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2.1 Introduction 

Magnetic fields are essentially ubiquitous, being detected over a tremen
dous range of scales in planets, stars, accretion discs and in the interstellar 
medium. The dynamic behaviour of such fields is then responsible for a 
vast range of astrophysical phenomena (see, for example, Parker 1979). 
For instance, the solar magnetic field gives rise to sunspots, solar flares 
and coronal mass ejections; it also plays a major role in shaping the solar 
wind which, on interacting with the Earth's magnetic field, causes auro
rae. Starspots, analogous to sunspots but covering a much greater surface 
area, have been detected on a number of cool stars. The pulsed emission 
of pulsars is a consequence of an extremely strong magnetic field. On the 
largest scales, the interstellar magnetic field plays a role in star formation, 
mediating angular momentum transport as the star collapses. The ulti
mate question in the 'study of astrophysical magnetic fields must then be 
that of the origin of the magnetic field in cosmical objects. In particu
lar, one might ask whether the observed magnetic fields are simply 'fossil 
fields', or whether, alternatively, they are being continually regenerated -
i.~. whether some sort of dynamo process is taking place. 

For collision-dominated plasmas with short mean free paths, such as 
those found in stellar interiors, the evolution of magnetic fields is very well 
described by the equations of single-fluid magnetohydrodynamics (MHD). 
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( Although, for example, in studies of stellar atmospheres - such as the 
solar corona - the use of MHD is not based on such solid foundations.) In 
this review we shall be concerned only with physical systems for which the 
MHD description is appropriate. 

The key equation of MHD is the magnetic induction equation, derived 
from the pre-Maxwell equations (in which the displacement current is ne
glected) and the simplest form of Ohm's law in a moving conductor, namely 

J = o-(E + u X B), (2.1) 

where J is the electric current, E the electric field, U the velocity field, 
B the magnetic field, and o- the electrical conductivity. The induction 
equation takes the form: 

BB 8t = V X (U X B) +77V 2B, (2.2) 

where 77 (= 1/ µ 0o-, where µ0 is the magnetic permeability) is the magnetic 
diffusivity (assumed constant in this derivation). The first term on the 
right hand side of Eq. (2.2) describes the advection of the magnetic field by 
the velocity, the second term describes collisional dissipation of the field. 
An order of magnitude estimate of the relative size of these two terms is 
given by the magnetic Reynolds number Rm= U L/17, where U and Lare 
a typical velocity and length. Significantly, in most astrophysical contexts 
Rm is huge. 

Clearly, in the absence of any fluid motions the induction equation sim
ply reduces to a vector diffusion equation, with a timescale for decay of the 
magnetic field (the Ohmic timescale) given by Try rv £ 2 /77. For the Earth, 
taking L as the radius of the metallic core and 77 as the appropriate molec
ular value, the Ohmic decay time Try is of the order of 104 years, several 
orders of magnitude shorter than the timescale over which the Earth's mag
netic field has,existed, namely 0(10 9

) years (see, for example, Backus et al. 
1996). Thus it follows immediately that the advective term in Eq. (2.2) is 
of paramount importance - any fossil field would by now have decayed to 
a negligible strength. In other words,, the fluid motions are critical to main
tenance of the magnetic field. This is what is meant by a (hydromagnetic) 
dynamo. 

For the case of the Sun, whose magnetic field can be studied in far 
greater detail than that of the Earth, the Ohmic time is very long (roughly 
speaking, L is large and 77 small), and is comparable with the lifetime of 
the Sun. Solely on these grounds it is not therefore possible to assert that 
the Sun's field cannot be primordial in origin. However, conversely, it is the 
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fact that the observed solar field varies on a short timescale, with reversals 
roughly every eleven years, that strongly suggests that the magnetic field 
is a product of dynamo action. The alternative - an observed rapidly 
reversing field fed somehow by a (hidden) slowly decaying and non-reversing 
field ( a hydromagnetic oscillator) - is much harder to envisage. Magnetic 
fields with short-term variability have also been observed on a .number of 
other solar-type stars, and it is natural to assume that they are also the 
result of some kind of dynamo action ( see, for example, the review by 
Rosner 2000). 

Within accretion discs, although there is no compelling observational 
evidence of dynamo action, numerical simulations of the nonlinear devel
opment of the magneto-rotational instability, which is believed to play a 
crucial role in angular momentum transport, suggest a novel 'bootstrap
ping' dynamo mechanism in which the instability of a weak field leads to 
turbulent motions, which can then act to amplify the magnetic field (see 
the review by Balbus & Hawley 1998). On the largest, galactic, scale the 
question of whether the magnetic field is a product of dynamo action is 
rather more open (see Zweibel 2005). The Ohmic decay time of the field 
is about ten orders of magnitude larger than the age of the Universe, so 
on these grounds the field could obviously be primordial. Although there 
are possible difficulties in reconciling a wound-up primordial field with the 
observed spatial scale between galactic field reversals, there is currently no 
overwhelming observational evidence to decide the issue either way. 

A complete mathematical description of MHD dynamo action requires 
the solution of the induction equation (2.2) and also of the momentum 
equation, which accounts for the back-reaction of the magnetic field on 
the fluid flow through the Lorentz force J x B. For compressible ·fluids 
an energy equation and an equation of state must also be solved. Thus 
the full problem requires the solution of a set of coupled nonlinear par
' tial differential equations, which represents a formidable mathematical and 
computational challenge. A simpler, but still non-trivial problem, is to con
sider the evolution of the magnetic field under a prescribed velocity field, 
which requires solution only of Eq. (2.'2J. Investigating the growth of the 
magnetic field governed by this linear equation is known as the kinematic 
dynamo problem; a flow for which the magnetic field grows exponentially 
(governed splely by Eq. (2.2)) is said to act as a kinematic dynamo. 

Determination of kinematic dynamo action, even though it requires so
lution of only one linear partial differential equation, is nonetheless not 
straightforward. Indeed, from the initial formulation of the problem in a 
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short paper by Larmor (1919) (reproduced in Ruzmaikin et al. 1988), it . 
took a period of nearly forty years before the first rigorous demonstrations 
of kinematic dynamo action (Herzenberg 1958; Backus 1958). The main 
obstacle to success came from the fact that simple fields and flows of the 
kind that allow analytical progress with Eq. (2.2) typically do not act as dy
namos; indeed, there are a number of anti-dynamo theorems that expressly 
rule out flows and fields with certain symmetries. The most famous are 
due to Cowling (1934), who showed that a purely axisymmetric magnetic 
field cannot be maintained by dynamo action, and to Zeldovich (1957), who 
showed that dynamo action cannot result from plane two-dimensional mo
tion. Subsequently th~re have been many extensions to these fundamental 
results (see, for example, Hide & Palmer 1982; Ivers & James 1984). Conse
quently, the dynamo problem is inherently three-dimensional and, as such, 
decidedly non-trivial. 

A distinction of a different kind may be drawn between small-scale and 
large-scale dynamos. A small-scale dynamo is one in which a growing mag
netic field occurs on scales comparable with or smaller than those of the 
driving flow. A large-scale dynamo, on the other hand, has significant en
ergy on scales very large compared with those of the velocity field. (The 
magnetic field of the Sun, which gives rise to sunspots and is global in scale, 
is envisaged to be the product of a large-scale dynamo.) However, this dis
tinction, although sometimes useful, is not clear-cut. A large-scale dynamo 
will, typically, also have strong small-scale fields; conversely a small-scale 
dynamo flow, given the opportunity, will typically generate a certain amount 
of large-scale field - i.e. the spectrum of the field will not have an abrupt 
cut-off at the driving scale, but will decrease gradually to small wavenum
bers (large scales). Thus a certain amount of caution is needed in categoris
ing any dynamo as being of small or large scale. Moreover, in a turbulent 
flow there mcliy be a wide range of energetic scales of motion; in such cases 
even the idea of a separation of scales becomes unclear. 

