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Particles and fields in fluid turbulence
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CNRS, IHES, 91940 Bures-sur-Yvette and ENS-Lyon, 46 Alle d’Italie, 69364 Lyon, France

M. Vergassola
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The understanding of fluid turbulence has considerably progressed in recent years. The application of
the methods of statistical mechanics to the description of the motion of fluid particles, i.e., to the
Lagrangian dynamics, has led to a new quantitative theory of intermittency in turbulent transport. The
first analytical description of anomalous scaling laws in turbulence has been obtained. The underlying
physical mechanism reveals the role of statistical integrals of motion in nonequilibrium systems. For
turbulent transport, the statistical conservation laws are hidden in the evolution of groups of fluid
particles and arise from the competition between the expansion of a group and the change of its
geometry. By breaking the scale-invariance symmetry, the statistically conserved quantities lead to the
observed anomalous scaling of transported fields. Lagrangian methods also shed new light on some
practical issues, such as mixing and turbulent magnetic dynamo.
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‘‘Well,’’ said Pooh, ‘‘we keep looking for Home and not
finding it, so I thought that if we looked for this Pit, we’d
be sure not to find it, which would be a Good Thing,
because then we might find something that we weren’t
looking for, which might be just what we were looking
for, really.’’

A. A. Milne, Tigger is unbounced

I. INTRODUCTION

Turbulence is the last great unsolved problem of clas-
sical physics which has evaded physical understanding
and systematic description for many decades. Turbu-
lence is a state of a physical system with many degrees of
freedom strongly deviating from equilibrium. The first
obstacle to its understanding stems from the large num-
ber of degrees of freedom actively involved in the prob-
lem. The scale of injection, where turbulence is excited,
usually differs dramatically from the scale of damping,
where dissipation takes place. Nonlinear interactions
strongly couple the degrees of freedom by transferring
excitations from the injection to the damping scale
throughout the so-called inertial range of scales. The en-
suing complicated and irregular dynamics calls for a sta-
tistical description. The main physical problem is to un-
derstand to what extent the statistics in the inertial
interval is universal, i.e., independent of the conditions
of excitation and dissipation. In such general formula-
tion, the issue goes far beyond fluid mechanics, even
though the main examples and experimental data are
provided by turbulence in continuous media. From the
standpoint of theoretical physics, turbulence is a non-
equilibrium field-theoretical problem with many
strongly interacting degrees of freedom. The second
deeply rooted obstacle to its understanding is that far
from equilibrium we do not possess any general guiding
rule, like the Gibbs principle in equilibrium statistical
physics. Indeed, to describe the single-time statistics of
equilibrium systems, the only thing we need is the
knowledge of dynamic integrals of motion. Then, our
probability distribution in phase space is uniform over
the surfaces of constant integrals of motion. Dynami-
cally conserved quantities play an important role in tur-
bulence description, too, as they flow throughout the in-
ertial range in a cascadelike process. However, the
conserved quantity alone does not allow one to describe
the whole statistics but only a single correlation function
which corresponds to its flux. The major problem is to
obtain the rest of the statistics.

In every case, the starting point is to identify the dy-
namical integral of motion that cascades through the in-
ertial interval. Let us consider the forced three-
dimensional (3D) Navier-Stokes equation

] tv~r,t !1v~r,t !•“v~r,t !2n¹2v~r,t !

52“p~r,t !1f~r,t !, (1)

supplemented by the incompressibility condition “•v
50. An example of injection mechanism is a random
large-scale forcing f(r,t) with correlation length L . The
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relevant integral of motion, conserved in the absence of
injection and dissipation, is kinetic energy *v2dr/2 and
the quantity which cascades throughout the inertial in-
terval is energy density in wave-number space. The
energy flux-constancy relation was derived in Kolmog-
orov (1941) and it involves the third-order moment of
the longitudinal velocity increments:

^$@v~r,t !2v~0,t !#•r/r%3&[^~Drv !3&52
4
5

ēvr . (2)

The separation r is supposed to lie in the inertial inter-
val, ranging from the injection scale L down to the vis-
cous dissipation scale. The major physical assumption
made to derive the so-called 4/5 law is that the mean
energy dissipation rate ēv5n^(“v)2& has a nonzero limit
as the viscosity n tends to zero. This clearly points to the
nonequilibrium flux nature of turbulence. The assump-
tion of finite dissipation gives probably the first example
of what is called ‘‘anomaly’’ in modern field-theoretical
language: A symmetry of the inviscid equation (here,
time-reversal invariance) is broken by the presence of
the viscous term, even though the latter might have been
expected to become negligible in the limit of vanishing
viscosity. Note that the 4/5 law (2) implies that the third-
order moment is universal, that is, it depends on the
injection and the dissipation only via the mean energy
injection rate, coinciding with ēv in the stationary state.
To obtain the rest of the statistics, a natural first step
made by Kolmogorov himself was to assume the statis-
tics in the inertial range be scale invariant. The scale
invariance amounts to assuming that the probability dis-
tribution function (PDF) of the rescaled velocity differ-
ences r2hDrv can be made r independent for an appro-
priate h . The nth order moment of the longitudinal
velocity increments ^(Drv)n& (structure functions)
would then depend on the separation as a power law rsn

with the ‘‘normal scaling’’ behavior sn5hn . The rescal-
ing exponent may be determined by the flux law, e.g.,
h51/3 for 3D Navier-Stokes turbulence. In the original
Kolmogorov theory, the scale invariance was in fact fol-
lowing from the postulate of complete universality: the
dependence on the injection and the dissipation is car-
ried entirely by ēv not only for the third-order moment
but for the whole statistics of the velocity increments.
The velocity difference PDF could then involve only the
dimensionless combination ( ēvr)21/3Drv and would be
scale invariant. There are cases, like weakly nonlinear
wave turbulence (Zakharov et al., 1992), where both
scale invariance and complete universality are assured
by the fact that the statistics in the inertial range is close
to Gaussian. That does not hold for strongly nonlinear
systems. Already in 1942, L. D. Landau pointed out that
all the velocity structure functions (except the third one)
are averages of nonlinear functions of the flux. They are
therefore sensitive to its fluctuations, which depend on
the specific injection mechanisms. Consequently, the ve-
locity statistics in the inertial range may have nonuniver-
sal features.
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Experiments do not support scale invariance either.
The structure functions are in fact found experimentally
to have a power-law dependence on the separation r .
However, the PDF of the velocity differences at various
separations cannot be collapsed one onto another by
simple rescaling and the scaling exponent sn of the
structure functions is a nonlinear concave function of
the order n . As the separation decreases in the inertial
range, the PDF becomes more and more non-Gaussian,
with a sharpening central peak and a tail that becomes
longer and longer. In other words, the smaller the sepa-
rations considered, the higher the probability of very
weak and strong fluctuations. This manifests itself as a
sequence of strong fluctuations alternating with quies-
cent periods, which is indeed observed in turbulence sig-
nals and is known as the phenomenon of intermittency.
The violation of the dimensional predictions for the scal-
ing laws is referred to as ‘‘anomalous scaling’’ for it re-
flects, again, a symmetry breaking. The Euler equation is
scale invariant and the scales of injection and dissipation
are supposed to be very large and small (formally, the
limits to infinity and zero should be taken). However,
the dynamics of turbulence is such that the limits are
singular and scale invariance is broken. The presence of
a finite injection scale L , irrespective of its large value, is
felt throughout the inertial range precisely via the
anomalies ^(Drv)n&}( ēvr)n/3(L/r)n/32sn.

The non-Gaussianity of the statistics, the anomalous
scaling, and the intermittency of the field occur as a rule
rather than an exception in the context of fluid dynam-
ics. The same phenomenology is observed in many other
physical systems. An incomplete list includes compress-
ible Navier-Stokes turbulence, Burgers’ turbulence, and
scalar and magnetic fields. Examples of scalar fields are
provided by the temperature of a fluid, the humidity in
the atmosphere, the concentration of chemical or bio-
logical species. The advection-diffusion equation gov-
erning the transport of a nonreacting scalar field by an
incompressible velocity is

] tu~r,t !1v~r,t !•“u~r,t !2k¹2u~r,t !5w~r,t !, (3)

where w describes the sources. For scalar dynamics, the
space integral of any function of u is conserved in the
absence of sources and diffusion. In their presence, the
corresponding relation for the flux of u2 was derived in
Yaglom (1949):

^{@v~r,t !2v~0,t !#•r/r}@u~r,t !2u~0,t !#2&52
4
3

ēr .

(4)

The major physical assumption is again that the mean
scalar dissipation rate ē5k^(¹u)2& remains finite even
in the limit where the molecular diffusivity k vanishes.
Consider the particular case when the advecting velocity
v satisfies the 3D Navier-Stokes equation. Assuming
again scale-invariance, the flux relations (2) and (4)
would imply that the scaling exponent of both the veloc-
ity and the scalar field is 1/3. As it was expected for the
velocity, the scalar structure functions Sn(r)5^@u(r,t)
2u(0,t)#n& would then depend on the separation as
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power laws rzn with zn5n/3. Experiments indicate that
scale invariance is violated for a scalar field as well, that
is znÞn/3. More importantly, the intermittency of the
scalar is much stronger than that of the velocity, in par-
ticular, n/32zn is substantially larger than n/32sn . It
was a major intuition of R. H. Kraichnan to realize that
the passive scalar could then be intermittent even in the
absence of any intermittency of the advecting velocity.

The main ambition of the modern theory of turbu-
lence is to explain the physical mechanisms of intermit-
tency and anomalous scaling in different physical sys-
tems, and to understand what is really universal in the
inertial-interval statistics. It is quite clear that strongly
nonequilibrium systems generally do not enjoy the same
degree of universality as those in equilibrium. In the ab-
sence of a unified approach to nonequilibrium situa-
tions, one tries to solve problems on a case-by-case ba-
sis, with the hope to learn if any universal guiding
principle may be recognized. It is in solving the particu-
lar problems of passive scalar and magnetic fields that an
important step in general understanding of turbulence
has been recently made. The language most suitable for
the description of the systems turned out to be the La-
grangian statistical formalism, i.e., the description of the
motion of fluid particles. This line of analysis, pioneered
by L. F. Richardson and G. I. Taylor in the 1920s and
later developed by R. H. Kraichnan and others, has
been particularly effective here. The results differ from
case to case. Some fields are non-Gaussian but scale in-
variance is not broken, while others have turned out to
be amenable to the first ever analytical description of
anomalous scaling laws. The anomalous exponents have
been found to be universal, but not the constants ap-
pearing in the prefactors of generic correlation func-
tions. This has provided a quantitative clarification of
Landau’s previously mentioned remark and of the as-
pects of turbulence statistics that may still be expected
to be universal. More importantly, the anomalous scaling
has been traced to the existence of statistical integrals of
motion. The mechanism is quite robust and relevant for
transport by generic turbulent flows. The nature of those
integrals of motion strongly differs from that of the dy-
namic conservation laws that determine equilibrium sta-
tistics. For any finite number of fluid particles, the con-
served quantities are functions of the interparticle
separations that are statistically preserved as the par-
ticles are transported by the random flow. For example,
at scales where the velocity field is spatially smooth, the
average distance R between two particles generally
grows exponentially, while the ensemble average ^R2d&
is asymptotically time independent in a statistically iso-
tropic d-dimensional random flow. The integrals of mo-
tion change with the number of particles and generally
depend nontrivially on the geometry of their configura-
tions. In the connection between the advected fields and
the particles, the order of the correlation functions is
equal to the number of particles and the anomalous scal-
ing issue may be recast as a problem in statistical geom-
etry. The nonlinear behavior of the scaling exponents
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with the order is then due to the dependence of the
integrals of motion on the number of particles. The ex-
istence of statistical conservation laws signals that the
Lagrangian dynamics keeps trace of the particle initial
configuration throughout the evolution. This memory is
what makes the correlation functions at any small scale
sensitive to the presence of a finite injection length L .
We believe that, more generally, the notion of statistical
integrals of motion is a key to understand the universal
part of the steady-state statistics for systems far from
equilibrium.

The aim of this review is a description of fluid turbu-
lence from the Lagrangian viewpoint. Classical literature
on Lagrangian dynamics mostly concentrated on turbu-
lent diffusion and pair dispersion, i.e., the distance trav-
eled by one particle or the separation between two par-
ticles as a function of time. By contrast, in that general
picture that has emerged recently, the evolution of the
multiparticle-configuration geometry takes center stage.
The main body of the review will present these novel
aspects of Lagrangian dynamics and their consequences
for the advected fields. We shall adhere to the following
plan. The knowledge accumulated on one- and two-
particle dynamics has been extensively covered in litera-
ture (Pope, 1994; Majda and Kramer, 1999). The objec-
tive of the first three parts of Sec. II is to point out a few
fundamental issues, with particular attention to the basic
differences between the cases of spatially smooth and
nonsmooth velocity fields. We then proceed to the mul-
tiparticle statistics and the analysis of hidden statistical
conservation laws that cause the breakdown of scale in-
variance. Most of this analysis is carried out under the
assumption of a prescribed statistics of the velocity field.
In Sec. III we shall analyze passive scalar and vector
fields transported by turbulent flow and what can be in-
ferred about their statistics from the motion of fluid par-
ticles. In Sec. IV, we briefly discuss the Lagrangian dy-
namics in the Burgers and the Navier-Stokes equations.
The statistics of the advecting velocity is not prescribed
anymore, but it results from nonlinear dynamics. Con-
clusions focus on the impact of the results presented in
this review on major directions of future research. Read-
ers from other fields of physics interested mainly in the
breakdown of scale invariance and statistical conserva-
tion laws may restrict themselves to Secs. II.C, II.E,
III.C, and V.

II. PARTICLES IN FLUID TURBULENCE

As explained in the Introduction, understanding the
properties of transported fields involves the analysis of
the behavior of fluid particles. We have therefore de-
cided to first present results on the time-dependent sta-
tistics of the Lagrangian trajectories Rn(t) and to devote
the subsequent Sec. III to the description of transported
fields. In the present section we sequentially increase the
number of particles involved in the problem. We start
from a single trajectory whose effective motion is a
simple diffusion at times longer than the velocity corre-
lation time in the Lagrangian frame (Sec. II.A). We then
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move to two particles. The separation law of two close
trajectories depends on the scaling properties of the ve-
locity field v(r,t). If the velocity is smooth, that is
uv(Rn)2v(Rm)u}uRn2Rmu, then the initial separation
grows exponentially in time (Sec. II.B). The smooth case
can be analyzed in much detail using the large deviation
arguments presented in Sec. II.B.1. The reader mainly
interested in applications to transported fields might
wish to take the final results (21) and (27) for granted,
skipping their derivation and the analysis of the few
solvable cases where the large deviations may be calcu-
lated exactly. If the velocity is nonsmooth, that is,
uv(Rn)2v(Rm)u}uRn2Rmua with a,1, then the separa-
tion distance between two trajectories grows as a power
of time (Sec. II.C), as first observed by Richardson
(1926). We discuss important implications of such a be-
havior on the nature of the Lagrangian dynamics. The
difference between the incompressible flows, where the
trajectories generally separate, and compressible ones,
where they may cluster, is discussed in Sec. II.D. Finally,
in the consideration of three or more trajectories, the
new issue of geometry appears. Statistical conservation
laws come to light in two-particle problem and then fea-
ture prominently in the consideration of multiparticle
configurations. Geometry and statistical conservation
laws are the main subject of Sec. II.E. Although we try
to keep the discussion as general as possible, much of
the insight into the trajectory dynamics is obtained by
studying simple random ensembles of synthetic veloci-
ties where exact calculations are possible. The latter
serve to illustrate the general features of the particle
dynamics.

A. Single-particle diffusion

The Lagrangian trajectory R(t) of a fluid particle
advected by a prescribed incompressible velocity field
v(r,t) in d space dimensions and undergoing molecular
diffusion with diffusivity k is governed by the stochastic
equation (Taylor, 1921), customarily written for
differentials:

dR5v~R,t !dt1A2kdb~ t !. (5)

Here, b(t) is the d-dimensional standard Brownian mo-
tion with zero average and covariance function
^b i(t)b j(t8)&5d ij min(t,t8). The solution of Eq. (5) is
fixed by prescribing the particle position at a fixed time,
e.g., the initial position R(0).

The simplest instance of Eq. (5) is the Brownian mo-
tion, where the advection is absent. The probability den-
sity P(DR;t) of the displacement DR(t)5R(t)2R(0)
satisfies the heat equation (] t2k“2)P50 whose
solution is the Gaussian distribution P(DR;t)
5(4pkt)2d/2 exp@2(DR)2/(4kt)# . The other limiting
case is pure advection without noise. The properties of
the displacement depend then on the specific trajectory
under consideration. We shall always work in the frame
of reference with no mean flow. We assume statistical
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homogeneity of the Eulerian velocities which implies
that the Lagrangian velocity V(t)5v@R(t),t# is statisti-
cally independent of the initial position. If, additionally,
the Eulerian velocity is statistically stationary, then so is
the Lagrangian one.1 The single-time expectations of the
Lagrangian velocity coincide in particular with those of
the Eulerian one, e.g., ^V(t)&5^v&50. The relation be-
tween the multitime statistics of the Eulerian and the
Lagrangian velocities is, however, quite involved in the
general case.

For k50, the mean-square displacement satisfies the
differential equation:

d

dt
^~DR~ t !!2&52E

0

t

^V~ t !•V~s !&ds

52E
0

t

^V~0 !•V~s !&ds , (6)

where the second equality uses the stationarity of V(t).
The behavior of the displacement is crucially dependent
on the range of temporal correlations of the Lagrangian
velocity. Let us define the Lagrangian correlation time as

t5

E
0

`

^V~0 !•V~s !&ds

^V2&
. (7)

The value of t provides a measure of the Lagrangian
velocity memory. Divergence of t is symptomatic of per-
sistent correlations. As we shall discuss in the sequel, no
general relation between the Eulerian and the Lagrang-
ian correlation times can be established but for the case
of short-correlated velocities. For times t!t , the two-
point function in Eq. (6) is approximately equal to ^v2&
and the particle transport is ballistic: ^(DR)2&.^v2&t2.
When the Lagrangian correlation time is finite, a generic
situation in a turbulent flow, an effective diffusive re-
gime arises for t@t with ^(DR)2&52^v2&tt (Taylor,
1921). The particle displacements over time segments
spaced by distances much larger than t are indeed al-
most independent. At long times, the displacement DR
behaves then as a sum of many independent variables
and falls into the class of stationary processes governed
by the central limit theorem. In other words, the dis-
placement for t@t becomes a Brownian motion in d
dimensions with

^DRi~ t !DRj~ t !&.2De
ijt , (8)

where

De
ij5

1
2 E0

`

^Vi~0 !Vj~s !1Vj~0 !Vi~s !&ds . (9)

1This follows by averaging the expectations involving V(t
1t) over the initial position R(0) (on which they do not de-
pend) and by the change of variables R(0)°R(t) under the
velocity ensemble average. The argument requires the incom-
pressibility of the velocity, see Sec. II.D.
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The same arguments carry over to the case of a nonva-
nishing molecular diffusivity. The symmetric second-
order tensor De

ij describes the effective diffusivity (also
called eddy diffusivity). The trace of De

ij is equal to the
long-time value ^v2&t of the integral in Eq. (6), while its
tensorial properties reflect the rotational symmetries of
the velocity field. If it is isotropic, the tensor reduces to
a diagonal form characterized by a single scalar value.
The main problem of turbulent diffusion is to obtain the
effective diffusivity tensor, given the velocity field v and
the value of the diffusivity k. Exhaustive reviews of the
problem are available in the literature (Bensoussan
et al., 1978; Pope, 1994; Fannjiang and Papanicolaou,
1996; Majda and Kramer, 1999).

The other general issue in turbulent diffusion is about
the conditions on the velocity field ensuring the La-
grangian correlation time t be finite and an effective
diffusion regime take place for large enough times. A
sufficient condition (Kraichnan, 1970; Avellaneda and
Majda, 1989; Avellaneda and Vergassola, 1995) is that
the vector potential variance ^A2& is finite, where the 3D
incompressible velocity v5“3A. Similar conditions are
valid for any space dimension. The condition kÞ0 is
essential to the validity of the previous result, as shown
by the counter example of Rayleigh-Bénard convective
cells, see, e.g., Normand et al. (1977). In the absence of
molecular noise, the particle circulates forever in the
same convective cell, with no diffusion taking place at
any time. This provides an example of subdiffusion: the
integral in Eq. (6) goes to zero as t→` and the growth
of the mean-square displacement is slower than linear.
Note that any finite molecular diffusivity, however small,
creates thin diffusive layers at the boundaries of the
cells; particles can then jump from one cell to another
and diffuse. Subdiffusion is particularly relevant for
static 2D flows, where tools borrowed from percolation/
statistical topography find most fruitful applications
(Isichenko, 1992). Trapping effects required for subdif-
fusion are, generally speaking, favored by the compress-
ibility of the velocity field, e.g., in random potentials
(Bouchaud and Georges, 1990). Subdiffusive effects are
expected to be overwhelmed by chaotic mixing in flows
leading to Lagrangian chaos, i.e., to particle trajectories
that are chaotic in the absence of molecular diffusion
(Ottino, 1989; Bohr et al., 1998). This is the generic situ-
ation for 3D and 2D time-dependent incompressible
flows.

Physical situations having an infinite Lagrangian cor-
relation time t correspond to superdiffusive transport:
divergences of the integral in Eq. (6) as t→` signal that
the particle transport is faster than diffusive. A classical
example of such behavior is the class of parallel flows
presented by Matheron and de Marsily (1980). If the
large-scale components of the velocity field are suffi-
ciently strong to make the particle move in the same
direction for arbitrarily long periods the resulting mean-
square displacement grows more rapidly than t . Other
simple examples of superdiffusive motion are Lévy-type
models (Geisel et al., 1985; Shlesinger et al., 1987). A de-
tailed review of superdiffusive processes in Hamiltonian
systems and symplectic maps can be found in Shlesinger
et al. (1993).
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Having listed different subdiffusive and superdiffusive
cases, from now on we shall be interested in random
turbulent flows with finite Lagrangian correlation times,
which are experimentally known to occur for sufficiently
high Reynolds numbers (Pope, 1994). For the long-time
description of the diffusion in such flows, it is useful to
consider the extreme case of random homogeneous and
stationary Eulerian velocities with a short correlation
time. The formal way to get these processes is to change
the time scale by taking the scaling limit
limm→`m1/2v(r,mt), i.e., considering the process as
viewed in a sped-up film. We assume that the connected
correlation functions2 decay fast enough when time dif-
ferences increase. The elementary consequences of
those assumptions are the existence of the long-time
asymptotic limit and the fact that it is governed by the
central limit theorem. When m→` , we recover a veloc-
ity field which is Gaussian and white in time, character-
ized by the two-point function

^v i~r,t !v j~r8,t8!&52d~ t2t8!Dij~r2r8!. (10)

The advection by such velocity fields was first consid-
ered by Kraichnan (1968) and it is common to call the
Gaussian ensemble of velocities with two-point function
(10) the Kraichnan ensemble. For the Kraichnan en-
semble, the Lagrangian velocity V(t) has the same
white-noise temporal statistics as the Eulerian one v(r,t)
for fixed r and the displacement along a Lagrangian tra-
jectory DR(t) is a Brownian motion for all times. The
eddy diffusivity tensor is De

ij5Dij(0), which is a special
case of relation (9). In the presence of molecular diffu-
sion, the overall diffusivity is the sum of the eddy con-
tribution and the molecular value kd ij.

In realistic turbulent flows, the Lagrangian correlation
time t is comparable to the characteristic time scale of
large eddies. Progress in numerical simulations (Yeung,
1997) and experimental technique (Voth et al., 1998; La
Porta et al., 2001; Mordant et al., 2001) has provided in-
formation on the single-particle statistics in the regime
intermediate between ballistic and diffusive. Such be-
havior is captured by the the subtracted Lagrangian au-
tocorrelation function ^V(0)@V(0)2V(t)#& or its sec-
ond time derivative that is the autocorrelation function
of the Lagrangian acceleration. This information has
provided stringent tests on simple stochastic models
(that eliminate velocity fields), often used in the past to
describe the one-particle and two-particle statistics in
turbulent flows (Pope, 1994). The Kraichnan ensemble
that models stochastic velocity fields certainly misrepre-
sents the single-particle statistics by suppressing the re-
gime of times smaller than t. It constitutes, however, as
we shall see in the sequel, an important theoretical labo-
ratory for studying the multiparticle statistics in fluid tur-
bulence.

2The connected correlation functions, also called cumulants,
are recursively defined by the relation ^v1¯vn&
5($pa%)a^^vpa(1) , . . . ,vpa(na)&& with the sum over the parti-
tions of $1, . . . ,n%.
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B. Two-particle dispersion in a smooth velocity

The separation R125R12R2 between two fluid par-
ticles with trajectories Rn(t)5R(t ;rn) passing at t50
through the points rn satisfies (in the absence of Brown-
ian motion) the equation

Ṙ125v~R1 ,t !2v~R2 ,t !. (11)

We consider first an incompressible flow where the par-
ticles generally separate. In this subsection, we start
from the smallest distances where the velocity field can
be considered spatially smooth due to viscous effects. In
next subsection (Sec. II.C), we treat the dispersion prob-
lem for larger distances (in the inertial interval of turbu-
lence) where the velocity field has a nontrivial scaling.
Finally, we describe a compressible flow and show how
the separation among the particles is replaced by their
clustering as the degree of compressibility grows.

1. General considerations

In smooth velocities, for separations R12 much smaller
than the viscous scale of turbulence, i.e., in the so-called
Batchelor regime (Batchelor, 1959), we may approxi-
mate v(R1 ,t)2v(R2 ,t)'s(t)R12(t) with the Lagrang-
ian strain matrix s ij(t)5¹ jv

i@R2(t),t# . In this regime,
the separation obeys the ordinary differential equation

Ṙ12~ t !5s~ t !R12~ t !, (12)

leading to the linear propagation

R12~ t !5W~ t !R12~0 !, (13)

where the evolution matrix is defined as Wij(t)
5]Ri(r;t)/]rj with r5r2 . We shall also use the notation
W(t ;r) when we wish to keep track of the initial point or
W(t ;r,s) if the initial time s is different from zero.

Equation (12), with the strain treated as given, may be
explicitly solved for arbitrary s(t) only in the 1D case
by expressing W(t) as the exponential of the time-
integrated strain:

ln@R~ t !/R~0 !#5ln W~ t !5E
0

t
s~s !ds[X . (14)

We have omitted subscripts replacing R12 by R. When t
is much larger than the correlation time t of the strain,
the variable X behaves as a sum of many independent
equally distributed random numbers X5(1

Nyi with N
}t/t . Its mean value ^X&5N^y& grows linearly in time.
Its fluctuations X2^X& on the scale O(t1/2) are gov-
erned by the central limit theorem that states that (X
2^X&)/N1/2 becomes for large N a Gaussian random
variable with variance ^y2&2^y&2[D . Finally, its fluctua-
tions on the larger scale O(t) are governed by the large
deviation theorem that states that the PDF of X has
asymptotically the form

P~X !}e2NH(X/N2^y&). (15)

This is an easy consequence of the exponential depen-
dence on N of the generating function ^ezX& of the mo-
ments of X . Indeed, ^ezX&5eNS(z), where we have de-
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noted ^ezy&[eS(z) (assuming that the expectation exists
for all complex z). The PDF P(X) is then given by the
inverse Laplace transform (1/2pi) *e2zX1NS(z)dz with
the integral over any axis parallel to the imaginary one.
For X}N , the integral is dominated by the saddle point
z0 such that S8(z0)5X/N and the large deviation rela-
tion (15) follows with H52S(z0)1z0S8(z0). The func-
tion H of the variable X/N2^y& is called entropy func-
tion as it appears also in the thermodynamic limit in
statistical physics (Ellis, 1985). A few important proper-
ties of H (also called rate or Cramér function) may be
established independently of the distribution P(y). It is
a convex function which takes its minimum at zero, i.e.,
for X taking its mean value ^X&5NS8(0). The minimal
value of H vanishes since S(0)50. The entropy is qua-
dratic around its minimum with H9(0)5D21, where D
5S9(0) is the variance of y . The possible non-
Gaussianity of the y’s leads to a nonquadratic behavior
of H for (large) deviations of X/N from the mean of the
order of D/S-(0).

