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Possibility of an inverse cascade of magnetic helicity 
in magnetohydrodynamic turbulence 
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Universite Paris VII; Observatoire de Meudon, France 
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Some of the consequences of the conservation of magnetic helicity 

a .  bd3r (a = vector potential of magnetic field b) s 
for incompressible three-dimensional turbulent MHD flows are investigated. 
Absolute equilibrium spectra for inviscid infinitely conducting flows truncated 
at  lower and upper wavenumbers k,,, and k,,, are obtained. When the total 
magnetic helicity approaches an upper limit given by the total energy (kinetic 
plus magnetic) divided by the spectra of magnetic energy and helicity are 
strongly peaked near kmin; in addition, when the cross-correlations between the 
velocity and magnetic fields are small, the magnetic energy density near kmin 
greatly exceeds the kinetic energy density. Several arguments are presented 
in favour of the existence of inverse cascades of magnetic helicity towards small 
wavenumbers leading to the generation of large-scale magnetic energy. 

1. Introduction 
It is known that turbulent flows which are not statistically invariant under 

plane reflexions may be important for the generation of magnetic fields; for 
example, Steenbeck, Krause & Radler (1966) have shown within the framework 
of the kinematic dynamo problem (prescribed velocity fields) that in helical 
flows, i.e. flows in which the velocity and vorticity are statistically correlated, 
a mean magnetic field may be amplified by the so-called a-effect. It has been 
recognized for quite some time (e.g. Batchelor 1950; Moffatt 1970, 1973) that, 
owing to the back reaction of the Lorentz force on the velocity field, the ultimate 
fate of the magnetic field and the magnetic energy can only be studied within 
the framework of the full MHD equations. These equations are 

(a/at- vV2) v = - (v. V) v + (b. V) b - Vp + f ,  

(a/at- hV2) b = - (v .  V) b + (b. V) V, 

(1) 

(2) 

V . V  = ' O ,  V.b = 0, 
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(3) 
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7 70 U .  Frisch et al. 

where v(r, t )  and (,up)* b(r, t )  are the velocity and magnetic fields (SI units), 
v is the kinematic viscosity, h the magnetic diffusivity, ,u the magnetic suscepti- 
bility, p the fluid density, pp the total pressure, and f(r, t )  a given solenoidal 
driving term which maintains statistical stationarity in the dissipative system. 
The ordinary Navier-Stokes equations resulting from (1)-(3) with b = 0 will 
be called the nonmagnetic equations. 

The present paper is essentially based on the fact that for inviscid, unforced, 
infinitely conducting, differentiable flows vanishing a t  infinity, the MHD equa- 
tions possess three quadratic invariants : one scalar, the total energy 

ET = Q (v2+G2) d3r, (4) J 
and two psendo-scalars, the magnetic helicity (Elsasser 1956) 

H M - a  - l /  a.bd3r ( 5 )  

Hc = 41.. b d3r. 

(where a = vector potential of magnetic field) and the cross-helicity (Woltjer 
1958) 

(6) 

An interpretation of the invariants ( 5 )  and (6) has been provided by Moffatt 
(1969). Note that the invariance of qw follows from (2) and (3) alone (with h = 0) 
and therefore puts a, constraint even on the kinematic dynamo theories. For 
statistically homogeneous turbulence, the above integrals are divergent and 
should be replaced by their mean values per unit volume, denoted by (ET) ,  

If we assume isotropy but not invariance under plane reflexions the simul- 
taneous second-order moments may be written in the Fourier representation 
(within constant factors) 

(HM) and (Hc). 

2(v,(k) va(k))  = P,j(k) U,(k)-kijfkfOK(k), 

2(vi(k)b?(k)) = I&(k) Oc(k)- is i j fkfUc(k) ,  (8) 

2(b,(k) bf(k)) = P,,(k) UM(k) - i s i j f k fgM(k ) ,  (9) 

where k = Ikl, q i ( k )  = di j -k ik i /k2  (10) 

(7) 

and eijf  is the fundamental antisymmetric tensor. For non-helical turbulence 
all pseudo-scalars O(k) vanish. The kinetic, magnetic and total energy spectra 
are given by 

E,(k) = 2nk2U,(k), EM(k) = 2nk2Um(k), (11) 

(12) E T ( k )  = E K ( k )  + EJf (k ) ,  

and the kinetic, magnetic and cross-helicity spectra by 

H K ( k )  = 2nk40K(k), HM(k) =2nk 

H,(k) = 2nk20&). 
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Magnetohydrodynamic helical turbulence 771 

