusion, involves a generalized diffusivity 
which is proportional to K ,  but exceeds i t  if the streamlines are not circular. 
Expressions are also given for flow fields that are oscillatory rather than steady. 

1. Introduction 
The process of expulsion of the gradient of a conservative scalar field 8 (which may 

be the flux function for a vector field I?) from a closed two-dimensional streamline 
pattern is well known from the work of Batchelor (1956). Although he was primarily 
concerned with the problem where 8 is the vorticity, his results apply to any 
conservative tracer advected by a steady two-dimensional flow field and subject to 
weak diffusion. Application of these ideas in other contexts has led to  diverse theories 
of magnetic field expulsion from two-dimensional convection cells (Weiss 1966 ; 
Moffatt 1978), the resolution of the critical-layer region of a nonlinear wave (Benney 
& Bergeron 1969; Redekopp 1980) and the three-dimensional circulation of a 
quasi-geostrophic ocean or atmosphere (Rhines & Young 1982a, 6 ;  Young & Rhines 
1982). Because expulsion must compete with other processes of forcing or relaxation, 
it is important to  determine how rapidly it occurs; Batchelor’s argument is concerned 
with the ultimate steady state and gives no clue. Understanding of the rapidity of 
the process may help with more complex flows, for example when the streamlines 
pass through a diffusive boundary layer. 

I n  this note we will discuss the initial-value problem 

0, + J(+, e )  = P O ,  (1.la) 

m, y, 0) = 8,(z, y) (1.16) 

using several different models for the stream function *(x, y, t ) .  Our goal is to 
understand physically how the passive scalar 8 is homogenized by the interaction of 
the velocity field 2 x V* and the diffusivity K .  We are especially interested in the 
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timescale of this process because there is some controversy on this point. Note that 
in this article we confine our attention to problems where 0 is not dynamically active. 
Thus our analysis does not directly apply to the problem considered by Batchelor 
(1956). Nonetheless, the kinematic problem considered here is an important model 
whose solution helps in understanding dynamic problems. 

Before summarizing the various results that have been previously suggested we 
will introduce the different timescales and the one non-dimensional parameter 
suggested by scale analysis. 

Let T, denote the turnover time : 

T, = L / U ,  (1.2) 

where U is the velocity scale and L is the lengthscale of the flow. Let Td denote the 
diffusive timescale : Td = L 2 / ~ .  (1.3) 

From (1.2) and (1.3) we construct the Pgclet number: 

P = LU/K ( 1 . 4 ~ )  

= T&/T,. (1.4b) 

A further timescale is the ‘ averaging time ’ T, : 
T, = T, Pi ( 1 . 5 ~ )  

= TdPi  (1.5b) 

(this nomenclature is suggested by the analysis below). Since P must be very large 
for expulsion to occur 

in the problems that concern us. 
Now, from numerical simulations, Weiss (1966) suggested that expulsion occurs 

on the timescale T,. A simple theoretical argument given by Moffatt (1978) suggested 
that the timescale is PiT,. Moffatt & Kamkar (1982) recently showed that this latter 
argument is incorrect ; instead they argued that Weiss’s estimate is appropriate. Here 
we argue that in the most general case the correct timescale for expulsion of gradients 
is in fact Td - the diffusive timescale ! Weiss’s calculations and Moffatt & Kamkar’s 
theoretical analysis involve initial conditions that are ‘ special ’ in a sense which will 
become clear after the discussion below. 

We will show that expulsion is best described as shear-augmented dispersion along 
the streamlines @ = constant. This process replaces the initial condition 8, with its 
(generalized) streamline average 8,. The time taken to  do this is T,. Detailed theory, 
given below, clarifies this rapid phase of the evolution, and shows the anomalous 
nature of flow fields involving solid-body rotation in the closed streamline region (an 
example described by Parker 1966). 

(1.6) Td D Ta D Te 

The field after the rapid averaging time is given by 

go(@) is the initial condition B o ( z ,  9, 0) averaged about streamlines (arclength ds), with 
allowance made for the non-constant separation between adjacent streamlines. The 
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contour integral in (1.7) is around a closed streamline. The field is uniform in space 
only if the initial conditions have 

as, 
: = 0. 

This would be the case for a uniform gradient of tracer, say 8, = sin q5 and circular 
streamlines @ = $(r),  ( r ,  4) being polar coordinates, but not generally. In  all the 
examples considered by Moffat & Kamkar (1982) and Weiss (1966) (1.8) was satisfied. 
In  general, however, 8, will not be constant, even if 8, has a much larger lengthscale 
than $. 