Coming back to the logarithm ln W(t) of the interpar-
ticle distance ratio in Eq. (14), its growth (or decay) rate
l5^X&/t is called the Lyapunov exponent. The mo-
ments ^@R(t)#n& behave exponentially as exp@g(n)t# with
g(n) a convex function of n vanishing at the origin.
Even if l5g8(0),0, high-order moments of R may
grow exponentially in time; see, for instance, the behav-
ior of the interparticle distance discussed in Sec. II.D. In
this case, there must be one more zero n1 of g(n) and a
statistical integral of motion, ^Rn1&, that does not de-
pend on time at large times.

In the multidimensional case, the solution (13) for
R(t) is determined by products of random matrices
rather than just random numbers. The evolution matrix
W(t) may be written as

W~ t !5T expF E
0

t
s~s !dsG

5 (
n50

` E
0

t
s~sn!dsn¯E

0

s3
s~s2!ds2E

0

s2
s~s1!ds1 .

(16)

This time-ordered exponential form is, of course, not
very useful for direct calculations except for the particu-
lar case of a short-correlated strain, see below. The main
statistical properties of the separation vector R needed
for most physical applications might still be established
for quite arbitrary strains with finite temporal correla-
tions. The basic idea goes back to Liapounoff (1907) and
Furstenberg and Kesten (1960) and it found further de-
velopment in the multiplicative ergodic theorem of Os-
eledec (1968). The modulus R of the separation vector
may be expressed via the positive symmetric matrix
WTW . The main result states that in almost every real-
ization of the strain, the matrix (1/t)ln WTW stabilizes as
t→` . In particular, its eigenvectors tend to d fixed or-
thonormal eigenvectors fi . To understand that intu-
itively, consider some fluid volume, say a sphere, which
evolves into an elongated ellipsoid at later times. As
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time increases, the ellipsoid is more and more elongated
and it is less and less likely that the hierarchy of the
ellipsoid axes will change. The limiting eigenvalues

l i5 lim
t→`

t21 lnuWfiu (17)

define the so-called Lyapunov exponents. The major
property of the Lyapunov exponents is that they are re-
alization independent if the strain is ergodic. The usual
convention is to arrange the exponents in nonincreasing
order.

The relation (17) tells that two fluid particles sepa-
rated initially by R(0) pointing into the direction fi will
separate (or converge) asymptotically as exp(lit). The
incompressibility constraints det(W)51 and (l i50 im-
ply that a positive Lyapunov exponent will exist when-
ever at least one of the exponents is nonzero. Consider
indeed

E~n !5 lim
t→`

t21 ln^@R~ t !/R~0 !#n&, (18)

whose slope at the origin gives the largest Lyapunov ex-
ponent l1 . The function E(n) obviously vanishes at the
origin. Furthermore, E(2d)50, i.e., incompressibility
and isotropy make that ^R2d& is time-independent as t
→` (Furstenberg, 1963; Zel’dovich et al., 1984). Nega-
tive moments of orders n,21 are indeed dominated by
the contribution of directions R(0) almost aligned to the
eigendirections f2 , . . . ,fd . At n,12d the main contri-
bution comes from a small subset of directions in a solid
angle }exp(dldt) around fd . It follows immediately that
^Rn&}exp@ld(d1n)t# and that ^R2d& is a statistical inte-
gral of motion. Since E(n) is a convex function, it can-
not have other zeros except 2d and 0 if it does not
vanish identically between those values. It follows that
the slope at the origin, and thus l1 , is positive. The
simplest way to appreciate intuitively the existence of a
positive Lyapunov exponent is to consider, following
Zel’dovich et al. (1984), the saddle-point 2D flow vx
5lx ,vy52ly . A vector initially forming an angle f
with the x axis will be stretched after time T if cos f
>@11exp(2lT)#21/2, i.e., the fraction of stretched direc-
tions is larger than 1/2.

A major consequence of the existence of a positive
Lyapunov exponent for any random incompressible flow
is an exponential growth of the interparticle distance
R(t). In a smooth flow, it is also possible to analyze the
statistics of the set of vectors R(t) and to establish a
multidimensional analog of Eq. (15) for the general case
of a nondegenerate Lyapunov exponent spectrum. The
final results will be the large deviation expressions (21)
and (27) below. The idea is to reduce the d-dimensional
problem to a set of d scalar problems excluding the an-
gular degrees of freedom. We describe this procedure
following Balkovsky and Fouxon (1999). Consider the
matrix I(t)5W(t)WT(t), representing the tensor of in-
ertia of a fluid element like the above-mentioned ellip-
soid. The matrix is obtained by averaging Ri(t)Rj(t)d/l2

over the initial vectors of length l . In contrast to WTW
that stabilizes at large times, the matrix I rotates in ev-
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ery realization. To account for that rotation, we repre-
sent the matrix as OTLO with the orthogonal O com-
posed of the eigenvectors of I and the diagonal L having
the eigenvalues e2r1, . . . ,e2rd arranged in nonincreasing
order. The evolution equation ] tI5sI1IsT takes then
the form

] tr i5s̃ ii , s̃5OsOT, (19)

] tO5VO , V ij5
e2r is̃ ji1e2r js̃ ij

e2r i2e2r j
, (20)

with no summation over repeated indices. We assume
isotropy so that at large times the SO(d) rotation matrix
O is distributed uniformly over the sphere. Our task is
to describe the statistics of the stretching and the con-
traction, governed by the eigenvalues r i . We see from
Eqs. (19) and (20) that the evolution of the eigenvalues
is generally entangled to that of the angular degrees of
freedom. As time increases, however, the eigenvalues
will become widely separated (r1@¯@rd) for a major-
ity of the realizations and V ij→s̃ ji for i,j (the upper
triangular part of the matrix follows from antisymme-
try). The dynamics of the angular degrees of freedom
becomes then independent of the eigenvalues and the
set of Eqs. (19) reduces to a scalar form. The solution
r i5*0

t s̃ ii(s)ds allows the application of the large devia-
tion theory, giving the asymptotic PDF:

P~r1 , . . . ,rd ;t !}exp@2tH~r1 /t2l1 ,. . . ,rd21 /t2ld21!#

3u~r12r2!¯u~rd212rd!

3d~r11¯1rd!. (21)

The Lyapunov exponents l i are related to the strain sta-
tistics as l i5^s̃ ii& where the average is temporal. The
expression (21) is not valid near the boundaries r i
5r i11 in a region of order unity, negligible with respect
to l it at times t@(l i2l i11)21.

The entropy function H depends on the details of the
strain statistics and has the same general properties as
above: it is non-negative, convex, and it vanishes at zero.

Near the minimum, H(x)' 1
2 (C21) ijxixj with the coef-

ficients of the quadratic form given by the integrals of
the connected correlation functions of s̃ defined in Eq.
(19):

Cij5E ^^s̃ ii~ t !,s̃ jj~ t8!&&dt8, i ,j51, . . . ,d21. (22)

In the d-correlated case, the entropy is everywhere qua-
dratic. For a generic initial vector r, the long-time
asymptotics of ln(R/r) coincides with P(r1)
5*P(r1 ,. . . ,rd)dr2¯drd which also takes the large-
deviation form at large times, as follows from Eq. (21).
The quadratic expansion of the entropy near its mini-
mum corresponds to the lognormal distribution for the
distance between two particles,

P~r ;R ;t !}exp$2@ ln~R/r !2l̄t#2/~2Dt !%, (23)

with r5R(0), l̄5l1 and D5C11 .
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It is interesting to note that under the same assump-
tion of nondegenerate Lyapunov spectrum one can ana-
lyze the eigenvectors ei of the evolution matrix W
(Goldhirsch et al., 1987). Note the distinction between
the eigenvectors ei of W and fi of WTW . Let us order
the eigenvectors ei according to their eigenvalues. Those
are real due to the assumed nondegeneracy and they
behave asymptotically as exp(l1t), . . . ,exp(ldt). The ed
eigenvector converges exponentially to a fixed vector
and any subspace spanned by $ed2k , . . . ,ed% for 0<k
<d tends asymptotically to a fixed subspace for every
realization. Note that the subspace is fixed in time but
changes with the realization.

Molecular diffusion is incorporated into the above
picture by replacing the differential Eq. (12) by its noisy
version

dR~ t !5s~ t !R~ t !dt12Akdb~ t !. (24)

The separation vector is subject to the independent
noises of two particles, hence the factor 2 with respect to
Eq. (5). The solution to the inhomogeneous linear sto-
chastic Eq. (24) is easy to express via the matrix W(t) in
Eq. (16). The tensor of inertia of a fluid element Iij(t)
5Ri(t)Rj(t)d/l2 is now averaged both over the initial
vectors of length l and the noise, thus obtaining (Balk-
ovsky and Fouxon, 1999):

I~ t !5W~ t !W~ t !T1
4kd

l2 E
0

t
W~ t !

3@W~s !TW~s !#21W~ t !T ds . (25)

The matrix I(t) evolves according to ] tI5sI1IsT

1 4kd/l2 and the elimination of the angular degrees of
freedom proceeds as previously. An additional diffusive
term 2k exp(22ri) appears in Eq. (19) and the
asymptotic solution becomes

r i~ t !5E
0

t
s̃ ii~s !ds

1
1
2

lnH 11
4k

l2d E
0

t
expF22E

0

s
s̃ ii~s8!ds8GdsJ .

(26)

The last term in Eq. (26) is essential for the directions
corresponding to negative l i . The molecular noise will
indeed start to affect the motion of the marked fluid
volume when the respective dimension gets sufficiently
small. If l is the initial size, the required condition r i&
2r i* 52ln(l2uliu/k) is typically met for times t.r i* /ul iu.
For longer times, the respective r i is prevented by diffu-
sion to decrease much below 2r i* , while the negative l i
prevents it from increasing. As a result, the correspond-
ing r i becomes a stationary random process with a mean
of the order 2r i* . The relaxation times to the stationary
distribution are determined by s̃ , which is diffusion in-
dependent, and they are thus much smaller than t . On
the other hand, the components r j corresponding to
non-negative Lyapunov exponents are the integrals over
the whole evolution time t . Their values at time t are not
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sensitive to the latest period of evolution lasting over the
relaxation time for the contracting r i . Fixing the values
of r j at times t@r i* /ul iu will not affect the distribution of
the contracting r i and the whole PDF is factorized
(Shraiman and Siggia, 1994; Chertkov et al., 1997; Balk-
ovsky and Fouxon, 1999). For Lagrangian dynamics in
3D developed Navier-Stokes turbulence there are, for
instance, two positive and one negative Lyapunov expo-
nents (Girimaji and Pope, 1990). For times t@r3* /ul3u
we have then

P}exp@2tH~r1 /t2l1 ,r2 /t2l2!#Pst~r3!, (27)

with the same function H as in Eq. (21) since r3 is inde-
pendent of r1 and r2 . Note that the account of the mo-
lecular noise violates the condition (r i50 as fluid ele-
ments at scales smaller than Ak/ul3u cannot be
distinguished. To avoid misunderstanding, note that Eq.
(27) does not mean that the fluid is getting compressible:
the simple statement is that if one tries to follow any
marked volume, the molecular diffusion makes this vol-
ume statistically growing.

Note that we have implicitly assumed l to be smaller
than the viscous length h5An/ul3u but larger than the
diffusion scale Ak/ul3u. Even though n and k are both
due to molecular motion, their ratio widely varies de-
pending on the type of material. The theory of this sec-
tion is applicable for materials having large Schmidt (or
Prandtl) numbers n/k .

The universal forms (21) and (27) for the two-particle
dispersion are basically everything we need for physical
applications. We will show in the next section that the
highest Lyapunov exponent determines the small-scale
statistics of a passively advected scalar in a smooth in-
compressible flow. For other problems, the whole spec-
trum of exponents and even the form of the entropy
function are relevant.

2. Solvable cases

The Lyapunov spectrum and the entropy function can
be derived exactly from the given statistics of s for few
limiting cases only. The case of a short-correlated strain
allows for a complete solution. For a finite-correlated
strain, one can express analytically l̄ and D for a 2d
long-correlated strain and at large space dimensionality.

a. Short-correlated strain

Consider the case where the strain s(t) is a stationary
white-in-time Gaussian process with zero mean and the
two-point function

^s ij~ t !skl~ t8!&52d~ t2t8!Cijkl . (28)

This case may be considered as the long-time scaling
limit limm→` m1/2s(mt) of a general strain along a La-
grangian trajectory, provided its temporal correlations
decay fast enough. It may be also viewed as describing
the strain in the Kraichnan ensemble of velocities decor-
related in time and smooth in space. In the latter case,
the matrix Cijkl52“ j“ lD

ik(0), where Dij(r) is the spa-
tial part in the two-point velocity correlation (10). We
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
assume Dij(r) to be smooth in r (or at least twice differ-
entiable), a property assured by a fast decay of its Fou-
rier transform D̂ij(k). Incompressibility, isotropy, and
parity invariance impose the form Dij(r)5D0d ij

2 1
2 dij(r) with

dij~r!5D1@~d11 !d ijr222rirj#1o~r2!. (29)

The corresponding expression for the two-point function
of s reads

Cijkl5D1@~d11 !d ikd jl2d ijdkl2d ild jk# , (30)

with the constant D1 having the dimension of the in-
verse of time.

The solution of the stochastic differential Eq. (12) is
given by Eq. (16) with the matrix W(t) involving sto-
chastic integrals over time. For a white-correlated strain,
such integrals are not defined unambiguously but re-
quire a regularization that reflects finer details of the
strain correlations wiped out in the scaling limit. An el-
ementary discussion of this issue may be found in the
Appendix. For an incompressible strain, however, the
ambiguity in the integrals defining W(t) disappears so
that we do not need to care about such subtleties. The
random evolution matrices W(t) form a diffusion pro-
cess on the group SL(d) of real matrices with unit de-
terminant. Its generator is a second-order differential
operator identified by Shraiman and Siggia (1995) as
M5D1@dH22(d11)J2# , where H2 and J2 are the qua-
dratic Casimir of SL(d) and its SO(d) subgroup. In
other words, the PDF of W(t) satisfies the evolution
equation (] t2M)P(W ;t)50. The matrix W(t) may be
viewed as a continuous product of independent random
matrices. Such products in continuous or discrete ver-
sions have been extensively studied (Furstenberg and
Kesten, 1960; Furstenberg, 1963; Le Page, 1982) and oc-
cur in many physical problems, e.g., in 1D localization
(Lifshitz et al., 1988; Crisanti et al., 1993).

If we are interested in the statistics of stretching-
contraction variables only, then W(t) may be projected
onto the diagonal matrix L with positive nonincreasing
entries e2r1, . . . ,e2rd by the decomposition W
5OL1/2O8, where the matrices O and O8 belong to the
group SO(d). As observed in Bernard et al. (1998) and
Balkovsky and Fouxon (1999), the generator of the re-
sulting diffusion of r i is the d-dimensional integrable
Calogero-Sutherland Hamiltonian. The r i obey the sto-
chastic Langevin equation

] tr i5D1d(
jÞi

coth~r i2r j!1h i , (31)

where h is a white noise with two-point function
^h i(t)h j(t8)&52D1(dd ij21)d(t2t8). At long times the
separation between the r i’s becomes large and we may
approximate coth(rij) by 61. It is then easy to solve Eq.
(31) and find the explicit expression of the PDF (21):

H~x!5
1

4D1d (
i51

d

xi
2 , l i5D1d~d22i11 !. (32)
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Note the quadratic form of the entropy, implying that
the distribution of R(t) takes the lognormal form (23)
with l̄5l1 and D52D1(d21). The calculation of the
long-time distribution of the leading stretching rate r1
goes back to Kraichnan (1974). The whole set of d
Lyapunov exponents was first computed in Le Jan (1985;
see also Baxendale, 1986). Gamba and Kolokolov (1996)
obtained the long-time asymptotics of r i by a path inte-
gral calculation. The spectral decomposition of the
Calogero-Sutherland Hamiltonian, see Olshanetsky
et al. (1983), permits us to write explicitly the PDF of r i
for all times.

b. 2D slow strain

In 2D, one can reduce the vector Eq. (12) to a second-
order scalar form. Let us indeed consider the case of a
slow strain satisfying ṡ!s2 and differentiate the equa-
tion Ṙ5sR with respect to time. The term with ṡ is
negligible with respect to s2 and a little miracle happens
here: because of incompressibility, the matrix s is trace-
less and s2 is proportional to the unit matrix in 2D. We
thus come to a scalar equation for the wave function
C5Rx1iRy :

] t
2C5~s11

2 1s12s21!C . (33)

This is the stationary Schrödinger equation for a particle
in the random potential U5S22V2, where S25s11

2

1(s121s21)
2/4 and V25(s122s21)

2/4 is the vorticity.
Time plays here the role of the coordinate. Our problem
is thus equivalent to localization in the quasiclassical
limit (Lifshitz et al., 1988) and finding the behavior of
Eq. (33) with given initial conditions is similar to the
computation of a 1d sample resistivity, see, e.g., Abriko-
sov and Ryzhkin (1978) and Kolokolov (1993). Based on
these results we can assert that the modulus uCu5R in
random potentials grows exponentially in time, with the
same exponent that controls the decay of the localized
wave function.

The problem can be solved using semiclassical meth-
ods. The flow is partitioned in elliptic (V.S) and hy-
perbolic (S.V) regions (Weiss, 1991), corresponding to
classical allowed (U,0) and forbidden (U.0) regions.
The wave function C is given by two oscillating expo-
nentials or one decreasing and one increasing, respec-
tively. Furthermore, the typical length of the regions is
the correlation time t, much larger than the inverse of
the mean strain and vorticity Srms

21 and Vrms
21 . It follows

that the increasing exponentials in the forbidden regions
are large and dominate the growth of R(t). With expo-
nential accuracy we have

l~ t !5lnS R~ t !

R~0 ! D5
1
t

Re E
0

t
AU~s !ds , (34)

where the real part restricts the integration to the hyper-
bolic regions. The parameters l̄ and D in the lognormal
expression (23) are immediately read from Eq. (34):
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l̄5^ReAU&, D5E ^^ReAU~0 !, ReAU~ t8!&&dt8.

(35)

Note that the vorticity gave no contribution in the
d-correlated case. For a finite correlation time, it sup-
presses the stretching by rotating fluid elements with re-
spect to the axes of expansion. The real part in Eq. (35)
is indeed filtering out the elliptic regions. Note that the
Lyapunov exponent is given by a single-time average,
while in the d-correlated case it was expressed by the
time integral of a correlation function. It follows that l̄
does not depend on the correlation time t and it can be
estimated as Srms for Vrms&Srms . The corresponding
estimate of the variance is D;^S2&t . As the vorticity
increases, the rotation takes over, the stretching is sup-
pressed and l̄ reduces. One may show that the correla-
tion time ts of the stretching rate is the minimum be-
tween 1/Vrms and t (Chertkov et al., 1995a). For Vrmst
@1 we are back to a d-correlated case and l̄
;^S2&/Vrms . All those estimates can be made system-
atic for a Gaussian strain (Chertkov et al., 1995a).

c. Large space dimensionality

The key remark for this case is that scalar products
like Ri(t1)Ri(t2) are sums of a large number of random
terms. The fluctuations of such sums are vanishing in the
large-d limit and they obey closed equations that can be
effectively studied for arbitrary strain statistics. This ap-
proach, developed in Falkovich et al. (1998), is inspired
by the large-N methods in quantum field theory
(’t Hooft, 1974) and statistical mechanics (Stanley, 1968).
Here, we shall relate the behavior of the interparticle
distance to the strain statistics and find explicitly l̄
and D in Eq. (23). The strain is taken Gaussian with
zero mean and correlation function ^s ij(t)skl(0)&
5(2D/td)d ikd jlg(z) where higher-order terms in 1/d
are neglected. The integral of g is normalized to unity
and z[t/t . At large d , the correlation function F
5^Ri(t1)Ri(t2)& satisfies the equation

]2

]z1 ]z2
F~z1 ,z2!5t2^s ij~ t1!s ik~ t2!Rj~ t1!Rk~ t2!&

5bg~z12z2!F~z1 ,z2!, (36)

with the initial condition ]zF(z ,0)50. The limit of large
d is crucial for the factorization of the average leading to
the second equality in Eq. (36). The dimensionless pa-
rameter b52Dt measures whether the strain is long or
short correlated. Since Eq. (36) is linear and the coeffi-
cient on the right-hand side depends only on the time
difference, the solution may be written as a sum of har-
monics, Fl(z1 ,z2)5exp@lt(z11z2)#C(z12z2). Inserting it
into Eq. (36), we get the Schrödinger equation for the
even function C(t):

]z
2C~z!1@2~lt!21bg~z!#C~z!50. (37)

At large times, the dominant contribution comes from
the largest exponent l̄ corresponding to the ground state
in the potential 2bg(z). Note that the ‘‘energy’’ is pro-
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portional to 2l2 and l̄ is the Lyapunov exponent since
^R2&5F(z ,z). From quantum mechanics textbooks it is
known that the ground-state energy in deep and shallow
potentials is proportional to their depth and its square,
respectively. We conclude that l̄}D for a fast strain
(small b) and l̄}AD/t in the slow case (large b). At
large time differences, the potential term in Eq. (37) is
negligible and l̄ determines both the growth of ^R2& and
the decay of different-time-correlation function at z1
1z2 fixed. That also shows that the correlation function
becomes independent of the larger of the times t1 and t2
when their difference exceeds t.

For the fast strain case, one can put g(z)5d(z) and
the solution of Eq. (37) is amazingly simple: F(z1 ,z2)
5R2(0)exp@b min(z1 ,z2)#. The Lyapunov exponent l̄
5D , in agreement with the result l15D1d21O(d) ob-
tained for the Kraichnan ensemble. For the slow case,
the stretching rate is independent of t at a given value of
D/t (determining the simultaneous correlation function
of the strain). The analysis of the Schrödinger Eq. (37)
with a deep potential also gives the correlation time ts
of the stretching rate, which does not generally coincide
with the strain correlation time t (Falkovich et al., 1998).

C. Two-particle dispersion in a nonsmooth incompressible
flow

In this subsection we study the separation between
two trajectories in the inertial range of scales h!r!L .
The scales h and L stand in a 3D turbulent flow for the
viscous and the injection scales (the latter is also called
integral scale in that case). For a 2D inverse energy cas-
cade flow, they would stand for the scales of injection
and friction damping, respectively. We shall see that the
behavior of the trajectories is quite different from that in
smooth flows analyzed previously.

1. Richardson law

As discussed in the Introduction, velocity differences
in the inertial interval exhibit an approximate scaling
expressed by the power-law behavior of the structure
functions ^(Drv)n&}rsn. Low-order exponents are close
to the Kolmogorov prediction sn5an with a51/3. A
linear dependence of sn on n would signal the scaling
Drv}ra with a sharp value of a. A nonlinear depen-
dence of sn indicates the presence of a whole spectrum
of exponents, depending on the space-time position in
the flow (the so-called phenomenon of multiscaling).
The 2D inverse and the 3D direct energy cascades in
Navier-Stokes equation provide concrete examples of
the two possible situations. Rewriting Eq. (11) for the
fluid particle separation as Ṙ5Dv(R,t), we infer that
dR2/dt52R•Dv}R11a. If the value of a is fixed and
smaller than unity, this is solved (ignoring the space-time
dependence in the proportionality constant) by

R12a~ t !2R12a~0 !}t , (38)

implying that the dependence on the initial separation is
quickly wiped out and that R grows as t1/(12a). For the
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random process R(t), the relation (38) is, of course, of
the mean-field type and should pertain to the long-time
behavior of the averages

^Rz~ t !&}tz/(12a). (39)

That implies their superdiffusive growth, faster than the
diffusive one }tz/2. The scaling law (39) might be ampli-
fied to the rescaling property

P~R ;t !5lP~lR ;l12at ! (40)

of the interparticle distance PDF. Possible deviations
from a linear behavior in the order z of the exponents in
Eq. (39) should be interpreted as a signal of multiscaling
of the Lagrangian velocity Dv@R(t),t#[DV(t).

The power-law growth (39) for z52 and a51/3, i.e.,
^R(t)2&}t3, is a direct consequence of the celebrated
Richardson dispersion law (Richardson, 1926), the first
quantitative phenomenological observation in devel-
oped turbulence. It states that

d

dt
^R2&}^R2&2/3. (41)

The law (41) seems to be confirmed also by later experi-
mental data, see Chap. 24 of Monin and Yaglom (1979)
and Jullien et al. (1999), and by the numerical simula-
tions (Zovari et al., 1994; Elliott, Jr. and Majda, 1996;
Boffetta et al., 1998; Fung and Vassilicos, 1998). The
more general property of self-similarity (40) (with a
51/3) has been observed in the inverse cascade of two-
dimensional turbulence (Jullien et al., 1999; Boffetta and
Celani, 2000; Boffetta and Sokolov, 2000). It is likely
that Eq. (41) is exact in that situation, while it may be
only approximately correct in 3D, although the experi-
mental data do not yet allow us to test it with sufficient
confidence.

It is important to remark that, even assuming the va-
lidity of the Richardson law (41), it is impossible to es-
tablish general properties of the PDF P(R ;t) such as
those in Sec. II.B.1 for the single-particle PDF. The
physical reason is easy to understand if one writes

d^R2&
dt

52t t^~DV!2&, (42)

similarly to Eqs. (6) and (7). Here

t t5E
0

t

^DV~ t !•DV~s !&ds/^~DV!2&

is the correlation time of the Lagrangian velocity differ-
ences. If d^R2&/dt is proportional to ^R2&2/3 and
^(DV)2& behaves like ^R2&1/3 then t t grows as ^R2&1/3

}t , i.e., the random process DV(t) is correlated across
its whole span. The absence of decorrelation explains
why the central limit theorem and the large deviation
theory cannot be applied. In general, there is no a priori
reason to expect P(R ;t) to be Gaussian with respect to a
power of R either, although, as we shall see, this is what
essentially happens in the Kraichnan ensemble.