A major breakthrough in the study of dynamo action occurred with the 
formulation of mean field electrodynamics by Steenbeck, Krause and Radler 
(1966 and subsequent papers; see the.monographs by Krause & Radler 1980 
and Moffatt 1978). This theory considers the generation by dynamo action 
of magnetic fields on scales large compared with those of the driving flow, 
and is formulated in terms of the large-scale ( or mean) component of the 
field, wi_th the influence of small-scale motions and field encapsulated in a 
few fundamental coefficients of the problem (such as the famous 'a-effect'). 
In a few special cases these can be calculated exactly; more generally though 
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they are parameterised in a physically plausible manner. For the past 
forty years astrophysical dynamo theory has been dominated by mean field 
electrodynamics. 

In this review we aim to provide a brief introduction to mean field 
electrodynamics. We shall concentrate on the generic aspects of the theory, 
rather than on object-specific models aimed at describing the magnetic 
fields of particular astrophysical bodies. The literature relating to mean 
field electrodynamics is vast, and so we make no claim here to be exhaustive 
in our choice of references; a fuller reference list may be obtained from the 
reviews of Roberts & Soward (1992), Ossendrijver (2003) and Brandenburg 
& Subramanian (2005). In Sec. 2.2 we discuss kinematic considerations 

the formulation of mean field electrodynamics, the calculation of the 
governing coefficients in the theory, and simple linear mean field dynamo 
models. The incorporation of nonlinear effects is described in Sec. 2.3. 
Research into mean field electrodynamics remains an active, and indeed 
controversial, topic in astrophysical MHD; some of the difficulties of the 
theory and the issues that arise are discussed in Sec. 2.4. 

2.2 Kinematic Mean Field Theory 

2.2.1 Formulation 

Mean field electrodynamics is, at heart, a linear ( or kinematic) theory, being 
based on the induction equation. In this section we shall concentrate solely 
on the linear formulation; nonlinear effects, which may be incorporated 
through a variety of approaches, are described in Sec. 2.3. 

The fundamental assumption underlying mean field electrodynamics is 
that there exists a strict separation of length scales for both the magnetic 
and velocity fields. The velocity and magnetic fields have a small-scale 
component, with characteristic length scale R, and a large-scale - or mean 

component with scale L » R. For the case of a turbulent velocity field, R 
may be regarded as a typical size of the energetic eddies. Averages, which 
we denote by ( • ) , may then be taken' over an intermediate length scale a 

satisfying /I,« a« L. The velocity and magnetic fields may be decomposed 
into their mean and fluctuating components: 

B =Bo+ b, U = Uo +u, (2.3) 

where, by definition, (b) = (u) = 0. Averaging the induction equation 
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(2.2) yields an equation for the evolution of the mean magnetic field: 

8Bo 2 ( 8t = V x (Uo x Bo) + V x £ + ryV Bo, 2.4) 

where £ = (u x b) is the mean electromotive force (emf), resulting from 
interactions between the small-scale velocity field and the small-~.cale mag
netic field. It is this term that provides the crucial distinction betwee~ 
the (un-averaged) induction equation and the mean induction equation. 
Clearly, in order to make progress with Eq. (2.4) it is necessary to close the 
system by expressing £ in terms of the mean field Bo and its derivatives. 
This is done by considering the equation governing the fluctuating magnetic 
field, obtained by subtracting Eq. (2.4) from Eq. (2.2): 

8b at = V X (Uo X b) + V X (u X Bo)+ V X G + ryV2b, (2.5) 

where G = u x b - (u x b). Symbolically, Eq. (2.5) may be written as 

£(b) = V x (u x Bo), (2.6) 

where ,C is a linear operator. There are two distinct possible modes of 
behaviour for the small-scale magnetic field b. One is if b is 'slaved' to 
the mean field B0 ; here b is driven solely by the inhomogeneous term 
V x (u x Bo) - in the absence of Bo the small-scale field simply decays to 
zero. The second is when the operator ,C can support non-trivial solutions 
even in the absence of a large-scale field Bo in other words, the velocity 
field supports small-scale dynamo action. As we shall see, the implications 
for mean field theory for the two cases can be rather different. 

Let us consider first the case when b exists only if the right hand side 
of Eq. (2.6) is non-zero; it is then linearly and homogeneously related to 
Bo. Hence, for a given velocity field u, the mean emf£ is also linearly and 
homogeneously related to Bo. Since, by construction, the mean magnetic 
field varie~ on a long length scale, one may therefore postulate an expansion 
for £ of the form 

(2.7) 

For consistency with Eq. (2.4), which is a second order partial differential 
equation, it is important that the first two terms ( and only the first two 
terms) of this expansion are retained. Since the vector £ is a polar vector, 
whereas Bo is an axial vector, it follows therefore that aij and /3ijk are 
pseudo-tensors (i.e. they change their sign, compared with tensors, under 
transformation). Their physical interpretation is brought out most clearly 



Mean Field Dynamo Theory 21 

by considering the case of isotropic turbulence. In the kinematic regime the 
pseudo-tensors aij and f3iJk can depend only on the statistical properties 
of the flow field and on the diffusivity TJ; therefore, for isotropic turbulence, 
they must take the form 

(2.8) 

where a is a pseudo-scalar and J3 a true scalar. Substitution from Eq. (2.8) 
into Eq. (2.4) gives 

8Bo 2 8t = V x (U0 x Bo)+ V x aBo + (TJ + J3)V Bo, (2.9) 

where we have made the further simplifying assumption that J3 is constant. 
Clearly J3 is an additional, turbulent, contribution to the magnetic diffu
sivity. On physical grounds we expect this to be positive for a genuinely 
turbulent flow; however it is of interest to note that there are certain types 

. of flow ( e.g. random potential flows) for which /3 is negative (Krause & 
Radler 1980). 

The most important term though is V x aB 0 , the 'a-effect' of mean 
field dynamo theory, which may lead to growth of the mean magnetic field. 
Whereas in the full induction equation (2.2) the advective term has the 
form of the curl of a vector perpendicular to the magnetic field, in the 
mean induction equation (2.9) the new (a) term is the curl of a vector par
allel to the mean field. This turns out to have profound consequences. One 
is that Cowling's theorem no longer holds (because it is possible to have dy
namos that are axisymmetric on average); the problem then becomes much 
simpler, analytically and computationally, and allows ready progress to be 
made in dynamo modelling. We explore some such models in Sec. 2.2.3. 
However, even without any calculation; it is possible to gain considerable 
insight into the nature of any turbulence that can lead to a non..:.zero value 
of a. Consider the case when the turbulence is refiectionally symmetric; 
i.e. its statistics have no sense of 'handedness'. Then, on changing from 
a right-handed to a left-handed frame of reference, the quantity a, which 
depends only on the statistics of the turbulence, is invariant. Conversely 
though, a, being a pseudo-scalar, must change sign under this reflection of 
coordinates. Thus it follows that a must vanish for reflectionally symmetric 
turbulence. Equivalently, a can be non-zero only for turbulence possessing 
some sense of handedness. In nature, reflectional symmetry is broken in any 
rotating system. The simplest measure of the lack of reflectional symmetry 
in a flow is the helicity, H = (u · V x u). 
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For non-isotropic turbulence it is instructive to split the O'.ij tensor into 

its symmetric and antisymmetric parts. The symmetric pseudo-tensor a~J) 
may be referred to its principal axes: 

(2.10) 

Arguing as above, a(l), aC2) and aC3) must vanish for turbulence that lacks 
reflectional symmetry. 

The antisymmetric part of O'.ij may be written as ai;) = -Eijk'Yk, leading 
to a contribution, x B 0 to the emf. From comparison with Eq. (2.4), it can 
be seen that , is to be regarded as a velocity acting on the mean magnetic 
field; it can be non-zero provided the statistics of u are either anisotropic 
or inhomogeneous, but is not dependent on the symmetry properties of 
the turbulence (Cattaneo et al. 1988). A detailed review of the transport 
effects of turbulence on both scalar and vector fields is given by Moffatt 
(1983). 

