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It is shown that two-dimensional MHD turbulence is in certain respects closer to three- 
dimensional than to two-dimensional hydrodynamic turbulence. A second-order 
closure indicates that: 

(i) a t  zero viscosity and magnetic diffusivity, a singularity appears a t  a finite time; 
(ii) there is an energy cascade to small scales and an inverse cascade of squared 

magnetic potential, in agreement with a conjecture of Fyfe & Montgomery (1976); 
(iii) small-scale magnetic energy acts like a negative eddy viscosity on large-scale 

magnetic fields; 
(iv) upon injection of magnetic energy, a stationary state is obtained which has 

zero magnetic energy for a positive magnetic diffusivity A (anti-dynamo theorem); 
however, this stationary state is preceded by a very long non-zero magnetic energy 
plateau which probably extends to infinite times as A --f 0. 

It is suggested that direct numerical simulation of the two-dimensional MHD 
equations with high resolution (a 5122 or 10242 grid) could lead to a better understand- 
ing of the small-scale structure of fully developed turbulence, especially questions of 
intermittency and geometry. 

1. Introduction 
The study of two-dimensional turbulence at large Reynolds number appears to be 

relevant to atmospheric dynamics, a t  least for the large scales, and as such is im- 
portant to meteorology (Desbois 1975). It is possible that certain large-scale features 
of solar dynamics can be modelled by the two-dimensional magnetohydrodynamic 
(MHD) equations (Weiss 1966; Krause & Rudiger 1975). It is also generally believed 
that, in the presence of a strong external magnetic field, the motions become two- 
dimensional (Kolesnikov & Tsinober 1972) but it has been shown by Alemany et al. 
(1978) that this case is actually very different from two-dimensional turbulence (see 
also Moffatt 1967). 

It was hoped for a time that two-dimensional non-magnetic turbulence could be 
taken as a model of three-dimensional turbulence, but it was soon realized that they 
differ in several ways (Lee 1952; Kraichnan 1966; Batchelor 1969; Krause & Rudiger 
1974). Indeed, the presence of an extra invariant in two dimensions, the vertical 
vorticity w, modifies drastically the dynamics of the turbulence. In three dimensions, 
it  takes a finite time of the order of the large-scale eddy turnover time for large-scale 
excitation to be transferred to the smallest scales available to the system; velocity 
gradients presumably become infinite and a finite dissipation of energy occurs in the 
limit of zero viscosity (Brissaud et al. 1973; Frisch, Sulem & Nelkin 1978). However, 
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in two-dimensional turbulence this time becomes infinite with decreasing scale, SO 

that no singularity appears (in a finite time) in a two-dimensional flow (Pouquet et 
u E .  1975). Moreover, intermittency in the small scales of three-dimensional turbulence 
modifies the energy spectrum (Kolmogorov 1962; Frisch et al. 1978), whereas in two 
dimensions it probably does not modify the enstrophy spectrum (Kxaichnan 1975). 

The situation is quite different in two-dimensional MHD turbulence: the Lorentz 
force relaxes the vorticity constraint, so that one does not know a priori if two- 
dimensional MHD turbulence will be closer to two-dimensional or to three-dimensional 
non-magnetic turbulence. 

For an incompressible fluid, the two-dimensional MHD equations may be written 
in terms of the vertical vorticity w and the magnetic potential a: 

DwlDt = ( a p t  + v .  V )  w = b . V j  + vV2w, 

DalDt = (a /a t  + v . V) a = AV2a, 

(1 .1 )  

(1.2) 

b = curl (ae3), V . v = 0, V . b = 0. 

Here v is the velocity (we3 = curlv), the magnetic induction field b is normalized 
by (p,u,)i (where p is the density and p,, the permeability), and j = curl b is the current. 
It follows from (1.2) that the magnetic potential is carried along like a passive scalar, 
a t  least as long as the reaction of the Lorentz force on the velocity field can be neglected. 
When v = h = 0 (v being the kinematic viscosity and h the magnetic diffusivity), (1 .1 )  
and (1.2) possess three quadratic invariants: the total energy 

J(v2 + b2) d2r, 

the variance of the magnetic potential 

and the cross-helicity fi. baa=. 