2. Breakdown of the Lagrangian flow

It is instructive to contrast the exponential growth
(18) of the distance between the trajectories within the
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viscous range with the power-law growth (39) in the in-
ertial range. In the viscous regime the closer two trajec-
tories are initially, the longer time is needed to reach a
given separation. As a result, infinitesimally close trajec-
tories never separate and trajectories in a fixed realiza-
tion of the velocity field are continuously labeled by the
initial conditions. Small deviations of the initial point are
magnified exponentially, though. This sensitive depen-
dence is usually considered as the defining feature of the
chaotic behavior. Conversely, in the inertial interval the
trajectories separate in a finite time independently of
their initial distance R(0), provided the latter was also
in the inertial interval. The speed of this separation may
depend on the detailed structure of the turbulent veloci-
ties, including their fine geometry (Fung and Vassilicos,
1998), but the very fact of the explosive separation is
related to the scaling behavior Drv}ra with a,1. For
high Reynolds numbers the viscous scale h is negligibly
small, a fraction of a millimeter in the turbulent atmo-
sphere. Setting it to zero (or equivalently the Reynolds
number to infinity) is an appropriate abstraction if we
want to concentrate on the behavior of the trajectories
in the inertial range. In such a limit, the power-law sepa-
ration between the trajectories extends down to arbi-
trarily small distances: infinitesimally close trajectories
still separate in a finite time. This makes a marked dif-
ference in comparison to the smooth chaotic regime,
clearly showing that developed turbulence and chaos are
fundamentally different phenomena. As stressed in Ber-
nard et al. (1998), the explosive separation of the trajec-
tories results in a breakdown of the deterministic La-
grangian flow in the limit Re→`, see also Frisch et al.
(1998) and Gawȩdzki (1998, 1999). The effect is dra-
matic since the trajectories cannot be labeled anymore
by the initial conditions. Note that the sheer existence of
the Lagrangian trajectories R(t ;r) depending continu-
ously on the initial position r would imply that
lim

r1→r2
^uR(t ;r1)2R(t ;r2)uz&50. That would contradict

the persistence of a power-law separation of the Rich-
ardson type for infinitesimally close trajectories. Remark
also that the breakdown of the deterministic Lagrangian
flow does not violate the theorem about the uniqueness
of solutions of the ordinary differential equation Ṙ
5v(R,t). Indeed, the theorem requires the velocity to
be Lipschitz in r, i.e., that Drv<O(r). As first noticed by
Onsager (1949), the velocities for Re5` are actually
only Hölder continuous: Drv.O(ra) with the exponent
a,1 (in Kolmogorov’s phenomenology a51/3). The
simple equation ẋ5uxua provides a classical example
with two solutions x5@(12a)t#1/(12a) and x50, both
starting from zero, for the non-Lipschitz case a,1. It is
then natural to expect the existence of multiple La-
grangian trajectories starting or ending at the same
point. Such a possibility was first noticed and exploited
in a somewhat different context in the study of weak
solutions of the Euler equations (Brenier, 1989; Shnirel-
man, 1999). Does then the Lagrangian description of the
fluid break down completely at Re5`?
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Even though the deterministic Lagrangian description
is inapplicable, the statistical description of the trajecto-
ries is still possible. As we have seen above, probabilistic
questions like those about the averaged powers of the
distance between initially close trajectories still have
well-defined answers. We expect that for a typical veloc-
ity realization, one may maintain at Re5` a probabilis-
tic description of the Lagrangian trajectories. In particu-
lar, objects such as the PDF p(r,s ;R,tuv) of the time t
particle position R, given its time s position r, should
continue to make sense. For a regular velocity with de-
terministic trajectories,

p~r,s ;R,tuv!5d @R2R~ t ;r,s !# , (43)

where R(t ;r,s) denotes the unique Lagrangian trajec-
tory passing at time s through r. In the presence of a
small molecular diffusion, Eq. (5) for the Lagrangian
trajectories has always a Markov process solution in
each fixed velocity realization, irrespective of whether
the latter be Lipschitz or Hölder continuous (Stroock
and Varadhan, 1979). The resulting Markov process is
characterized by the transition probabilities p(r,s ;R,tuv)
satisfying the advection-diffusion equation3

@] t2“R•v~R,t !2k“R
2 #p~r,s ;R,tuv!50 (44)

for t.s . The mathematical difference between smooth
and rough velocities is that in the latter case the transi-
tion probabilities are weak rather than strong solutions.
What happens if we turn off the molecular diffusion? If
the velocity is Lipschitz in r, then the Markov process
describing the noisy trajectories concentrates on the de-
terministic Lagrangian trajectories and the transition
probabilities converge to Eq. (43). It has been conjec-
tured in Gawȩdzki (1999) that, for a generic Re5` tur-
bulent flow, the Markov process describing the noisy tra-
jectories still tends to a limit when k→0, but the limit
stays diffused; see Fig. 1. In other words, the transition
probability converges to a weak solution of the advec-
tion equation

@] t2“R•v~R,t !#p~r,s ;R,tuv!50, (45)

which does not concentrate on a single trajectory, as it
was the case in Eq. (43). We shall then say that the lim-
iting Markov process defines a stochastic Lagrangian
flow. This way the roughness of the velocity would result
in the stochasticity of the particle trajectories persisting
even in the limit k→0. To avoid misunderstanding, let us
stress again that, according to this claim, the Lagrangian
trajectories behave stochastically already in a fixed real-
ization of the velocity field and for negligible molecular
diffusivities, i.e., the effect is not due to the molecular
noise or to random fluctuations of the velocities. This
spontaneous stochasticity of fluid particles seems to con-
stitute an important aspect of developed turbulence. It is
an unescapable consequence of the Richardson disper-

3For k.0 and smooth velocities, the equation results from
the Itô formula generalizing Eq. (A5) applied to Eq. (43) and
averaged over the noise.
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sion law and of the Kolmogorov-like scaling of velocity
differences in the limit Re→` and it provides for a natu-
ral mechanism assuring the persistence of dissipation in
the inviscid limit: lim n→0n^u“vu2&Þ0.

3. The example of the Kraichnan ensemble

The general conjecture about the existence of stochas-
tic Lagrangian flows for generic turbulent velocities, e.g.,
for weak solutions of the incompressible Euler equa-
tions locally dissipating energy, as discussed by Duchon
and Robert (2000), has not been mathematically proven.
The conjecture is known, however, to be true for the
Kraichnan ensemble (10), as we are going to discuss in
this subsection.

We should model the spatial part Dij of the two-point
function (10) so that it has proper scalings in the viscous
and inertial intervals. This can be conveniently achieved
by taking its Fourier transform

D̂ij~k!}S d ij2
kikj

k2 D e2(hk)2

~k21L22!(d1j)/2 , (46)

with 0<j<2. In physical space,

Dij~r!5D0d ij2
1
2

dij~r!, (47)

where dij(r) scales as rj in the inertial interval h!r
!L , as r2 in the viscous range r!h and tends to 2D0d ij

at very large scales r@L . As we discussed in Sec. II.A,
D0 gives the single-particle effective diffusivity. Notice
that D05O(Lj) indicating that turbulent diffusion is
controlled by the velocity fluctuations at large scales of
order L . On the other hand, dij(r) describes the statis-

FIG. 1. An illustration of the breakdown of the Lagrangian
flow in spatially nonsmooth flows: infinitesimally close particles
reach a finite separation in a finite time. The consequence is
the cloud observed in the figure. The particles evolve in a fixed
realization of the velocity field and in the absence of any mo-
lecular noise.
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tics of the velocity differences and it picks up contribu-
tions of all scales. In the limits h→0 and L→` , it takes
the scaling form

lim
h→0
L→`

dij~r!5D1rjS ~d211j!d ij2j
rirj

r2 D , (48)

where the normalization constant D1 has the dimension-
ality of (length22j)3(time21).

For 0,j,2 and h.0, the typical velocities are
smooth in space with the scaling behavior rj visible only
for scales much larger than the viscous cutoff h. When
the cutoff is set to zero, however, the velocity becomes
nonsmooth. The Kraichnan ensemble is then supported
on velocities that are Hölder-continuous with the expo-
nent j/220. That mimics the major property of turbu-
lent velocities at the infinite Reynolds number. The lim-
iting case j52 describes the Batchelor regime of the
Kraichnan model: the velocity gradients are constant
and the velocity differences are linear in space. This is
the regime that the analysis of Sec. II.B.2.a pertains to.
In the other limiting case j50, the typical velocities are
very rough in space (distributional). For any j, the
Kraichnan velocities have even rougher behavior in
time. We may expect that the temporal roughness does
not modify largely the qualitative picture of the trajec-
tory behavior as it is the regularity of velocities in space,
and not in time, that is crucial for the uniqueness of the
trajectories (see, however, below).

For time-decorrelated velocities, both terms on the
right-hand side of the Lagrangian Eq. (5) should be
treated according to the rules of stochastic differential
calculus. The choice of the regularization is irrelevant
here even for compressible velocities, see the Appendix.
The existence and the properties of solutions of such
stochastic differential equations were extensively stud-
ied in the mathematical literature for velocities smooth
in space, see, e.g., Kunita (1990). Those results apply to
our case as long as h.0 both for positive or vanishing
diffusivity. The advection-diffusion Eq. (44) for the tran-
sition probabilities also becomes a stochastic equation
for white-in-time velocities. The choice of the conven-
tion, however, is important here even for incompressible
velocities: the equation should be interpreted with the
Stratonovich convention, see the Appendix. The equiva-
lent Itô form contains an extra second-order term that
amounts to the replacement of the molecular diffusivity
by the effective diffusivity (D01k) in Eq. (44). The Itô
form of the equation explicitly exhibits the contribution
of the eddy diffusivity, hidden in the convention for
the Stratonovich form. As pointed out by Le Jan and
Raimond (1998, 1999), the regularizing effect of D0 per-
mits us to solve the equation by iteration also for the
nonsmooth case giving rise to transition probabilities
p(r,s ;R,tuv) defined for almost all velocities of the
Kraichnan ensemble. Moreover, the vanishing diffusivity
limit of the transition probabilities exist, defining a sto-
chastic Lagrangian flow.

The velocity averages over the Kraichnan ensemble of
the transition probabilities p(r,s ;R,tuv) are exactly cal-
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culable. We shall use a formal functional integral ap-
proach (Chertkov, 1997; Bernard et al., 1998). In the
phase space path integral representation of the solution
of Eq. (44),

p~r,s ;R,tuv!5Er(s)5r
r(t)5R

expS 7E
s

t

$ip(t)•( ṙ(t)2v[r(t),t)]

1kp2(t)%dt D Dp Dr, (49)

for s.
,t , the Gaussian average over the velocities is easy

to perform. It replaces the exponent in Eq. (49) by
7* s

t @ ip(t)• ṙ(t)1(D01k)p2(t)#dt and results in the
path-integral represention of the heat kernel of the La-
placian for which we shall use the operator notation
e ut2su(D01k)“2

(r;R). In other words, the average of Eq.
(49) is the solution of the heat equation (with diffusivity
D01k) equal to d (R2r) at time s . The above calcula-
tion confirms then the result discussed at the end of Sec.
II.A about the all-time diffusive behavior of a single
fluid particle in the Kraichnan ensemble.
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In order to study the two-particle dispersion, one
should examine the joint PDF of the equal-time values
of two fluid particles averaged over the velocities

^p~r1 ,s ;R1 ,tuv!p~r2 ,s ;R2 ,tuv!&[P2~r1 ,r2 ;R1 ,R2 ;t2s !.
(50)

The latter is given for the Kraichnan ensemble by the
heat kernel e ut2suM2(r1 ,r2 ;R1 ,R2) of the elliptic second-
order differential operator

M25 (
n ,n851

2

Dij~rn2rn8!¹rn
i ¹r

n8
j 1k (

n51

2

“rn

2 . (51)

In other words, the PDF P2 satisfies the equation (] t
2M2)P25d(t2s)d(R12r1)d(R22r2), a result which
goes back to the original work of Kraichnan (1968). In-
deed, the Gaussian expectation (50) is again easily com-
putable in view of the fact that the velocity enters
through the exponential function in Eq. (49). The result
is the path-integral expression
Ern(s)5rn
rn(t)5Rn

expF7E
s

tS (
n51

2

[ipn(t)• ṙn(t)1kpn
2(t)]1 (

n ,n851

2

Dij[rn(t)2rn8(t)]pni(t)pn8j(t) D dtG )
n

Dpn Drn (52)
for the heat kernel of M2 .
Let us concentrate on the relative separation R5R1

2R2 of two fluid particles at time t , given their separa-
tion r at time zero. The relevant PDF P̃(r;R;t) is ob-
tained by averaging over the simultaneous translations
of the final (or initial) positions of the particles. Explic-
itly, it is given by the heat kernel of the operator M̃
5@dij(r)12kd ij#¹ri¹rj equal to the restriction of M2 to
the translationally invariant sector. Note that the eddy
diffusivity D0 , dominated by the integral scale, drops
out from M̃. The above result shows that the relative
motion of two fluid particles is an effective diffusion
with a distance-dependent diffusivity tensor scaling like
rj in the inertial range. This is a precise realization of
the scenario for turbulent diffusion put up by Richard-
son (1926).

Similarly, the PDF of the distance R between two par-
ticles is given by the heat kernel e utuM(r ;R), where M is
the restriction of M2 to the homogeneous and isotropic
sector. Explicitly,

M5
1

rd21 ]r@~d21 !D1rd211j12krd21#]r (53)

in the scaling regime and its heat kernel may be readily
analyzed. In the Batchelor regime j52 and for k→0,
the heat kernel of M reproduces the lognormal distribu-
tion (23) with D52D1(d21) and l̄5D1d(d21); see
Sec. II.B.2.a.

The simple criterion allowing us to decide whether the
Markov process stays diffused as k→0 is to control the
limit r→0 of the PDF P(r ;R ;t) (Bernard et al., 1998).
For smooth velocities, it follows from Eq. (23) that

lim
r→0
k→0

P~r ;R ;t !5d~R !. (54)

In simple words, when the initial points converge, so do
the end points of the process. Conversely, for 0<j,2
we have

lim
r→0
k→0

P~r ;R ;t !}
Rd21

utud/(22j) expF2const3
R22j

utu G , (55)

in the scaling limit h50, L5` . That confirms the dif-
fused character of the limiting process describing the La-
grangian trajectories in fixed non-Lipschitz velocities:
the end points of the process stay at finite distance even
if the initial points converge. If we set the viscous cutoff
to zero keeping L finite, the behavior (55) crosses over
for R@L to a simple diffusion with diffusivity 2D0 : at
such large distances the particle velocities are essentially
independent and the single-particle behavior is recov-
ered.

The stretched-exponential PDF (55) has the scaling
form (40) for a5j21 and implies the power-law growth
(39) of the averaged powers of the distance between
trajectories. The PDF is Gaussian in the rough case j
50. Note that the Richardson law ^R2(t)&}t3 is repro-
duced for j54/3 and not for j52/3 (where the velocity
has the spatial Hölder exponent 1/3). The reason is that
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the velocity temporal decorrelation cannot be ignored
and the mean-field relation (38) should be replaced by
R12j/2(t)2R12j/2(0)}b(t) with the Brownian motion
b(t). Since b(t) behaves as t1/2, the replacement
changes the power and indeed reproduces the large-time
PDF (55) up to a geometric power-law prefactor. In gen-
eral, the time dependence of the velocities plays a role in
determining whether the breakdown of deterministic
Lagrangian flow occurs or not. Indeed, the relation (42)
implies that the scale-dependence of the correlation
time t t of the Lagrangian velocity differences may
change the time behavior of ^R2&. In particular, ^R2&
ceases to grow in time if t t}^R2&b and ^(DV)2&}^R2&a

with b>12a . It has been recently shown in Fannjiang
et al. (2000) that the Lagrangian trajectories are deter-
ministic in a Gaussian ensemble of velocities with
Hölder continuity in space and such fast time decorrela-
tion on short scales. The Kolmogorov values of the ex-
ponents a5b51/3 satisfy, however, b,12a .

Note the special case of the average ^R22j2d& in the
Kraichnan velocities. Since Mr22j2d is a contact term
}d(r) for k50, one has ] t^R22j2d&}P(r ;0;t). The lat-
ter is zero in the smooth case so that ^R2d& is a true
integral of motion. In the nonsmooth case, ^R22j2d&
}t12d/(22j) and is not conserved due to a nonzero prob-
ability density to find two particles at the same place
even when they started apart.

As stated, the result (55) holds when the molecular
diffusivity is turned off in the velocity ensemble with no
viscous cutoff, i.e., for vanishing Schmidt number Sc
5n/k, where n is the viscosity defined in the Kraichnan
model as D1hj. The same result holds also when n and k
are turned off at the same time with Sc5O(1), provided
the initial distance r is taken to zero only afterwards (E
and Vanden Eijnden, 2000b). This confirms that the ex-
plosive separation of close trajectories persists for finite
Reynolds numbers as long as their initial distance is not
too small, as anticipated by Bernard et al. (1998).

D. Two-particle dispersion in a compressible flow

Discussing the particle dispersion in incompressible
fluids and exposing the different mechanisms of particle
separation, we paid little attention to the detailed geom-
etry of the flows, severely restricted by the incompress-
ibility. The presence of compressibility allows for more
flexible flow geometries with regions of ongoing com-
pression effectively trapping particles for long times and
counteracting their tendency to separate. To expose this
effect and gauge its relative importance for smooth and
nonsmooth flows, we start from the simplest case of a
time-independent 1D flow ẋ5v(x). In 1D, any velocity
is potential: v(x)52]xf(x), and the flow is the steep-
est descent in the landscape defined by the potential f.
The particles are trapped in the intervals where the ve-
locity has a constant sign and they converge to the fixed
points with lower value of f at the ends of those inter-
vals. In the regions where ]xv is negative, nearby trajec-
tories are compressed together. If the flow is smooth the
trajectories take an infinite time to arrive at the fixed
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points (the particles might also escape to infinity in a
finite time). Let us consider now a nonsmooth version of
the velocity, e.g., a Brownian path with Hölder exponent
1/2. At variance with the smooth case, the solutions will
take a finite time to reach the fixed points at the ends of
the trapping intervals and will stick to them at subse-
quent times, as in the example of the equation ẋ5ux
2x0u1/2. The nonsmoothness of the velocity clearly am-
plifies the trapping effects leading to the convergence of
the trajectories. A time-dependence of the velocity
changes somewhat the picture. The trapping regions, as
defined for the static case, start wandering and they do
not enslave the solutions which may cross their bound-
aries. Still, the regions of ongoing compression effec-
tively trap the fluid particles for long time intervals.
Whether the tendency of the particles to separate or the
trapping effects win is a matter of detailed characteris-
tics of the flow.

In higher dimensions, the behavior of potential flows
is very similar to the 1D case, with trapping totally domi-
nating in the time-independent case, its effects being
magnified by the nonsmoothness of the velocity and
blurred by the time dependence. The traps might of
course have a more complicated geometry. Moreover,
we might have both solenoidal and potential compo-
nents in the velocity. The dominant tendency for the in-
compressible component is to separate the trajectories,
as we discussed in the previous sections. On the other
hand, the potential component enhances trapping in the
compressed regions. The net result of the interplay be-
tween the two components depends on their relative
strength, spatial smoothness and temporal rate of
change.

Let us consider first a smooth compressible flow with
a homogeneous and stationary ergodic statistics. Simi-
larly to the incompressible case discussed in Sec. II.B.1,
the stretching-contraction variables r i , i51, . . . ,d , be-
have asymptotically as tl i with the PDF of large devia-
tions xi5r i /t2l i determined by an entropy function
H(x1 , . . . ,xd). The asymptotic growth rate of the fluid
volume is given by the sum of the Lyapunov exponents
s5( i51

d l i . Note that density fluctuations do not grow in
a statistically steady compressible flow because the pres-
sure provides feedback from the density to the velocity
field. That means that s vanishes even though the r i
variables fluctuate. However, to model the growth of
density fluctuations in the intermediate regime, one can
consider an idealized model with a steady velocity sta-
tistics having nonzero s . This quantity has the interpre-
tation of the opposite of the entropy production rate,
see Sec. III.A.4 below, and it is necessarily <0 (Ruelle,
1997). Let us give here the argument due to Balkovsky
et al. (1999) which goes as follows. In any statistically
homogeneous flow, incompressible or compressible, the
distribution of particle displacements is independent of
their initial position and so is the distribution of the evo-
lution matrix Wij(t ;r)5]Ri(t ;r)/]rj. Since the total vol-
ume V (assumed finite in this argument) is conserved,
the average ^det W& is equal to unity for all times and
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initial positions although the determinant fluctuates in
the compressible case. The average of det W5e(ri is
dominated at long times by the saddle-point x* giving
the maximum of ((l i1xi)2H(x), which has to vanish
to conform with the total volume conservation. Since
(xi2H(x) is concave and vanishes at x50, its maxi-
mum value has to be non-negative. We conclude that the
sum of the Lyapunov exponents is nonpositive. The
physics behind this result is transparent: there are more
Lagrangian particles in the contracting regions, leading
to negative average gradients in the Lagrangian frame.
Indeed, the volume growth rate tends at large times to
the Lagrangian average of the trace of the strain s
5“v:

1
t

^ln det@W~r;t !#&→E tr s@R~ t ;r!,t#
dr
V

5E tr s~R,t !
dR

V det[W(r;t)]
.

(56)

The Lagrangian average generally coincides with the
Eulerian one *dr tr s(t ,r)/V , only in the incompressible
case (where it is zero). For compressible flow, the inte-
grals in Eq. (56) vanish at the initial time (when we set
the initial conditions for the Lagrangian trajectories so
that the measure was uniform back then). The regions of
ongoing compression with negative tr s acquire higher
weight in the average in Eq. (56) than the expanding
ones. Negative values of tr s suppress stretching and en-
hance trapping and that is the simple reason for the vol-
ume growth rate to be generally negative. Note that,
were the trajectory R(r;t) defined by its final (rather
than initial) position, the sign of the average strain trace
would be positive. Let us stress again the essential dif-
ference between the Eulerian and the Lagrangian aver-
ages in the compressible case: an Eulerian average is
uniform over space, while in a Lagrangian average every
trajectory comes with its own weight determined by the
local rate of volume change. For the corresponding ef-
fects on the single-particle transport, the interested
reader is referred to Vergassola and Avellaneda (1997).

In the particular case of a short-correlated strain one
can take t in Eq. (56) larger than the correlation time t
of the strain, yet small enough to allow for the expansion
det@W(r;t)#21'12*0

t tr s(r,t8)dt8 so that Eq. (56) be-
comes equal to 2*0

t ^tr s(r,t)tr s(r,t8)&dt8. More for-
mally, let us introduce the compressible generalization
of the Kraichnan ensemble for smooth velocities. Their
(nonconstant part of the) pair correlation function is de-
fined as

dij~r!5D1@~d1122` !d ijr212~`d21 !rirj#1o~r2!,
(57)

compare to Eq. (29). The degree of compressibility `
[^(¹ iv

i)2&/^(¹ iv
j)2& is between 0 and 1 for the isotro-

pic case at hand, with the two extrema corresponding to
the incompressible and the potential cases. The corre-
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sponding strain matrix s5¹v has the Eulerian mean
equal to zero and two-point function

^s ij~ t !skl~ t8!&52d~ t2t8!D1@~d1122` !d ikd jl

1~`d21 !~d ijdkl1d ild jk!# . (58)

The volume growth rate 2*0
t ^s ii(t)s jj(t8)&dt8 is thus

strictly negative, in agreement with the general discus-
sion, and equal to 2`D1d(d21)(d12) if we set
*0

`d(t)dt51/2. The same result is obtained more sys-
tematically by considering the Itô stochastic equation
dW5s dt W for the evolution matrix and applying the
Itô formula to ln det(W); see the Appendix. One may
identify the generator of the process W(t) and proceed
as for the incompressible case calculating the PDF
P(r1 ,. . . ,rd ;t). It takes again the large deviation form
(21), with the entropy function and the Lyapunov expo-
nents given by

H~x!5
1

4D1@d1`~d22 !#

3F(
i51

d

xi
21

12`d

`~d21 !~d12 ! S (i51

d

xiD 2G , (59)

l i5D1$d~d22i11 !22`@d1~d22 !i#%, (60)

to be compared to Eq. (32). Note how the form (59) of
the entropy imposes the condition (xi50 in the incom-
pressible limit. The interparticle distance R(t) has the
lognormal distribution (23) with l̄5l15D1(d21)(d
24`) and D52D1(d21)(112`). Explicitly,
t21 ln^Rn&}n@n1d12`(n22)# (Chertkov, Falkovich, and
Kolokolov, 1998). The quantity R(4`2d)/(112`) is thus
statistically conserved. The highest Lyapunov exponent
l̄ becomes negative when the degree of compressibility
is larger than d/4 (Le Jan, 1985; Chertkov, Falkovich,
and Kolokolov, 1998). Low-order moments of R , includ-
ing its logarithm, would then decrease while high-order
moments would grow with time.

It is instructive to decompose the strain into its ‘‘in-
compressible and compressible parts’’ s ij2 (1/d)d ij tr s
and (1/d)d ij tr s . From the equality l i5^s̃ ii&, see Eq.
(21), it follows that the Lyapunov exponents of the in-
compressible part (having l̄.0) get uniformly shifted
down by the Lagrangian average of tr s/d . In 1D, where
the compressibility is maximal,4 l̄,0. The lowering of
the Lyapunov exponents when ` grows clearly signals
the increase of trapping. The regime with `.d/4, with
all the Lyapunov exponents becoming negative, is the
one where trapping effects dominate. The dramatic con-
sequences for the scalar fields advected by such flow will
be discussed in Sec. III.B.1.

As it was clear from the 1D example, we should ex-
pect even stronger effects of compressibility in non-
smooth velocity fields, with an increased tendency for

4One-dimensional results are recovered from our formulas by
taking `51 and D1}1/(d21).
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the fluid particles to aggregate in finite time. This has,
indeed, been shown to occur when the velocity has a
short correlation time, i.e., for the nonsmooth version of
the compressible Kraichnan ensemble (Gawȩdzki and
Vergassola, 2000). The expression (46) for the Fourier
transform of the two-point correlation function is easily
modified. The functional dependence on k2 remains the
same, the solenoidal projector is simply multiplied by 1
2` and one adds to it the compressible longitudinal
component `(d21)kikj/k2. This gives for the noncon-
stant part of the two-point function

dij~r!5D1@~d211j2`j!d ijrj1j~`d21 !rirjrj22# .
(61)

For j52, Eq. (61) reproduces Eq. (57) without the
o(r2) corrections. Most of the results discussed in Sec.
II.C for the incompressible version of the model still go
through, including the construction of the Markov pro-
cess describing the noisy trajectories and the heat-kernel
form of the joint PDF of two particle positions. The re-
striction M of M2 to the homogeneous and isotropic
sector, whose heat kernel gives the PDF P(r ;R ;t) of the
distance between two particles, now takes the form

M5FD1~d21 !~11`j!

rd212g ]rr
d211j2g1

2k

rd21 ]rr
d21G]r ,

(62)

where g5`j(d1j)/(11`j). As found in Gawȩdzki
and Vergassola (2000), see also Le Jan and Raimond
(1999) and E and Vanden Eijnden (2000b), depending
on the smoothness exponent j and the degree of com-
pressibility `, two different regimes arise in the limit k
→0.

For weak compressibility `,`c[ d/j2, the situation
is very much the same as for the incompressible case and

lim
r→0
k→0

P~r ;R ;t !}
Rd2g21

utu(d2g)/(22j) expS 2const3
R22j

utu D .

(63)

We still have an explosive separation of trajectories but,
in comparison to the incompressible situation, the power
prefactor R2g with g}` suppresses large separations
and enhances small ones. When ` crosses `̃c5(d1j
22)/2j , the particle-touching event R50 becomes re-
current for the Markov process describing the distance
between the two particles (Le Jan and Raimond, 1999).
In other words, for `̃c<`<`c a pair of Lagrangian tra-
jectories returns infinitely often to a near touch, a clear
sign of increased trapping.

When ` crosses `c , the singularity at R50 of the
right-hand side of Eq. (63) becomes nonintegrable and a
different limit is realized. Indeed, in this regime,

lim
k→0

P~r ;R ;t !5P reg~r ;R ;t !1p~r ;t !d~R !, (64)

with the regular part P reg tending to zero and p ap-
proaching unity when r→0. This reproduces for h50
the result (54), always holding when the viscous cutoff
h.0 smooths the velocity realizations. In other words,
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even though the velocity is nonsmooth, the Lagrangian
trajectories in a fixed velocity field are determined by
their initial positions. Moreover, the contact term in Eq.
(64) signals that trajectories starting at a finite distance r
collapse to zero distance and stay together with a posi-
tive probability growing with time (to unity if the inte-
gral scale L5`). The strongly compressible regime `
.`c is clearly dominated by trapping effects leading to
the aggregation of fluid particles; see Fig. 2. The same
results hold if we turn off the diffusivity k and the vis-
cosity n at the same time, with the notable exception of
the intermediate regime `̃c<`,`c . In this interval, if
the Schmidt number Sc diverges fast enough during the
limiting process, the resulting PDF of the distance takes
the form (64) rather than that of Eq. (55) arising for
bounded Sc (E and Vanden Eijnden, 2000b). Sufficiently
high Schmidt numbers thus lead to the particle aggrega-
tion in this case. Note that in the limit of smooth veloci-
ties j→2, the intermediate interval shrinks to the point
`5d/4 where the highest Lyapunov exponent crosses
zero.