For any given flow, one can calculate aij ( at least in principle, and often 
in practice) by imposing a uniform field and measuring the resulting emf; 
here the scale separation is between the scale of variation of the flow field 
and that of the uniform magnetic field ( which is formally infinite). This is 
not a dynamo calculation as such, since the uniform field remains constant 
in time. However, the resulting value of O'.ij can then be used (once /3ijk is 
known) to calculate the growth of magnetic fields of large but finite scales. 
Conceptually (though with great difficulty in practice) /3ijk may, provided 
dynamo action is not taking place, be calculated by considering the diffusion 
of a magnetic field that is non-uniform but has a scale of variation far in 
excess of the characteristic scale of velocity. If, however, the flow acts as a 
large-scale dynamo then such a field will of course not decay but will grow. 

The discussion above has focused on the case where the fluctuating 
field bis driven by the v7 x (u x Bo) term in Eq. (2.5). However, turbulent 
flows, regardless of their symmetry properties, typically act as small-scale 
dynamos at sufficiently high values of Rm; i.e. b can grow quite happily of 
its own accord with Bo = 0. The growth rate of such a dynamo will then 
be determined not by a and f3 but by completely different properties of 
the fl.ow, such as its Lyapunov exponents (see, for example, the monograph 
by Childress & Gilbert 1995). The difficulty comes in determining the 
nature of the dynamo action that may result from a helical, turbulent flow 
at high Rm - the typical astrophysical situation. If large-scale growth is 
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forbidden, through restricting the size of the domain and through the choice 
of boundary conditions, any dynamo action that ensues will be unambigu
ously small-scale. However, if the same flow is embedded in an extended 
domain there are two possibilities: a modified version of the small-scale 
dynamo with some magnetic energy on the large scales, or alternatively a 
genuine large-scale - but not small-scale - dynamo, though this too will 
have associated with it strong small-scale fields. Thus, given one particular 
realisation of kinematic dynamo action in an extended domain, drawing 
a meaningful distinction between these two types of dynamo may not be 
possible. 

2.2.2 Calculation of the transport coefficients 

Calculation of the mean emf E, and hence of the tensors a,,ij and /3ijk, 

requires solution of Eq. (2.5) for the fluctuating magnetic field b. Unfortu
nately, for a general turbulent flow this is impossible. There are, however, 
certain limiting cases in which E can be calculated - or at least well
approximated. These results can be complemented by numerical solutions 
- away from the limiting regimes for particular flows, although it is not 
possible to probe the astrophysical regime of extremely high Rm. 

The term that renders Eq. (2.5) so troublesome is V x G. It is therefore 
obviously of interest to consider situations in which this term can safely be 
ignored. (The neglect of this term is sometimes referred to as the first order 
smoothing approximation or the second order correlation approximation.) 
Suppose we denote the time and length scales of the velocity field by T and 
R, respectively, and the rms velocity by u. Then if either Rm = uf/rJ « 1 
or S = UT/ R, « 1 ( where S is the Strouhal number), the V x G term can 
be neglected. 

If Rm« 1 Eq. (2.5) for b (assuming, for simplicity, U 0 = 0) simplifies 
to 

(2.11) 

assuming that dissipative effects are so strong that the time-dependence 
of b can be neglected. As described by Moffatt (1978), Eq. (2.11) can be 
solved via Fourier transforms to give {for isotropic turbulence) 

a,,=_..!:_ I F(k) dk (2.12) 
3rJ k2 ' 

where F(k) is the helicity spectrum function. The corresponding expression 
for f3 is 

f3 = 2 / E( k) dk 
3rJ k2 ' 

(2.13) 
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where E(k) is,the energy spectrum function. If, on the other hand, S « 1 
then b is governed by 

8b 
Bt = V x (u x B 0 ), 

leading to the expressions 
r 

a=- 3(u•Vxu) and 

(2.14) 

(2.15) 

(see Krause & Radler 1980). The significant feature of expressions (2.15) 
is that they are independent of the magnetic diffusivity T/· Analogous, 
but more complicated expressions can be obtained for aij and /3ijk for 
non-isotropic turbulence; these are discussed at length in Krause & Radler 
(1980). New physical effects can result, but they fall outside the scope of 
this introductory review. 

The crucial points to note from the above expressions are that a is 
directly related to the flow helicity (it is proportional to the helicity in 
Eq. (2.15) and to a weighted average of the helicity in Eq. (2.12)), and that 
/3 is determined by the energy of the flow. The clear link between a and 
the flow helicity can be understood in terms of Parker's picture of helical 
motions that raise and twist field lines to provide a net current anti-parallel 
to the initial field (Parker 1955), as sketched in Fig. 2.1. It is clear though 
that for this picture to be valid the loops must undergo only small twists -
which will be true provided that either diffusion dominates (Rm« 1) or the 
motions act only for a very short time (S « 1). Astrophysical turbulence, 
however, is characterised by Rm » l and S = 0(1); it is therefore of 
fundamental importance to see whether the close link between ~he helicity 
of the flow and the a-effect carries through into this regime. 

A very different approach can be taken by the formal neglect of the 
diffusive terms in the induction equation. The magnetic field is then frozen 

· into the (peFfectly conducting) fluid and can be expressed in terms of its 
initial configuration via the Cauchy solution. This leads to the following 
expression for a in terms of the Lagrangian displacement e (Moffatt 1974): 

(2.16) 

It is of interest to note that the helicity again appears, albeit in a La
grangian sense. However, it is by no means straightforward to calculate a 
from Eq. (2.16), and indeed it is not clear that the expression converges 
as t -+ oo. One might hope that expression Eq. (2.16), derived under the 
assumption of infinite Rm, sheds some light on the behaviour for large but 
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J ◄ 

Fig. 2.1 Distortion of the magnetic field by a rising, twisting motion (after Moffatt 
1978). For this small value of the twist the associated current is anti-parallel to the 
initial magnetic field. 

finite Rm. If so then this would provide a possible avenue into exploring 
the astrophysically important case of Rm » 1. However, the link between 
the cases of Rm infinite and Rm large but finite is a subtle one that is not 
fully understood. Expression Eq. (2.16) thus currently remains a relatively 
unexplored approach to understanding the a-effect. 

In order to investigate the relationship between the a-effect and the 
properties of the velocity field, many calculations of aij have considered 
spatially periodic, helical motions. This was an idea pioneerec;l by G. 0. 
Roberts (1972), who considered two-d~mensional, incompressible, steady 
flows, i.e. 

u(x, y) = '\7 X ('I/Jz) + WZ. (2.17) 

Such flows have the simplifying feature that the induction equation (2.2) 
supports monochromatic solutions of the form 

B(x, y, z, t) = B(x, y )ept+ikz, (2.18) 

where B has the same spatial periodicity as the flow. However they also 
pose a difficulty' in defining precisely what is meant by a large-scale magnetic 
field. For any given value of z a field of the form Eq. (2.18) has a component 
that is independent of x and y. Clearly, in some sense, this is a large-scale 
component - it has no variation in x or y and so has an infinite length 
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scale in these directions. Its evolution can be described through an a-effect 
in which the averaging procedure involves averaging over planes of constant 
z. Conversely though, th~s purely z-dependent component of the magnetic 
field may be thought of as simply part of the 'small-scale' eigenfunction 
B(x, y). This indeterminacy seems unavoidable for these special· - but 
computationally tractable - flows. 

Roberts (1972) calculated the a-effect for four different flows in the 
limit as k -+ 0, exploiting symmetry arguments to determine the form of 
the anisotropic tensor aij. He focused particularly on the case of 

'ljJ = sinxsiny, w = K'lj), (2.19) 

using analytical and numerical solutions to obtain a, and hence also the 
dynamo growth rate, for a range of Rm. The nature of the a-effect for the 
Roberts flow in the limit of Rm -+ oo was considered by Childress (1979) 

and later by Soward (1987), who showed that the growth rate scales as 

ln (ln Rm) (
2

_
20

) 
P rv lnRm . 

Childress & Soward (1989) extended their analysis to calculate the a-effect 
for large Rm for the 'cat's eye' flow with 'ljJ = sin x sin y + 8 cos x cosy. 
Plunian & Radler (2002) considered the k-dependence of the a-effect for 
the Roberts flow, and the possible relationship between this dynamo and 
that of the Karlsruhe dynamo experiment. 