The averaged field a($, t )  now approaches the homogenized state very slowly, on 
the diffusive timescale Td. Advection is important throughout this process : it is so 
strong that it 'locks' the 8-field and the $-contours. It is this process which finally 
homogenizes e. 

2. Shear dispersion 
Our physical understanding of expulsion is based on several simple examples, all 

of which have a common theme: the interaction of velocity gradients with weak 
diffusivity produces an accelerated spatial flux of the tracer 8. This discovery was 
first made by Taylor (1953) in his investigation of shear-flow dispersion in a pipe. 
This spatial flux is accompanied by an accelerated spectral flux of tracer whose Fourier 
components move from small wavenumbers to large. We will now discuss four 
different examples which illustrate different aspects of the above process. The first 
two examples are the most important, and the reader may skip to $3  after these 
without loss of continuity. 

(i) In a steady plane shear-$ow u = ( U ,  0 ) ,  U = U,  cos my.  The tracer equation 

becomes 

Enhanced diffusion occurs along lines y = constant ((x, y )  are spatial coordinates). 
m 

The equations for the moments (x"8) = xf18dx are closed, and in particular 

(x28),-~(~28),, = 2(8),cos2my+2K(8) 4 
k m  

(see Aris 1956; Saffman 1962; Young, Rhines & Garrett 1982). 
For an initial y-independent tracer distribution the solution is 

(xv) = ( ~ 2 8 ) ~  = , + At + B( 1 - e-4m2~t) cos 2my, 
where 

This is essentially Taylor's (1953) result with a diffusivity enhancement G/Km2, 
inversely proportional to molecular diffusivity, describing the increase in tracer 
variance along streamlines. The process acts like a simple diffusivity along streamlines 
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only after the cross-stream molecular diffusion distance (Kt): exceeds the scale of the 
flow m-l. The inverse dependence of effective diffusivity on K holds only in this sense, 
and it might be termed the strongly diffusive case. Of more interest here is the limit, 
(ii), for  small K where the enhanced rate of dispersion along streamlines varies directly 
with K (Okubo 1967; Young et al. 1982). I n  order to illustrate this process it is 
illuminating to solve (2.1) using a different method. We assume that U = ay: this 
is a local expansion about a point which is adequate provided one is not near points 
where the velocity gradient vanishes: using the moment method one can show that 
the &field decays more slowly in the neighbourhood of these points. As an initial 
condition we suppose that S(z, y, 0) = coskx. 

More general initial conditions can be produced by Fourier superposition. If K = 0 
the solution of (2.1) with this initial condition is 

8 = cosk(z-ayt) .  

0 = A(t) cosk(x-ay t )  

A, -k K (  1 + o1't') k2A = 0. 

I n  order to  obtain the solution with K =k 0 one substitutes the ansatz 

into (2.1) and obtains an ordinary differential equation for A : 

(2.3) 

The complete solution is 

0 = exp [ - ~ k ~ t - & @ a ~ t ~ ]  cos k(z -ay t ) .  (2.4) 

Advection causes the y-wavenumber (at) k to increase linearly with time as stripes 
of tracer are tipped over and extended. At a time 

L 
U 

t ,  X ( K k 2 a 2 ) - $  Z -pi, 

where P = U / k K  = Pkclet number, diffusion takes hold and the subsequent destruc- 
tion of the Fourier component is sudden, like ePt3. The cross-over from - advection to 
diffusion is particularly clear if one calculates the tracer dissipation K I V ~ ~ ~  (figure 1 )  : 

__ 
KIV0l2 = &k2 (1  + a2t2) exp [ - 2Kk2t -iKa2k2t3] 

Unlike Taylor's limit, in which mixing across streamlines to confining walls (or lines 
of symmetry) is rapid, the present case does not lead to a simple 'effective ' diffusivity. 
A Gaussian stripe 

7c S, = - exp ($) 
2a 

leads to the solution 
7c 

0 = ,exp [g], 
2a 

2 = x-ay t ,  

ii2 = a2 + K t  + + ~ a ~ t ~  

So the 'diffusivity ' is time-dependent: 

d 
-ii2 = K + Ka2t2, 
dt 

the time-dependence of tracer spreading is the same as in Richardson's famous L4 
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FIQURE 1. The mean-square tracer gradient as a function of time, for various K* z K k 2 / a .  The 
ordinate is proportional to the dissipation rate for variance of 6. 

law, but for very different reasons than envisaged by him. The stripe expands in width 
(along the x-axis) like tj, faster even than with pure advection. This is of course due 
to diffusion across streamlines from a region of faster or slower flow. 