It is likely that a seed magnetic field will grow in time through line stretching by 
velocity gradients as in three dimensions. But what happens if the magnetic energy 
is of the same order as the kinetic energy? The Lorentz force may react on the velocity 
field in such a way as to prevent further growth of the magnetic field. This might 
make two-dimensional MHD turbulence resemble two-dimensional non-magnetic 
turbulence. Another possibility is that the Lorentz force (possibly in combination 
with the pressure force) would enhance the velocity gradients, leading to further 
growth of the magnetic field. Because of the nonlinearity of the equations, the latter 
case would produce catastrophic growth of both magnetic fields and velocity gradients 
(and possibly of velocities themselves); a t  zero viscosity and zero magnetic diffusivity, 
a singularity would occur in a finite time. We could then have a problem more akin 
to three-dimensional turbulence. It is the purpose of this paper to show that this is 
the most likely situation, 

Various tools are available to tackle this question. First, there are mathematical 
proofs that two-dimensional non-magnetic ideal (inviscid) flows have no singularities 
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at any finite time (Wolibner 1933; Frisch & Bardos 1975; see also Rose & Sulem 1978 
for a review). This result, which relies heavily on vorticity conservation, does not 
seem to be generalizable to two-dimensional MHD flows: a t  present the best result 
concerns regularity for a finite time (Sulem 1977). One can also obtain an upper limit 
for the exponent of the inertial range of two-dimensional MHD turbulence by following 
a technique of Sulem & Frisch (1975) but this does not shed any light on the question 
of singularities (see appendix). 

Second, a numerical study can be attempted (Tappert & Hardin 1971; Fyfe, 
Montgomery & Joyce 1977; Orszag & Tang 1978; Q 5 below). In  order to get a better 
hold on the physics of two-dimensional MHD, in this paper we shall resort to soluble 
stochastic models (or second-order closure) of the statistical problem, assuming 
homogeneity and isotropy. Although such techniques have their shortcomings (see 
Q5), they have provided very valuable information on both two- and three-dimensional 
turbulence: singularities, inertial ranges and direct or inverse cascades (see Rose & 
Sulem 1978 for a review). 

The outline of the paper is as follows: $ 2 is concerned with singularities; $ 3  deals 
with inertial ranges, particularly the inverse cascade of magnetic potential conjectured 
by Fyfe & Montgomery (1976), this cascade being reinterpreted in terms of a negative 
eddy viscosity; $ 4  discusses the ultimate fate of the magnetic energy when the 
momentum equation is subject to random forcing; fi 5 summarizes the main results 
and discusses several perspectives, in particular intermittency and direct numerical 
simulations. 

2. Singularities in two-dimensional MHD using second-order closure 
It is a straightforward matter to write down a quasi-normal approximation to the 

two-dimensional MHD equa,tions which, for Gaussian initial conditions, is exact to 
order t2 .  However, it is known that this can be extended further in time by suitable 
transformation. In  particular, Markovianization ensures realizability. In this paper, 
we use the eddy-damped quasi-normal Markovian (EDQNM) approximation (Orszag 
1976) and a simplified version of the Markovian random coupling (MRC) model 
(Frisch, Lesieur & Brissaud 1974). The same method has been applied in Pouquet, 
Frisch & LBorat (1976) to three-dimensional MHD turbulence, and we refer the 
reader to this paper for details. The EDQNM approximation allows one to close 
the equations a t  the level of second-order moments. If we denote by EE and Eif  the 
kinetic and magnetic energy spectra, we have in the absence of v, b correlation (i.e. 
zero cross-helicity; see Pouquet et al. 1976, p. 323, for a discussion of this point) 

aE; - + 2vk2E,V = JAk dg O,., {k2p-lq-lb2(k, p ,  q )  [kE,V EL -PEL EK] 
at 

b,(k,p,q)  = 2k-4sina(k2-q2)(p2-q2) ,  d2(k ,p ,q)  = 2pk4sina, (2 .3 )  

1-2 
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p k p q  = P k  + P p  + p q ,  (2.4) 
Okpq = [l - exp ( - t P k p q ) ] / p k p q  (EDQNM approximation) or SkP, = Oo 

(MRC model), 

where Ak is a region of the p ,  q plane such that k ,  p and q can form a triangle in which 
01 is the angle opposite to the side k ,  while F r  and F f  are the kinetic and magnetic 
energy injection spectra. These equations have been derived independently by D. 
Montgomery (1  976, private communication). The eddy-damping rate Pk is determined, 
in the EDQNM framework, on phenomenological grounds (see $ 2  of Pouquet et al. 
1976). It can be verified that the nonlinear terms of (2.1) and (2.2) conserve the total 
energy 

ET = lom (EL + E f )  dk (2.5) 

and the variance of the magnetic potential 

Ea = lom k-2Efdk.  