As was mentioned, the aggregation of fluid particles
can take place only as a transient process. The back re-
action of the density on the flow eventually stops the
growth of the density fluctuations. The transient trap-
ping should, however, play a role in the creation of the
shocklet structures observed in high Mach number com-
pressible flows (Zeman, 1990). There is another impor-
tant physical situation that may be modeled by a smooth
compressible random flow with a nonzero sum of the
Lyapunov exponents. Let us consider a small inertial
particle of density r and radius a in a fluid of density r0 .
Its movement may be approximated by that of a La-
grangian particle in an effective velocity field provided

FIG. 2. The implosion of Lagrangian trajectories in a strongly
compressible flow. Particles that are initially released uni-
formly across a sizable span of the interval are compressed and
tend to produce a singular density field.
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that a2/n is much smaller than the velocity time scale in
the Lagrangian frame. The inertial difference between
the effective velocity v of the particle and the fluid ve-
locity u(r,t) is proportional to the local acceleration: v
5u1(b21)ts du/dt , where b53r/(r12r0) and ts
5a2/3nb is the Stokes time. Considering such particles
distributed in the volume, one may define the velocity
field v(r,t), whose divergence }“@(u•“)u# does not
vanish even if the fluid flow is incompressible. As dis-
cussed above, this leads to a negative volume growth
rate and the clustering of the particles (Balkovsky et al.,
2001).

E. Multiparticle dynamics, statistical conservation laws,
and breakdown of scale invariance

This subsection is a highlight of the review. We de-
scribe here the time-dependent statistics of multiparticle
configurations with the emphasis on conservation laws
of turbulent transport. As we have seen in the previous
subsections, the two-particle statistics is characterized by
a simple behavior of the single separation vector. In non-
smooth velocities, the length of the vector grows by a
power law, while the initial separation is forgotten and
there are no statistical integrals of motion. In contrast,
the many-particle evolution exhibits nontrivial statistical
conservation laws that involve geometry and are propor-
tional to positive powers of the distances. The distance
growth is balanced by the decrease of the shape fluctua-
tions in those integrals. The existence of multiparticle
conservation laws indicates the presence of a long-time
memory and is a reflection of the coupling among the
particles due to the simple fact that they all are in the
same velocity field. The conserved quantities may be
easily built for the limiting cases. For very irregular ve-
locities, the fluid particles undergo independent Brown-
ian motions and the interparticle distances grow as
^Rnm

2 (t)&5Rnm
2 (0)1Dt . Here, examples of statistical

integrals of motion are ^Rnm
2 2Rpr

2 & and ^2(d
12)Rnm

2 Rpr
2 2d(Rnm

4 1Rpr
4 )& , and an infinity of simi-

larly built harmonic polynomials where all the powers of
t cancel out. Another example is the infinite-
dimensional case, where the interparticle distances do
not fluctuate. The two-particle law (38), Rnm

12a(t)
2Rnm

12a(0)}t , implies then that the expectation of any
function of Rnm

12a2Rpr
12a does not change with time. A

final example is provided by smooth velocities, where
the particle separations at long times become aligned
with the eigendirections of the largest Lyapunov expo-
nent of the evolution matrix W(t) defined in Eq. (16).
All the interparticle distances Rnm will then grow expo-
nentially and their ratios Rnm /Rkl do not change. Away
from the degenerate limiting cases, the conserved quan-
tities continue to exist, yet they cannot be constructed so
easily and they depend on the number of particles and
their configuration geometry. The very existence of con-
served quantities is natural; what is generally nontrivial
is their precise form and their scaling. The intricate sta-
tistical conservation laws of multiparticle dynamics were
first discovered for the Kraichnan velocities. That came
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
as a surprise since the Kraichnan velocity ensemble is
Gaussian and time decorrelated, with no structure built
in, except for the spatial scaling in the inertial range.
The discovery has led to a new qualitative and quantita-
tive understanding of intermittency, as we shall discuss
in detail in Sec. III.C.1. Even more importantly, it has
pointed to aspects of the multiparticle evolution that
seem both present and relevant in generic turbulent
flows. Note that those aspects are missed by simple sto-
chastic processes commonly used in numerical Lagrang-
ian models. There is, for example, a long tradition to
take for each trajectory the time integral of a
d-dimensional Brownian motion (whose variance is }t3

as in the Richardson law) or an Ornstein-Uhlenbeck
process. Such models, however, cannot capture correctly
the subtle features of the N-particle dynamics such as
the statistical conservation laws.

1. Absolute and relative evolution of particles

As for many-body problems in other branches of
physics, e.g., in kinetic theory or in quantum mechanics,
multiparticle dynamics brings about new aspects due to
cooperative effects. In turbulence, such effects are me-
diated by the velocity fluctuations with long space corre-
lations. Consider the joint PDF’s of the equal-time posi-
tions RO 5(R1 , . . . ,RN) of N fluid trajectories

K )
n51

N

p~rn ,s ;Rn ,tuv!L [PN~rO;RO ;t2s !, (65)

with the average over the velocity ensemble; see Fig. 3.
More generally, one may study the different-time ver-
sions of Eq. (65). Such PDF’s, called multiparticle Green
functions, account for the overall statistics of the many-
particle systems.

For statistically homogeneous velocities, it is conve-
nient to separate the absolute motion of the particles
from the relative one, as in other many-body problems
with spatial homogeneity. For a single particle, there is
nothing but the absolute motion which is diffusive at
times longer than the Lagrangian correlation time (Sec.
II.A). For N particles, we may define the absolute mo-

FIG. 3. An example of Lagrangian trajectories of three par-
ticles. The probability density of the positions RO , conditional
to the rO’s, is described by the PDF p(r,s ;R,tuv) (in a fixed
realization of the velocity). Its average over the statistics of the
velocity field gives the Green functions P(rO;RO ;t2s).
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tion as that of the mean position R̄5(nRn /N . When the
particles separate beyond the velocity correlation length,
they are essentially independent. The absolute motion is
then diffusive with the diffusivity N times smaller than
that of a single particle. The relative motion of N par-
ticles may be described by the versions of the joint
PDF’s (65) averaged over rigid translations:

P̃N~rO;RO ;t !5E PN~rO;RO 1rO ;t !dr, (66)

where rO5(r, . . . ,r). The PDF in Eq. (66) describes the
distribution of the particle separations Rnm5Rn2Rm or
of the relative positions RÕ 5(R12R̄, . . . ,RN2R̄).

As for two particles, we expect that when k→0 the
multiparticle Green functions PN tend to (possibly dis-
tributional) limits that we shall denote by the same sym-
bol. The limiting PDF’s are again expected to show a
different short-distance behavior for smooth and non-
smooth velocities. For smooth velocities, the existence
of deterministic trajectories leads for k50 to the col-
lapse property

lim
rN→rN21

PN~rO;RO ;t !5PN21~rO8;RO 8;t !d~RN212RN!,

(67)

where RO 85(R1 , . . . ,RN21) and similarly for the relative
PDF’s. If all the distances among the particles are much
smaller than the viscous cutoff, the velocity differences
are approximated by linear expressions and

P̃N~rO;RO ;t !5E K )
n51

N

d~Rn1r2W~ t !rn!L dr. (68)

The evolution matrix W(t) was defined in Eq. (16) and
the above PDF’s clearly depend only on its statistics
which has been discussed in Sec. II.B.

2. Multiparticle motion in Kraichnan velocities

The great advantage of the Kraichnan model is that
the statistical Lagrangian integrals of motion can be
found as zero modes of explicit evolution operators. In-
deed, the crucial simplification lies in the Markov char-
acter of the Lagrangian trajectories due to the velocity
time decorrelation. In other words, the processes RO (t)
and RÕ (t) are Markovian and the multiparticle Green
functions PN and P̃N give, for fixed N , their transition
probabilities. The process RO (t) is characterized by its
second-order differential generator MN , whose explicit
form may be deduced by a straightforward generaliza-
tion of the path-integral representation (52) to N par-
ticles. The PDF PN(rO;RO ;t)5e ut2suMN(rO;RO ) with

MN5 (
n ,m51

N

Dij~rnm!¹rn
i ¹rm

j 1k (
n51

N

“rn

2 . (69)

For the relative process RÕ (t), the operator MN should
be replaced by its translation-invariant version

M̃N52 (
n,m

@dij~rnm!12kd ij#¹rn
i ¹rm

j , (70)
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with dij related to Dij by Eq. (47). Note the multibody
structure of the operators in Eqs. (69) and (70). The
limiting PDF’s obtained for k→0 define the heat kernels
of the k50 version of the operators that are singular
elliptic and require some care in handling (Hakulinen,
2000).

As we have seen previously, the Kraichnan ensemble
may be used to model both smooth and Hölder continu-
ous velocities. In the first case, one keeps the viscous
cutoff h in the two-point correlation (46) with the result
that dij(r)5O(r2) for r!h as in Eq. (29), or one sets
j52 in Eq. (48). The latter is equivalent to the approxi-
mation (68) with W(t) becoming a diffusion process on
the group SL(d) of unimodular matrices, with an explic-
itly known generator, as discussed in Sec. II.B.2.a. The
right-hand side of Eq. (68) may then be studied by using
the representation theory (Shraiman and Siggia, 1995,
1996; Bernard et al., 1998), see also Sec. II.E.5 below. It
exhibits the collapse property (67).

From the form (70) of the generator of the process
RÕ (t) in the Kraichnan model, we infer that N fluid par-
ticles undergo an effective diffusion with the diffusivity
depending on the interparticle distances. In the inertial
interval and for a small molecular diffusivity k, the ef-
fective diffusivity scales as the power j of the interpar-
ticle distances. Comparing to the standard diffusion with
constant diffusivity, it is intuitively clear that the par-
ticles spend longer time together when they are close
and separate faster when they become distant. Both ten-
dencies may coexist and dominate the motion of differ-
ent clusters of particles. It remains to find a more ana-
lytic and quantitative way to capture those behaviors.
The effective short-distance attraction that slows down
the separation of close particles is a robust collective
phenomenon expected to be present also in time-
correlated and non-Gaussian velocity fields. We believe
that it is responsible for the intermittency of scalar fields
transported by high Reynolds number flows, as it will be
discussed in the second part of the review.

As for a single particle, the absolute motion of N par-
ticles is dominated by velocity fluctuations on scales of
order L . In contrast, the relative motion within the in-
ertial range is approximately independent of the velocity
cutoffs and it is convenient to take directly the scaling
limit h50 and L5` . We shall also set the molecular
diffusivity to zero. In these limits, M̃N has the dimen-
sion lengthj22, implying that time scales as length22j

and

P̃N~lrO;RO ;t !5l2(N21)dP̃N~rO;l21RO ;lj22t !. (71)

The relative motion of N fluid particles may be tested by
tracing the time evolution of the Lagrangian averages

^f„RO ~ t !…&5E f~RO !P̃N~rO;RO ;t !dRO 8 (72)

of translation-invariant functions f of the simultaneous
particle positions. Think about the evolution of N fluid
particles as that of a discrete cloud of marked points in
physical space. There are two elements in the evolution
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of the cloud: the growth of its size and the change of its
shape. We shall define the overall size of the cloud as
R5@(1/N)(

n,m
Rnm

2 #1/2 and its ‘‘shape’’ as RÔ 5RÕ /R . For

example, three particles form a triangle in space (with
labeled vertices) and the notion of shape that we are
using includes the rotational degrees of freedom of the
triangle. The growth of the size of the cloud might be
studied by looking at the Lagrangian average of the
positive powers R

z
. More generally, let f be a scaling

function of dimension z, i.e., such that f(lRO )5lzf(RO ).
The change of variables RO °t1/(22j)RO , the relation (71),
and the scaling property of f allow us to trade the La-
grangian PDF P̃N in Eq. (72) for that at unit time
tz/(22j)P̃N(t2 1/(22j)rO;RO ,1). As for two points, the limit
of P̃N when the initial points approach each other is
nonsingular for nonsmooth velocities and we infer that

^f„RO ~ t !…&5tz/~22j!E f~RO !P̃N~0O ;RO ;1 !dRO 81o~ tz/~22j!!.

(73)

In particular, we obtain the N-particle generalization of
the Richardson-type behavior (39): ^R(t)z&}tz/(22j).
Hence in the Kraichnan model the size of the cloud of
Lagrangian points grows superdiffusively }t1/(22j).
What about its shape?

3. Zero modes and slow modes

In order to test the evolution of the shape of the cloud
one might compare the Lagrangian averages of different
scaling functions. The relation (73) suggests that at large
times they all scale dimensionally as tz/(22j). Actually,
all do but those for which the integral in Eq. (73) van-
ishes. The latter scaling functions, whose evolution vio-
lates the dimensional prediction, may thus be better
suited for testing the evolution of the shape of the cloud.
Do such functions exist? Suppose that f is a scaling func-
tion of non-negative dimension z annihilated by M̃N ,
i.e., such that M̃Nf50. Its Lagrangian average, rather
than obeying the dimensional law, does not
change in time: ^f„RO (t)…&5f(rO). Indeed, ] tP̃N(rO;RO ;t)
5M̃NP̃N(rO;RO ;t). Therefore the time-derivative of the
right-hand side of Eq. (72) vanishes since it brings down
the (Hermitian) operator M̃N acting on f . Thus the zero
modes of M̃N are conserved in mean by the Lagrangian
evolution. The importance of such conserved modes for
the transport properties by d-correlated velocities has
been recognized independently by Shraiman and Siggia
(1995), Chertkov et al. (1995b), and Gawȩdzki and Ku-
piainen (1995, 1996).

The above mechanism may be easily generalized (Ber-
nard et al., 1998). Suppose that fk is a zero mode of the
(k11)th power of M̃N (but not of a lower one), with
scaling dimension z1(22j)k . Then, its Lagrangian av-
erage is a polynomial of degree k in time since its (k
11)th time derivative vanishes. Its temporal growth is
slower than the dimensional prediction tz/(22j) 1k if z
.0 so that the integral coefficient in Eq. (73) must van-
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
ish. We shall call such scaling functions slow modes. The
slow modes may be organized into ‘‘towers’’ with the
zero modes at the bottom.5 One descends down the
tower by applying the operator M̃N which lowers the
scaling dimension by (22j). The zero and the slow
modes are natural candidates for probes of the shape
evolution of the Lagrangian cloud. There is an impor-
tant general feature of those modes due to the multi-
body structure of the operators: the zero modes of
M̃N21 are also zero modes of M̃N and the same for the
slow modes. Only those modes that depend nontrivially
on all the positions of the N points may of course give
new information on the N-particle evolution which can-
not be read from the evolution of a smaller number of
particles. We shall call such zero and slow modes irre-
ducible.

To get convinced that zero and slow modes do exist,
let us first consider the limiting case j→0 of very rough
velocity fields. In this limit dij(r) reduces to D1(d
21)d ij, see Eq. (48), and the operator M̃N becomes
proportional to “I 2, the (Nd)-dimensional Laplacian re-
stricted to the translation-invariant sector. The relative
motion of the particles becomes a pure diffusion. If R
denotes the size-of-the-cloud variable then

“I 25R2dN11]RRdN21]R1R22
“Î 2, (74)

where dN[(N21)d and “Î 2 is the angular Laplacian on
the (dN21)-dimensional unit sphere of shapes RÔ . The
spectrum of the latter may be analyzed using the prop-
erties of the rotation group. Its eigenvalues are 2j(j
1dN22), where j50,1, . . . is the angular momentum.
The functions f j ,05Rjf j(RÔ ), where f j is an angular mo-
mentum j eigenfunction, are zero modes of the Laplac-
ian with scaling dimension j . The contributions coming
from the radial and the angular parts in Eq. (74) indeed
cancel out. The polynomials f j ,k5R2kfj ,0 form the corre-
sponding (infinite) tower of slow modes. All the scaling
zero and slow modes of the Laplacian are of that form.
The mechanism behind the special behavior of their La-
grangian averages is that mentioned at the beginning of
the section. Beside the constant, the simplest zero mode
has the form of the difference R12

2 2R13
2 . Both terms are

slow modes in the tower of the constant zero mode and
their Lagrangian averages grow linearly in time with the
same leading coefficient. Their difference is thus con-
stant. A similar mechanism stands behind the next ex-
ample, the difference 2(d12)R12

2 R34
2 2d(R12

4 1R34
4 ),

whose Lagrangian average is conserved due to the can-
cellation of linear and quadratic terms in time, and so
on.

It was argued by Bernard et al. (1998) that the slow
modes exist also for general j and show up in the
asymptotic behavior of the multiparticle PDF’s when the
initial points get close:

5Note that (M̃N)kfk is a zero mode of scaling dimension z.
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P̃N~lrO;RO ;t !5(
a

(
k50

`

lza1(22j)kfa ,k~rO!ga ,k~RO ,t !,

(75)

for small l. The first sum is over the zero modes fa ,0
[fa with scaling dimensions za , while higher k give the
corresponding towers of slow modes. The functions in
Eq. (75) may be normalized so that fa ,k215M̃Nfa ,k and
ga ,k115M̃Nga ,k5] tga ,k . The leading term in the expan-
sion comes from the constant zero mode f0,051. The
corresponding g0,0 coincides with the PDF of N initially
overlapping particles. The asymptotic expansion (75) is
easy to establish for vanishing j and for N52 with arbi-
trary j. In the general case, it has been obtained under
some plausible, but yet unproven, regularity assump-
tions. Note that, due to Eq. (71), the expansion (75)
describes also the asymptotics of the multiparticle PDF’s
when the final points get far apart and the times become
large. The use of Eq. (75) allows us to extract the com-
plete long-time asymptotics of the Lagrangian averages:

^f„RO ~ t !…&5(
a

(
k50

`

t ~z2za!/~22j! 2kfa ,k~rO!

3E f~RO !ga ,k~RO ,1!dRO 8, (76)

which is a detailed refinement of Eq. (73), correspond-
ing just to the first term. Note that the pure polynomial-
in-time behavior of the Lagrangian averages of the slow
modes implies partial orthogonality relations between
the slow modes and the g modes.

4. Shape evolution

The qualitative mechanism behind the preservation of
the Lagrangian average of the zero modes is the com-
pensation between its increase due to the size growth
and its depletion due to the shape evolution. The size
and the shape dynamics are mixed in the expansion (75)
that, together with Eq. (71), describes the long-time
long-distance relative evolution of the Lagrangian cloud.
To get more insight into the cooperative behavior of the
particles and the geometry of their configurations, it is
useful to separate the shape evolution following Gat and
Zeitak (1998); see also Arad and Procaccia (2000). The
general idea is to trade time in the relative N-particle
evolution RÕ (t) for the size variable R(t). This may be
done as follows. Let us start with N particles in a con-
figuration of size r and shape rÔ. Denote by RÔ (R) the
shape of the particle configuration the first time its size
reaches R>r . Varying R , one obtains a description of
the evolution of the shape of the particle cloud with its
size (which may be discontinuous if the size does not
grow at all moments of time). For scale invariant veloc-
ity fields, the PDF of the shapes RÔ (R), i.e., of the first
passages of RÕ (t) through the sphere of size R , depends
only on the ratio R/r . We shall denote it by
PN(rÔ;RÔ ;r/R). The shape evolution RÔ (R) is still a Mar-
kov process: in order to compute the probability of the
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
first passage through the sphere of size R , one may con-
dition with respect to the first passage through a sphere
of an intermediate size. As a result, the PDF’s PN obey a
semigroup Chapman-Kolmogorov relation. As observed
by Gat and Zeitak (1998), the eigenmode expansion of
the (generally non-Hermitian) Markov semigroup
PN(l) involves the zero modes fa :

PN~rÔ;RÔ ;l!5(
a

lzafa~rÔ!ha~RÔ !. (77)

The formal reason is as follows. The statistics of the first
passage through a given surface may be obtained by im-
posing the Dirichlet boundary condition on the surface
in the differential generator of the process. For the case
at hand, if GN(rO,RO ) denotes the kernel of the inverse of
2M̃N and GN

Dir refers to its version with the Dirichlet
conditions at R51, then

PN~rÔ;RÔ ;l!5
1
2 (

n ,m51

N

@¹Rn
i R#

3@dij~Rnm!¹Rm
j GN

Dir~lrÔ,RO !# , (78)

with the derivatives taken on the sphere of unit radius.
The potential theory relation (78) expresses the simple
fact that the probability of a first passage through a
given surface is the normal component of the probability
current (the expression in second parentheses on the
right-hand side). On the other hand, by integrating the
asymptotic expansion (75), one obtains the expansion

GN~lrO,RO !5E
0

`

P̃N~lrO;RO ;t !dt5(
a

lzafa~rO!g̃a~RO !,

(79)

where g̃a5*0
`ga ,0 dt . Note that the slow modes do not

appear since ga ,k11 is the time derivative of ga ,k , that
vanishes at the boundary of the integration interval for
nonzero RO . The Dirichlet boundary condition at R51
should not affect the dependence on the asymptotically
close positions lrO. An expansion analogous to Eq. (79)
should then hold for GN

Dir with the same zero modes and
modified functions g̃ . The potential theory formula Eq.
(78) together with the Dirichlet version of Eq. (79) give
Eq. (77).

Let us now consider the ‘‘shape only’’ version of the
Lagrangian average (72). Substituting the expansion
(77), we obtain

^f„RÔ ~R !…&5(
a

~R/r !2zafa~rÔ!E f~RÔ !ha~RÔ !dRÔ . (80)

The interpretation of Eq. (80) is simple: when the size
increases, the average of a generic function of the shape
relaxes as a combination of negative powers of R to a
constant, with the zero modes fa(rÔ) giving the modes of
relaxation (Gat and Zeitak, 1998). On the other hand,
due to the orthogonality of the left and right eigenfunc-
tions of the semigroup PN(l), the shape averages of the
zero modes decay: ^fa„RÔ (R)…&5(R/r)2zafa(rÔ). Since
the size grows as t1/(22j), this quantitatively illustrates
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the decrease of the shape average responsible for the
conservation in time of the Lagrangian average of the
zero modes. A vivid and explicit example of the com-
pensation is provided by the case of three particles. The
contour lines of the relevant zero mode as a function of
the shape of the triangle are shown in Fig. 4. The func-
tion tends to decrease for configurations where all the
interparticle distances are comparable. It is then clear
that the decrease in the shape average is simply due to
particle evolving toward symmetrical configurations with
aspect ratios of order unity (Pumir, 1998; Celani and
Vergassola, 2001).

The relative motion of the particles in the limit j→0
becomes a pure diffusion. It is then easy to see that the
zero modes of the Laplacian play indeed the role of re-
laxation modes of the j50 shape evolution. Pure diffu-
sion is the classical case of potential theory: GN(rO,RO )
}urO2RO u2dN12 is the potential induced at rO by a unit
charge placed at RO (the absolute value is taken in the
sense of the size variable). The Dirichlet version GN

Dir

corresponds to the potential of a unit charge inside a
grounded conducting sphere and it is obtained by
the image charge method: GN

Dir(rO,RO )5GN(rO,RO )
2R2dN12GN(rO,RO /R2). The potential theory formula
(78) gives then for the shape-to-shape transition prob-
ability PN(rÔ;RÔ ;l)}(12l2)uRÔ 2lrÔu2dN, with the propor-
tionality constant equal to the inverse volume of the
sphere. On the other hand, calculating GN

Dir in each an-
gular momentum sector by Eq. (74), one easily describes
the generator of the Markov semigroup PN(l). It is the
pseudodifferential Hermitian operator with the same
eigenfunctions f j as the angular Laplacian “Î 2 but with
eigenvalues 2j . The expansion (77) with ha5fa follows
(recall that the functions Rjf j form the zero modes of
the Laplacian). The Markov process RÔ (R) lives on dis-
tributional realizations (and not on continuous ones).

It is instructive to compare the shape dynamics of the
Lagrangian cloud to the imaginary-time evolution of a
quantum-mechanical many-particle system governed by
the Hamiltonian HN5(n (pn

2 /2m)1(n,mV(rnm). The
(Hermitian) imaginary-time evolution operators e2tHN

decompose in the translation-invariant sector as
(ae2tEN ,aucN ,a&^cN ,au. The ground-state energy is EN ,0

FIG. 4. The contour lines of a three-particle zero mode as a
function of the shape of the triangle defined by the particles.
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and the sum is replaced by an integral for the continuous
part of the spectrum. An attractive potential between
the particles may lead to the creation of bound states at
the bottom of the spectrum of HN . Breaking the system
into subsystems of Ni particles by removing the poten-
tial coupling between them would then raise the ground-
state energy: EN ,0,( iENi,0

. A very similar phenom-
enon occurs in the stochastic shape dynamics. Consider
indeed an even number of particles and denote by zN ,0
the lowest scaling dimension of the irreducible zero
mode invariant under translations, rotations, and reflec-
tions. For two particles there is no invariant irreducible
zero mode and its role is played by the first slow mode
}r22j and z2,0522j . Suppose now that we break the
system into subsystems with an even number Ni of par-
ticles by removing in M̃N the appropriate terms
d(rnm)¹rn

¹rm
coupling the subsystems; see Eq. (70). For

Ni>4, the irreducible zero mode for the broken system
factorizes into the product of such modes for the sub-
systems. If Ni52 for some i , the factorization still holds
modulo terms dependent on less variables. In any case,
the scaling dimensions simply add up. The crucial obser-
vation, confirmed by perturbative and numerical analy-
ses discussed below, is that the minimal dimension of the
irreducible zero modes is raised: zN ,0,( izNi,0

. In par-
ticular, zN ,0 is smaller than (N/2)(22j). One even ex-
pects that zN ,0 is a concave function of (even) N and that
for N@d its dependence on N saturates, see Secs.
III.C.2, III.D.2, and III.F. By analogy with the multibody
quantum mechanics, we may say that the irreducible
zero modes are bound states of the shape evolution of
the Lagrangian cloud. The effect is at the root of the
intermittency of a passive scalar advected by nonsmooth
Kraichnan velocities, as we shall see in Sec. III.C.1. It is
a cooperative phenomenon exhibiting a short-distance
attraction of close Lagrangian trajectories superposed
on the overall repulsion of the trajectories. There are
indications that similar bound states of the shape evolu-
tion persist in more realistic flows and that they are still
responsible for the scalar intermittency; see Sec. III.D.2
and Celani and Vergassola (2001).

5. Perturbative schemes

The incompressible Kraichnan model has two param-
eters dP@2,`) and jP@0,2# . It is then natural to ask if
the problem is simplified at their limiting values and if
perturbative methods might be used to get the zero
modes near the limits. No significant simplification has
been recognized for d52 at arbitrary j. The other limits
do allow for a perturbative treatment since the particle
interaction is weak and the anomalous scaling disap-
pears there. The perturbation theory is essentially regu-
lar for j→0 and d→` . Conversely, the perturbation
theory for j→2 is singular for two reasons. First, the
advection by a smooth velocity field preserves the con-
figurations with the particles aligned on a straight line. A
small roughness of the velocity has little effect on the
particle motion almost everywhere but for quasicol-
linear geometries. A separate treatment of those regions
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and a matching with the regular perturbation expansion
for a general geometry is thus needed. Second, for al-
most smooth velocities, close particles separate very
slowly and their collective behavior is masked by this
effect which leads to an accumulation of zero modes
with very close scaling dimensions. We shall start by the
more regular cases of small j and large d . The scaling of
the irreducible four-point zero mode with the lowest di-
mension was first calculated to the linear order in j by
Gawȩdzki and Kupiainen (1995) by a version of degen-
erate Rayleigh-Schrödinger perturbation theory. In par-
allel, a similar calculation in the linear order in 1/d was
performed by Chertkov et al. (1995b). Bernard et al.
(1996) streamlined the small j analysis and generalized
it to any even order, following a similar generalization
by Chertkov and Falkovich (1996) for the 1/d expansion.
We sketch here the main lines of those calculations.