A consequence of the positive definiteness of the spectral tensors is that the three 
helicity spectra satisfy realizability conditions : 

IHK(k)I 6 k E K ( k ) ,  (14) 

I4l4(k)l %!f(k)/k 6 E,(k)/k, (15) 

IHC(k)I { E X ( k ) E M ( k ) } h  d # E T ( k ) *  (16) 

When (14) is an equality for some k, we say that the kinetic helicity is maximal 
at that wavenumber (similarly for the magnetic and cross-helicity). When this 
holds for arbitrary k, we say that there is a state of maximal helicity. As noticed 
by Kraichnan (1973), maximal kinetic helicity cannot persist under evolution 
determined by the equations of motion. 

Note that (ET) ,  (H,) and (H,) are related to their spectra by 

It must be stressed that H,(k), H,(k) and Hc(k)  are not positive definite; there- 
fore, for example, the mean magnetic helicity (H,) may be zero with 

In the non-magnetic case the corresponding invariants are kinetic energy 
and kinetic helicity (Betchov 1961 ;f- Moffatt 1969). Curiously, in the transition 
to MHD the energetic invariant becomes the total energy whereas kinetic 
helicity is no longer invariant; magnetic helicity does not even have the same 
dimensions as kinetic helicity. The effect of kinetic helicity on non-magnetic 
turbulent flows has been considered in recent papers (Brissaud et al. 1973; 
Kraichnan 1973; Prisch, Lesieur & Brissaud 1974). The main conclusions of 
these papers are now briefly summarized for later use. 

(i) When kinetic helicity is injected a t  a constant rate 7 into a turbulent 
fully developed isotropic flow with an energy spectrum EK(k) ,  this kinetic helicity 
is carried along by the energy cascade, giving rise to a simultaneous helicity cas- 
cade of the form 

where E is the energy transfer rate. Since H,(k) is linear in 7, this cascade is con- 
veniently called linear. This result is supported by phenomenological arguments 
(Brissaud et at. 1973) and numerical calculations on a soluble stochastic model, 
which indeed show that, in the inertial range, ( E / T )  HK(k)/E,(k) is a purely 
numerical constant (Lesieur 1973). The possibility of an inverse helicity cascade, 
considered by Brissaud et al. (1973), seems now to be ruled out both by the results 
of numerical experiments and by an argument of Kraichnan (1973). He argued 
that, owing to the absence of absolute equilibrium states with energy peaked at  
low wavenumbers (as for two-dimensional turbulence), a simultaneous cascade 
of energy from intermediate wavenumbers to low wavenumbers and of helicity 
from intermediate wavenumbers to high wavenumbers is unlikely. 

t This reference contains certain minor errors, particularly in equations (2) and (8). 
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772 U .  Frisch et al. 

(ii) The presence of kinetic helicity, especially maximal helicity, inhibits energy 
transfer to large wavenumbers. This was first demonstrated by calculations for 
two interacting helical waves (Kraichnan 1973) and by numerical resolution of 
the direct-interaction approximation equation (J. Herring, private communica- 
tion). It is also supported by direct numerical integration of the Navier-Stokes 
equations (S. Patterson, private communication) and by a simple argument due 
to S. Patterson and W.V. R. Malkus: a non-zero helicity J”v.wd3r imposes 
certain phase relations between the velocity v and the vorticity o, e.g. HK > 0 
means that v and o have a tendency to align; this obviously reduces the nonlinear 
term v x win the Navier-Stokes equations, which means that transfer is inhibited. 

(iii) Application of Gibbs statistical mechanics to the inviscid non-magnetic 
equations truncated in Fourier space produces absolute-equilibrium solutions 
with a density in phase space proportional to exp(-aE,-PH,), where cc 
and ,8 are expressible in terms of the mean kinetic energy and helicity. The 
corresponding energy spectrum is 

EK(k)  = 47Takz/(a2-P2k2) (kmin < k < kmax),  (21) 
with the positivity conditions a, a2-P2k2  > 0. The presence of helicity (p + 0 )  
may strongly enhance the excitation found a t  large wavenumbers near L,,, 
(Kraichnan 1973). 