The study of singularities arising from (2.1) and (2.2) for v = h = 0 and FL = FF = 0 
is somewhat simplified if one uses the MRC model, in which 8 = Oo. In  the non-magnetic 
case, it  is then possible to prove that the kinetic enstrophy 

Qv = lom k2Erdk 

blows up a t  a finite time whereas in two dimensions it remains constant and the 
kinetic 'palinstrophy ' 

Pv  = /om k4E[dk 

grows a t  most exponentially. In the two-dimensional MHD case we obtain from (2.1) 
and (2.2) after some algebra 

It is impossible to conclude from this pair of equations for four unknowns that the 
enstrophies will blow up. However, one can make some interesting observations. 
Notice that the kinetic enstrophy may grow only if PM > PV, so that there is an 
excess of magnetic excitation in the small scales. Next we can eliminate the palin- 
strophies by adding (2.7) and (2.8): 

d ( P +  QM)/dt 2 OonQM(3QV- OM). (2.9) 

In two-dimensional MHD, as in three-dimensional MHD, there is an Alfvbn effect 
which tends to bring small-scale kinetic and magnetic excitation into equipartition 
and which is particularly important for small scales where the Alfvbn time becomes 
less than the turnover time (Pouquet et al. 1976, $ 3). It is therefore plausible to assume 
that the kinetic and magnetic enstrophies are of the same order of magnitude: 

o M  = ov, (2.10) 
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FIGURE 1. Variation of the total energy ET = EV + E M  (solid line) and total kinetic and magnetic 
enstrophiea (dashed lines) in two-dimensional MHD turbulence under the EDQNM closure. Initial 
energy and integral scale of order unity. Kinetic and magnetic Reynolds numbers based on 
integral scale R = 3 x 10'. Notice the onset of energy dissipation after a time t, of the order of a 
few large-eddy turnover times. 

where is a numerical constant, It then follows that both enstrophies will blow up 
in a finite time (depending on 8, and on @J. In  the absence of a rigorous analytic 
argument, we resorted to a numerical integration of the EDQNM equations (2.1) and 
(2.2). The numerical technique is described in Pouquet et al. (1976) and in L6orat 
(1975). The quadratic invariants (total energy and variance of the magnetic potential) 
are conserved by the numerical scheme to within round-off errors. Throughout 
this paper, the magnetic Prandtl number Pr,, = v /h  is set equal to unity. The initial 
energy spectrum is given by 

(2.11) 

with kmin = 2-2 and k,,, = 214 respectively the minimum and maximum wave- 
numbers. The Reynolds number is R = 3 x 10'. The spectral equations are integrated 
in time in the absence of forcing (P[ = FF = 0). Figure 1 shows the time evolution 
of the kinetic and magnetic enstrophies (dashed lines) and of the total energy (solid 
line). Both enstrophies increase sharply around t = t , ,  the time at which the energy 
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FIUWRE 2. Xon-magnetic turbulence in (a )  three and (b)  two dimensions. The total energy E ,  
enstropliy R and palinstrophy P are shown. These figures have been extracted from Pouquet et 
nl. (1975) for coinparison with figure 1. 

dissipat,ion, previously O(R-l) ,  becomes O(1).  The ‘catastrophe’ time t, is of the same 
order as the large-eddy turnover time. For the MRC model (8 = 8,) similar results 
are obt,ained. Observe that CP < 3,QF’ in agreement with the condition (2.9) for 
enst,rophy growth. Comparing figure 1 with similar figures for two- and three-dimen- 
sional non-magnetic turbulence (see figure 2, taken from Pouquet et at. 1975), one 
may say t ,hat  two-dimensional MHD turbulence behaves like three-dimensional 
non-magnetic turbulence. Numerical results based on both the EDQNM and the MRC 
closure therefore indicate that there are singularities a t  a finite time in two-dimensional 
MHD. 
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3. Inverse cascade of magnetic potential 
Since the magnetic potential is carried along like a passive scalar [equation (1.2)], 