In order for a dynamo to be 'fast' - i.e. to have a positive growth rate 
in the limit as Rm-+ oo - it is necessary that it has chaotic particle paths 
(Vishik 1989; Klapper & Young 1995). Steady two-dimensional flows are 
integrable and hence, as such, cannot act as fast dynamos - although, as 
for the Roberts flow analysed by Soward (1987), the growth rate may be 
an extremely slowly decaying function of Rm. It is of interest therefore 
to consider th~ a-effect produced by non-integrable flows as Rm -+ oo. A 
much-studied flow in the context of possible fast dynamo action is the time
dependent version of the Roberts flow introduced by Galloway & Proctor 
(1992), with 

'ljJ = sin(x + Ecoswt) + cos(y + rninwt), w = K'lj). (2.21) 

(When w = 0 flows Eq. (2.19) and Eq. (2.21) are equivalent after a simple 
transformation.) Courvoisier et al. (2006) have investigated the nature of 
the a-effect for the flow Eq. (2.21), for both finite and zero k, and demon
strated that, for this time-dependent flow, a is a sensitive function of Rm 
which, furthermore, does not tend to zero for large Rm. 
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Another widely used approach to investigating the kinematic a-effect, 
which is one step closer to astrophysical reality, is to consider flows that are 
driven by rotating thermal convection. Here the flow is not specifically pre
scribed, but results from the nonlinear evolution of a convective instability; 
the spatial and temporal dependence of the flow depends on the parame
ters of the problem (such as the Rayleigh number) and on the boundary 
conditions. The simplest configuration is the plane layer model, with the 
rotation axis parallel to gravity, which was investigated in the pioneering 
studies of Childress & Soward (1972) and Soward (1974), who explored 
the nature of dynamo action for mildly supercritical Boussinesq convec
tion under the assumptions of first order smoothing. The antisymmetry 
of Boussinesq convection about the mid-plane leads to an antisymmetric 
helicity distribution and hence an antisymmetric a- where the large-scale 
field is horizontal and dependent solely on the vertical coordinate. Weakly 
supercritical convection is characterised by a relatively simple planform. 
Soward ( 197 4) was able to demonstrate large-scale dynamo action for some 
simple steady flows - though the very simplest planform consisting of a 
single roll with a single horizontal wavenumber does not exhibit dynamo 
action. The plane layer dynamo has been investigated further numerically 
(kinematically and dynamically), particularly in the regime of rapid rota
tion, by Jones & Roberts (2000), Rotvig & Jones (2002) and Stellmach & 
Hansen (2004). The convection in all of these studies, although outside the 
weakly nonlinear regime considered by Soward, is nonetheless fairly well
ordered; it gives rise to a significant a-effect and, hence, to dynamo action 
with a pronounced large-scale component. Cattaneo & Hughes (2006) took 
a somewhat different approach to the plane-layer convective dynamo, con
centrating on more turbulent flows which, although rotationally influenced 
( 0 ( 1) Ross by number) were not rotationally dominated; furthermore they 
considered horizontally extended domains, thereby allowing the convection 
to evolve without influence from sidewall boundaries. Their results differ 
considerably from those that emerge from considerations of 'well-ordered' 
convection. In particular they found that, despite the helical nature of the 
flow, two significant problems arose, in determining a - even in the pa
rameter regime where there is no self-sustaining dynamo action and hence 
e is due entirely to the imposed mean field. One problem is that a, even 
after spatial averaging over many convective cells, is a strongly fluctuating 
quantity in time (see Fig. 2.2); the second is that, even if one is bold enough 
to assign a mean value to a then this is extremely small - only O(u/ Rm) 
(where u is therms velocity) rather than O(u) as one might expect in a tur-
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bulent process. The underlying problem - and one that seems inescapable 
- is that at large Rm the fluctuations completely dominate the mean. This 
result is potentially extremely bad news for mean field dynamo modelling, 
and will be discussed further in Sec. 2.4. 
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Fig. 2.2 Time history of the spatially-averaged x-component of the emf for rotating 
Boussinesq convection, with the rotation axis vertical and with an imposed magnetic 
field of unit strength ( measured in terms of the· equivalent Alfven velocity) in the x
direction. Thus this component of the emf corresponds to a11. The computational 
domain has size 5 x 5 x 1; therms velocity u ~ 50 and Rm~ 250. The spatial average 
at any time involv~s many convective cells. Despite this, it can be seen that a is a wildly 
fluctuating quantity in time. The thick line in the upper panel corresponds to the time 
average up to time t of the signal. The same curve is plotted again in the lower panel 
with a more appropriate vertical axis, showing a painfully slow convergence to a value 
much smaller than that of u. • 

2.2.3 Linear mean field dynamo models 

In the modelling of astrophysical magnetic fields it is natural to think of 
the averaging procedure as an azimuthal average, and the mean fields that 

r1 
(. 

l, 

ic 

ir 
is 

0 
ec 

c 

{) 

wl 
di: 

fie 
ge 
to: 
co 
an 
to 
of 
me 
ter 
dy 
th~ 
In 
lea 

sia 



Mean Field Dynamo Theory 29 

result as therefore axisymmetric. In terms of cylindrical polar coordinates 
(s, ¢, z) we may then write 

U = sw(s, z)e¢ + Up, B = B(s, z)e¢ + Bp, e = E¢e¢ + ep, (2.22) 

where the subscript p denotes the poloidal component. The quantities w, 
UP and Bp therefore represent the differential rotation, large-scale merid
ional flow and large-scale meridional field. For simplicity, but without los
ing the essence of mean field dynamo theory, we may consider the case of 
isotropic turbulence. The mean emf then takes the form 

e = aB - (3'\l X B. (2.23) 

On writing Bp = "v x A(s, z)e¢ (by axisymmetry), the mean induction 
equation (2.4) can be expressed as the two scalar equations: 

8A ~ 8t + s- 1 (Up· "v) (sA) = aB + rtr"v2 A, 

8B ~ 8t + s (Up· "v) ( s- 1 B) = s (Bp · "v) w + ("v x aBP)¢ + f/T "v2 B, 

(2.24) 

(2.25) 

where V'2 = "v2 - s- 2 , and where 'r/T = rt + f3 is the effective magnetic 
diffusivity ( assumed constant in the above equations). 

It can be seen from Eq. (2.24) that the a-effect can generate poloidal 
field from the toroidal component, and from Eq. (2.25) that it can also 
generate toroidal from poloidal field; the differential rotation w can generate 
toroidal field by stretching out the poloidal field. A mean field dynamo must 
continually regenerate magnetic field through some combination of the a
and w-effects; the relative magnitudes of these generation terms allows us 
to classify the nature of the dynamo action. If, on the right hand side 
of Eq. (2.25), the term involving a dominates that involving w then we 
may neglect the s (Bp · "v) w term and speak of an a 2-dynamo; if the w 
term dominates we may neglect the ("v x aBp) ¢ term and speak of an aw
dynamo; if they are comparable then we speak of an a 2w-dynamo. Note 
that the a-term in Eq. (2.24) is indispensable for mean field dynamo action. 
In its absence A simply decays; the removal of the source terms for B then 
leads to the eventual decay of the toroidal field also. 

The key characteristics of these dynamos can be brought out in a Carte-
sian model, for which Eq. (2.24) and Eq. (2.25) simplify to 

a'A at+ (Up· "v) A= aB + rtr"v2 A, (2.26) 

8B 8t +(Up· "v) B = (Bp · "v) U - a'\12 A+ rtr"v2 B, (2.27) 
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where U =Up+ Uey, B = Bp + Bey. Under the assumption that Up, a 
and VU may be treated as uniform, we may seek local solutions of these 
equations, of the form 

A = A exp (pt + ik · x) , (2.28) 

leading to the following dispersion relation governing the growth rate p: 

(2.29) 

(Parker 1955). Exponential growth of the field - a kinematic mean field 
dynamo - occurs if Re(p) > 0. 

For an a 2-dynamo with no meridional circulation (Up= 0), Eq. (2.29) 
simplifies to 

I 

p = ±ak + ryk2 , (2.30) 

showing that steady dynamo action (Re(p) > 0, Im(p) = 0) will occur 
provided !al > ryk; i.e. growth is guaranteed for sufficiently small k. 