The Fourier analysis may be continued to consider an initial 'spot'  of dye. This 
is the form originally considered by Carter & Okubo (1965). They find 

where 

The spot expands diffusively at  first. Then the shear takes hold, working upon the 
diffusively growing cross-streamline width. The effects are multiplicative, yielding the 
t3 dependence of ts;. 

(iii) If the shearing velocity field is oscillatory in time, say U = ay cos wt, then just 
the same procedure as for (ii) yields 

8 = exp[ -Kk2(t- f(:)2(t- y ) ) ] c o s k ( x - a y t )  

in place of (2.4). At small time ordinary diffusion dominates, a t  intermediate time 
01-l 4 t 4 w - l  we recover (2.4), and a t  large time 8 spreads along streamlines like 
a diffusive process with enhanced diffusivity : 
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The time it takes for tracer to become uniform along streamlines is thus 

L 
U a '  

t ,  - - P(?), 
which may be much quicker than with simple diffusion if the shear a exceeds the 
frequency w .  

(iv) Suppose the strain and vorticity take the general form (subject to the lengthscales 
of tracer variance being small relative to L ,  the lengthscale of the velocity) 

au . 
u, = u, (o ,o )+x . -  

3 axj 
or @ = ax2 + bxy + cy2 .  

(subscripts denote two-dimensional vectors, $ is the stream function). Equation (2 .1)  
is linear in the tracer 8, so that analysis of a single Fourier component 

8 = eiktzt 
will suffice. 

The evolution equation (Kraichnan 1974) is 

In the non-diffusive limit K = 0 the eigenvectors k = k,+ak,  have exponential 
behaviour CK eAt, where A,, A, are the eigenvalues of au,/i3xj. The eigenvalues are real 
or imaginary, depending upon the sign of the discriminant J E b2-4ac. 

If J > 0 then locally vorticity dominates strain and the streamlines are closed. The 
h are pure imaginary and the tracer pattern rotates with a periodic distortion but 
no systematic stretching (radial lines remain radial). 

If J < 0 then strain dominates and the streamlines are open. The A are real and 
the tracer pattern is stretched, resulting in an exponential increase in the wavenumber 
(Batchelor 1959). The case of plane shear, U = a y ,  is anomalous: J = 0 and the time 
dependence is algebraic. 

In  real turbulent flows, a, b and c are functions of time, and the sign of J changes 
randomly. Nonetheless, straining events still occur sufficiently often to produce an 
exponential increase in the wavenumber (Kraichnan 1974; Salmon 1980 ; Rhines 
1983). Furthermore, in an interesting study of two-dimensional turbulence, Weiss 
(1981) has emphasized the role of the dynamical quantity corresponding to J in 
driving the enstrophy cascade. 

3. Expulsion: the rapid stage 

analogous to plane shear, case (ii) above. Using polar coordinates ( r ,  $), 
The simplest closed streamline pattern of interest is a steady circular flow 

r-'@,. = Q ( r )  (r  < I ) ,  

= 0 ( r  > l ) ,  
with an initial tracer field 

The purely advective solution for K = 0 is 

8 = cob, d). 

8, = Oo(r, 4 - m ) .  
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FIQURE 2. The dependence of the advected tracer concentration eA (at 4 = 0) on radius for the 
angular velocity field Q(r)  = exp ( - r 2 ) ,  with 6(t = 0) = rcos #. The wavelength of the concen- 
tration decreases like t-lO,.. 

The radial gradient of 0 grows as the isolines of 8 are wound up : 

8 A . r  = e o , r - t Q r e o , , .  

The process of expulsion is simply the diffusion across adjacent stripes of tracer in 
the radial direction (figure 2). The width (in r )  of the stripes decreases initially 
like t - 1 .  

The advection-diffusion equation is 

e, + Q ( r )  e, = K[r-l(re,), + r-2e,,~. 

Guided by the advective solution, we look a t  one azimuthal component 

e = A(r,  t )  exp [in&, 

A,  = K { [ A , ,  + r - 1 ~ ~  - n2r-2~1+ [2in&, A ,  + inr-'&,. A + inqT,,.~] - n2& A) .  

The final term stands in ratio 0t to all the terms in the second brackets, provided 
that 0, N O / R ,  n N 1 and L / R  - 1 ,  where L is the lengthscale of A ,  and R the scale o f  
the closed flow pattern. Similarly the final term stands in ratio (0t)2 to the first 
bracketed set of terms. If diffusion is negligible during the first revolution of the flow 
( P  = 0 R 2 / ~  $ l ) ,  this shows that 

where 6 = + - Q ( r ) t .  Substituting, 

Thus 
A,  + Kn2t20; A = O(P,  (Qt) - l ) .  