its moments are conserved in the absence of magnetic diffusivity. Fyfe & Montgomery 
(1976), in a study of the absolute equilibrium ensemble of two-dimensional MHD, 
have been led to conjecture that for the variance of the magnetic potential there 
exists an inverse cascade similar to the inverse cascade of energy in two-dimensional 
non-magnetic turbulence. We now present a simple argument to support the existence 
of such an inverse cascade. We shall show that small-scale magnetic energy acts like 
a negative viscosity on large-scale magnetic fields. The analysis parallels Kraichnan's 
(1976) study of eddy viscosities in two and three dimensions and was in fact suggested 
by R. H. Kraichnan. The eddy viscosities can be obtained by sorting out various 
non-local effects on the EDQNM equations (2.1) and (2.2). For details see Pouquet et 
al. (1976, $3)  and Kraichnan (1976). The rates of change of EE and EF due to 
interactions with wavenumbers p and/or q > k,  $ k may be expressed as 

aE&/at = - ( vVV + vvm) PEE, 
aE;2"/at = - ( vM" + vM") k 2 E f ,  

(3.1) 
(3.2) 

The following interesting points emerge. 
(i) The presence of two eddy diffusivities vMv and vMm acting on the magnetic field 

may appear surprising at  first sight since in the induction equation there is only one 
term: v x b. In  fact, we must distinguish the eddy viscosity due directly to small-scale 
kinetic turbulence from that due to the kinetic turbulence generated, through the 
Lorentz force, by the small-scale magnetic turbulence. 

(ii) The negative eddy viscosity v v v  is just the non-magnetic one (Kraichnan 1976; 
cf. also Krause & Riidiger 1974). It will be negative if E$ decreases faster than p-l 
at large p ,  but does not depend on the molecular viscosity (at high Reynolds number). 
The total kinetic eddy viscosity vVV+ v V m  becomes positive as soon as the small-scale 
magnetic energy spectrum exceeds the kinetic spectrum by a factor $,, (=* for a 
- Q range). The total kinetic eddy viscosity will therefore usually be positive, allowing 
kinetic energy to drain to the small scales. 

(iii) The viscosity v M v  (the effect of small-scale kinetic energy on large-scale magnetic 
fields) is positive. Krause & Riidiger (1975) have also found such a positive eddy 
viscosity, The viscosity v M m  is negative and the total magnetic viscosity vMv + vMm is 
negative as soon as the small-scale magnetic energy exceeds the small-scale kinetic 
energy. So the small-scale turbulence can destabilize large-scale magnetic fields in 
much the same way as small-scale helicity does in three-dimensional MHD (Pouquet 
et al. 1976). A negative magnetic viscosity can be obtained directly from the primitive 
equations by a simple phenomenological argument (Frisch 1976, private communica- 
tion; see also Pouquet et al. 1976, $ 3 ) .  Let there be given initially a random homo- 
geneous small-scale magnetic field (with current j and potential a), a deterministic 
large-scale magnetic field (with potential A )  and no kinetic turbulence at all. Then 

avlat w jVA hence v w OjVA, (3.4) 
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where 8 is a coherence time of the small-scale velocity field. If one introduces the flux 
of magnetic potential +a = va, where 

aalat = - ( v . V ) a  = -div(va) = - d i ~ + ~ ,  (3.5) 

the main result is that  +u is in the same direction (not the opposite direction) as the 
gradient VA. Indeed, if (.),, denotes averaging over small scales, one obtains the 
following for the time evolution of the large-scale magnetic potential from the 
expression for v found above: 

{+a)m = eVA(ja), = eVA(b2),,. 

Hence the ‘negative’ diffusion equation is 

aAlat = - div (+a)ss M - 8(b2), V2A.  (3.6) 

The effect of small-scale magnetic excitation on the large-scale magnetic potential A 
is thus to  reinforce the gradient of A ,  thereby destabilizing the large scales of A 
(negative diffusion coefficient). 

Remark. For simplicity, the pressure has not been included in (3.4); when this is 
done, an additional factor of 4 appears in (3.6) but the proof becomes somewhat 
more technical. It is not worth giving a more detailed derivation since this would 
essentially duplicate the closure calculation. 