As we discussed in Sec. II.E.3, the operator M̃N is
reduced to the Laplacian (74) for j50. The zero modes
of the Laplacian depend on the size of the particle con-
figuration as Rj and on its shape as the eigenfunctions of
“Î 2 with angular momentum j . The zero modes invariant
under d-dimensional translations, rotations, and reflec-
tions can be reexpressed as polynomials in Rnm

2 . For
even N , the irreducible zero modes with the lowest scal-
ing dimension have the form

fN ,0~RO !5R12
2 R34

2
¯R(N21)N

2 1@¯# , (81)

where @¯# denotes a combination of terms that depend
on the positions of (N21) or less particles. For four
particles, the zero mode is 2(d12)R12

2 R34
2 2d(R12

4

1R34
4 ), our recurrent example. The terms @¯# are not

uniquely determined since any degree N zero mode for
a smaller number of points might be added. Further-
more, permutations of the points in fN ,0 give other zero
modes so that we may symmetrize the above expressions
and look only at the permutation-invariant modes. The
scaling dimension zN ,0 of fN ,0 is clearly equal to N . This
linear growth signals the absence of attractive effects
between the particles diffusing with a constant diffusiv-
ity (no particle binding in the shape evolution). As we
shall see in Sec. III.C.1, this leads to the disappearance
of the intermittency in the advected scalar field, that be-
comes Gaussian in the limit j→0.

To the linear order in j, the operator M̃N will differ
from the Laplacian by a second-order differential opera-
tor 2jV , involving logarithmic terms }ln(rnm). The zero
mode and its scaling dimension are expanded as f0
1jf1 and N1jz1 , respectively. The lowest order term
f0 is given by the symmetrization of Eq. (81). As usual in
such problems, the degeneracy hidden in @¯# may be
lifted by the perturbation that fixes f0 for each zero
mode, see below. At the first order in j, the equations
that define the zero modes and their scaling dimension
reduce to the relations

“I 2f15Vf0 , ~R]R2N !f15z1f0 . (82)

Given an arbitrary zero mode f0 , one shows that the
first equation admits a solution of the form f15h
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
1(n,mhnm ln(rnm) with O(d)-invariant, degree N poly-
nomials hnm and h , the latter being determined up to
zero modes of “I 2. Note that the function (R]R2N)f1
5(n,mhnm is also annihilated by the Laplacian

“I 2~R]R2N !f15~R]R2N12 !“I 2f1

5~R]R2N12 !Vf0

5~@R]R ,V#12V !f01V~R]R2N !f0

50. (83)

The last equality follows from the scaling of f0 and the
fact that the commutators of R]R with M̃N and V are
(j22)M̃N and 2“I 222V , respectively. One obtains this
way a linear map G on the space of the degree N zero
modes of the Laplacian: Gf05(R]R2N)f1 . The second
equation in Eq. (82) states that f0 must be chosen as an
eigenstate of the map G. Furthermore, the function
should not belong to the subspace of unit codimension
of the zero modes that do not depend on all the points.
It is easy to see that such subspace is preserved by the
map G. As the result, the eigenvalue z1 is equal to the
ratio between the coefficients of R12

2 R34
2
¯R(N21)N

2 in
Gf0 and in f0 . The latter is easy to extract, see Bernard
et al. (1996) for the details, and yields the result z15
2 N(N1d)/2(d12) or, equivalently,

zN ,05
N

2
~22j!2

N~N22 !

2~d12 !
j1O~j2!, (84)

giving the leading correction to the scaling dimension of
the lowest irreducible zero mode. Note that to that or-
der zN ,0 is a concave function of N . Higher-order terms
in j have been analyzed in Adzhemyan et al. (1998) (the
second order) and in Adzhemyan et al. (2001) (the third
order). The latter papers used a renormalization group
resummation of the small j perturbative series for the
correlation functions of the scalar gradients in conjunc-
tion with an operator product expansion; see Sec.
III.C.1. The expression (84) may be easily generalized to
the compressible Kraichnan ensemble of compressibility
degree `. The correction z1 for the tracer exponent
picks up an additional factor (112`) (Gawȩdzki and
Vergassola, 2000). Higher-order corrections may be
found in Antonov and Honkonen (2001). The behavior
of the density correlation functions was analyzed in
Adzhemyan and Antonov (1998), Gawȩdzki and Vergas-
sola (2000), and Antonov and Honkonen (2001).

For large dimensionality d , it is convenient to use the
variables xnm5Rnm

22j as the independent coordinates6 to
make the d dependence in M̃N explicit. Up to higher
orders in 1/d , the operator M̃N}L2 (1/d) U , where L
5d21(n,m@(d21)]xnm

1(22j)xnm]xnm

2 # and U is a
second-order d-independent differential operator mix-
ing derivatives over different xnm . We shall treat L as

6Their values are restricted only by the triangle inequalities
between the interparticle distances.
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the unperturbed operator and 2 (1/d) U as a perturba-
tion. The inclusion into L of the diagonal terms } 1/d
makes the unperturbed operator of the same (second)
order in derivatives as the perturbation and renders the
perturbative expansion less singular. The irreducible
zero modes of L with the lowest dimension are given by
an expression similar to Eq. (81):

fN ,0~RO !5x12x34¯x(N21)N1@¯# , (85)

and the permutations thereof. Their scaling dimension is
(N/2)(22j). For N54, one may, for example, take f4,0
5x12x342 @d21/2(22j)# (x12

2 1x34
2 ). As in the j expan-

sion, in order to take into account the perturbation U ,
one has to solve the equations

Lf15Uf0 , S (
n,m

xnm]xnm
2

N

2 D f15
z1

22j
f0 . (86)

One checks again that Gf0[((n,mxnm]xnm
2 N/2)f1 is

annihilated by L. In order to calculate z1 , it remains to
find the coefficient of x12¯x(N21)N in Gf0 . In its depen-
dence on the x’s, the function Uf0 scales with power
(N/2 21). One finds f1 by applying the inverse of the
operator L to it. Gf0 is then obtained by gathering the
coefficients of the logarithmic terms in f1 ; see Chertkov
et al. (1995b) for the details. When d→` , the operator
L reduces to the first order one L8[(n,m]xnm

. This sig-
nals that the particle evolution becomes deterministic at
d5` , with all xnm growing linearly in time. If one is
interested only in the 1/d correction to the scaling expo-
nent and not in the zero mode, then it is possible to use
directly the more natural (but more singular) decompo-
sition M̃N}L82 (1/d)U8. The leading zero modes of L8
also have the form (85). Noting that L8 is a translation
operator, the zero mode G8f0 may be obtained as the
coefficient of the logarithmically divergent term in
*0

`U8f0(xnm2t)dt ; see Chertkov and Falkovich (1996).
In both approaches, the final result is

zN ,05
N

2
~22j!2

N~N22 !

2d
j1OS 1

d2D , (87)

which is consistent with the small j expression (84).
The nonisotropic zero modes, as well as those for odd

N , may be studied similarly. The zero modes of fixed
scaling dimension form a representation of the rotation
group SO(d) which may be decomposed into irreducible
components. In particular, one may consider the compo-
nents corresponding to the symmetric tensor products of
the defining representation of SO(d), labeled by the an-
gular momentum j (the multiplicity of the tensor prod-
uct). For two particles, no other representations of
SO(d) appear. The two-point operator M̃2 becomes in
each angular momentum sector an explicit second-order
differential operator in the radial variable. It is then
straightforward to extract the scaling dimensions of its
zero modes:
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z2,0
j 52

d221j

2

1
1
2
A~d221j!21

4~d211j!j~ j1d22 !

d21
.

(88)

Note that z2,0
1 51 in any d corresponding to linear zero

modes. For the three-point operator, the lowest scaling
dimensions are z3,0

0 542 @2(d22)/(d21)# j1O(j2)
(Gat et al., 1997; Gat, L’vov, and Procaccia, 1997) and
z3,0

1 532 (d14)/(d12) j1O(j2) (Pumir, 1996, 1997) or
z3,0

1 532j2 2j/d 1O(1/d2) (Gutman and Balkovsky,
1996). For even N and j , the generalization of Eq. (84)
takes the form (Antonov, 1999, 2000; Arad, L’vov, et al.,
2000; Wiese, 2000)

zN ,0
j 5

N

2
~22j!2S N~N22 !

2~d12 !
2

j~ j1d22 !~d11 !

2~d12 !~d21 ! D j

1O~j2!. (89)

The effective expansion parameter in the small j or
large d approach turns out to be Nj/@(22j)d# so that
neither of them is applicable to the region of the almost
smooth velocity fields. This region requires a different
perturbative technique exploiting the numerous symme-
tries exhibited by the multiparticle evolution in the lim-
iting case j52. Those symmetries were first noticed and
employed to derive an exact solution for the zero modes
by Shraiman and Siggia (1996). The expression of the
multiparticle operators at j52 reads

M̃N5D1@dH22~d11 !J2# , (90)

with H25( ijHijHji and J252( i,jJ ij
2 denoting the Ca-

simir operators of the group SL(d) and of its SO(d)
subgroup acting on the index i51, . . . ,d of the particle
positions rn

i . The corresponding generators are given by
Hij5(n@2rn

i ¹rn
j 1 (1/d)d ij(rn

k¹rn
k)# and Jij5Hij2Hji .

The relation (90), that may be easily checked directly, is
consistent with the expression (68) for the heat kernel of
M̃N . As mentioned in Sec. II.B.1, the right-hand side of
Eq. (90) is indeed the generator of the diffusion process
W(t) on the group SL(d). In their analysis, Shraiman
and Siggia (1995) employed an alternative expression
for the multiparticle operators, exhibiting yet another
symmetry of the smooth case:

M̃N5D1S dG22~d11 !J21
d2N11

N21
L~L1dN! D ,

(91)

where G25(n ,m51
N21 GnmGmn is the quadratic Casimir of

SL(N21) acting on the index n51, . . . ,N21 of the dif-
ference variables rnN

i and L5( i ,nrn
i ¹rn

i is the generator

of the overall dilations. For three points, one may then
decompose the scaling translationally invariant functions
into the eigenfunctions of G2, L2 and other generators
commuting with the latter and with L. The zero modes
of M̃3 at j52 have the lowest scaling dimension equal
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to unity and vanishing in the angular momentum sectors
j51 and j50; see Pumir et al. (1997) and Balkovsky,
Falkovich, and Lebedev (1997). They have infinite mul-
tiplicity since their space carries an infinite-dimensional
representation of SL(2). Similar zero modes exist for
any higher scaling dimension. In 2D, for example, the
scaling dimension of a three-particle zero mode may be
raised multiplying it by a power of det(r n3

i ). The con-
tinuous spectrum of the dimensions and the infinite de-
generacy of the zero modes in the smooth case is one
source of the difficulties. Another related difficulty is
that for j52 the principal symbol of M̃3 looses positive-
definiteness not only when two of the points coincide,
but also when all the three points become collinear. That
leads to the domination for quasicollinear geometries of
the perturbative terms in M̃3 over the unperturbed
ones. The problem requires a boundary layer approach
developed first by Pumir et al. (1997) for the j51 sector
with the conclusion that the minimal scaling dimension
of the zero mode behaves as 11o(22j). Similar tech-
niques led Balkovsky, Falkovich, and Lebedev (1997) to
argue for a O(A22j) behavior of the minimal scaling
dimension of the isotropic zero modes. The three-
particle zero-mode equation was solved numerically for
the whole range of values of j by Pumir (1997) for j
51 and d52,3 and by Gat (1997) and Gat, L’vov, and
Procaccia (1997) in the isotropic case for d52,3,4. Their
results are compatible with the perturbative analysis
around j50 and j52, with a smooth interpolation for
the intermediate values (no crossing between different
branches of the zero modes). Analytical nonperturbative
calculations of the zero modes were performed for the
passive scalar shell models, where the degrees of free-
dom are discrete. We refer the interested reader to the
original works (Benzi et al., 1997; Andersen and
Muratore-Ginanneschi, 1999) and to Bohr et al. (1998)
for an introduction to shell models.

III. PASSIVE FIELDS

The results on the statistics of Lagrangian trajectories
presented in Sec. II will be used here to analyze the
properties of passively advected scalar and vector fields.
The qualification ‘‘passive’’ means that we disregard the
back reaction of the advected fields on the advecting
velocity. We shall treat both a scalar per unit mass (a
tracer field), satisfying the equation

] tu1v•“u5k“2u , (92)

and the density per unit volume, whose evolution is gov-
erned by

] tn1“•~nv!5k“2n . (93)

For incompressible flows, the two equations are obvi-
ously coinciding. Examples of passive vector fields are
provided by the gradient of a tracer v5¹u , obeying

] tv1“~v•v!5k¹2v, (94)
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and the divergenceless magnetic field evolving in incom-
pressible flow according to

] tB1v•“B2B•“v5k“2B. (95)

Two broad situations will be distinguished: forced and
unforced. The evolution equations for the latter are Eqs.
(92)–(95). They will be analyzed in Sec. III.A. For the
former, a pumping mechanism such as a forcing term is
present and steady states might be established. The rest
of the section treats steady cascades of passive fields un-
der the action of a permanent pumping. As we shall see
below, the advection equations may be easily solved in
terms of the Lagrangian flow, hence the relation be-
tween the behavior of the advected fields and of the
fluid particles. In particular, the multipoint statistics of
the advected fields will appear to be closely linked to the
collective behavior of the separating Lagrangian par-
ticles. An introduction to the passive advection problem
may be found in Shraiman and Siggia (2000).

A. Unforced evolution of scalar and vector fields

The physical situation of interest is that the initial pas-
sive field or its distribution is prescribed and the prob-
lem is to determine the field distribution at a later time
t . The simplest question to address is which fields have
their amplitudes decaying in time and which growing,
assuming the velocity field to be statistically steady. A
tracer field always decays because of dissipative effects,
with the law of decay depending on the velocity proper-
ties. The fluctuations of a passive density may grow in a
compressible flow, with this growth saturated by diffu-
sion after some time. The fluctuations of both v and B
may grow exponentially as long as diffusion is unimpor-
tant. After diffusion comes into play, their destinies are
different: v decays, while the magnetic field continues to
grow. This growth is known as dynamo process and it
continues until saturated by the back reaction of the
magnetic field on the velocity. Another important issue
here is the presence or absence of a dynamic self-
similarity: for example, is it possible to present the time-
dependent PDF P(u ;t) as a function of a single argu-
ment? In other words, does the form of the PDF remain
invariant in time apart from a rescaling of the field? We
shall show that for large times the scalar PDF tends to a
self-similar limit when the advecting velocity is non-
smooth, while self-similarity is broken in smooth veloci-
ties.

1. Backward and forward in time Lagrangian description

If the advecting velocities are smooth and if the diffu-
sive terms are negligible,7 the advection equations may
be easily solved in terms of the Lagrangian flow. To cal-
culate the value of a passively advected field at a given
time one has to trace the field evolution backwards

7Recall that the Schmidt number n/k , also called Prandtl
number when considering temperature or magnetic fields, is
assumed to be large.
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along the Lagrangian trajectories. This is to be con-
trasted with the description of the particles in the previ-
ous section, which was developed in terms of the for-
ward evolution. The tracer u stays constant along the
Lagrangian trajectories:

u~r,t !5u„R~0;r,t !,0…, (96)

where R(• ;r,t) denotes the Lagrangian trajectory pass-
ing at time t through the point r. The density n changes
along the trajectory as the inverse of the volume con-
traction factor. Let us consider the matrix W̃(t ;r)
5W„t ;R(0;r,t)…, where W(t ;r) is given by Eq. (13) and
describes the forward evolution of small separations of
the Lagrangian trajectories starting at time zero near r.
The volume contraction factor is det„W̃(t ;r)… and

n~r,t !5@det„W̃~ t ;r!…#21n„R~0;r,t !,0…. (97)

Note that the matrix W̃(t ;r) is the inverse of the
backward-in-time evolution matrix W8(t ;r) with the ma-
trix elements ]Ri(0;r,t)/]rj. This is indeed implied by
the identity R„t ;R(0;r,t),0…5r and the chain rule for dif-
ferentiation. The solution of the evolution equation for
the gradient of the tracer is obtained by differentiating
Eq. (96):

v~r,t !5@W̃~ t ;r!21#Tv„R~0;r,t !,0…. (98)

Finally, the magnetic field satisfies

B~r,t !5W̃~ t ;r!B„R~0;r,t !,0…. (99)

The relations (96)–(99) give, in the absence of forcing
and diffusion, the solutions of the initial value problem
for the advection equations in a given realization of a
smooth velocity.

For nonzero k, the solutions of the scalar equations
are given essentially by the same expressions. However,
R(• ;r,t) denotes now a noisy Lagrangian trajectory sat-
isfying the stochastic Eq. (5) and passing through r at
time t and the right-hand sides of Eqs. (96)–(99) should
be averaged over the noise using the Itô formula of sto-
chastic calculus discussed in the Appendix. These solu-
tions may be rewritten using the transition PDF’s
p(r,s ;R,tuv) introduced in Sec. II.C; see Eq. (43) and
describing the probability density to find the noisy par-
ticle at time t at position R, given its time s position r.
One has

u~r,t !5E p~r,t ;R,0uv!u~R,0!dR,

n~r,t !5E p~R,0;r,tuv!n~R,0!dR. (100)

The two PDF’s appearing in these formulas, one back-
ward and the other forward in time, coincide for incom-
pressible velocities but they are generally unequal for
the compressible cases. For nonsmooth velocities, those
PDF’s continue to make sense and we shall use Eq. (100)
to define the solutions of the scalar advection equations
in that case. As for the vector fields, their properties
depend both on the noisy Lagrangian trajectory end
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points and on the matrices W̃(t ;r), that are well defined
only in smooth velocities. The formal procedure for non-
smooth velocities is to first impose a viscous cutoff,
smoothing the velocity behavior at small scales, and then
removing it. When this is done, some properties of the
field remain well defined and may be analyzed (see, for
instance, Sec. III.C.3).

In random velocity fields, the advected quantities be-
come random fields whose statistics may be probed by
considering the equal-time correlation functions. In par-
ticular, those of a tracer evolve according to

CN~rO,t ![^u„r1 ,t !¯u~rN ,t !&

5E PN~rO;RO ;2t !u~R1,0!¯u~RN,0!dRO .

(101)

Here, as in Sec. II.C, the Green functions PN are the
joint PDF’s of the equal-time positions of N fluid par-
ticles; see Eq. (65). For the correlators of the density n ,
the backward propagator in Eq. (101) should be re-
placed by its forward version, in agreement with Eq.
(100). If the initial data are random and independent of
the velocities, they may be easily averaged over. For a
Gaussian initial distribution with zero mean,

C2n~rO,t !5E P2n~rO;RO ;2t !

3@C2~R12,0!¯C2~R(2n21)2n,0!1¯#dRO ,

(102)

where, according to the Wick rule, the dots stand for the
other pairings of the 2n points.

Let us now briefly discuss the compressible case,
where the statistics of the matrices W̃ and W generally
do not coincide. As we have already discussed in Sec.
II.D, every trajectory then comes with its own weight
determined by the local rate of volume change and ex-
hibited by the Lagrangian average of a function f(W̃):

E f„W̃~ t ;r!…
dr
V

5E f„W~ t ;R!…det„W~ t ;R!…
dR
V

.

(103)

The relation in Eq. (103) simply follows from the defi-
nition of W̃ . The volume change factor det(W)
5exp((ri), with the same notation as in Sec. II.B. Recall
that only the average of the determinant is generally
equal to unity for compressible flow. The averages of the
SO(d)-invariant functions of W̃ are described for large
times by the large-deviation function H̃5H2(r i /t ,
with the last term coming from the volume factor. The
corresponding Lyapunov exponents l̃ i are determined
by the extremum of H̃ (Balkovsky, Falkovich, and
Fouxon, 1999). The exponents generally depend on the
form of the entropy function H and cannot be expressed
via the Lyapunov exponents l i only. Since the matrix
W8 of the backward evolution is the inverse of W̃ , the
backward Lyapunov exponents are given by 2l̃d2i11
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and not by the naive guess 2ld2i11 . In particular, the
interparticle distance diverges backward in time with the
exponent 2l̃d . The same way as we have shown in Sec.
II.D that (l i<0 in a compressible flow, one shows that
(l̃ i>0 (implying l̃1>0). For the forward Lagrangian
evolution we thus have an average compression of vol-
umes, whereas passive fields rather feel an average ex-
pansion. Indeed, as we go away from the moment where
we imposed a uniform Lagrangian measure, the rate of
change of the volume is becoming negative in a fluctu-
ating compressible flow.

The forward and backward in time Lyapunov expo-
nents coincide if the statistics of the velocities is time
reversible, i.e., if v(r,t) and 2v(r,2t) are identically dis-
tributed. More generally, the entire distributions of the
forward and the backward in time stretching rates coin-
cide in that case:

H~r1 /t2l1 ,. . . ,rd /t2ld!

5H~2rd /t2l1 ,. . . ,2r1 /t2ld!1(
i

r i /t .

(104)

This is an example of the time-reversibility symmetry of
the large deviation entropy function that was described
by Gallavotti and Cohen (1995). The symmetry holds
also for a d-correlated strain, although the above finite-
volume argument (103) does not apply directly to this
case. Recall that in that instance the entropy function
(59) describes the large deviations of the stretching rates
of the matrix W(t) given by the Itô version of Eq. (16).
For the inverse evolution, the strain s(s) should be re-
placed by s8(s)52s(t2s) and the matrix W8(t) has
the same distribution as W(t). The matrix W̃(t)
5W8(t)21 is then given by Eq. (16) with the anti-Itô
regularization and the relation between the conventions
[see Eq. (A4)] implies W̃(t)5W(t)e22(l it/d. Realistic
turbulent flows are irreversible because of the dissipa-
tion so that the symmetry (104), that was confirmed in
an experimental situation (Ciliberto and Laroche, 1998),
may be at most approximate.

2. Quasi-Lagrangian description of the advection

Important insights into the advection mechanisms are
obtained by eliminating global sweeping effects and de-
scribing the advected fields in a frame whose origin
moves with the fluid. This picture of the hydrodynamic
evolution, known under the name of quasi-Lagrangian
description, is intermediate between the static Eulerian
and the dynamic Lagrangian ones (Monin, 1959; Belin-
icher and L’vov, 1987). Specifically, quasi-Lagrangian
fields are defined as

c̃~r,t !5c@r1R~ t ;r0,0!,t# , (105)

where c stands for any Eulerian field, scalar or vector,
introduced previously and R(t ;r0,0) is the Lagrangian
trajectory passing through r0 at time zero. The quasi-
Lagrangian fields satisfy the same evolution equations as
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the Eulerian ones except for the replacement of the ad-
vective term by @ ṽ(r,t)2 ṽ(0,t)#•“ . If the incompress-
ible velocity and the initial values of the advected field
are statistically homogeneous, the equal-time statistics
of the quasi-Lagrangian and the Eulerian fields coincide.
The equal-time statistics is indeed independent of the
initial point r0 . The equality of the equal-time Eulerian
and quasi-Lagrangian distributions follows then by aver-
aging first over r0 and then over the velocity and by
changing the variables r0°R(t ;r0,0). The equality does
not hold if the initial values of the advected fields are
nonhomogeneous.

It will be especially convenient to use the quasi-
Lagrangian picture for distances r much smaller than the
viscous scale, i.e., in the Batchelor regime (Falkovich
and Lebedev, 1994). The variations in the velocity gra-
dients may then be ignored so that ṽ(r,0)2 ṽ(0,t)
's(t)r. In this case, the velocity field enters into the
advection equations only through the time-dependent
strain matrix. For the tracer, one obtains then the evo-
lution equation

] tũ1~sr!•“ ũ5k“2ũ . (106)

This may be solved as before using now the noisy La-
grangian trajectories for a velocity linear in the spatial
variables:

ũ~r,t !5uS W~ t !21r2A2kE
0

t
W~s !21db~s !,0D , (107)

where W(t) is the evolution matrix of Eq. (16). The
overbar denotes the average over the noise which is eas-
ily performed for incompressible velocity fields using the
Fourier representation:

ũ~r,t !5E û„W~ t !Tk,0…exp@ ik•r2k•Q~ t !k#
dk

~2p!d

(108)

with

Q~ t !5kE
0

t
W~ t !@W~s !TW~s !#21W~ t !Tds . (109)

3. Decay of tracer fluctuations

For practical applications, e.g., in the diffusion of pol-
lution, the most relevant quantity is the average
^u(r,t)&. It follows from Eq. (101) that the average con-
centration is related to the single-particle propagation
discussed in Sec. II.A. For times longer than the La-
grangian correlation time, the particle diffuses and ^u&
obeys the effective heat equation

] t^u~r,t !&5De
ij¹ i¹ j^u~r,t !& , (110)

with the effective diffusivity De
ij given by Eq. (9). The

decay of higher-order moments and multipoint correla-
tion functions involves multiparticle propagation and it
is sensitive to the degree of smoothness of the velocity
field.

The simplest decay problem is that of a uniform scalar
spot of size l released in the fluid. Another relevant situ-
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ation is that where a homogeneous statistics with corre-
lations decaying on the scale l is initially prescribed. The
corresponding decay problems are discussed hereafter
for the two cases of smooth and nonsmooth incompress-
ible flow.

a. Smooth velocity

Let us consider an initial scalar configuration given in
the form of a single spot of size l . Its average spatial
distribution at later times is given by the solution of Eq.
(110) with the appropriate initial condition. On the
other hand, the decay of the scalar in the spot as it is
carried with the flow corresponds to the evolution of ũ ,
defined by Eq. (105). We assume the Schmidt/Prandtl
number n/k to be large so that the viscous scale h is
much larger than the diffusive scale rd . We shall be con-
sidering the 3D situation, where the diffusive scale rd

5Ak/ul3u and l3 is the most negative Lyapunov expo-
nent defined in Sec. II.B.1. As shown there, for times t
!td5ul3u21 ln(l/rd), the diffusion is unimportant and the
values of the scalar field inside the spot do not change.
At later times, the width in the direction of the negative
Lyapunov exponent l3 is frozen at rd , while the spot
keeps growing exponentially in the other two
directions.8 The freezing of the contracting direction at
rd thus results in an exponential growth of the volume
}exp(r11r2). Hence the scalar moment of order a mea-
sured at locations inside the spot will decrease as the
average of exp@2a(r11r2)#. The resulting decay laws
exp(2gat) may be calculated using the PDF (27) of the
stretching variables r i . More formally, the scalar
moments inside the spot are captured by the
quasi-Lagrangian single-point statistics. Following
Balkovsky and Fouxon (1999), let us take in
Eq. (108) a Gaussian initial configuration û(k,0)
5exp@2 1

12(lk)2# . As a result,

ũ~0,t !5E expF2
1

12
l2k•I~ t !kG dk

~2p!3

}det I~ t !21/25e2(r i, (111)

where I(t) is the mean tensor of inertia introduced in
Sec. II.B.1; see Eq. (25). Using the PDF (27), one ob-
tains then

^ũ
a
~ t !&}E exp@2a~r11r2!

2tH~r1 /t2l1 ,r2 /t2l2!#dr1 dr2 . (112)

At large times, the integral is determined by the saddle
point. At small a, it lies within the parabolic domain of
H and the decay rate ga increases quadratically with the
order a. At large enough orders, the integral is domi-
nated by the rare realizations where the volume of the

8As in Sec. II.B, we consider the case of two non-negative
Lyapunov exponents; the arguments are easily modified for
two nonpositive exponents.
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spot does not grow in time and the growth rates become
independent of the order (Shraiman and Siggia, 1994;
Balkovsky and Fouxon, 1999; Son, 1999). That conclu-
sion is confirmed experimentally (Groisman and Stein-
berg, 2000).

An alternative way to describe the decay of ^ũN(t)& is
to take N fluid particles that come to the given point r at
time t and to track them back to the initial time. The
realizations contributing to the moments are those for
which all the particles were initially inside the original
spot of size l , see Eq. (107). Looking backward in time,
we see that the molecular noise splits the particles by
small separations of order O(rd) during a time interval
of the order td5rd

2 /k'ul3
21u near t . After that, the ad-

vection takes over. The realizations contributing to the
moments are those with the interparticle separations al-
most orthogonal to the (backward) expanding direction
r3 of W̃21. More exactly, they should form an angle
&(l/rd)er3 with the plane orthogonal to the expanding
direction. Such separations occupy a solid angle fraction
of the same order. Since we now track particles moving
due to the advection (the molecular noise is accounted
for by the finite splitting) then (r i50 and Eq. (112)
follows.