A = exp [ - $ ~ n ~ Q : t ~ ] ,  

just as in $2. Examining this solution, we find that L / R  decreases with time, but 
slowly enough that A vanishes well before L / R  4 1 .  And, for a simple large-scale 

8, = y = rsinq5, initial tracer field 
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the solution is, for 52t % 1, 
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8 = exp [-&d2;t3]rsin($-52t), 

in agreement with Moffatt & Kamkar (1982). However, in general let 

8, = I: T,(r)ein$. 
0 

The ‘spin-up’ solution is then 
m 

8 = T,(r)  + C. exp [ -$c52; n2t3] eini Tn(r), 
1 

which reaches 2n 

8 = T,  = +x O,(r, $)d$ 

quickly, by a time t - (d2:n2)-i - ( L / U )  (P)++ (n is here the lowest significant azi- 
muthal wavenumber present and 52, - OIL. Notice the failure of ‘rapid’ averaging 
if a,. = 0. This solid-body rotation is often used as a prototype. Parker (1966) indeed 
reports a rather lengthy adjustment time for such a velocity field. This rapid phase 
of expulsion might have been anticipated by equating the streamwise extent of a 
growing ‘spot’, (2.5), ( -  ( & ~ a ~ t ~ ) j ) ,  to the circumference of a streamline ( -  2xR), to 
yield: t - f i R / U .  

Subsequent to the shear-dispersion stage we are left with a field 

8 = B,,(r) 

which must relax by pure diffusion, over a much longer time z L2/K. Despite the 
presence of enhanced gradients a t  the rim of the flow, say r = 1 ,  there is no way this 
process can be accelerated by the shear. The presence of well-mixed regions in a 
large-scale pattern of tracer 8 acts to augment Ae down-gradient diffusion across the 
fluid. The added flux is produced by the purely diffusive outer solution (r > 1) in 
response to the modified boundary condition produced a t  r = 1 by the shear. 

Collecting the results of $3, we find that the initial averaging process occurs over 
a time T, given by: 

(i) T, - L / U ) P  or equivalently L 2 / ~  for pure diffusion (say with solid-body 
rotation 52, = 0) ; 

(ii) T, - L / U ) @  or equivalently ( L 2 / ~ )  P% for P 8 1 ,  steady shear (this phase 
being thus much longer than the rotation time L / U  but much shorter than the 
diffusion time L2/K)  ; 

(iii) T, - L / U )  P ( w L / U ) ~  or equivalently ( L 2 / ~ )  ( w L / U ) ~  for oscillatory shear of 
frequency o and magnitude 01 = U / L ;  these estimates will change in obvious ways 
if tJhe lengthscale of the shear differs greatly from the length of a typical closed 
streamline. It would be interesting to  look a t  the role of regions of pure strain (iv) 
in accelerating the expulsion process. 

4. Expulsion: the slow stage 
I n  $3  wc discussed the fast process by which the initial &distribution is shear- 

dispersed round streamlines in a time T,. Our discussion focused on circular 
streamlines, but we mentioned that for an arbitrary @ the fast process replaces 8, 
bY 

- $ 8(dsllV?4) 
8, = (4.1) $ (ds/lWr]) 
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in a time of order T,. I n  (4.1) the integrals are contour integrals around closed 
streamlines. 

We will now discuss this result more carefully and also derive an equation which 
describes the subsequent evolution of a($, t ) .  Before beginning we will present some 
geometric results which will be used in the course of the discussion. 

Suppose there is a set of nested, closed, simply connected streamlines in some region 
of the ( x ,  y)-plane. These curves are given by 

$ = constant, 

Now, given some scalar function F(x ,  y), one can construct a function of $ alone by 
defining 

(4.2) 

where the area integral is over the area enclosed by a particular $-contour. It is 

d I  ds straightforward to show that 

(4.3) 

(Young 1981), where the line integral above is around the strcam1ine.t Now, return 
to the advection-diffusion problem 

8, + J (  $, 8) = K v 2 8  (4.4) 
and define p o(dsllV$o 

S($, t )  = (4.5) 

where the line integrals are around the streamline $. From (4.4) and (4.5) it  is easily 
seen that 

Kf=v2o(ds/lv$l) 

$J($ ,  0) (ds/lV$I) = $VB.ds 

(4.6) 
*, = p(ds/lv$l) ’ 

= 0, 

since 

where ds is the vector line element round the streamline. 
Now during the rapid process the right-hand side of (4.6) is negligible because : 

T, = FfTd < Td. 