Using the EDQNM closure, it is checked by numerical integration of (2.1) and (2.2) 
that  there is indeed an inverse cascade. Kinetic and magnetic energy are injected 
into a narrow band around k = I a t  a constant rate. If no magnetic energy were 
injected, the inverse cascade could not take place since (a2) is then not increasing. 
Initial spectra of kinetic and magnetic energy are given by (2.11). In  this calculation, 
the Reynolds number is R = 4500 and the minimum (maximum) wavenumber is taken 
to be kmln = (kmax = 27). As time elapses, the total energy saturates (with a slight 
excess of magnetic energy) whereas the variance of the magnetic potential 

increases linearly. Figure 3 shows the spectrum Eg at three different times. The power 
law is in good agreement with the prediction from a Kolmogorov-type dimensional 
analysis, namely a -f  exponent. The inverse cascade is quasi-stationary, a wave- 
number km,n(t) being reached in a time proportiona,l to (t37)-a, where 7 is the injection 
rate of magnetic potential. Together with this inverse cascade, there is a direct ca’scade 
of energy (kinetic plus magnetic) towards the small scales with a - Q spectrum, just 
as in three-dimensional MHD. Figure 4 shows the energy flux 

and the flux of squared magnetic potential 

Y ( k )  = - p-2E,Mdp (3.8) 
!ok 

for a run in which R = lo5 (kmin = 2-5 and k,,, = 211). II(k)  is positive and constant 
over roughly two decades, indicating the existence of energy transfer to the small 
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FIQURE 3. Direct energy cascade (kinetic plus magnetic) and inverse cascade of magnetic potential 
for three different times. Kinetic and magnetic energy are injected into a narrow band around 
k = 1. Reynolds numbers R = 4500. 

scales. Y ( k )  is null in this wavenumber range but is negative (and constant over one 
decade) at small wavenumbers, indicating the existence of an inverse cascade of 
magnetic potential. The existence of simultaneous transfer of energy to the small 
scales and squared magnetic potential to the large scales is supported by a numerical 
simulation of the two-dimensional MHD equations for homogeneous isotropic tur- 
bulence on a grid of 322 points (Fyfe et al. 1976)) but such a calculation cannot, of 
course, give anything like an inertial range. 

4. The two-dimensional anti-dynamo theorem 
At high Reynolds number, the interactions between the velocity field and the 

magnetic field dominate the viscous and Joule dissipative terms. The stretching of 
magnetic field lines by velocity gradients allows a seed magnetic field to grow in 
time. However, the maintenance of a large-scale magnetic field (through nonlinear 
interaction with the velocity field) against dissipation is not always possible. I n  
three-dimensional MHD turbulence, it  is the small-scale helicity (the correlation 
between the velocity and the vorticity, i.e. the kinetic helicity, or the correlation 
between the magnetic field and the vector potential, i.e. the magnetic helicity) which 
gives rise to the a-effect (Steonbeck, Krause & Radler 1966; Pouquet et al. 1976): 
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FIGURE 4. Energy flux n ( k , t )  and flux of squared magnetic 
potential Y ( k ,  t ) .  Same conditions aa in figure 2. 

when kinetic energy and kinetic helicity are injected, there is an inverse cascade of 
magnetic helicity leading to the appearance of magnetic excitation in ever-increasing 
scales (limited by the size of the system). In  two-dimensional MHD, the kinetic and 
magnetic helicities are equal to zero and one may ask what is the ultimate fate of a 
seed field. It is known that, in the presence of Joule dissipation, it will eventually die 
out (Lortz 1968; Vainshtein & Zeldovich 1972). However, one must realize that it 
may take a very long time (compared with a typical eddy turnover time) to decay. 
Indeed, because of the conservation of the magnetic potential by the nonlinear terms, 
we have, starting from (1.2) and using homogeneity, 

4&(a2)/dt = h(aV2u) = - A((cur1 ueJ2) = - h(b2). (4.1) 

Integrating from 0 to T, we have 

Therefore, if lim (V(t))  exists, it is necessarily zero for any positive magnetic diffusivity. 

Notice that this result holds whether or not kinetic energy is injected (since it makes 
use of only the equation for the magnetic field) but that it does not tell us anything 
about the rate of decay of magnetic energy. An identical argument can be applied to the 
EDQNM closure, which has the same conservation laws as the primitive equations. 

t + m  
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FIGURE 5. Growth of a seed field: ratios of magnetic and kinetic energies (+,,), enstrophies (+1) 
and palinstrophies ($.,). Initially all vs are equal to 104.  Reynolds number R = 8 x 106. Notice 
that +l and @2 saturate at values of order one. Eventually the magnetic energy should decay 
(see figure 6). 