The same simple arguments lead to the result for the
case of a random initial condition with zero mean. Let us
first consider the case when it is Gaussian with correla-
tion length l . It follows from Eq. (102) that the realiza-
tions contributing to ^ũ2n&5^u2n& are those where n in-
dependent pairs of particles are separated by distances
smaller than l at time t50. The moments are therefore
given by

^u2n~ t !&}E exp@2n~r11r2!

2tH~r1 /t2l1 ,r2 /t2l2!#dr1 dr2 . (113)

Note that the result is in fact independent of the scalar
field initial statistics. Indeed, for a non-Gaussian field we
should average over the Lagrangian trajectories the ini-
tial correlation function C2n„RO (0),0… that involves a
nonconnected and a connected part. The latter is as-
sumed to be integrable with respect to the 2n21 sepa-
ration vectors (and thus to depend on them). Each de-
pendence brings an exp@2r12r2# factor and the
connected part will thus give a subleading contribution
with respect to the nonconnected one. The above results
were first obtained by Balkovsky and Fouxon (1999) us-
ing different arguments (see Secs. III.4 and III.5). Re-
mark the square root of the volume factor appearing in
Eq. (113) as distinct from Eq. (112). In the language of
spots, this is explained by the mutual cancellations of the
tracer from different spots and the ensuing law of large
numbers. Indeed, different blobs of size l with initially
uncorrelated values of the scalar will overlap at time t
and the rms value of u will be proportional to the square
root of the number of spots }exp(r11r2). The same
qualitative conclusions drawn previously about the de-
cay rates ga may be obtained from Eq. (113). In particu-
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lar, Balkovsky and Fouxon (1999) performed the explicit
calculation for the short-correlated case (28). The result
is

ga52 lim
t→`

1
t

ln^uuua&}aS 12
a

8 D , (114)

for a,4 and ga5const for a.4. An important remark
is that the PDF of the decaying scalar is not self-similar
in a smooth velocity field. The PDF is indeed becoming
more and more intermittent with time, as signaled by
the growth of the kurtosis ^uuua&/^u2&a/2 for a.2. The
previous arguments may be easily generalized to the
case of compressible flow.

b. Nonsmooth velocity

For the decay in incompressible nonsmooth flow, we
shall specifically consider the case of a time reversible
Kraichnan velocity field. The comments on the general
case are reserved to the end of the section. The simplest
objects to investigate are the single-point moments
^u2n(t)& and we are interested in their long-time behav-
ior t@l22j/D1 . Here, l is the correlation length of the
random initial field and D1 enters the velocity two-point
function as in Eq. (48). Using Eq. (101) and the scaling
property (71) of the Green function we obtain

^u2n~ t !&5E P2n~0O ;RO ;21 !C2n~ t1/~22j!RO ,0!dRO . (115)

There are two universality classes for this problem, cor-
responding to either nonzero or vanishing value of the
so-called Corrsin integral J05*C2(r,t)dr. Note that the
integral is generally preserved in time by the passive
scalar dynamics.

We concentrate here on the case J0Þ0 and refer the
interested reader to the original paper by Chaves et al.
(2001) for more details. For J0Þ0, the function
td/(22j)C2(t1/(22j)r,0) tends to J0d(r) in the long-time
limit and Eq. (115) is reduced to

^u2n~ t !&'~2n21 !!!
J0

n

tnd/~22j!

3E P2n~0O ;R1 ,R1 ,. . . ,Rn ,Rn ;21 !dRO , (116)

for a Gaussian initial condition. A few remarks are in
order. First, the previous formula shows that the behav-
ior in time is self-similar. In other words, the single point
PDF P(t ,u) takes the form td/2(22j)Q(td/2(22j)u). That
means that the PDF of u/Aē is asymptotically time inde-
pendent as was hypothesized by Sinai and Yakhot
(1989), with ē(t)5k^(¹u)2& being time-dependent (de-
creasing) dissipation rate. This should be contrasted
with the lack of self-similarity found previously for the
smooth case. Second, the result is asymptotically inde-
pendent of the initial statistics (of course, within the uni-
versality class J0Þ0). As in the previous subsection, this
follows from the fact that the connected non-Gaussian
part of C2n depends on more than n separation vectors.
Its contribution is therefore decaying faster than
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t2 nd/(22j). Third, it follows from Eq. (116) that the long-
time PDF, although universal, is generally non-Gaussian.
Its Gaussianity would indeed imply the factorization of
the probability for the 2n particles to collapse in pairs at
unit time. Due to the correlations existing among the
particle trajectories, this is generally not the case, except
for j50 where the particles are independent. The de-
gree of non-Gaussianity is thus expected to increase
with j, as confirmed by the numerical simulations pre-
sented in (Chaves et al., 2001).

Other statistical quantities of interest are the structure
functions S2n(r,t)5^@u(r,t)2u(0,t)#2n& related to the
correlation functions by

S2n~r,t !5E
0

1
¯E

0

1
]m1

¯]m2n
C2n~m1r, . . . ,m2nr,t !) dm i

[D~r!C2n~• !. (117)

To analyze their long-time behavior, we proceed simi-
larly as in Eq. (115) and use the asymptotic expansion
(75) to obtain

S2n~r,t !

5E D~ t2 1/~22j!r!P2n~• ;R;21 !C2n~ t1/~22j!RO ,0!dRO

'
D~r!f2n ,0~• !

tz2n ,0 /~22j! E g2n ,0~RO ,21 !C2n~ t1/~22j!RO ,0!dRO

}S r

l~ t ! D
z2n

^u2n&~ t !. (118)

Here, f2n ,0 is the irreducible zero mode in Eq. (75) with
the lowest dimension and the scalar integral scale l(t)
}t1(22j). As we shall see in Sec. III.C.1, the quantities
z2n5z2n ,0 give also the scaling exponents of the struc-
ture function in the stationary state established in the
forced case.

Let us conclude this subsection by briefly discussing
the scalar decay for velocity fields having finite correla-
tion times. The key ingredient for the self-similarity of
the scalar PDF is the rescaling (71) of the propagator.
Such property is generally expected to hold (at least for
large enough times) for self-similar velocity fields re-
gardless of their correlation times. This has been con-
firmed by the numerical simulations in Chaves et al.
(2001). For an intermittent velocity field the presence of
various scaling exponents makes it unlikely that the
propagator possesses a rescaling property like Eq. (71).
The self-similarity in time of the scalar distribution
might then be broken.

4. Growth of density fluctuations in compressible flow

The evolution of a passive density field n(r,t) is gov-
erned by Eq. (93). In smooth velocities and in the ab-
sence of diffusion, its solution is read from Eq. (97),
where we shall take the initial field on the right-hand
side to be uniform. This gives n(r,t)5@det„W̃(t ;r)…#21.
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Performing the velocity average and recalling the long-
time asymptotics of the W̃ statistics, we obtain

^na~ t !&}E expF ~12a!

3(
i

r i2tH~r1 /t2l1 ,. . . ,rd /t2ld!G) dr i .

(119)

The moments at long times may be calculated by the
saddle-point method and they are generally behaving as
}exp(gat). The growth rate function ga is convex, due to
Hölder inequality, and vanishes both at the origin and
for a51 (by the total mass conservation). This leads to
the conclusion that ga is negative for 0,a,1 and is
otherwise positive: low-order moments decay, whereas
high-order and negative moments grow. For a Kraichnan
velocity field, the large deviations function H is given by
Eq. (59) and the density field becomes lognormal with
ga}a(a21) (Klyatskin and Gurarie, 1999). Note that
the asymptotic rate ^ln n&/t is given by the derivative at
the origin of ga and it is equal to 2(l̃ i<0. The density
is thus decaying in almost any realization if the sum of
the Lyapunov exponents is nonzero. Since the mean
density is conserved, it has to grow in some (smaller and
smaller) regions, which implies the growth of high mo-
ments. The amplification of negative moments is due to
the growth of low-density regions. The positive quantity
2(l i has the interpretation of the mean (Gibbs) en-
tropy production rate per unit volume. Indeed, if we
define the Gibbs entropy S(n) as 2*(ln n)n dr then, by
Eq. (103), S(n)5* ln det„W(t ;r)…dr. Since ln det(W)
5(ri , the entropy transferred to the environment per
unit time and unit volume is 2(r i /t and it is asymptoti-
cally equal to 2(l i.0; see Ruelle (1997).

The behavior of the density moments discussed above
is the effect of a linear but random hyperbolic stretching
and contracting evolution (13) of the trajectory separa-
tions. In a finite volume, the linear evolution is eventu-
ally superposed with nonlinear bending and folding ef-
fects. In order to capture the combined impact of the
linear and the nonlinear dynamics at long times, one
may observe at fixed time t the density produced from
an initially uniform distribution imposed at much earlier
times t0 . When t0→2` and if l1.0, the density ap-
proaches weakly, i.e., in integrals against test functions, a
realization-dependent fractal density n* (r,t) in almost
all the realizations of the velocity. The resulting density
field is the so-called SRB (Sinai-Ruelle-Bowen) mea-
sure, see, e.g., Kiffer (1988). The fractal dimension of
the SRB measures may be read from the values of the
Lyapunov exponents (Frederikson et al., 1983). For the
Kraichnan ensemble of smooth velocities, the SRB mea-
sures were first discussed by Le Jan (1985). In 2D, they
have a fractal dimension equal to 11 (122`)/(112`)
if 0,`, 1

2 . In 3D, the dimension is 21 (123`)/(1
12`) if 0,`< 1

3 and 11 (324`)/5` if 1
3 <`, 3

4 ,
where ` is the compressibility degree.
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
The above considerations show that, as long as one
can neglect diffusion, the passive density fluctuations
grow in a random compressible flow. One particular case
of the above phenomena is the clustering of inertial par-
ticles in an incompressible turbulent flow; see Balkovsky
et al. (2001) where the theory for a general flow and the
account of the diffusion effects that eventually stops the
density growth were presented.

5. Gradients of the scalar in a smooth velocity

For the passive scalar gradients v5“u in an unforced
incompressible situation, the equation to be solved is
Eq. (94). The initial distribution is assumed statistically
homogeneous with a finite correlation length. As dis-
cussed previously, one may treat diffusion either by add-
ing a Brownian motion to the backward Lagrangian tra-
jectories or by using the Fourier transform method
(108). For pedagogical reasons, we choose here the lat-
ter and solve Eq. (94) by simply taking the gradient of
the scalar expression (108). The long-time limit is inde-
pendent of the initial scalar statistics (Balkovsky and
Fouxon, 1999) and it is convenient to take it Gaussian
with the two-point function }exp@2 (2d/2) (r/l)2# . The
averaging over the initial statistics for the generating
function Z(y)5^exp@iy•v#& reduces then to Gaussian
integrals involving the matrix I(t) determined by Eq.
(25). The inverse Fourier transform is given by another
Gaussian integral over y and one finally obtains for the
PDF of v

P~v!}^~det I !d/411/2 exp@2const3Adet I~v,Iv!#&.
(120)

As may be seen from Eq. (25), during the initial period
t,td5uld

21uln(l/rd), the diffusion is unimportant, the
contribution of the matrix Q to I is negligible, the deter-
minant of the latter is unity, and v2 grows as the trace of
I21. In other words, the statistics of ln v and of 2rd
coincide in the absence of diffusion. The statistics of the
gradients can therefore be immediately taken over from
Sec. II.B. The growth rate (2t)21^ln v2& approaches uldu
while the gradient PDF depends on the entropy func-
tion. For the Kraichnan model (28), the PDF is lognor-
mal with the average D1d(d21)t and the variance
2D1(d21)t read directly from Eq. (32). This result was
obtained by Kraichnan (1974) using the fact that, with-
out diffusion, v satisfies the same equation as the dis-
tance between two particles, whose PDF is given by Eq.
(23).

As time increases, the wavenumbers (evolving as k̇
52sTk) reach the diffusive scale rd

21 and the diffusive
effects start to modify the PDF, propagating to lower
and lower values of v. High moments first and then
lower ones will start to decrease. The law of decay at t
@td can be deduced from Eq. (120). Considering this
expression in the eigenbasis of the matrix I , we observe
that the dominant component of v coincides with the
largest eigendirection of the I21 matrix, i.e., the one
along the rd axis. Recalling from Sec. II.B that the dis-
tribution of rd is stationary, we infer that ^uvua(t)&
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}^(det I)2a/4&. The comparison with Eq. (113) shows that
the decay laws for the scalar and its gradients coincide
(Balkovsky and Fouxon, 1999; Son, 1999). This is quali-
tatively understood by estimating v;u/lmin , where lmin
is the smallest size of the spot. Noting that u and lmin are
independent and that lmin'erdl at large times has a sta-
tionary statistics concentrated around rd , it is quite clear
that the decrease of v is due to the decrease of u.

6. Magnetic dynamo

In this subsection, we consider the generation of inho-
mogeneous magnetic fluctuations below the viscous
scale of incompressible turbulence. The question is rel-
evant for astrophysical applications as the magnetic
fields of stars and galaxies are thought to have their ori-
gin in the turbulent dynamo action (Moffatt, 1978;
Parker, 1979; Zel’dovich et al., 1983; Childress and Gil-
bert, 1995). In this problem, the magnetic field can be
treated as passive. Furthermore, the viscosity-to-
diffusivity ratio is often large enough for a sizable inter-
val of scales between the viscous and the diffusive cut-
offs to be present. That is the region of scales with the
fastest growth rates of the magnetic fluctuations. Their
dynamics, modeled by the passive advection of magnetic
field by a large-scale (smooth) velocity field, will be de-
scribed here.

The dynamo process is caused by the stretching of
fluid elements already extensively discussed above and
the major new point to be noted is the role of the diffu-
sion. In a perfect conductor, when the diffusion is ab-
sent, the magnetic field satisfies the same equation as the
infinitesimal separation between two fluid particles (12):
dB/dt5sB. Any chaotic flow would then produce dy-
namo, with the growth rate

ḡ5 lim
t→`

~2t !21^ln B2& , (121)

equal to the highest Lyapunov exponent l1 . Recall that
the gradients of a scalar grow with the growth rate 2l3
during the diffusionless stage. In fact, any real fluid has a
nonzero diffusivity and, even though it can be very
small, its effects may be dramatic. The longstanding
problem solved by Chertkov, Falkovich, et al. (1999) was
whether the presence of a small, yet finite, diffusivity
could stop the dynamo growth process at large times (as
it is the case for the gradients of a scalar).

Our starting point is Eq. (99), expressing the magnetic
field in terms of the stretching matrix W̃ and the back-
ward Lagrangian trajectory. In incompressible flow, ma-
trices W̃ and W are identically distributed and we do not
distinguish them here. For example, the second-order
correlation function is given by

C 2
ij~r12 ,t ![^Bi~r1 ,t !Bj~r2 ,t !&

5^WilWjmC 2
lm
„R12~0;r12 ,t !,0…&, (122)

with the average taken over the velocity and the molecu-
lar noise. For the sake of simplicity, we assume that the
initial statistics of B is homogeneous, Gaussian, of zero
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mean and of correlation length l . We concentrate on the
behavior at scales r12!l . For times less than td
5ul3u21 ln(l/rd), the Lagrangian separations R12!l and
the magnetic field is stretched by the W matrix as in a
perfect conductor; see Eq. (122). For longer times, the
separation R12 can reach l , irrespective of its original
value. This is the long-time asymptotic regime of inter-
est, where the destinies of the scalar gradients and the
magnetic field are different.

It follows from Eq. (122) that the correlations are due
to those realizations where R12(0)&l . As in Sec. III.A.3,
the initial separation r12 should then be quasiorthogonal
to the expanding direction r3 of W21 and the fraction of
solid angle occupied by those realizations is }(l/r12)er3.
Together with the e2r1 factor coming from the perfect
conductor amplification, we thus obtain for the trace of
the correlation function

trC2~r,t !}E P~r1 ,r2 ,t !er12r2 dr1 dr2 , (123)

with P(r1 ,r2 ;t) as in Eq. (21). The integration is con-
strained by 2ln(l/r12)&r2 , required for the separation
along r2 to remain smaller than l . Note that the gradi-
ents of a scalar field are stretched by the same W21

matrix that governs the growth of the Lagrangian sepa-
rations. It is therefore impossible to increase the stretch-
ing factor of the gradient and keep the particle separa-
tion within the correlation length l at the same time.
That is why diffusion eventually kills all the gradients
while the component Bi that points into the direction of
stretching survives and grows with ¹Bi perpendicular to
it. This simple picture also explains the absence of dy-
namo in 2D incompressible flow, where the stretching in
one direction necessarily means the contraction in the
other one.

Let us now consider the single-point moments
^B2n&(t). The 2n particles, all at the same point at time
t , are split by the molecular diffusion by small separa-
tions of length O(rd) in a time of the order td5rd

2 /k
near t . For the subsequent advection not to stretch the
separations beyond l , the ‘‘diffusive’’ separations at time
t2td should be quasiorthogonal to the expanding direc-
tion r3 . More exactly, they should form an angle
&(l/rd)er3 with the plane orthogonal to the expanding
direction. Together with the pure conductor stretching
factor, we are thus left with a contribution }exp@n(2r1
1r3)#. Two possible classes of Lagrangian trajectories
should now be distinguished, depending on whether the
angle formed by the ‘‘diffusive’’ separations with the r2
direction is arbitrary or constrained to be small (see also
Molchanov et al., 1985). For the former, the contribution
is simply given by the average of the expression
exp@n(r12r2)# derived previously, with the constraint
2ln l/rd&r2 ensuring the control of the particle separa-
tion along r2 . For the latter, the contribution is propor-
tional to the average of exp@n(r112r2)#. Indeed, the con-
dition of quasiorthogonality to the r2 direction
contributes a nr2 term in the exponent and the remain-
ing 2nr2 term is coming from the solenoidality condition
“•B50. The magnetic-field correlation is in fact propor-
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tional to the solenoidal projector and the component
stretched by the W matrix, see Eq. (122), is C 2

11}@1
2(“2)21¹1

2#C(r). The realizations having the particle
separations precisely aligned with the r1 direction will
therefore not contribute. For separations almost aligned
to r1 , one may show that the square of the angle with
respect to r1 appears in C 2

11 , thus giving the additional
small factor (l/rder2)2.

Which one of the two previous classes of Lagrangian
trajectories dominates the moments depends on the spe-
cific form of the entropy function. For the growth rate
(121), the situation is simpler as the average is domi-
nated by the region around r i5l i . The average of the
logarithm is indeed obtained by taking the limit n→0 in
^B2n21&/2n and the saddle point at large times sits at
the minimum of the entropy function. The two previous
classes of Lagrangian trajectories dominate for positive
and negative l2 , respectively. Using the identity (l i
50, we finally obtain

ḡ5min$~l12l2!/2,~l22l3!/2%. (124)

The validity of this formula is restricted, first, by the
condition that l exp(l1t) is still less than the viscous
scale. The stretching in the third direction also imposes a
restriction: the finiteness of the maximal possible size l0
of the initial fluctuations gives the constraint l0 exp(l3t)
.rd . At larger time, ^lnuBu2& decays.

The most important conclusion coming from Eq.
(124) is that the growth rate is always non-negative for a
chaotic incompressible flow. Note that the growth rate
vanishes if two of the Lyapunov exponents coincide, cor-
responding to the absence of dynamo for axially sym-
metric cases. For time-reversible and two-dimensional
flows, the intermediate Lyapunov exponent vanishes and
ḡ5l1/2. Note that 3D magnetic field does grow in a 2D
flow; when, however, both the flow and the field are two
dimensional, one finds ḡ52l1/2. For isotropic Navier-
Stokes turbulence, numerical data suggest l2'l1/4
(Girimaji and Pope, 1990) and the long-time growth rate
is then ḡ'3l1/8.

The moments of positive order all grow in a random
incompressible flow with a nonzero Lyapunov exponent.
Indeed, the curve En5ln^B2n&/2t is a convex function of
n (due to Hölder inequality) and it vanishes at the ori-
gin, where its derivative coincides by definition with the
non-negative growth rate. Even when ḡ50, the growth
rates for n.0 are positive if the entropy function has a
finite width. For n51 this was stated in Gruzinov et al.
(1996). As discussed previously, the behavior of the
growth rate curve En is nonuniversal and it depends on
the specific form of the entropy function. For the
Kraichnan case, we can use the result (32) for the en-
tropy function and the calculation is elementary. The
dominant contribution is coming from the average of
exp@n(r12r2)# and the r2 integration is dominated by
the lower bound 2ln l/rd . The answer E253l1 was first
obtained by Kazantsev (1968). The general result is En
5l1n(n14)/4, to be compared with the perfect conduc-
tor result l1n(2n13)/2. The difference between them
formally means that the two limits of large times and
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small diffusivity do not commute (what is called ‘‘dissi-
pative anomaly,’’ see the next section). Multipoint corre-
lation functions were calculated by Chertkov, Falkovich,
et al. (1999). They reflect the prevailing strip structure of
the magnetic field. An initially spherical blob evolves
indeed into a strip structure, with the diffusive effects
neutralizing one of the two directions that are con-
tracted in a perfect conductor. The strips induce strong
angular dependences and anomalous scalings similar to
those described in Sec. III.B.3 below.

7. Coil-stretch transition for polymer molecules in a random
flow

At equilibrium, a polymer molecule coils up into a
spongy ball whose typical radius is kept at R0 by thermal
noise. Being placed in a flow, such molecule is deformed
into an elongated ellipsoid which can be characterized
by its end-to-end extension R. As long as the elongation
is much smaller than the total length of the molecule,
the entropy is quadratic in R so that the molecule is
brought back to its equilibrium shape by a damping lin-
ear in R. The equation for the elongation is as follows
(Hinch, 1977):

] tR1v•“R5R•“v2
1
t

R1h. (125)

The left-hand side describes advection of the molecule
as a whole, the first term on the right-hand side is re-
sponsible for stretching, t is the relaxation time and h is
the thermal noise with ^h i(t)h j(0)&5d ijd(t)R0

2/t . Since
the size of the molecules is always much smaller than the
viscous length then ¹v5s and one can solve Eq. (125)
using the evolution matrix W introduced in Sec. II.B.1.
At long enough times (when the initial condition is for-
gotten) the statistics of the elongation is given by R
5*0

` ds W(s)h(s)exp@2t/t#. We are interested in the tail
of the PDF P(R) at R@R0 . The events contributing to
it are related to the realizations with a long-time history
of stretching where the variable r1 (corresponding to the
largest Lyapunov exponent l1) is large. The tail of the
PDF is estimated analyzing the behavior of R/R0
5*0

` exp@r1(s)2s/t#ds. The realizations dominating the
tail are those where r1(s)2s/t takes a sharp maximum
at some time s* before relaxing to its typical negative
values. The probability of those events is read from the
large deviation expression (21): ln P;2s* H@s

*
21r1(s* )

2l1# , where H is the entropy function. With logarith-
mic accuracy one can then replace r1(s* )5ln(R/R0)
1s* /t and what is left is just to find the maximum
with respect to s* . The extremum value X*
[(s* )21 ln(R/R0) is fixed by the saddle-point condition
that H2X* H8 should vanish at X* 1t212l1 . The final
answer for the PDF is as follows:

P~R !}R0
aR212a with a5H8~X* 1t212l1!.

(126)

The convexity of the entropy function ensures that a is
positive if l1,1/t .
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In accordance with Eq. (126), the exponent a de-
creases when l1 increases and it tends to zero as l1
→1/t . In this region, the entropy function is quadratic
and the exponent is expressed via the average value of
r1 and its dispersion only: a52(12l1t)/tD . The inte-
gral of the PDF diverges at large R as a tends to zero.
The transition at l1→1/t is called the coil-stretch tran-
sition as the majority of the polymer molecules got
stretched. This stretching can be stopped by nonlinear
elastic effects or by the back reaction of the polymers
onto the flow. The understanding of the coil-stretch tran-
sition goes back to the works by Lumley (1972, 1973).
The power-law tail (126) has been derived by Balkovsky
et al. (2000). The influence of nonlinear effects on the
statistics of the elongation was examined by Chertkov
(2000).

B. Cascades of a passive scalar

This section describes forced turbulence of a passive
tracer statistically stationary in time and homogeneous
in space. We consider the advection-diffusion equation

] tu1~v•“ !uk“2u1w (127)

with the pumping w assumed stationary, homogeneous,
isotropic, Gaussian, of zero mean, and with covariance

^w~r,t !w~0,0!&d~ t !F~r/l !. (128)

The function F is taken constant for r/l<1 and decaying
rapidly for large ratios. The following considerations are
valid for a pumping finite correlated in time provided its
correlation time in the Lagrangian frame is much
smaller than the stretching time from a given scale to the
pumping correlation scale l . Note that in most physical
situations the sources do not move with the fluid so that
the Lagrangian correlation time of the pumping is the
minimum between its Eulerian correlation time and l/V ,
where V is the typical fluid velocity. Most of the general
features of the advection are however independent of
the details of the pumping mechanism and its Gaussian-
ity and d correlation are not a very serious restriction, as
it will be shown in Sec. III.C.1.

Equation (127) implies for incompressible velocities
the balance relation for the ‘‘scalar energy’’ density e
5u2/2:

] te1“•j52e1f , (129)

where e5k(“u)2 is the rate of dissipation, f5wu is
that of energy injection, and j5 1

2 u2v2ku“u is the flux
density. In a steady state, the injection must be balanced
by the diffusive dissipation, while the stretching and the
contraction by the velocity provide for a steady cascade
of the scalar from the pumping scale l to the diffusion
scale rd (where diffusion is comparable to advection).

The advection-diffusion dynamics induces the Hopf
equations of evolution for the equal-time correlation
functions. For a white-in-time pumping, one obtains
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] t^u1¯uN&1 (
n51

N

^u1¯vn•“nun ¯uN&

5k (
n51

N

^u1¯“n
2un ¯uN&1(

n ,m
^u1 .. . . .uN

n̂ m̂
&Fnm

(130)

in the shorthand notation un[u(rn ,t), Fnm
[F(rnm /l), etc. These equations are clearly not closed
since the left-hand side involves the mixed correlators of
the advected fields and the velocities. An exception is
provided by the case of the Kraichnan ensemble of ve-
locities where the mixed correlators may be expressed in
terms of those containing only the advected fields, see
Sec. III.C.1 below. The stationary version of the two-
point Hopf equation may be written in the form

^~v1•¹11v2•¹2!u1u2&12k^“1u1•“2u2&5F12 .
(131)

The relative strength of the two terms on the left-hand
side depends on the distance. For velocities scaling as
Drv}ra, the ratio of advection and diffusion terms
Pe(r)5Drvr/k may be estimated as ra11/k . In particu-
lar, Pe[Pe(l) is called the Péclet number, and the diffu-
sion scale rd is defined by the relation Pe(rd)51.

In the ‘‘diffusive interval’’ r12!rd , the diffusion term
dominates in the left-hand side of Eq. (131). Taking the
limit of vanishing separations, we infer that the mean
dissipation rate is equal to the mean injection rate ē

[^k(“u)2&5 1
2 F(0). This illustrates the aforemen-

tioned phenomenon of the ‘‘dissipative anomaly’’: the
limit k→0 of the mean dissipation rate is nonzero de-
spite the explicit k factor in its definition. The ‘‘convec-
tive interval’’ rd!r12!l widens up at increasing Péclet
number. There, one may drop the diffusive term in Eq.
(131) and thus obtain

^~v1•“11v2•“2!u1u2&'F~0 !. (132)

The expression (4) may be derived from the general flux
relation (132) by the additional assumption of isotropy.
The relation (132) states that the mean flux of u2 stays
constant within the convective interval and expresses
analytically the downscale scalar cascade. For the veloc-
ity scaling Drv}ra, dimensional arguments suggest that
Dru}r(12a)/2 (Obukhov, 1949; Corrsin, 1951). This rela-
tion gives a proper qualitative understanding that the
degrees of roughness of the scalar and the velocity are
complementary, yet it suggests a wrong scaling for the
scalar structure functions of order higher than the sec-
ond one; see Sec. III.C.1.