Physically this means that the amount of 8 between two streamlines changes very 
litt,le on the timescale T,. This is because shear dispersion enhances mixing along, 
but not across, streamlines. The upshot of the rapid-averaging process is then 

- p oo(dsllv$l) 

p (dslIVSlr0 
o+eo = (4.7) 

t Thus, for example, the circulation r = jV$.iids about a streamline and the kinetic energy 
E = $jV$*V$dxdy contained within it are related by r = 28E/a$. 
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provided that 

Our goal is now to find an evolution equation for 0 when 
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T, < t < Td. 

t z Td. 

After the averaging process is complete we expect that the second term in (4.4) 
is much larger than the other two. Thus 

0 = @@, t),  (4.9) 

because the advection is now much stronger than the perturbations due to diffusion. 
An evolution equation for 8 is found by substituting (4.9) into the exact result (4.6) 
and using (4.3). Thus 

where we have used 

( 4 . 1 0 ~ )  

(4.10b) 

(4 .10~)  

(4.10d) 

to go from (4 .10~)  to (4.10d). Since the contour of integration is a streamline, 8, can 
be taken outside the integral. Substituting (4.10d) into (4.6) gives the evolution 
equation for 8 

where 

(4.11) 

Equation (4.11) is the desired evolution equation which describes the slow 
evolution of the M e l d  after the rapid process. It is roughly a diffusion equation in 
(@,t)-space. This analogy can be strengthened by using the area enclosed by the 
@-contour as a new independent variable. Thus 

and from (4.5) 

so that (4.11) is 
(4.12) 

where 
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Equation (4.12) is precisely a diffusion equation in ( A ,  t)-space where the diffusivity 
depends on ‘position’ (i.e. A ) .  

As an example, consider a flow with steady uniform vorticity in an elliptical 
container with semi-axes a and b (Batchelor 1967, p. 539).  (There is one difficulty here : 
the rapid process discussed in $ 3  does not occur for this ‘solid-body ’ motion. Instead 
we imagine that the initial condition is contrived so that B0 and + contours coincide.) 
The stream function is 

and the area inside a +-contour is 

A ( + )  = n’(major axis) (minor axis) = ab--, + 
30 

while the circulation is 

It follows that D ( A )  = 2n[--&, a2 + b2 

so-that (4.14) is just the familiar radially symmetric diffusion equation with A playing 
the role of the radial coordinate. Of course the $-pattern is not radially symmetric : 
the 8 contours coincide with the elliptical streamlines. The ‘effective diffusivity ’ K,, 

which is responsible for the slow migration of v-contours across +-contours and the 
eventual homogenization of 0, is 

K, = [s] K (4 .13a)  

3 K  (4.13b) 

(note how K, is equal to K if the streamlines are circular). The result (4 .13)  shows that, 
as the aspect ratio of the ellipse becomes more extreme, 8 homogeneizes more rapidly. 
It is easy to  see that the theory presented above is irrelevant when 

b 
a 
- = O ( P % ) ,  

since for these extreme aspect ratios the homogenization time is comparable to T,. 
As a general result we may show that 

D(A)  2 DO(A) ,  

where Do is the effective diffusivity of a circular pattern of streamlines with the same 
enclosed area as the actual pattern. This follows from 

( I F 2  ds) ( SO2 ds) 3 ( jFGds)2, 
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5. Conclusions 
We have given several variants of shear-augmented tracer dispersion, in order to 

emphasize the diversity of results that  govern expulsion of gradients in realistic 
velocity fields. Application to unsteady wave- and turbulence fields, in which closed 
streamlines appear and disappear, is particularly interesting. Kraichnan (1974) and 
Salmon (1980) have produced some useful results for stochastic velocity fields. It is 
intriguing to wonder whether, say, two-dimensional turbulence has enough persistence 
in its flow pattern for some signs of homogenization to develop. Because a tracer 
homogenizes on the diffusive timescale, even slow changes in the stream function may 
be important. 

In geophysical fluids there are persistent lone eddies and gyres within which 
homogeneization of tracers (and even dynamically active quantities such as potential 
vorticity) is likely to occur. 

This work was supported by the National Science Foundation-Grant OCE80-23763 
and ONR Grant N00014-79-C-0472. This is contribution number 5287 of the Woods 
Hole Oceanographic Institution. We thank Professor Moffatt for sending his recent 
work to us before publication. 
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