A numerical calculation on the EDQNM closure indicates the following. A seed 
magnetic energy is first amplified by the velocity field as also observed by Weiss 
(1966) and Moss (1970). This can be seen in figure 6, which shows the time evolution 
of the ratios of the magnetic and kinetic energies ($o), enstrophies ($J and palin- 
strophies ($z), defined by low k2iEM(k, t )  dk 

/om k2iEV(k, t )  dk 
@Fi(t) = , i = 0,1,2.  (4.3) 

The initial kinetic energy spectrum is given by (2.11) and kinetic energy only is 
injected into a narrow band around k = 1 at a constant rate. The minimum and 
maximum wavenumbers are respectively 2-3 and 213. Initially, $i(t = 0) = 10- for 
i = 0, 1 and 2 and the Reynolds number is R = 8 x los. The magnetic energy grows 
rapidly (in a few large-eddy turnover times) by three orders of magnitude, $o saturating 
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a t  around 
and $2 saturate a t  values slightly greater than unity. Figure 6 shows that the length 
of the plateau of magnetic energy increases (linearly?) with the Reynolds number. 
Only after this plateau does the magnetic energy decay and the total kinetic energy 
starts to grow, probably because the problem eventually becomes non-magnetic and 
an inverse energy cascade becomes possible. All this suggests that the two-dimensional 
anti-dynamo result is not uniform in A, and we conjecture that in the limit of zero 
magnetic diffusivity a stationary state is obtained with non-vanishing magnetic 
energy. 

But there is an excess of magnetic excitation in the small scales: 

5. Summary and comparison with direct numerical simulations 
It has been shown that two-dimensional MHD turbulence differs basically from 

two-dimensional non-magnetic turbulence. Because of the relaxation of the vorticity 
constraint, the appearance of singularities at a finite time, as in three-dimensional 
turbulence, cannot be ruled out (at zero viscosity and zero magnetic diffusivity). 
Using a second-order closure which has all the required conservation laws and which is 
integrated numerically at very high kinetic and magnetic Reynolds numbers (3 x lo’), 
a very sharp increase in the kinetic and magnetic enstrophies is indeed obtained at  a 
finite time of the order of a few large-eddy turnover times; this is accompanied by a 
sudden onset of dissipation of energy (figure 1).  Upon injection of kinetic and magnetic 
energy, a quasi-stationary state is obtained with a direct cascade of energy to small 
scales (as in three-dimensional turbulence) together with an inverse cascade of the 
variance of the magnetic potential (figure 3); the latter result supports a conjecture 
of Fyfe &Montgomery (1 976). The inverse cascade can be linked to a negative magnetic 
diffusivity whereby the small-scale magnetic energy destabilizes the large-scale 
magnetic excitation. If only kinetic energy is injected, magnetic energy can be 
sustained against Joule dissipation for a time which increases with the magnetic 
Reynolds number (figure 6). 

After a preliminary version of this paper had been written, Orszag & Tang (1978) 
carried out a direct numerical simulation of two-dimensional MHD using 2562 modes. 
They found a rather sharp increase in the enstrophy a t  high Reynolds numbers, 
consistent with a singularity a t  a finite time when v = h = 0. However, contrary to 
what is found with the present closure, the enstrophy dissipation rate did not seem 
to reach a finite non-zero value as v, h -+ 0. Orszag & Tang therefore conclude that 
two-dimensional MHD turbulence is in a sense intermediate between two- and three- 
dimensional non-magnetic turbulence. In  two-dimensional MHD, the enstrophy 
conservation law of non-magnetic turbulence is ‘broken’. It may be however that 
it is only ‘weakly broken’: enough to allow singularities but not enough to allow an 
energy cascade to small scales (Fournier & Frisch 1978). If that is the case, an inverse 
energy cascade similar to the non-magnetic cascade should be possible. This could 
be tested numerically by feeding energy at  intermediate wavenumbers through 
prescribed random forces. 

If there are indeed singularities in two-dimensional MHD then it will be of interest 
to make numerical calculations for problems not accessible by traditional closures. 
An example is intermittency: in the light of several recent papers (Kraichnan 1974; 
Mandelbrot 1975; Nelkin 1975; Frisch etal. 1978), it  appears that closure techniques 
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FIGURE 6. Maintenance of magnetic energy against Joule diasipation with only kinetic forcing 
near' k = 1. The time evolution of magnetic energy is shown for R = 4600 and R = 3 x lo'. Notice 
that the magnetic energy plateau persists for times very long compared with the large-eddy 
turnover time and increases in length with increasing Reynolds number. 