Let us now derive the exact Lagrangian expressions
for the scalar correlation functions. The scalar field
along the Lagrangian trajectories R(t) changes as

d

dt
u„R~ t !,t…5w„R~ t !,t…. (133)

The Nth-order scalar correlation ^)p51
N u(rn ,t)&

[CN(rO,t) is then given by
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CN~rO,t !5K E
0

t
w„R1~s1!,s1…ds1¯E

0

t
w„RN~sN!,sN…dsNL ,

(134)

with the Lagrangian trajectories satisfying the final con-
ditions Rn(t)5rn . For the sake of simplicity, we have
written down the expression for the case where the sca-
lar field was vanishing at the initial time. If some of the
distances among the particles get below the diffusive
scale, the molecular noises in the Lagrangian trajectories
become relevant and the averaging of Eq. (134) over
their statistics is needed.

The average over the Gaussian pumping in Eq. (134)
gives for the pair-correlation function

C2~r12 ,t !5K E
0

t
F„R12~s !/l…dsL . (135)

The function F essentially restricts the integration to the
time interval where R12 is smaller than the injection
length l . If the Lagrangian trajectories separate, the pair
correlation reaches at long times the stationary form
given by the same formula with t5` . Simply speaking,
the stationary pair correlation function of a tracer is pro-
portional to the average time that two particles spent in
the past within the correlation scale of the pumping
(Falkovich and Lebedev, 1994). Similarly, the pair struc-
ture function S2(r)5^(u12u2)2&2@C2(0)2C2(r)# is
proportional to the time it takes for two coinciding par-
ticles to separate to a distance r . This is proportional to
r12a for a scale-invariant velocity statistics with Drv
}ra, see Eq. (38), so that S2(r) is in agreement with the
Obukhov-Corrsin dimensional prediction.

Higher-order equal-time correlation functions are ex-
pressed similarly by using the Wick rule to average over
the Gaussian forcing:

C2n~rO,t !5K E
0

t
F@R12~s1!#ds1¯

3E
0

t
F@R(2n21)2n~sn!#dsnL 1 ¯ , (136)

where the remaining average is over the velocity and the
molecular noise ensemble and the dots stand for the
other possible pairings of the 2n points. The correlation
functions may be obtained from the generating func-
tional

K expF iE u~r,t !x~r!drG L
5expF2

1
2 E0

t
dsE E F@R12~s !#x~r1!x~r2!dr1 dr2G .

(137)

They probe the statistics of times spent by fluid particles
at distances Rij smaller than l . In nonsmooth flows, the
correlation functions at small scales, rij!l , are domi-
nated by the single-point contributions, corresponding
to initially coinciding particles. This is the signature of
the explosive separation of the trajectories. To pick up a
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strong dependence on the positions rO, one has to study
the structure functions which are determined by the
time differences between different initial configurations.
Conversely, the correlation functions at scales larger
than l are strongly dependent on the positions, as it will
be shown in Sec. III.B.3.

1. Passive scalar in a spatially smooth velocity

In the rest of Sec. III.B, all the scales are supposed
much smaller than the viscous scale of turbulence so that
we may assume the velocity field to be spatially smooth
and use the Lagrangian description developed in Secs.
II.B and II.D. In the Batchelor regime, the backward
evolution of the Lagrangian separation vector is given
by R12(0)5W̃(t)21r12 (if we ignore diffusion) and it is
dominated by the stretching rate rd at long times. The
Eq. (135) takes then the asymptotic form

C2~r,t !'E
0

t
dsE F~e2 r̃d(s)r/l !P̃~r1 ,. . . ,rd ;s !dr1¯drd .

(138)

The behavior of the interparticle distance crucially de-
pends on the sign of l̃d . For l̃d,0, the backward-in-
time evolution separates the particles and leads in the
limit t→` to a well-defined steady state with the corre-
lation function

^u~ t ,0!u~ t ,r!&'ul̃du21F~0 !ln~ l/r !, (139)

for r&l . This corresponds to the direct cascade. Con-
versely, if l̃d.0 the particles contract and the pair-
correlation function grows proportionally to t . Note that
the growing part is independent of r . This means that, in
a flow contracting backwards in time, tracer fluctuations
grow at larger and larger scales, which is a signature of
the so-called inverse cascade of a passive tracer.

If the velocity ensemble is time-reversible, as it is the
case for the d-correlated model (57), then l̃ i52ld2i11

and l1 and l̃d have opposite sign. They will thus both
change sign at the same value of the degree of compress-
ibility `5d/4, see Eq. (60). This is peculiar for a short-
correlated case and does not hold for an arbitrary veloc-
ity statistics. There, the change from stretching to
contraction in the forward Lagrangian dynamics does
not necessarily correspond to the change in the direction
of the cascade for the passive tracer, related to the back-
ward in time Lagrangian dynamics.

2. Direct cascade, small scales

We consider here the case l̃d,0 (that includes
smooth incompressible flows) when the particles do
separate backward in time and a steady state exists. We
first treat the convective interval of distances between
the diffusion scale rd and the pumping scale l . Deep
inside the convective interval where r!l , the statistics of
the passive scalar tends to become Gaussian. Indeed, the
reducible part in the 2n-point correlation function
^F(e2 r̃d(s1)r12 /l)¯F(e2 r̃d(tn)r(2n21)2n /l)&, see Eqs.
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(136) and (138), dominates the irreducible one for n
!ncr'(ul̃duts)

21 ln(l/r). The reason is that the logarith-
mic factors are smaller for the irreducible than for the
reducible contribution (Chertkov et al., 1995a). The
critical order ncr is given by the ratio between the time
for the particles to separate from a typical distance r to
l and the correlation time ts of the stretching rate fluc-
tuations. Since l@r , the statistics of the passive tracer is
Gaussian up to orders ncr@1. For the single-point statis-
tics, the scale appearing in the expression of the critical
order ncr should be taken as r5rd . The structure func-
tions are dominated by the forced solution rather than
the zero modes in the convective interval: S2n5^@u(0)
2u(r)#2n&}lnn(r/rd) for n!ln(r/rd). A complete expres-
sion (the forced solution plus the zero modes) for the
four-point correlation function in the Kraichnan model
can be found in Balkovsky, Chertkov, et al. (1995).

Let us show now that the tails of the tracer PDF decay
exponentially (Shraiman and Siggia, 1994; Chertkov
et al., 1995a; Bernard et al., 1998; Balkovsky and
Fouxon, 1999). The physical reasons behind this are
transparent and most likely they apply also for a non-
smooth velocity. First, large values of the scalar can be
achieved only if during a long interval of time the pump-
ing works uninterrupted by stretching events that even-
tually bring diffusion into play. We are interested in the
tails of the distribution, i.e., in intervals much longer
than the typical stretching time from rd to l . Those rare
events can be then considered as the result of a Poisson
random process and the probability that no stretching
occurs during an interval of length t is }exp(2ct). Sec-
ond, the values achieved by the scalar in those long in-
tervals are Gaussian with variance F(0)t . Note that this
is also valid for a non-Gaussian and finite-correlated
pumping, provided t is larger than its correlation time.
By integrating over the length of the no-stretching time
intervals with the pumping-produced distribution of the
scalar we finally obtain P(u)}*dt exp@2ct2u2/2F(0)t#
}exp@2uA2c/F(0)# . This is valid for t,L2/k that is for
u,AcF(0)L2/k . Interval of exponential behavior thus
increases with the Peclet number. For a smooth case, the
calculations have been carried out in detail and the re-
sult agrees with the previous arguments. Experimental
data in Jullien et al. (2000) confirm both the logarithmic
form of the correlation functions and the exponential
tails of the scalar PDF. In some experimental setups the
aforementioned conditions for the exponential tails are
not satisfied and a different behavior is observed; see,
for example, Jayesh and Warhaft (1991). The physical
reason is simple to grasp. The injection correlation time
in those experiments is given by L/V , where L is the
velocity integral scale and V is the typical velocity. The
no-stretching times involved in the tail of the scalar dis-
tribution are of the order of W/V , where W is the width
of the channel where the experiment is performed. Our
previous arguments clearly require W@L . As the width
of the channel is increased, the tails indeed tend to be-
come exponential.
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For a d-correlated strain, the calculation of the gener-
ating functional of the scalar correlators may be reduced
to a quantum-mechanical problem. In the Batchelor re-
gime and in the limit of vanishing k, the exponent in the
generating functional (137) may indeed be rewritten as

2E
0

t
Vx@W̃~s !#ds

52
1
2 E0

t
dsE E F@W̃21~s !r12#x~r1!x~r2!dr1 dr2 .

(140)

Recall that the matrices W̃ form a stochastic process
describing a diffusion on GL(d) [or on SL(d) in the
incompressible case] with a generator M̃ . The above for-
mula may thus be interpreted as the Feynman-Kac ex-
pression for the integral *et(M̃2Vx)(1,W̃)dW̃ of the heat
kernel of M̃ perturbed by the positive potential Vx . As
long as the trajectories separate backward in time, i.e.,
for l̃d,0, the generating functional has a stationary
limit, given by Eq. (140) with the time integral extending
to infinity. The Feynman-Kac formula may be used to
find the exponential rate of decay of the PDF P(u)
}e2buuu. As shown by Bernard et al. (1998), this involves
the quantum-mechanical Hamiltonian 2M̃2a2Vx ,
where the positive operator 2M̃ has its spectrum start-
ing at a strictly positive value and the negative potential
tends to produce a bound state as the parameter a is
increased. In the incompressible case, the decay rate b is
characterized by the property that the ground state of
the Hamiltonian has zero energy. For isotropic situa-
tions, the potential is only a function of the stretching
rates of W̃ and the quantum-mechanical problem re-
duces to the perturbation of the Calogero-Sutherland
Hamiltonian by a potential; see Sec. II.B.2.

3. Direct cascade, large scales

We consider here the scales r@l in the steady state
established under the condition l̃d,0 (Balkovsky et al.,
1999). From a general physical viewpoint, it is of interest
to understand the properties of turbulence at scales
larger than the pumping scale. A natural expectation is
to have there an equilibrium equipartition with the ef-
fective temperature determined by the small-scale tur-
bulence (Forster et al., 1977; Balkovsky, Falkovich, et al.,
1995). The peculiarity of our problem is that we consider
scalar fluctuations at scales larger than that of pumping
yet smaller than the correlation length of the velocity
field. This provides for an efficient mixing of the scalar
even at those large scales. Although one can find the
simultaneous correlation functions of different orders, it
is yet unclear if such a statistics can be described by any
thermodynamical variational principle.

The correlation functions of the scalar are propor-
tional to the time spent by the Lagrangian particles
within the pumping scale. It follows that the statistics at
r@l is related to the probabilities of initially distant par-
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ticles to come close. For spatially smooth random flow,
such statistics turns out to be strongly intermittent and
non-Gaussian. Another unexpected feature in this re-
gime is a total breakdown of scale invariance: not only
the scaling exponents are anomalous and do not grow
linearly with the order of the correlation function, but
even fixed correlation functions are generally not scale
invariant. The scaling exponents depend indeed on the
angles between the vectors connecting the points. Note
that the large-scale statistics of a scalar is scale-invariant
in a nonsmooth velocity, see Balkovsky et al. (1999) and
Sec. III.C.1.e.

What is the probability for the vector R12(t), that was
once within the pumping correlation length l , to come
exactly to the prescribed value r at time t? The advec-
tion makes a sphere of ‘‘pumping’’ volume ld evolve into
an elongated ellipsoid of the same volume. Ergodicity
may be assumed provided that the stretching time
l̄21 ln(r/l) is larger than the strain correlation time. It
follows that the probability for two points separated by r
to belong to a ‘‘piece’’ of scalar originated from the same
pumping sphere behaves as the volume fraction (l/r)d.
That gives the law of decrease of the two-point function:
C2}r2d.

The advection by spatially smooth velocities preserves
straight lines. To determine the correlation functions of
an arbitrary order when all the points lie on a line, it is
enough to notice that the history of the stretching is the
same for all the particles. Looking backward in time we
may say that when the largest distance among the points
was smaller than l , then all the other distances were as
well. It follows that the correlation functions for a col-
linear geometry depend on the largest distance r among
the points so that C2n}r2d. This is true also when dif-
ferent pairs of points lie on parallel lines. Note that the
exponent is n independent which corresponds to a
strong intermittency and an extreme anomalous scaling.
The fact that C2n@C2

n is due to the strong correlation of
the points along their common line.

The opposite takes place for noncollinear geometries,
namely, the stretching of different nonparallel vectors is
generally anticorrelated in the incompressible case due
to the volume conservation. The d volume
e i1i2¯id

R12
i1
¯R1d

id is indeed preserved for (d11) La-
grangian trajectories Rn(t) and, for d52 and any three
trajectories, the area e ijR12

i R13
j of the triangle defined by

the three particles remains constant. The anticorrelation
due to the area conservation may then be easily under-
stood and the scaling for noncollinear geometries at d
52 may be determined. Since the area of any triangle is
conserved, three points that form a triangle with area
A@l2 will never come within the pumping correlation
length. In the presence of a triple correlator F3 for a
non-Gaussian d-correlated pumping, the triple correla-
tion function of a scalar,

^u~r1!u~r2!u~r3!&5K E
0

`

F3„R12~s !,R13~s !…dsL ,

(141)
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is determined by the asymptotic behavior of F3 at rij
@l . For example, if F3 has a Gaussian tail, then C3
}exp(2A/l2). On the other hand, the correlation func-
tions decrease as r22 for a collinear geometry. We con-
clude that C3 as a function of the angle between the
vectors r12 and r13 has a sharp maximum at zero and
rapidly decreases within an interval of width of the order
l2/r2!1.

Similar considerations apply for the fourth-order cor-
relation function. Note that, unlike for the three-point
function, there are now reducible contributions.
Consider, for instance, that coming from
^*0

`*0
`F@R12(s1)#F@R34(s2)#ds1 ds2&. Since the area of

the polygon defined by the four particles is conserved
throughout the evolution, the answer is again crucially
dependent on the relation between the area and l2. The
events contributing to the correlation function C4 are
those where, during the evolution, R12 became of the
order l and then, at some other moment of time, R34
reached l . The probability for the first event to happen
is l2/r12

2 . When this happens, the area preservation
makes R34;r12r34 /l . The probability for this separation
to subsequently reduce to l is }l4/r12

2 r34
2 . The total prob-

ability can be thus estimated as l6/r6, where r is the
typical value of the separations rij . Remark that the na-
ive Gaussian estimation l4/r4 is much smaller than the
collinear answer and yet much larger than the noncol-
linear one.

The previous arguments can be readily extended to an
arbitrary number of noncollinear pairs. In accordance
with Eq. (136), the realizations contributing to the cor-
relation are those where the separations Rij reduce
down to l during the evolution process. Suppose that
this happens first for R12 . Such process was already ex-
plained in the consideration of the pair-correlation func-
tion and occurs with probability (l/r12)

2. All the remain-
ing separations will then be larger than their initial
values by a factor r12 /l , due to the conservation law of
the triangular areas. Next, we should reduce, say, R34
from r34r12 /l down to the integral scale l . Such a process
occurs with probability @ l2/(r12r34)#2. When this hap-
pens, all the other separations are larger than their ini-
tial values by a factor r34 /l . Repeating the process, we
come to the final answer C2n}(l/r)4n22, where r is
again the typical value of the separations rij .

The above analysis is easy to generalize for arbitrary
geometries. The points are divided into sets consisting of
the pairs of points with parallel separations rij (more
precisely, forming angles smaller than l2/r2). The points
within a given set behave as a single separation during
the Lagrangian evolution. The order n in the previous
formulas should then be replaced by the (minimal) num-
ber of sets. The estimates obtained above are supported
by the rigorous calculations in Balkovsky et al. (1999).

In 2D, the area conservation allowed to get the scaling
without calculations. This is related to the fact that there
is a single Lyapunov exponent. When d.2, we have
only the conservation of d-dimensional volumes and
hence more freedom in the dynamics. For example, the
area of a triangle can change during the evolution and
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the three-point correlation function for a noncollinear
geometry is not necessarily suppressed. Nevertheless,
the anticorrelation between different Lagrangian trajec-
tories is still present and the three-point exponent is ex-
pected to be larger than the naive estimate 2D. The an-
swer for the Kraichnan model d1(d21)Ad/(d22) is
determined by the whole hierarchy of the Lyapunov ex-
ponents (Balkovsky et al., 1999). In the limit of large
dimensions, the anticorrelation tends to disappear and
the answer approaches 2D. The four-point correlation
function is also determined by the joint evolution of two
distances, which results for large d in the same value of
the exponent.

To conclude this section, we briefly comment on the
case l̃d.0 when the particles approach rather than
separate backward in time. Here, an inversion of what
has been described for the direct cascade takes place:
the scalar correlation functions are logarithmic and the
PDF has a wide Gaussian core at r.l , while the statis-
tics is strongly non-Gaussian at small scales (Chertkov,
Kolokolov, and Vergassola, 1998). Since the scalar fluc-
tuations injected at l propagate upscale, small-scale dif-
fusion is negligible and some large-scale damping (say,
by friction) is needed to provide for a steady state, see
also Sec. III.E below.

4. Statistics of the dissipation

We now describe the PDF’s of the scalar gradients v
5¹u and of the dissipation e5kv2 in the steady state of
a direct cascade arising under the action of a large-scale
pumping. We consider a smooth velocity field, i.e., both
the Schmidt/Prandtl and the Péclet numbers are as-
sumed large. As we remarked in Sec. III.A.5, the scalar
gradients can be estimated as ue2rd/l , where u is the
scalar value and erdl is the smallest (diffusive) scale. The
tails of the gradient PDF are controlled by the large
values of u and 2rd . The statistics of the former de-
pends both on the pumping and the velocity and that of
the latter only on the velocity. The key remark for solv-
ing the problem was made by Chertkov, Kolokolov, and
Vergassola (1997, 1998): since u and 2rd fluctuate on
very separated time scales @ uldu21 ln(l/rd) and ld

21 , re-
spectively], their fluctuations may be analyzed sepa-
rately. The PDF of the scalar has been shown in Sec.
III.B.2 to decay exponentially. On the other hand, large
negative values of rd are determined by the tail of its
stationary distribution; see Eq. (27). For a Gaussian
short-correlated strain this tail is }exp@2const3e22rd#
(Chertkov, Kolokolov, and Vergassola, 1998) and the
moments of the gradients are ^vn&}^un&^exp(2nrd)&
}n3n/2. The ensuing behavior ^en&}n3n corresponds to a
stretched-exponential tail for the PDF of the dissipation

ln P~e!}2e1/3. (142)

The detailed calculation for the Kraichnan model as well
as a comparison with numerical and experimental data
can be found in Chertkov, Kolokolov, and Vergassola
(1998), Chertkov, Falkovich, and Kolokolov (1998), and
Gamba and Kolokolov (1998). The general case of a
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
smooth flow with arbitrary statistics was considered in
Balkovsky and Fouxon (1999).

It is instructive to compare the stretched-exponential
PDF of the gradients in a steady state with the lognor-
mal PDF described in Sec. III.A.5 for the initial diffu-
sionless growth. Intermittency builds up during the ini-
tial stage, i.e., the higher the moment, the faster it grows.
On the other hand, the higher the moment, the shorter
is the breakdown time of the diffusionless approxima-
tion. This time behaves for example as (n12)21 in the
Kraichnan model. Since higher moments stop growing
earlier than lower ones, the tails of the PDF become
steeper and the intermittency is weaker in the steady
state.

C. Passive fields in the inertial interval of turbulence

For smooth velocities, the single-point statistics of the
advected quantities could be inferred from the knowl-
edge of the stretching rates characterizing the Lagrang-
ian flow in the infinitesimal neighborhood of a fixed tra-
jectory. This was also true for the multipoint statistics as
long as all the scales involved were smaller than the vis-
cous scale of the velocity, i.e., in the Batchelor regime. In
this subsection we shall analyze advection phenomena,
mostly of scalars, in the inertial interval of scales where
the velocities become effectively nonsmooth. As dis-
cussed in Sec. II.C, the explosive separation of the tra-
jectories in nonsmooth velocities blows up interparticle
separations from infinitesimal to finite values in a finite
time. This phenomenon plays an essential role in main-
taining the dissipation of conserved quantities nonzero
even when the diffusivity k→0. The statistics of the ad-
vected fields is consequently more difficult to analyze, as
we discuss below.

1. Passive scalar in the Kraichnan model

The Kraichnan ensemble of Gaussian white-in-time
velocities permits an exact analysis of the nonsmooth
case and a deeper insight into subtle features of the ad-
vection, like intermittency and anomalous scaling. Those
aspects are directly related to the collective behavior of
the particle trajectories studied in the first part of the
review. Important lessons learned from the model will
be discussed in next subsections in a more general con-
text.

a. Hopf equations

The simplifying feature associated to the Kraichnan
velocities is a reduction of the corresponding Hopf
equations to a closed recursive system involving only
correlators of the advected fields. This is due to the tem-
poral decorrelation of the velocity and the ensuing Mar-
kov property of the Lagrangian trajectories. Let us con-
sider, for example, the evolution Eq. (127) for a scalar
field. For the Kraichnan model, it becomes a stochastic
differential equation. As mentioned in Sec. II.B.2, one
may view white-in-time velocities as the scaling limit of
ensembles with short time correlations. The very fact
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that v(t)dt tends to become of the order (dt)1/2 calls for
a regularization. For velocity ensembles invariant under
time reversal, the relevant convention is that of Stra-
tonovich (see the Appendix). Interpreting Eq. (127)
within this convention and applying the rules of stochas-
tic differential calculus, one obtains the equation for the
scalar correlation functions:

] tCN~rO!5MNCN~rO!

1 (
n,m

CN22~r1 , . . . ,rN
n̂ m̂

F~rnm /l !. (143)

Here, the differential operator MN is the same9 as in
Eq. (69) and it may be formally obtained from the sec-
ond term on the left-hand side of Eq. (130) by a Gauss-
ian integration by parts. Note the absence of any closure
problem for the triangular system of Eqs. (143): once the
lower-point functions have been found, the N-point cor-
relation function satisfies a closed equation. For spatially
homogeneous situations, the operators MN may be re-
placed by their restrictions M̃N to the translation-
invariant sector. It follows from their definition (70) and
the velocity correlation function (48) that Eqs. (143) are
then invariant with respect to the rescalings

r→lr, l→ll , t→l22jt , k→ljk , u→l2 ~22j!/2u .
(144)

This straightforward observation implies scaling
relations between the stationary correlators:
CN(lr;ljk ,ll)5lN(22j)/2CN(r;k ,l).

b. Pair correlator

For the isotropic pair correlation function, Eq. (143)
takes the form

] tC2~r !2r12d]r@~d21 !D1rd211j12krd21#]rC2~r !

5F~r/l !; (145)

see Eq. (53). The ratio of the advective and the diffusive
terms is of order unity at the diffusion scale rd
[@2k/(d21)D1#1/j. For the Kraichnan model, the Pé-
clet number Pe[(d21)D1lj/2k@1 as we assume the
scale of pumping much larger than that of diffusion. The
stationary form of Eq. (145) becomes an ordinary differ-
ential equation (Kraichnan, 1968) that may be easily in-
tegrated with the two boundary conditions of zero at
infinity and finiteness at the origin:

C2~r !5
1

~d21 !D1
E

r

` x12d dx

xj1rd
j E

0

x
F~y/l !yd21 dy .

(146)

Even without knowledge of the explicit form (146), it
is easy to draw from Eq. (145) general conclusions, as
for time-correlated velocities. Taking the limit r→0 for
k.0, we infer the mean scalar energy balance

9The n5m terms would drop out of the expression for MN in
the Itô convention for Eq. (127).
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] tē1 ē5F~0 !/2, (147)

where ē5^u2&/2 and ē5^k(¹u)2& . In the stationary
state, the dissipation balances the injection. On the
other hand, for r@rd (or for any r.0 in the k→0 limit)
we may drop the diffusive term in the Hopf Eq. (145).
For r!l , we thus obtain the Kraichnan model formula-
tion of the Yaglom relation (132) expressing the con-
stancy of the downscale flux:

2~d21 !D1

1
rd21 ]rr

d211j]rC2~r ,t !'F~0 !. (148)

To obtain the balance relation (147) for vanishing k as
the r→0 limit of Eq. (145), one has to define the limiting
dissipation field by the operator product expansion

lim
k→0

k~“u!2~r!5
1
2

lim
r8→r

dij~r2r8!¹ iu~r!¹ ju~r8!. (149)

The relation (149), encoding the dissipative anomaly,
holds in general correlation functions away from other
insertions (Bernard et al., 1996).

Let us discuss now the solution (146) in more detail.
There are three intervals of distinct behavior. First, at
large scales r@l , the pair-correlation function is given by

C2~r !'
1

~d1j22 !~d21 !D1
F̄ldr22j2d, (150)

where F̄5*0
`yd21F(y)dy . This may be thought of as

the Rayleigh-Jeans equipartition ^u(k)u(k8)&5d(k
1k8)F̄ld/V(k) with V(k)}k22j and the temperature
proportional to F̄ld. Note that the right-hand side of Eq.
(150) is a zero mode of M̃2 away from the origin:
r12d]rr

d211j]rr
22j2d}d(r). Second, in the convective

interval rd!r!l , the pair correlator is equal to a con-
stant (the genuine zero mode of M̃2) plus an inhomoge-
neous part:

C2~r !'A 2l22j2
1

~22j!d~d21 !D1
F~0 !r22j, (151)

where A25F(0)/(22j)(d1j22)(d21)D1 . The lead-
ing constant term drops out of the structure function:

S2~r !52@C2~0 !22C2~r !#

'
2

~22j!d~d21 !D1
F~0 !r22j. (152)

Note that the last expression is independent of both k
and l and it depends on the pumping through the mean
injection rate only, i.e., S2(r) is universal. Its scaling ex-
ponent z2522j is fixed by the dimensional rescaling
properties (144) or, equivalently, by the scaling of the
separation time of the Lagrangian trajectories; see Eq.
(55). As remarked before, the degrees of roughness of
the scalar and the velocity turn out to be complemen-
tary: a smooth velocity corresponds to a rough scalar
and vice versa. Finally, in the diffusive interval r!rd ,
the pair-correlation function is dominated by a constant
and the structure function S2(r)'(1/2kd)F(0)r2. Note
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that S2(r) is not analytic at the origin, though. Its expan-
sion in r contains noninteger powers of order higher
than the second, due to the nonsmoothness of the veloc-
ity down to the smallest scales. The analyticity is recov-
ered if we keep a finite viscous cutoff for the velocity.

In the limit k→0, the diffusive interval disappears and
the pair correlator is given by Eq. (146) with the diffu-
sion scale rd set to zero. The mean square of the scalar
C2(0) remains finite for finite l but diverges in the l
→` limit that exists only for the structure function. Re-
call from Sec. III.B.1 that C2(r) has the interpretation
of the mean time that two Lagrangian trajectories take
to separate from distance r to l . The finite value of the
correlation function at the origin is therefore another
manifestation of the explosive separation of the La-
grangian trajectories.

The solution (146) for the pair correlator and most of
the above discussion remain valid also for j52, i.e., for
smooth Kraichnan velocities. A notable difference
should be stressed, though. In smooth velocities and for
k→0, the mean time of separation of two Lagrangian
trajectories diverges logarithmically as their initial dis-
tance tends to vanish. The pair correlator has a logarith-
mic divergence at the origin, implying that ^u2& is infinite
in the stationary state with k50. Indeed, it is the
] tC2(0) term that balances the right-hand side of Eq.
(145) at finite times and r50. As the diffusivity vanishes,
the variance ^u2& keeps growing linearly in time with the
rate F(0) and the mean dissipation tends to zero: no
dissipative anomaly is present at finite times. The
anomaly occurs only in the stationary state that takes
longer and longer to achieve for smaller r . In math-
ematical terms: lim

t→`
lim

k→0
ēÞlim

k→0
lim

t→`
ē , with

the left-hand side vanishing and the right-hand side
equal to the mean injection rate. The physics behind this
difference is clear. The dissipative anomaly for non-
smooth velocities is due to the nonuniqueness of the
Lagrangian trajectories; see Sec. II.C. The incompress-
ible version of Eq. (100) implies that, in the absence of
forcing and diffusion,

E u2~r8,0!dr82E u2~r8,t !dr8

5E drE p~r,t ;R,0uv!@u~R,0!2u~r,t !#2 dR>0.