2. Absolute-equilibrium helical MHD ensembles 
Following Kraichnan (1967, 1973), we consider the absolute statistical 

equilibrium (v = h = 0, f = 0 )  of the truncated MHD equations. They are ob- 
tained by considering solutions which, being periodic in space, are represented 
by Fourier series and then retaining only those Fourier components v ( k )  and 
b ( k )  of the velocity and magnetic fields for which Ikl = L E I  = (kmtn, Ic,,,), 
and dropping any nonlinear interaction terms involving one or several wave- 
numbers outside this interval I .  The energy invariant 

E, = ix (v,(L) ~ f ( k )  +b , (k)  b:(k)) (22) 
k 

survives under truncation. Indeed, take the untruncated equations and assume 
that, a t  some time t, v ( k )  = b ( k )  = 0 for k$I. This does not imply that their 
time derivatives +(k)  and 6 ( k )  are zero for k$ I .  However, such terms will not 
contribute to dET/dt a t  time t since w,(k)S:(k), G,(k) u:(k), b,(k)6:(k) and 6,(k) 
x b:(k) are all zero for k$ I .  It follows that, a t  time t, dE,/dt has the same value, 
zero, for the untruncated and truncated equations (R. H. Kraichnan, private 
communication). The same proof holds for any quadratic invariant which is a 
sum of contributions from individual Fourier components, e.g. the magnetic 
and cross-helicity 

H M  = ‘i 2 ik-2crwb,br(k) b$(k) k,, 

Hc = f C (v,(k) b,”(k) + v:(k) b,(k)). 

(23) 

(24) 

k 

k 

Notice that in (22)-(24) ET, H,, and Hc are not the mean values of invariants 
but the stochastic values corresponding to individual realizations. 
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Mq~etohhydrodynntmic helical turbulence 773 

The truncated equations of motion possess canonical equilibrium ensembles 
for which the density in phase space is 

p = Z-lexp(-aE,-PHM-yH,), ( 2 5 )  

where Z is a normalizing constant. This density is the exponential of a quadratic 
form and therefore defines a Gaussian ensemble. To calculate the second-order 
moments of the components of the velocity and magnetic fields the following 
lemma is used. 

LEMMA. The multivariate Gaussian density 

i, i 
p ( x )  = Z-lexp{-QzAZj~i~j} (26) 

(Z,Xi) = A$, (27) 

has second-order moments given by 

where A-l is the inverse of A. 
This result is obvious when A is diagonal and the general case is reducible 

to this special case by a linear orthogonal transformation (see also Lumley 
1970, p. 38). 

To apply this result we must determine, for each wave vector k, the real and 
imaginary parts of the two components of v(k) in a plane perpendicular to k 
(since k.v(k)  = 0) and similarly for b(k). Clearly the matrix A separates into 
8 x 8 blocks corresponding to the different wave vectors. Each such block reads 

Qr 0 
0 Qr 
0 Plk 

a -pp  0 

a O O O Q y  0 

O a O O O  fry 

& y o  0 0 a 0 
O Q y O O  0 
0 0 fry 0 0 -P/k a 0 
0 0 0 &y p/rc 0 O a  

O O a O O  0 
O O O a O  0 

A(k) = 

The inverse of this is given by 

P O  O X Q  0 O Y  
P - X O O  & - Y O  

A-l(k) = - (29) A 
0 - Y  0 R - W  O 
0 - Y  Q O O - W  R O  
Y O  O Q W  0 O R  

where A = (a2 - &y2)2 - h-2a2P2, 

W = - a2P/k, X = - Py2/4k, Y = aBy/Bk, 
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7 74 U .  Frisch et al. 

It can be checked that the second-order moments given by (27) have the general 
form given by (7)-( 9) since we are dealing with an isotropic homogeneous situa- 
tion. Finally, the various energy and helicity spectra are 

477 k2 47rkc I 
E,(k) = - - Hn,(k) = -2 - 

/x cos2q5 D(k)’ acos q5 D(k)’ 

477 sin$ k2 

a cos2$ D(k)’  
&(I%) = -- - - 

where sin q5 = y/2a (-477 < $ < tr), kc = p/acos2q5s6] and D(k) = 1 - (kc/k)2. 
For the above calculations to be correct, the density p must be normalizable, 
i.e. the quadratic form aET+PHjI+yHc must be positive definite; this is 
easily seen to require a > 0, I y J  < 2a and D(k) > 0, which implies that JkcJ < kmin. 

By integrating (30)-(32) over k from kmin to kmax, it  is possible to express the 
three fundamental invariants (ET),  (He) and (I&) in terms of a, p, y, kmln and 
k,,, (see appendix). Conversely, given kmin, k,,,, (E,),  (He) and (HM) satis- 
fying realizability conditions, a, /3 and y are uniquely determined but cannot be 
obtained in closed analytic form. As special cases of interest, notice that P = 0 
is equivalent to (l&) = 0 and y = 0 is equivalent to (H,) = 0. 