are probably very badly adapted to the small scales in which important deviations 
from the Kolmogorov 1941 theory are observed (Gibson, Stegen & McConnelll970; 
Van Atta & Park 1972). Small-scale motions seem to fill a smaller and smaller fraction 
of the turbulent volume (Kuo & Corrsin 1971). There is also some observational 
evidence from the solar photosphere that MHD intermittency is much stronger than 
ordinary intermittency (Stenflo 1977; Stenflo & Lindegren 1977). The phenomenon 
of (internal) intermittency is a t  present one of the major problems in the statistical 
theory of turbulence. For non-magnetic three-dimensional turbulence, a numerical 
study of intermittency is well beyond reach a t  the moment because of the limitation 
on the Reynolds number (the largest simulation so far uses a grid with 12g3 
points). 

In non-magnetic two-dimensional turbulence, some intermittency in the small scales 
has been observed (Herring et al. 1974). According to Kraichnan (1975) however, this 
intermittency should be very different from three-dimensional intermittency and 
probably more akin to the intermittency of a passive scalar advected by prescribed 
large-scale velocity gradients. 

For two-dimensional MHD turbulence, the numerical results of Orszag & Tang 
(1 978) show considerable intermittency with strong localized vorticities and magnetic 
fields. We believe, therefore, that this problem offers a very good testing ground for 
theories of fully developed turbulence. It would be useful to extend the existing 
calculation to 5122 and possibly 10242 modes to look for some sort of self-similar 
structure as suggested by phenomenological theories (Mandelbrot 1975; Frisch et al. 
1978). 
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Appendix 
Bounds on the inertial-range exponent of two- and three-dimensional MHD 

turbulence in the absence of boundaries are obtained, closely following a method of 
Sulem & Frisch (1975). In  the case of finite energy turbulence, integrals can be taken 
instead of expectation values, so that the results are not of a statistical nature. The 
method consists essentially of the following. The space to which the solution belongs 
(for example the space of functions of finite total energy) is decomposed into ortho- 
gonal subspaces denoted by Y,. More precisely, the unknown fields are written as a, 
sum of functions whose Fourier transforms have their support in spherical shells S, 
of exponentially increasing radii. The MHD equations are written in a form which is 
suitable in three as well as in two dimensions, namely 

&/at + (v .  0) v = - V p  + (b . V) b + v V ~ V ,  

ab/at + ( v .  V) b = (b . V) v+AVzb, 

(A 1 )  

(A 2) 

V . V  = 0, V.b = 0. (A 3) 

The negative rate of change of the total (kinetic and magnetic) energy in the fist 
L shells S, (n = 1, . . ., L)  is made up of two parts: (i) a viscous and Joule dissipation 
part which for finite L converges to zero as Y --f 0 and A --f 0 and (ii) a nonlinear con- 
tribution which is the energy flux through the wavenumber k,, i.e. 

(A 6 )  

(A 61, (A 7) 

(A 81, (A 9) 

v w  vbb bvb bbv where qmn = Ctmn - qmn + clmn - Ctmn, 

c ~ E  = ( ~ 2 ,  (v,fi. V) vn), c!% = (vz, (bna- V) bn), 

CK = (b,, (vm. V) bn, 4% = (b,, (bm. V) vn), 

(,) denotes a scalar product (in L2(Ra))  and u, is the orthogonal projection of the field 
u on the functional space 4 (see Sulem & Frisch for a precise definition). If only 

by bZmn). It is easily verified that clmn is skew symmetric (elm, = -cnml). Furthermore 
we have in d dimensions 

p v v  Imn is non-zero, one recovers the non-magnetic case (in Sulem & Frisch, cg; is denoted 

where a, fl  and y are either v or b in order that the coefficients previously defined in 
(A 6)-(A 9) are recovered and where EP (EP)  is the kinetic (magnetic) energy contained 
in shell S,. If we now assume power-law bounds 

ET < Ckcb, EP s Ckc8, (A 11) 

we find as in Sulem & Frisch (1975) that 

lim l l (k , )  = 0 
L+W 
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+ in three dimensions, 
$ in two dimensi0ns.t 

provided that 

In other words, the energy spectra defined by (0 and 6, Fourier transforms of v and b)  

E q k )  = ka-llO(k, t ) y ,  EM(k) = F-1JS(k, t ) l 2  

cannot be steeper than kf in three dimensions and k-4 in two dimensions if the energy 
flux is to have a finite, non-zero limit. 
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