For an aw-dynamo with no meridional circulation, Eq. (2.29) reduces 
to 

(2.31) 

Dynamo action occurs if r > ry2 k4 ; i.e. if the dynamo number D = r / ry2 k4 is 
greater than unity. The growing solution takes the form of a travelling wave, 
propagating in the +k (-k) direction if r < 0 (r > 0). (More generally 
it can be shown that for spatially varying underlying quantities, dynamo 
waves tend to propagate along lines of constant rotation (Yoshimura 1978).) 
If the equatorial migration of sunspots is viewed as the surface manifestation 
of an underlying, equatorially propagating, dynamo wave, then this suggests 
that in the northern (southern) hemisphere of the Sun the product a8w / 8r 
should be negative (positive). From Eq. (2.29) it can be seen that, at least 
within this simple' model, a meridional flow affects the frequency, but not 
the growth rate, of, any dynamo, with the a 2-dynamo now also assuming 
an oscillatory character, and with the direction of propagation for the aw
dynamo dependent (for r > 0) on the sign of r 1/ 2 - Up. k. 

Although all the fundamental ingredients of mean field dynamos are con
tained in the extremely simple plane layer model described above, clearly 
many important effects are omitted, even when attention is restricted to 
kinematic dynamos. Linear mean field dynamos in a sphere were considered 
by Steenbeck & Krause (1969a, b), Roberts & Stix (1972) and P.H. Roberts 
(1972). The evolution of dynamo waves in a spherical aw-dynamo for one 
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Fig. 2:3 Evolution of the magnetic field through one cycle of a kinematic aw-dynamo 
(from P.H. Roberts 1972). Meridian sections are shown, with poloidal field lines on the 
right and lines of constant toroidal field strength on the left. For this choice of parameters 
it can be seen that the pattern of the field progresses from the equator to the poles. 
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specific choice of a and w is shown in Fig. 2.3. In certain astrophysical cir
cumstances there are good reasons for believing that the a-effect and/ or the 
w effect are concentrated into regions that are thin in comparison with the 
body as a whole (for example, the solar tachocline, a thin region of radial 
velocity shear at the base of the convection zone, is widely conjectm:ed to 
be the location of the w-effect of the solar dynamo). Mathematically, such 
concentrated generation and shear can be modelled by 8-function represen
tations of the a- and w-effects. Away from the generation regions, A and B 
satisfy diffusion equations, with the generation terms brought in through 
the interface conditions; this approach has been investigated by Steenbeck 
& Krause (1966), Moffatt (1978) and Kleeorin & Ruzmaikin (1981). The 
role of a weakly modulated background state on the propagation of short 
wavelength dynamo modes was first considered by Kuzanyan & Sokoloff 
(1995), who showed that the eigenfunction of the magnetic field is localised 
away from the maximum of the dynamo number. The related problem of 
the influence of lateral boundaries (i.e. boundaries in the direction of prop
agation of the dynamo waves) has been considered in the linear regime by 
Worledge et al. (1997). 

2.3 Incorporating Nonlinear Effects 

2.3.1 The nonlinear behaviour of the transport coefficients 

The discussion above indicates that the validity of mean field electrodynam
ics is unclear even in the kinematic regime, where the back-reaction of the 
Lorentz force on the plasma motions is ignored. In this section, we discuss 
the role of the nonlinearity in modifying the transport coefficients. We pro
ceed on the (far-from-certain) assumption tµat mean field electrodynamics 
yields sensible results in the kinematic regime, with transport coefficients 
(the a-effect and turbulent diffusivity) of the right order of magnitude, and 

, ask how the gen~ration of a mean magnetic field affects the transport in 
the flow. 

The question above may be restated as, 'What is the strength of the 
mean magnetic field that can be generated by the a-effect before the a

effect is itself suppressed via nonlinear effects in the momentum equation?' 
The momentum equation for an incompressible flow ( with unit density) is 
given by 

(2.32) 

where F represents any external forces. The Lorentz force in a dynamo is 
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believed to be significant once the magnetic energy reaches the same order 
of magnitude as the kinetic energy of the flow that is generating it. Within 
the mean field framework this has traditionally been assumed to occur when 
the magnetic energy of the mean field reaches equipartition with the kinetic 
energy of the flow, i.e. when 

(2.33) 

Hence it is convenient to model the mean field transport coefficients as 
having the dependence 

(2.34) 

where a 0 and (30 are the kinematic values of the transport coefficients and 
B is the strength of the equipartition field. These, and other similar ex
pressions, have been extensively used in models of astrophysical dynamos 
(Jepps 1975; see the review by Ossendrijver 2003 for further references). 
They are particularly appealing for a number of reasons. Clearly their 
inclusion will lead to a model thl:l.t is capable of generating a substantial 
mean field - they are designed precisely to allow a mean field that has an 
energy comparable with that of the turbulence. In addition, these formulae 
are simple to implement. In the mean field ansatz only the mean field is 
calculated, and so a nonlinearity that relies solely on the amplitude of the 
mean field sits self-consistently within the framework of the theory. 

There is, however, significant doubt over the validity of these expres
sions at high Rm. Moreover, the uncertainties exist at such a fundamental 
level that even the order of magnitude of the mean field generated in the 
nonlinear regime is open to question. The issue of the level of saturation 
of the mean magnetic field is contentious and subtle, and a comprehensive 
discussion is well beyond the scope of this paper ( see, for example, the re
cent review by Diamond et al. 2005a). However, as the issue is of such 
importanee for astrophysical dynamo theory, a brief introduction will be 
included here. Perhaps the clearest ( and most convincing) argument for 
the level of suppression of the transport coefficients is on physical grounds 
(see, for example, Vainshtein &, Cattaneo 1992). It is generally accepted 
( as argued above) that the kinematic phase in a mean field dynamo will 
continue until the magnetic energy becomes comparable with that of the 
turbulence. Moreover at high Rm, both theory and numerical experiments 
indicate that the magnetic energy of the small-scale field will be much larger 
than that of the mean field. Turbulence is known to amplify magnetic fields 
locally (i.e. on the scale of the small-scale eddies with short turnover times) 



34 Relaxation Dynamics in Laboratory and Astrophysical Plasmas 

so that the small-scale fields are more energetic than those on large scales 
- indeed most numerical experiments indicate that the ratio of the energy 
of the small-scale field to that of the large-scale field is given by 

(2.35) 

where O S q S 2 is a flow- and geometry-dependent coefficient. 
This, of course, poses a major problem for mean field theory. In partic

ular, from this simple order of magnitude argument it appears as though 
the transport coefficients will be altered significantly once the strong small

scale field reaches equipartition with the kinetic energy of the turbulence, 
i.e. when 

(2.36) 

(Though the dynamic effect of the small-scale field will depend also on its 
filling factor - i.e. on how much of the volume is occupied by strong small
scale fields.) If Eq. (2.36) rather than Eq. (2.33) is the correct estimate of 
the strength at which the large-scale field becomes dynamically significant, 
then the expressions in Eq. (2.34) should be replaced by 

/3o 
/3 = 1 + RmqB5/B 2 . 

(2.37) 

This leads to what is sometimes referred to as 'catastrophic' quenching of 
the transport coefficients; i.e. a dramatic reduction in their efficiency-even 
when the mean field is many orders of magnitude smaller than equipartition. 
The above argument relies on simple physical balances, but seems plausible 
nonetheless. However, calculation of ,the transport coefficients relies on 
correlations between the turbulence and the small-scale field, and these 
may have unexpected properties. There are currently two possible ways of 
discriminatihg between the expressions in Eq. (2.34) and Eq. (2.37), neither 
of which is en~irely satisfactory. The first is to derive analytical expressions 
for 0:: and /3 by applying conservation laws and closure approximations. 
The second is to compute straightforwardly the correlations between the 
small-scale fields at moderate Rm - and then to extrapolate the results to 
higher Rm. 