If an ensemble of inviscid truncated MHD flows has a non-equilibrium initial 
distribution in phase space, it  will relax, assuming the mixing property of the 
dynamical system (Wightman 1971), to the canonical ensemble (25) with a, 
p and y depending only on the initial energy, cross-helicity and magnetic heli- 
city and not on the initial kinetic helicity. 

Let us now consider some of the implications of the equilibrium spectra 
(30)-(32). In  the absence of mean magnetic helicity (P = 0), (30)-(32) give the 
classical E(k)  N k2 spectrum obtained by Lee (1952) with equipartition of mag- 
netic and kinetic energy. When P $. 0, there is still approximate equipartition 
(E(k )  N k2) for k & / k c / ,  a result substantially different from the corresponding 
non-magnetic one (see $1 (iii)). However, for values of k near kmin the situation 
may be quite different if 

b i n -  I kc l  lkcl. (33) 

At this point it is convenient to consider separately the cases y = 0 and y + 0. 
When y = 0 and (33) holds, there is near k,,, a region of almost maximal helicity 
with very large values of E,(k) and H,(k); the mean total energy (E , )  in the 
interval (kmin, kmax) is made up essentially of magnetic energy and is related to 
the mean magnetic helicity (Hal) by 

kminl(Hit)I N (ET) .  (34) 

Since kmi,I(H*,)J ,< (E,) is a consequence of (15), these states with high mag- 
netic excitation near kmin can also be defined as states of high magnetic helicity. 
For y += 0, with (31) still holding, the correlations between v and b produce also 
a high magnetic excitation near k,,, but the magnetic energy density near kmin 
still exceeds the kinetic energy density by a factor of order l/sin2 $ and the ratio 
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Magnetohydrodynamic helical turbulewe 7 75 

,ill= 0.365 

k 

FIGURE 2 

FIGURE 1. Energy densities: effect of magnetic helicity when ( H c )  = 0; kmin = 0.365, 
k-, = 1, a = 4n, 4 = 0 ;  ( E K )  rr 0.32. ( a )  Kinetic energy density for k, = 0,  0.32 and 0.355 
and magnetic energy density for k, = 0; ( H M )  = 0,  ( E M )  N 0.32. ( b )  Magnetic energy den- 
sity for k ,  = 0.32; ( H M )  N -0.30, ( E m )  N 0.41, ~ ~ , I ( H M ) I / ( E T )  N 0.15. (c) Magnetic 
energy density for k ,  = 0.355; ( H M )  2: -0.45, ( E M )  2: 0 4 7 ,  k~,I(HM>I/(ET) N 0.21. 

FIGURE 2. Energydensities: effect of cross-helicity; k& = 0.365, km,, = 1, CL = 477. (a), ( c )  As 
in figure 1. (d )  Kinetic energy density and ( e )  magnetic energy density for k, = 0.355, q5 = &7r; 
( H M )  N -0.9, ( H c )  N -0.67, ( E K )  N 0.79, ( E M )  N 0.95, ~, , , , , ,~ (HM)~/(ET)  N 0.19, 
2 1 ( H c ) l / ( E ~ )  N 0.77. 

kmi,,(Haf)/(ET) cannot exceed (1  + sin2 #)-'. To illustrate the above results, 
we have plotted E,(k) and E,,(k) for different values of the ratio k,,,(Haf)/ 
(ET) for y = 0 in figure 1 and for two different values of y in figure 2 .  

The situation described here is reminiscent of two-dimensional non-magnetic 
absolute equilibria (Kraichnan 1967). I n  both cases, there is the possibility of 
high excitation a t  low wavenumbers. The essential differences are that in the 
two-dimensional case the equilibria with high excitation near kmin have negative 
01, i.e. negative temperatures, and are low enstrophy states. 
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3. Magnetic helicity cascades in fully developed isotropic MHD 
turbulence 

For MHD turbulent flows with statistical invariance under plane reflexions 
(no helicity) it is generally accepted that energy (kinetic +magnetic) cascades 
towards large wavenumbers. Following Kraichnan (1 965), Kraichnan & Nagara- 
jan (1967) and Orszag & Kruskal (1968), let us assume that there is a (local or 
semi-local) inertial range with an energy spectrum ET(k)  and an energy transfer 
rate E .  What happens if magnetic helicity is injected a t  a constant rate 9 a t  
some wavenumber in the inertial range! The case when cross-helicity is also 
injected will not be considered in this paper. Since magnetic helicity is conserved 
by the nonlinear interactions, a cascade process is expected. Contrary to the non- 
magnetic case (cf. 5 1 (i)), we must now rule out an upward linear cascade of 
magnetic helicity to increasing wavenumbers of the form 

because such a cascade cannot be continued beyond the wavenumber k N E / V  

where maximal magnetic helicity is reached. It is thus difficult to escape the con- 
clusion that the presence of magnetic helicity must produce some important 
change in fully developed MHD turbulence. 