Analytical progress may be made in certain circumstances by first recog
nising that the induction equation (and indeed Ohm's Law, which leads to 
its derivation) results in a number of relations which, in the absence of dis
sipation, reduce to conservation laws. These take the form (see Diamond 
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et al. 2005a; Brandenburg & Dobler 2001; Blackman & Field 2000) 

E ·Bo= -
1 

(j · b) + (e · b) = o:B5, (2.38) 
a 

d(:~ b) = -2(e. b) + (\7 • (hep)) - (\7 x (axe)), (2.39) 

(2.40) 

where ¢ is an arbitrary scalar (gauge) that is used to define the vector 
potential A, HM is the total magnetic helicity (A • B), QH is the total 
current helicity (J · B), and FH is the surface-integrated magnetic helicity 
flux through the boundaries of the domain. The first of these equations 
follows simp~y from Ohm's Law, and relates a and the mean field to cor
relations between the small-scale magnetic fields, currents and emfs. The 
second is a conservation law for the averaged small-scale magnetic helicity 
- for statistically steady fields and suitable boundary conditions this may 
be simplified substantially to yield an equation for ( e • b) ( see Diamond et 
al. 2005a). The final equation expresses conservation of magnetic helicity. 
In the absence of magnetic diffusion and for boundary conditions that do 
not allow magnetic helicity to leave the domain the total magnetic helicity 
is conserved. Hence, under these constraints, if the large-scale magnetic 
helicity is to grow it must be at the expense of the small-scale magnetic 
helicity. These relations all allow the achievement of a similar goal - they 
permit the expression of· the average emf E, which relies on correlations 
between u and b, in terms of correlations between j and b. This substitu
tion is not much more than a matter of taste, since a priori we know none 
of u, j or b in the dynamic regime. However, the above expressions do 

become useful if they can be combined with a further expression relating a 
to (b · j). As described below, this has been done, in an approximate sense, 
by Pouquet et al. (1976). 

As stated above, in order to calculate a it is necessary to solve for the 
fluctuating magnetic field and velocity. The dynamics is all contained in the 
role of the Lorentz force in modifying the small-scale velocity, which at high 
Rm may be subtle and unexpected. A widely used, though often misunder
stood, result utilises the eddy-damped quasi-normal Markovian (EDQNM) 
framework to approximate this back-reaction for turbulence possessing a 
shmt correlation time. This approach has been used extensively for purely 
hydrodynamic turbulence (see, for example, Frisch 1995; Davidson 2004), 
although the range of its applicability is still an open question. For mag
netised flows, in which the turbulence at high Rm appears to deviate 
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significantly from being normally distributed, there is no convincing evi
dence that the theory is applicable in any regime. Nonetheless, in the limit 
of short correlation time, and assuming that the magnetic field has no effect 
on the correlation time of the turbulence, the EDQNM formalism yields a 
relationship between a and (b · j), namely 

a= - ~ (u • w - b • j), (2.41) 

where w = v' x u (Pouquet et al. 1976). Note that in the kinematic limit 
this expression reduces to that given in Eq. (2.15), and that the effect of 
the Lorentz force is thus to add to the kinematic expression a magnetically
driven a-effect aM = Tc/3 (b · j). There are two other ways to derive this 
approximate result; either by using closure mode such as the 'minimal T 

approximation' (Kleeorin et al. 2002), or by linearising about a pre-existing 
turbulent MHD state with low Rm and short Tc (Proctor 2003). (In the 
second approach, great care must be taken in the interpretation of the 
meaning of the variables u, w, b and j, as noted by Proctor.) It is worth 
stressing again that this approach has circumvented the need to calculate 
correlations between u and bin favour of calculating those between b and 
j - clearly some dynamical relationship between j and u has been assumed 
(or approximated). 

Ignoring for the minute any reservations about the validity of expres
sion (2.41), it is now clear how to derive expressions for the dynamic effects 
of the magnetic field on the a-effect ( and similarly for /3). Combining one 
of the conservation laws with Eq. (2.41) yields either a dynamic result for 
the evolution of the magnetically-driven a-effect (aM) (e.g. Blackman & 
Brandenburg 2002) or, under the assumption of stationarity, a simplified 
expression for a in the nonlinear regime - see, for example, the expres
sions in Gruzinov & Diamond (1994, 1995, 1996) and Kleeorin et al. (1995). 
In general these expressions support the notion that the a-effect is catas
trophically quehched at high Rm ( with the nature of the /3-effect much less 
clear), though t~ey indicate that the presence of a large-scale current ( J) 
or of boundary conditions that allow magnetic helicity to escape from the 
domain may lead to alleviation of the 'catastrophic quench. 

The other approach to the question of the nonlinear suppression is to 
perform numerical simulations to calculate explicitly the emf as a function 
of Rm and B 0 . This has the advantage that no approximations are nec
essary, but the disadvantage that results can only be obtained for fairly 
moderate values of Rm. Despite claims to the contrary in the literature, 
this is actually a reasonably severe restriction ( as discussed below), and 
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considerable care should be taken in assessing the claimed values of Rm 
in different calculations. As an order of magnitude estimate, a calculation 
performed with 10003 spectral modes ( or equivalently 16003 finite differ
ence points), with a separation of scales of about a decade between domain 
size and the size of the most energetic turbulent eddy, is able accurately to 
reach magnetic Reynolds numbers of 0(10 3 ). 

Two classes of numerical calculations have been performed in order to 
calculate the nonlinear dependence of the transport coefficients. The first 
employs a prescribed body force F(x, t) in Eq. (2.32) in order to drive the 
flow u. This can be carefully selected so as to drive a flow with particu
larly advantageous properties for large,..scale dynamo action (in a similar 
manner to the way kinematic flows are selected to be maximally helical 
so that they yield strong a-effects). The forcing is typically chosen in or
der to drive a flow with large pointwise and net helicity and also strong 
time-dependence, so that particle trajectories within the flow are chaotic. 
Separation of scales can be achieved in two ways. One is to force the flow 
on a scale much smaller than that of the computational domain; e.g. in a 
spectral calculation applying the forcing at a wavenumber k f = 8, which 
determines the small-scale, and ascribing flows and fields with k = 1 to 
be large-scale ( e.g. Brandenburg 2001). Here, however, there is no natural 
separation of scales and a continuous spectrum of scales emerges. The other 
(Cattaneo & Hughes 1996) is to drive the small-scale flow on the scale of 
the computational domain ( k f = 1) and to achieve the separation of scales 
by imposing an infinite-scale (k = 0) mean magnetic field (Bo), as in the 
kinematic case described above. 

The second approach to calculating the a-effect numerically in the non
linear regime is to drive the flow via the action of buoyancy in 'a rotating 
convective flow (either compressible or incompressible), as discussed for the 
kinematic case in Sec. 2.2.2. A mean magnetic field is inserted and the emf 
£ ( and hence a) calculated self-consistently, taking account of the Lorentz 
force. 

There are now many examples of calculations employing both these 
approaches (e.g. Cattaneo & Hughes 1996; Cattaneo et al. 2002). Here we 
proceed by giving details of one such calculation (Cattaneo & Hughes 1996) 
and then discuss its relation to other such calculations later in the section. 
Here, the forcing F(x, t) is chosen so that in the absence of a magnetic 
field the Galloway-Proctor flow Eq. (2.21) is driven. A mean magnetic 
field is then imposed in the z-direction and the full magnetohydrodynamic 
system (Eq. (2.2) and Eq. (2.32)) evolved to a statistically steady state. 
The components of the mean emf£= (Ex, Ey, Ez) are then calculated as a 
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Fig. 2.4 Time histories of components of the emf for the 3d turbulent flow driven by 
the Galloway-Proctor forcing with a magnetic field imposed in the z-direction (from 
Cattaneo & Hughes 1996). The emf has strong temporal fluctuations, but a meaningful 
time average (thick line) can clearly be defined. The top two panels show Ez and Ex 
for a weak magnetic field; the time average of Ex converges to zero, as expected from 
symmetry considerations. The lowest panel shows Ez for a field of almost equipartition 
strength. 

function of Rm and Bo, as shown in Fig. ,2.4. These time series show clearly 
that the (space-averaged) emf is a wildly fluctuating quantity and that, in 
order to achieve average values for a that have converged to a meaningful 
result, tempo~al averages over significant time periods (very many turnover 
times of the flow) are necessary. However it is possible to integrate the 
equations for long enough to obtain a meaningful average value for a. This 
is plotted as a function of Bo ( at fixed Rm) and Rm ( at three representative 
values of Bo) in figures 2.5a and 2.5b respectively. Taken together, these 
results strongly suggest that the a-effect is suppressed with a very strong 
dependence on field strength at high Rm. In particular, it appears possible 
to discriminate between the formulae in Eq. (2.34) and Eq. (2.37), with the 
numerical results indicating that Eq. (2.37) is a considerably more accurate 
description of the behaviour of the a-effect in the nonlinear regime. 
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Fig. 2.5 a versus B5 ( upper panel, from Cattaneo & Hughes 1996) and versus Rm 
(lower panel, from Cattaneo et al. 2002), for the same flow as in Fig. 2.4. The upper 
panel shows the predictions of the two quenching formulae Eq. (2.34) and Eq. (2.37) 
( with q = 1), and shows that the numerical simulations strongly support the latter. 