Instead of an upward cascade, a possibility which must be seriously envisaged 
is that of an inverse cascade of magnetic helicity to small wavenumbers, which 
cannot be a linear cascade because it is not carried by an energy cascade. Further- 
more, all the triple correlations appearing in the equation for the evolution of 
magnetic helicity involve the velocity field, and thus a purely magnetic and local 
cascade is impossible (R. H. Kraichnan, private communication). In  fact, large- 
scale velocity fields will necessarily be generated by the Lorentz-force term in the 
Navier-Stokes equations; the inverse cascade then proceeds through the inter- 
action of the velocity fields with the large-scale magnetic fields. 

The results of 5 2, showing the possibility of high magnetic excitation at  small 
wavenumbers, indicate that an inverse cascade of magnetic helicity accompanied 
by magnetic energy may indeed exist. It is true that the absolute-equilibrium 
ensembles are very far from the actual non-equilibrium state of turbulence. 
Nevertheless (Kraichnan 1973) their value may be in showing the directions in 
which the actual states may plausibly be expected to transfer excitation, since 
within any given wavenumber band the characteristic time for reaching absolute 
equilibrium is the same as the eddy turnover time. For two-dimensional non- 
magnetic turbulence, the prediction by the absolute-equilibrium ensembles of an 
inverse energy cascade has, in fact, been verified by numerical experiment (Lilly 
1969). As an additional argument in favour of an inverse cascade (cf. Fjartoft 
1953), note that simultaneous up-transfer of total energy and magnetic helicity 
is impossible. Suppose that an initial state of maximal helicity is confined to two 
wavenumbers p and g ( p  < q) ,  and let this excitation be entirely transferred to 
the wavenumber k. From the conservation of total energy and magnet,ic helicity 
we have 

= ET(P)  + E,(d, (36) 
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(37) = H M ( P )  + H M ( q )  = ET(p)/P + ET(q)/q.  

This obviously violates (15) if k > q. 
The invariance of magnetic helicity holds only under the assumption that 

b(r, t )  vanishes a t  infinity or (in the statistically homogeneous case) that the 
mean magnetic field vanishes. In  the presence of a prescribed uniform magnetic 
field b,, the invariance of magnetic helicity disappears and so probably do the 
corresponding cascades. This should not be surprising, since it is known that 
large-scale magnetic fields differ very much from large-scale velocity fields in 
their effects: they cannot be suppressed by a Galilean transformation. 

4. Concluding remarks 
We have found new evidence that the absence of statistical symmetry in 

isotropic turbulent flows may be of interest in the MHD turbulence problem, 
possibly leading to the growth of magnetic energy and the appearance of large- 
scale magnetic fields, a question of considerable astrophysical interest. 

It is tempting to compare our present approach with the approach of Steen- 
beck et al. (1966). There are two important differences: (i) Steenbeck et al. make 
use only of the linear Ohm’s law, which incorporates the magnetic helicity in- 
variant but no energy invariant, whereas our approach is based on the invariants 
of the full nonlinear equations; (ii) in the analysis of Steenbeck et at., only kinetic 
helicity appears. As kinetic helicity is not conserved when nonlinear effects are 
included, the magnitude of the a-effect is modified (as analysed for example, by 
Moffatt 1970). Magnetic helicity is however conserved, and our theory includes 
explicit consideration of this constraint. 

We are grateful to Dr R. H. Kraichnan for a very illuminating discussion and 
to the National Center of Atmospheric Research (Boulder, Colorado), where 
part of this work was done. 

Appendix 
The expressions for (EK) ,  (EM), {&) and (H,) in terms of a, ,8, y ,  kma, 
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Note added in proof. The prediction of an inverse cascade of magnetic helicity 
is now supported by (i) a direct numerical simulation of the MHD equations 
with 323 Fourier modes due to S. Patterson and A. Pouquet, which shows a 
transfer of magnetic excitation towards small wavenumbers, and (ii) the 
numerical integration of the spectral equations obtained from the eddy damped 
quasi-normal approximation, which yields an indefinite inverse cascade. 
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