Many other numerical calculations with various assumptions and inter
pretations ( e.g. Brandenburg 2001; Ossendrijver et al. 2003) also indicate 
that the transport coefficients may be catastrophically quenched in the non
linear regime.' These results have, however, been criticised on the grounds 
that they are all undertaken in closed domains with boundary conditions 
that do not allow magnetic helicity to leave the computational domain 
(Blackman & Field 2000). The argument put forward is that large-scale 
helicity can only grow at the expense of small-scale helicity, as discussed 
above, and that the system is thus overly constrained. This is an interesting 
point and one that merits further investigation. It is difficult however to 
envisage a situation where the flux of magnetic helicity out of the domain 
can alleviate the constraint on the transport coefficients without removing 
flux from the domain and limiting the efficiency of the dynamo. Moreover, 
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the physical argument for strong suppression outlined above relies solely on 
the dynamics of the small scales and it is not clear how the modification of 
boundary conditions (possibly far away from the turbulent small-scale ed
dies) can lead to a significant enhancement of the local transport properties 
of the turbulence. 

2.3.2 Other nonlinear effects 

The suppression of the transport coefficients in the nonlinear regime is 
contentious and is likely to remain so for the foreseeable future. This is
sue lies at the very· heart of mean field electrodynamics as it determines 
the level of saturation of nonlinear mean field models. However, there are 
other nonlinear processes that may be of importance for saturating the ex
ponential growth of field in a kinematic mean field model. In Sec. 2.2.3 
we described how differential rotation is a key feature of the dynamo pro
cess, stretching out a poloidal field and converting it into toroidal field ( the 
w-effect). Therefore a possible saturation mechanism involves the modifi
cation of the differential rotation by the Lorentz force. In order to model 
this, a detailed understanding of the mechanism for the generation and 
maintenance of differential rotation by rotating turbulent motions is re
quired. In general, mean flows are set up in turbulent rotating systems via 
small-scale correlations, leading to Reynolds stresses that naturally trans
port angular momentum, allowing the formation of a pattern of differential 
rotation. As in mean field electrodynamics, the role of correlations in this 
picture is crucial - and poorly understood (see Diamond et al. 2005b for 
a comprehensive review of the generation of zonal flows in plasmas, and 
Brummell et al. 1998 or Brun et al. 2004 for a discussion of the genera
tion of mean flows and differential rotatioh by convection). In the mean 
field formalism, the generation of mean flows by small-scale correlations is 
often parameterised using the A-effect, a closure scheme that relates the 
average Reynolds stresses to the local angular velocity and its derivatives 
(see Rudiger 1989 for a complete discussion). It is sufficient here to state 
that the theory underpinning the A-effect is a two-scale theory in a similar 
vein to mean field electrodynamics - and so has the same strengths and 
weaknesses. 

Just a&for the transport coefficients a and /3, the role of magnetic fields 
in modifying angular momentum transport, and hence differential rotation, 
is also poorly understood. However what is known is that the magnetic 
field can modify the differential rotation in a straightforward manner, with 
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a large-scale magnetic field B 0 driving a large-scale flow via the action of 
the large-scale Lorentz force Jo x Bo in the momentum equation. This 
mechanism is often termed the 'Malkus-Proctor effect' (Malkus & Proctor 
1975) in astrophysical dynamo theory ( especially in solar dynamo theory, 
where this saturation mechanism has been extensively invoked). In ad
dition, in a high Rm environment the presence of a large-scale field and 
a small-scale flow inevitably implies the presence of a strong small-scale 
field, as argued above. This small-scale field can itself influence the angu
lar momentum transport in two ways; either by modifying the dynamics 
of the small-scale velocity (in particular the correlations that lead to the 
driving of mean flows in the first place) via the small-scale Lorentz force, 
or by itself driving mean flows via average Maxwell stresses ( which arise 
through small-scale/ small-scale interactions of magnetic fields). This pro
cess in mean field models has usually been either crudely parameterised in 
the form of w-quenching (e.g. Roald & Thomas 1997), or A-quenching (e.g. 
Kitchatinov et al. 1994) in which the back-reaction of the magnetic field on 
the angular momentum transport is calculated within the same framework 
as the mean field equations. It is though important to note that all the 
difficulties and uncertainties surrounding the transport coefficients in mean 
field electrodynamics arise a fortiori in any theory of the modification of 
angular momentum transport. 

2.3.3 Nonlinear mean Field Models 

We discussed briefly in Sec. 2.2.3 how the framework of mean field electro
dynamics could be used to construct kinematic dynamo models. As for the 
kinematic theory, most of the computational effort in the nonlinear regime 
has been 'object specific', with computations being undertaken with the 
specific aim of explaining the generation of magnetic fields in either plan
ets, stars or\galaxies. In these cases, plausible profiles for the differential 
rotation, a-effect and turbulent diffusivity are selected for the object to be 
modelled and, likewise, a nonlinear saturation mechanism is selected that 
may be of importance for the dynamo operating in that object. In this 
paper we do not attempt to discuss these astrophysically-motivated mean 
field models, as it is extremely difficult to draw robust conclusions from 
studies• that aim specifically to model a particular astrophysical object in 
detail. Instead we focus on aspects of nonlinear behaviour that are inherent 
to all nonlinear mean field models, and refer the interested reader to reviews 
by Ossendrijver (2003) and Tobias & Weiss (2007), who discuss solar and 
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stellar models, by Jones (2003), who discusses planetary dynamos, and by 
Beck et al. (1996), who discuss the galactic dynamo. 

2.3.3.1 Nonlinear Travelling Waves 

Here we give a brief discussion of the role of nonlinearities in modifying the 
behaviour of the kinematic mean field dynamos discussed in Sec. 2.2.3 -
i.e. plane-wave dynamos, bounded dynamos and spherical dynamos. The 
simplest example of a mean field dynamo ( as discussed earlier) is the local 
travelling-wave solution of Parker (1955). There the solution is assumed 
to be independent of the z-coordinate and wave-like solutions depending 
on the x-coordinate are constructed. In order to extend this model to 
the nonlinear regime, where computational techniques are required, a fi
nite domain must be considered. In two dimensions, boundary conditions 
must be imposed in both directions. Here we choose appropriate match
ing conditions in the z-direction and periodic boundary conditions in the 
x-direction (see Tobias 1997 for a detailed discussion). Within this frame
work it is now permissible to introduce the possibility that the transport 
coefficients ( a and /3) and the shear have an underlying dependence on the 
z-coordinate ( though they remain independent of x). Such a model is local 
in the x-direction, but global in the z-direction. The nonlinear dynamics 
of such a model was investigated in detail in Tobias (1997) and the results 
summarised here. 

The linear theory ( as for the completely localised Parker model de
scribed earlier) indicates that as the dynamo number is increased past a 
threshold value, instability sets in to travelling wave solutions, with a well
defined preferred wavelength and frequency ( which depend on the criti
cal dynamo number). The waves now possess non-trivial spatial struc
ture in the z-direction, determined by the underlying profiles of the trans
port coefficients. What happens to the nonlinear solutions as the dynamo 
number D is inc'reased further depends on the form of the nonlinearity 
adopted. 

The first class of nonlinearities considered are 'static nonlinearities' 
(such as a, /3 or w-quenching), in which 'the mean magnetic field acts back 
instantaneously on the transport coefficient or differential rotation through 
a parameterised formula such as Eq. (2.34). For these instantaneous non
linear effects the travelling wave solutions that are destabilised in the initial 
bifurcation remain stable as the dynamo number is increased and no fur
ther temporal structure is added. It is also found that a- and w-quenching 
have similar properties, acting purely as equilibration mechanisms that have 
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little effect on the spatial dependence of the waves. Furthermore, for these 
cases, the wave-speed remains largely independent of the amplitude of the 
magnetic field as the dynamo number is increased. For ,8-quenching both 
the spatial structure and the wave speed of the travelling waves are modified 
in the nonlinear regime. Waves tend to travel more slowly as the magnetic 
diffusivity is quenched, and the dynamo becomes more inefficient. This 
change in the frequency of the waves due to diffusivity quenching may pro
vide a constraint for oscillatory dynamo models. 

In the second class of nonlinearities the magnetic field acts back via a 
separate dynamical equation. This could be due to the mean field driv
ing large-scale flows directly ( the Malkus- Proctor effect), or to the mean 
magnetic field suppressing the small-scale turbulence dynamically (which 
may involve the addition of a dynamic equation for the evolution of the 
transport coefficients, a:, ,8 or A). If the dynamic Malkus-Proctor effect is 
included as a nonlinearity, then the travelling wave solutions created in the 
initial bifurcation rapidly lose stability to states with more spatio-temporal 
variability. In particular, a complicated series of bifurcations, involving a 
secondary and tertiary Hopf bifurcation to modulated travelling waves and 
quasi-periodic waves, leads to a transition to chaotic oscillations. The basic 
magnetic cycle becomes modulated on a time-scale that is determined by 
the ratio of the turbulent diffusivities for magnetic field (,8) and angular 
velocity (vr ). This natural modulation of the basic magnetic cycle is often 
used as an explanation of intermittent behaviour in nonlinear dynamos -
for example, the solar cycle is modulated and undergoes recurrent periods 
of reduced activity known as Grand Minima. 

2.3.3.2 Nonlinear Dynamos in Finite Cartesian and Spherical 
Domains 

The behavio~r of nonlinear travelling waves described above is instructive, 
and yields so:rpe important results for the dependence of the amplitude 
and period of the mean field as a function of dynamo number. It also 
gives an indication of the role of aynamical nonlinearities in producing 
complicated spatio-temporal behaviour. However, we noted at the end 
of Sec. 2.2.3 that, even in the kinematic regime, dynamo solutions may 
have very different properties in finite domains to those found for periodic 
boundary conditions. Of particular importance is the interaction of the 
dynamo solutions with inhomogeneities in the underlying profiles of either 
the transport coefficients or the differential rotation, or the interaction with 
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boundaries. In the linear regime, both the frequency and the spatial form 
of the dynamo solutions were found to be sensitive to the imposition of 
boundary conditions and the inhomogeneities. It is therefore of no surprise 
that the behaviour of nonlinear mean field dynamo models in finite domains 
such as spheres, spherical shells, discs and Cartesian slabs may ~e very 
different to that of nonlinear travelling wave solutions. 

As for the kinematic case, most of the calculations of nonlinear mean 
field models in finite domains are targeted at modelling dynamos in specific 
astrophysical objects, with the structure of the transport coefficients and 
rotation profiles usually chosen using some plausible physical assumptions 
for the object to be modelled. In a similar manner the nonlinearity is chosen 
in a plausible, but ad hoc, manner. There are therefore a vast number of 
nonlinear mean field dynamo calculations, whose conclusions differ owing 
to the different assumptions behind the model in question (see, for example, 
the reviews cited above by Beck et al. 1996; Jones 2003; Ossendrijver 2003; 
Tobias & Weiss 2007). Discriminating between such models is extremely 
difficult and largely subjective. We prefer here to focus on generic properties 
of nonlinear models in finite domains - i.e. properties that appear robust 
whichever assumptions are included in the model. 

For nonlinear dynamo models in finite domains, the following properties 
tend to be observed. In general, the amplitude of the energy in the mean 
magnetic field is an increasing function of dynamo number. More specif
ically, the magnetic energy is often observed initially to increase linearly 
with supercriticality (i.e. (B) 2 ex (D - De)) for D sufficiently close to its 
critical value De. As D - De is increased further there is a saturation of 
the amplitude of the mean field as a function of dynamo numb~r. More
over, as D - De increases, the dynamo solution becomes more irregular 
for all types of nonlinearities used. A sequence of bifurcations leads to the 
spatio-temporal fragmentation of solutions and eventually to chaotic time 
dependence of the dynamo solutions. This pattern of spatio-temporal chaos 
may in generat be the result of either nonlinear interactions between the 
magnetic field and the mean flow ( as discussed above for nonlinear dynamo 
waves), or the interaction between 'mean magnetic modes with different 
symmetry properties. These interactions can be understood with reference 
to the theory of nonlinear dynamical systems (see, for example, Knobloch 
et al. l!:198, Tobias 2002 for an in-depth discussion of the mechanisms that 
can lead to the formation of chaotic solutions). For all nonlinearities, the 
primary frequency of oscillation of the dynamo appears to be an increasing 
function of dynamo number. This is due to the interaction of the nonlinear 
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wavetrain with the boundaries of the domain, and the subsequent change 
in lengthscale for the dynamo wavetrain (see, for example, Tobias 1998). 

Despite some common themes running through the nonlinear develop
ment of mean field dynamo models, there is still great uncertainty as to 
the range of applicability of such models. We stress again here that these 
models are based upon a theory for which even the kinematic behaviour is 
uncertain. It is clear that one must proceed with great care in evaluating 
the results of such nonlinear mean field models, though they may yet pro
vide some insight into the mechanisms for the generation of magnetic field 
in astrophysical bodies. 

2.4 Discussion 

Since the formulation of mean field electrodynamics by Steenbeck, Krause 
and Radler in the 1960's - foreshadowed by the work of Parker (1955) -
it has been used extensively in the modelling of the generation and mainte
nance of magnetic fields in planets, stars, galaxies and accretion discs. It is, 
in some sense, a remarkably successful theory, being able to reproduce tem
poral and spatial features of a tremendous range of observed astrophysical 
magnetic fields. This suggests strongly therefore that the 'true' equation 
describing the evolution of the mean field does indeed take the form of 
Eq. (2.9) although this is possibly not all that surprising, since the a

effect closes the dynamo loop and (3 is (in its simplest form) a turbulent 
diffusivity. However, that is not to say that the all is well with mean field 
electrodynamics. Even at the level of reproducing observed cosmical fields, 
the freedom in the choice of parameters means that models inspired by dif
ferent physical assumptions can lead to the same global features. Thus it is 
not possible to assert that specific magnetic behaviour (such as the cyclic 
evolution of 'a star's magnetic field, for example) results from specific forms 
of CTij and f3iJk, and hence from specific physical considerations. Conversely 
it 'is possible to have two rather similar mean field models that produce very 
different behaviour. Thus great care needs to be taken in the description 

and, a fortiori, in the prediction - of astrophysical magnetic fields via 
parameterised mean field models. 

Detailed investigation of the micro-physics of the mean field transport 
coefficients leads to further difficulties. Although for turbulent flows with 
low magnetic Reynolds numbers or very short correlation times the mean 
field description seems to hold, for the astrophysically relevant case of 



46 Relaxation Dynamics in Laboratory and Astrophysical Plasmas 

turbulence with Rm» 1 and 0(1) correlatio~ times the very foundations 
of mean field electrodynamics seem unsure. Here it seems unavoidable that 
the fluctuations in the magnetic field overwhelm the mean. This leads, as 
discussed earlier, to problems both in the kinematic regime, in which it can 
be hard even to determine a, and in the dynamic regime, where any a-effect 
is 'catastrophically' quenched by an extremely weak mean magnetic field. 
It appears that maybe what is required are less turbulent, more ordered 
flows. In the Sun these may arise from the presence of the tachocline, a 
thin shear region at the base of the convection zone. However, what hap
pens in fully convective stars, for example, or with the evolution of galactic 
magnetic fields, remains very much an open question. 
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