(153)

The equality holds if and only if, for almost all r, the
scalar is constant on the support of the measure
p(r,t ;R,0uv)dR giving the distribution of the initial po-
sitions of the Lagrangian trajectories ending at r at time
t . In plain language, *u2 dr is conserved if and only if
the Lagrangian trajectories are uniquely determined by
the final condition. This is the case for smooth velocities
and no dissipation takes place for k50 as long as *u2 dr
is finite. When the latter becomes infinite (as in the sta-
tionary state), the above inequalities become void and
the dissipation may persist in the limit of vanishing k
even for a smooth flow.
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For j50, Eq. (146) still gives the stationary pair cor-
relation function if d>3. The distinction between the
behavior in the convective and the diffusive regimes dis-
appears. The overall behavior becomes diffusive with
the stationary equal-time correlation functions coincid-
ing with those of the forced diffusion ] tu5@ 1

2 (d21)D1
1k#“2u1w (Gawȩdzki and Kupiainen, 1996). In d52,
the pair-correlation function has a constant contribution
growing logarithmically in time but the structure func-
tion does stabilize, as in forced diffusion.

c. Higher correlators and zero modes

Let us consider the evolution of higher-order scalar
correlation functions CN , assumed to decay rapidly in
the space variables at the initial time. At long times, the
correlation functions will then approach a stationary
form given by the recursive relation

CN~rO!

5E GN~rO,RO ! (
n,m

CN22~R1 , . . . ,RN
n̂ m̂

!F~Rnm /l !dRO

(154)

for even N and vanishing for odd N (by the u°2u

symmetry). Here, GN5*0
`etM̃N dt are the operators in-

verse to 2M̃N . The above formulas give specific solu-
tions of the stationary Hopf Eqs. (143) that, alone, de-
termine solutions only up to zero modes of operators
MN . We are interested in the scaling properties of the
stationary correlation function CN in the convective in-
terval. If the correlation functions were becoming inde-
pendent of k and l in this interval (mathematically, if the
limits k→0 and l→` of the functions existed), the scal-
ing behavior would follow from the dimensional relation
(144):

CN~lrO!5l~22j!N/2CN~rO!. (155)

This would be the Kraichnan-model version of
the normal Kolmogorov-Obukhov-Corrsin scaling
(Obukhov, 1949; Corrsin, 1951). The k→0 limit of the
stationary correlation functions does exist and the k de-
pendence drops out of the expressions in the convective
interval, as for the pair correlator. The limit is given by
the formulas (154) with the k50 versions of GN
(Hakulinen, 2000). Note in passing that the advection
preserves any power of the scalar so that dissipative
anomalies are present also for orders higher than the
second. The existence of the zero diffusivity limit means
that possible violations of the normal scaling in the con-
vective interval may only come from a singularity of the
limit l→` . In fact, this was already the case for C2 ,
dominated by the constant term that diverged as l in-
creases. The constant dropped out, however, from the
pair structure function (152) that did not depend on l
and, consequently, scaled dimensionally. Concerning
higher-order scalar structure functions, Kraichnan
(1994) was the first to argue in favor of their anomalous
scaling. His paper steered a renewed interest in the
problem which led to the discovery by Chertkov et al.
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(1995b), Gawȩdzki and Kupiainen (1995), and Shraiman
and Siggia (1995) of a simple mechanism to avoid nor-
mal scaling: the domination of the correlation functions
by scaling zero modes of the operators M̃N . For small j,
Gawȩdzki and Kupiainen (1995) and Bernard et al.
(1996) showed that in the convective interval

CN~rO!5A NlDNfN ,0~rO!1CN8 ~rO!1o~ l !1@ ¯# . (156)

Above, fN ,0 is the irreducible isotropic zero mode of
scaling dimension zN ,05(N/2) (22j)2DN , see Sec.
II.E.3, the term CN8 is scaling with the normal dimension
(N/2) (22j), and @ ¯# stands for reducible contribu-
tions depending only on a subset of points. The anoma-
lous corrections DN5N(N22)/2(d12) j1O(j2) are
positive for small j; see Eq. (84). A similar result DN
5N(N22)/2d1O(1/d2) was established by Chertkov
et al. (1995b) and Chertkov and Falkovich (1996) for
large space dimensionalities. For DN.0, the first term
on the right-hand side of Eq. (156) is dominating the
second one for large l or, equivalently, at short distances
for k50. The analytic origin of the zero-mode domi-
nance of the stationary correlation functions (154) lies in
the asymptotic short-distance expansion (79) of the ker-
nels of GN (Bernard et al., 1998). The dominant zero
mode fN ,0 is the irreducible term in Eq. (79) with the
lowest scaling dimension. The reducible terms @ ¯# drop
out of the correlators of scalar differences, e.g., in the
N-point structure functions. The latter are dominated by
the contribution from fN ,0 :

SN~r !5^@u~r!2u~0!#N&}lDNrzN, (157)

with zN5zN ,0 . The physical meaning of zero-mode
dominance is transparent. Any structure function is a
difference between the terms with different number of
particles coming at the points 1 and 2 at time t , like, for
instance, S353^u1

2u22u1u2
2& . Under the (backward-in-

time) Lagrangian evolution, this difference decreases as
(r/l)zN ,0 because of shape relaxation with the slowest
term due to the irreducible zero mode. The structure
function is thus given by the total temporal factor
lN(22j)/2 multiplied by (r/l)zN ,0.

The scaling exponents in Eq. (157) are universal in the
sense that they do not depend on the shape of the pump-
ing correlation functions F(r). The coefficients AN in
Eq. (156), as well as the proportionality constants in Eq.
(157), are, however, nonuniversal. Numerical analysis,
see Sec. III.D.2, indicates that the previous framework
applies for all 0,j,2 at any space dimensionality, with
the anomalous corrections DN continuing to be strictly
positive for N.2. That implies the small-scale intermit-
tency of the scalar field: the ratios S2n /S2

n grow as r
decreases. At orders N@(22j)d/j , the scaling expo-
nents zN tend to saturate to a constant, see Secs. III.C.2
and III.D.2 below.

In many practical situations the scalar is forced in an
anisotropic way. Shraiman and Siggia (1994, 1995) have
proposed a simple way to account for the anisotropy.
They subtracted from the scalar field an anisotropic
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
background by defining u8(r)5u(r)2g•r, with g a fixed
vector. It follows from the unforced Eq. (92) that

] tu81v•“u82k“2u852g•v, (158)

with the term on the right-hand side giving the effective
pumping. In Kraichnan velocities, the translation invari-
ance of the equal-time correlators of u8 is preserved by
the evolution with the Hopf equations taking the form

] tCN~rO!5M̃NCN~rO!

12 (
n,m

CN22~r1 , . . . ,rN
n̂ m̂

!gigjD
ij~rnm!

2(
n ,m

gid
ij~rnm!¹rm

j CN21~r1 , . . . ,rN
n̂

!

(159)

in the homogeneous sector. The stationary correlation
functions of u8 which arise at long times if the initial
correlation functions decay in the space variables, may
be analyzed as before. In the absence of the u8°2u8
symmetry, the odd correlators are no longer constrained
to be zero. Still, the stationary one-point function van-
ishes so that the scalar mean is preimposed: ^u(r)&
5g•r. For the two-point function, the solution remains
the same as in the isotropic case, with the forcing corre-
lation function simply replaced by 2gigjD

ij(r) and ap-
proximately equal to the constant 2D0g2 in the convec-
tive interval. The three-point function is

C3~rO!52E G3~rO,RO !

3(
n ,m

gid
ij~Rnm!¹Rm

j C2~R1 , . . . ,R3
n̂

!dRO . (160)

The dimensional scaling would imply that C3(lrO)
5l32jC3(rO) in the convective interval since “C2(r)
scales there as r12j. Instead, for j close to 2, the three-
point function is dominated by the angular momentum
j51 zero mode of M3 with scaling dimension 21o(2
2j), as shown by Pumir et al. (1997). A similar picture
arises from the perturbative analysis around j50
(Pumir, 1996, 1997), around d5` (Gutman and Balk-
ovsky, 1996), and from the numerical study of the whole
interval of j values for d52 and d53 (Pumir, 1997); see
Sec. II.E.5. As will be discussed in Sec. III.F, the zero-
mode mechanism is likely to be responsible for the ex-
perimentally observed persistence of the anisotropies,
see, e.g., Warhaft (2000).

It is instructive to analyze the limiting cases j50,2 and
d5` from the viewpoint of the statistics of the scalar.
Since the field at any point is the superposition of con-
tributions brought from d directions, it follows from the
central limit theorem that the scalar statistics becomes
Gaussian as the space dimensionality d increases. In the
case j50, an irregular velocity field acts like Brownian
motion. The corresponding turbulent transport process
is normal diffusion and the Gaussianity of the scalar sta-
tistics follows from that of the input. What is general in
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both the previous limits is that the degree of Gaussian-
ity, as measured, say, by the flatness S4 /S2

2, is scale inde-
pendent. Conversely, we have seen in Sec. III.B.1 that
ln(l/r) is the parameter of Gaussianity in the Batchelor
limit with the statistics becoming Gaussian at small
scales whatever the input statistics. The key here is in
the temporal rather than the spatial behavior. Since the
stretching in a smooth velocity field is exponential, the
cascade time is growing logarithmically as the scale de-
creases. That leads to the essential difference: at small
yet nonzero j/d the degree of non-Gaussianity increases
downscales, while at small (22j) it first decreases
downscales until ln(l/r)'1/(22j) and then it starts to
increase. Note that the interval of decrease grows as the
Batchelor regime is approached. Already that simple
reasoning suggests that the perturbation theory is singu-
lar in the limit j→2, which is formally manifested in the
quasisingularities of the many-point correlation func-
tions for collinear geometries (Balkovsky, Chertkov,
et al., 1995).

The anomalous exponents determine also the mo-
ments of the dissipation field e5k(“u)2. A straight-
forward analysis of Eq. (154) indicates that
^en&5cnēn(l/rd)D2n (Chertkov et al., 1995b; Chertkov
and Falkovich, 1996), where ē is the mean dissipation
rate. The dimensionless constants cn are determined by
the fluctuations of the dissipation scale and, most likely,
they are of the form nqn with yet unknown q . In the
perturbative domain n!(22j)d/j , the anomalies D2n
are a quadratic function of the order and the corre-
sponding part of the dissipation PDF is close to lognor-
mal (Chertkov and Falkovich, 1996). The form of the
distant tails of the PDF is still unknown.

d. Operator product expansion

While the irreducible zero mode dominates the re-
spective structure function, all the zero modes may be
naturally incorporated into an operator product expan-
sion (OPE) of the scalar correlation functions. There has
been many attempts to use this powerful tool of quan-
tum field theory (Wilson, 1969) in the context of turbu-
lence; see Adzhemyan et al. (1989, 1999), Eyink (1993),
and Polyakov (1993, 1995). We briefly describe here a
general direction for accomplishing that for the problem
of scalar advection (Chertkov and Falkovich, 1996;
Adzhemyan et al., 1998; Zamolodchikov et al., 2000).
Let $Oa% be a set of local observables (which contains all
spatial derivatives of any field already included). The
existence of OPE presumes that

Oa~r!Ob~r8!5(
k

Cab
c ~r2r8!Oc~r8!, (161)

which is understood as the following relations among
the correlation functions:

^Oa~r!Ob~r8!¯&5(
k

Cab
c ~r2r8!^Oc~r8!¯&. (162)

The sum represents the correlation function in the left-
hand side if ur2r8u is small enough. Renormalization
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symmetry w→Lw , u→Lu allows one to classify the op-
erators (fluctuating fields) by degrees: O (n) has degree n
if O (n)→LnO (n) under the transformation. The OPE
conserves the degree and is supposed to be scale invari-
ant in the convective interval. This means that one may
choose a basis of the observables in such a way that Oa
has ‘‘dimension’’ da , and the OPE is invariant under the
transformation Oa(r)→ldaOa(lr) so that its coefficient
functions scale: Cab

c @l(r2r8)#5ldc2da2dbCab
c (r2r8).

Besides, functions Cab
c are supposed to be pumping in-

dependent with the whole dependence on pumping car-
ried by the expectation values ^O c&}l2dc. The scale in-
variance can be (‘‘spontaneously’’) broken at the level of
correlation functions if some of the fields with nonzero
dimension develop nonzero expectation values. The di-
mension of uN is N(j22)/2. The operators can be orga-
nized into strings, each with the primary operator Qa
with the lowest dimension da and its descendants with
the dimensionalities da1n(22j). A natural conjecture
is that there is one-to-one correspondence between the
primary operators of degree N and the zero modes of
M̃N . The dimensions of such primaries are minus the
anomalous dimensions D’s of the zero modes fa and are
therefore negative. By fusing N21 times one gets
u1¯uN5(fa(r1 ,. . . ,rN)Qa(rN)1¯ , where the dots in-
clude the derivatives and descendants of Qa .

For n52, one has only one primary field u2, and its
descendents u¹muu2. For n54, there is an infinity of pri-
maries. Only u4, e2, and eu¹2u2d2e/(d212) have non-
zero expectation values. The operators with zero expec-
tation values correspond to the operators with more
derivatives than twice the degree (that is with the order
of the angular harmonic in the respective zero mode
being larger than the number of particles, in terms of
Sec. II.E). Building an OPE explicitly and identifying its
algebraic nature remains a task for the future.

e. Large scales

The scalar correlation functions at scales larger than
that of the pumping decay by power laws. The pair-
correlation function is given by Eq. (150). Recall that
applying M2 on it, we obtain a contact term }d(r).
Concerning higher-order correlation functions, straight
lines are not preserved in a nonsmooth flow and no
strong angular dependencies of the type encountered in
the smooth case are thus expected. To determine the
scaling behavior of the correlation functions, it is there-
fore enough to focus on a specific geometry. Consider,
for instance, the equation M̃4C4(rO)5(x(rij)C2(rkl) for
the fourth-order function. A convenient geometry to
analyze is that with one distance among the points, say
r12 , much smaller than the other r1j , whose typical
value is R . At the dominant order in r12 /R , the solution
of the equation is C4}C2(r12)C2(R);(r12R)22j2d.
Similar arguments apply to arbitrary orders. We con-
clude that the scalar statistics at r@l is scale invariant,
i.e., C2n(lrO)5ln(22j2d)C2n(rO) as l→` . Note that the
statistics is generally non-Gaussian when the distances
between the points are comparable. As j increases from
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0 to 2, the deviations from the Gaussianity starts from
zero and reach their maximum for the smooth case de-
scribed in Sec. III.B.3.

f. General pumping

The fact that the scalar correlation functions in the
convective interval are dominated by zero modes indi-
cates that the hypotheses of Gaussianity and d correla-
tion of the pumping are not crucial. The purpose of this
subsection is to give some more details on how they
might be relaxed. The new point to be taken into ac-
count is that the pumping has now a finite correlation
time tp and irreducible contributions are present. The
situation with the second order is quite simple. The in-
jection rate of u2 is ^fu& and its value defines the mean
dissipation rate ē at the stationary state. The only differ-
ence is that its value cannot be estimated a priori as
F(0). Let us then consider the behavior at higher or-
ders, whose typical example is the fourth. Its general flux
relation, derived similarly as Eq. (131), reads

^~v1•¹11v2•¹2!u1
2u2

2&1k^u1u2@“1
21“2

2#u1u2&

5^w1u1u2
21w2u2u1

2& . (163)

Taking the limit of coinciding points, we get the produc-
tion rate of u4. It involves the usual reducible contribu-
tion 3 ēC2(0) and an irreducible one. The ratio of the
two is estimated as C2(0)/tp . The non-Gaussianity of
the pumping is irrelevant as long as tp is smaller than
the time for the particles to separate from the diffusive
to the integral scale. The smooth and nonsmooth cases
need to be distinguished. For the former, the separation
time is logarithmically large and the previous condition
is always satisfied. Indeed, the reducible part of
the injection rate in Eq. (163) necessarily contains
2^u1u2&@^w1u2&1^w2u1&#.2 ē2l̃d

21 ln(l/r12). Since the
correlation function grows as r12 decreases, one can al-
ways neglect the constant irreducible contribution for
small enough separations. Similarly, the input rate of all
even moments up to N.ln(l/rd) is determined by ē . The
fact that the fluxes of higher integrals are not constant in
the convective interval was called the effect of ‘‘distrib-
uted pumping’’ in Falkovich (1994) and Falkovich and
Lebedev (1994).

In the nonsmooth case, the cascade time is finite and
the irreducible contributions might be relevant. They af-
fect the statistics of the scalar yet, of course, not the
scaling of the zero modes. The fourth-order correlation
function C4 acquires, for example, extra terms propor-
tional to (rij

22j . They contribute to the fourth-order cu-
mulant but not to the structure function S4 . The exis-
tence of those extra terms in the correlation function
affects the matching conditions at the pumping scale,
though. We conclude that the numerical coefficients AN
in the structure functions SN5A NrzNlDN generally de-
pend on all the irreducible pumping contributions of or-
der m<N .
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2. Instanton formalism for the Kraichnan model

Since the perturbative approaches in Sec. II.E.5 are all
limited to finite orders, it is natural to look for alterna-
tive methods to capture the scaling exponents in the
nonperturbative domain Nj@(22j)d . As in many
other instances in field theory or statistical physics, such
a nonperturbative formalism is expected to result from a
saddle-point technique applied to the path integral con-
trolling the statistics of the field. Physically, that would
correspond to finding some optimal fluctuation respon-
sible for a given structure function. Not any structure
function can be found by this approach but only those
with N@1, related to the PDF tails which are indeed
controlled by rare events. This is a general idea of the
instanton formalism (see, e.g., Coleman, 1977) adapted
for turbulence by Falkovich et al. (1996). The case in
question is so complicated though that an effective
analysis (carried out by Balkovsky and Lebedev, 1998) is
possible only with yet another large parameter, (2
2j)d@1, which guarantees that the Lagrangian trajec-
tories are almost deterministic. The relation between Nj
and (22j)d is now arbitrary so one is able to describe
both the perturbative and nonperturbative domains. Un-
fortunately, a straightforward application of this ap-
proach to the path integral over the velocity field does
not work because of a usual problem in saddle-point
calculations: the existence of a soft mode makes the in-
tegrand nondecaying in some direction in the functional
space. One ought to integrate over the soft mode before
the saddle-point approximation is made. Balkovsky and
Lebedev identified the soft mode as that responsible for
the slow variations of the direction of the main stretch-
ing. Since the structure functions are determined only by
the modulus of the distance then an effective integration
over the soft mode simply corresponds to passing from
the velocity to the absolute value of the Lagrangian
separation as the integration variable in the path inte-
gral. This can be conveniently done by introducing the
scalar variable

h12[~22j!21] tR12
22j5R12

2jR12
i ~v1

i 2v2
i !. (164)

For the Kraichnan velocity field, h12 has the nonzero
mean ^h12&52D and the variance

^^h12~ t1!h34~ t2!&&5
2D

d
q12,34d~ t12t2!. (165)

The explicit dependence of the q12,34 function on the
particle distances will not be needed here and can be
found in the original paper (Balkovsky and Lebedev,
1998). Any average over the statistics of the Lagrangian
distances can be written in terms of a Martin-Siggia-
Rose path integral *DR Dm exp(ıIR), with the action

IR5E
2`

0
dtE dr1 dr2 m12

3F S ] tR12
22j

22j
1D D 1

iD

d
dr3 dr4 q12,34m34G . (166)
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The auxiliary field conjugated to R12 is denoted by m12
[m(t ,r1 ,r2). Note that the second (nonlinear) term in
Eq. (166) vanishes both as (22j)d→` and j→0. The
moments of any linear functional of the scalar q
5* dr b(r)u(r) are then expressed as

^uquN&5E dy dq

2p E DRDmeiIR2Fl2iyq1N lnuqu,

(167)

where Fl5(y2/2) *dt dr1 dr2 x(R12)b(r1)b(r2). To ob-
tain the structure functions, one should in principle take
for b differences of d functions. This would, however,
bring diffusive effects into the game. To analyze the scal-
ing behavior, it is in fact enough to consider any observ-
able where the reducible components in the correlation
functions are filtered out. A convenient choice is b(r1)
5dL(r12 r/2)2dL(r11 r/2), where the smeared func-
tion dL(r) has a width L21 and satisfies the normaliza-
tion condition * dr dL(r)51. The diffusive effects may
be disregarded provided the width is taken much larger
than rd .

The saddle-point equations for the integral (167) are

] tR12
22j52~22j!DF11

2i

d E dr3 dr4 q12,34m34G ,

(168)

2iR12
12j] tm125

2D

d E dr3 dr4

]q12,34

]R12

3@m12m3412m13m24#

1
y2

2
x8~R12!b~r1!b~r2!, (169)

with the two extremal conditions on the parameters q
and y :

q5iyE dt dr1 dr2 x~R12!b~r1!b~r2!, iy5N/q .

(170)

The two boundary conditions are R12(t50)5ur12r2u
and m12→0 as t→2` . The variables R12 and m12 are a
priori two fields, i.e., they depend on both t and r. In
fact, the problem can be shown to reduce effectively to
two degrees of freedom: R2 , describing the separation
of two points, and R1 , describing the spreading of a
cloud of size L around a single point. It follows from the
analysis in Balkovsky and Lebedev (1998) that there are
two different regimes, depending on the order of the
moments considered. At N,(22j)d/(2j) the values of
R1 and R2 are very close during most of the evolution
and different fluid particles behave similarly. For higher
moments, R1 and R2 differ substantially throughout the
evolution. The fact that different groups of fluid par-
ticles move in a very different way might be interpreted
as the signature of the strong fronts in the scalar field
that are discussed in Sec. III.F. The final result for the
scaling exponents is

zN5N~22j!/222jN2/2d at N,~22j!d/~2j!,

(171)
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zN5~22j!2d/~8j! at N.~22j!d/~2j!. (172)

These expressions are valid when the fluctuations
around instanton give negligible contribution which re-
quires N@1 and (22j)d@1, while the relation between
d and N is arbitrary. The exponents depend quadrati-
cally on the order and then saturate to a constant. The
saturation for the Kraichnan passive scalar model had
been previously inferred from a qualitative argument by
Yakhot (1997) and from an upper bound on zN by
Chertkov (1997). The relevance of the phenomenon of
saturation for generic scalar turbulence is discussed in
Sec. III.F.

3. Anomalous scaling for magnetic fields

Magnetic fields transported by a Kraichnan velocity
field display anomalous scaling already at the level of
the second-order correlation functions. For a scalar, ^u2&
is conserved and its flow across the scales fixes the di-
mensional scaling of the covariance found in Sec.
III.C.1.b. For a magnetic field, this is not the case. The
presence of an anomalous scaling for the covariance
C 2

ij(r,t)5^Bi(r,t)Bj(0,t)& becomes quite intuitive from
the Lagrangian standpoint. We have seen in Sec. II.E
that the zero modes are closely related to the geometry
of the particle configurations. For a scalar field, the
single distance involved in the two-particle separation
explains the absence of anomalies at the second order.
The magnetic-field Eq. (95) for k50 is the same as for a
tangent vector, i.e., the separation between two infini-
tesimally close particles. Although C 2

ij involves again two
Lagrangian particles, each of them is now carrying its
own tangent vector. In other words, we are somehow
dealing with a four-particle problem, where the tangent
vectors bring the geometric degrees of freedom needed
for the appearance of nontrivial zero modes. The com-
pensation mechanism leading to the respective two-
particle integral of motion is now due to the interplay
between the interparticle distance and the angular cor-
relations of the vectors carried by the particles. The at-
tractive feature of the problem is that the anomaly can
be calculated nonperturbatively.

Specifically, consider Eq. (95) for the solenoidal mag-
netic field B(r,t) and assume the Kraichnan correlation
function (48) for the Gaussian incompressible velocity.
We first analyze the isotropic sector (Vergassola, 1996).
The first issue to be addressed is the possibility of a
stationary state. For this to happen, there should be no
dynamo effect, i.e., an initial condition should relax to
zero in the absence of injection. Let us show that this is
the case for j,1 in 3D. As for a scalar, the d correlation
of the velocity leads to a closed equation for the pair-
correlation function ] tC 2

ij5M ij
klC 2

kl . The isotropy and
the solenoidality of the magnetic field permit us to write
C 2

ij(r,t) in terms of its trace H(r,t) only. This leads to an
imaginary time Schrödinger equation for the
‘‘wave function’’ c(r ,t)5 (k1D1rj)/r *0

r H(r ,t)r2 dr
(Kazantsev, 1968). The energy eigenstates c(r)e2Et,
into which c(r ,t) may be decomposed, satisfy the sta-
tionary equation
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d2c~r !

dr2 1m~r !@E2U~r !#c~r !50 (173)

of a quantum particle of variable mass m(r) in the po-
tential U(r). The presence of a dynamo effect is equiva-
lent to the existence of negative energy levels. Since the
mass is everywhere positive, it is enough to look for
bound states in the effective potential V5mU . The de-
tailed expressions of the mass and the potential can be
found in Vergassola (1996). Here, it is enough to remark
that V(r) is repulsive at small scales and has a quadratic
decay in the inertial range with a prefactor 223/2j
23/4j2. It is known from quantum-mechanics textbooks
that the threshold for bound states in an attractive po-
tential 2c/r2 is c51/4. The absence of a dynamo effect
for j,1 follows immediately from the expression of the
potential prefactor.

The stability just described implies that, in the pres-
ence of a forcing term in Eq. (95), the magnetic-field
covariance will relax to a time-independent expression
at long times. We may then study the spatial scaling
properties at the stationary state. The energy E in Eq.
(173) should be set to zero and we should add the cor-
responding forcing term in the first equation. Its precise
form is not important here as any anomalous scaling is
known to come from the zero modes of the operator
M5d2/dr22V(r). The behavior 2c/r2 of the potential
in the inertial range implies that the operator is scale
invariant and its two zero modes behave as power laws
with exponents 1/2@16A124c# . The zero mode with the
smaller exponent is not acceptable due to a singular be-
havior in the dissipation range of the corresponding cor-
relation function. The remaining zero mode dominates
the inertial-range behavior H(r)}rg2 with

g252~31j!/213/2A12j~j12 !/3. (174)

Note that dimensional arguments based on a constant
flux of A2 (with the vector potential defined by B
5“3A) would give g252j . This is indeed the result in
the limits of small j and large space dimensionality and
for the 2D case. For the latter, the vector potential is
reduced indeed to a scalar whose equation coincides
with the advection-diffusion Eq. (92). Note that g2<
2j , that is the zero mode provides for correlation func-
tions that are (l/r)2g22j times larger than what dimen-
sional arguments would suggest.

The zero mode dominating the stationary two-point
function of B is preserved by the unforced evolution. In
other words, if C 2

ij(r,0) is taken as the zero mode of M
then the correlation function does not change with time.
A counterpart to that is the existence of a statistical La-
grangian invariant that contains both the distance be-
tween the fluid particles and the values of the fields:
I(t)5^Bk(R1)Bl(R2)Zkl

1 (R12)& (Celani and Mazzino,
2000). Here Zkl

1 is a zero mode of the operator adjoint
to M. The scaling dimension of such zero mode is g2
12.0. The appearance of the adjoint operator has a
simple physical reason. To calculate the correlation func-
tions of the magnetic field, the tangent vectors attached
to the particles evolve forward in time while, as for the
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scalar, their trajectories should be traced backward in
time. Adjoint objects naturally appear when we look for
invariants where all the quantities run in the same direc-
tion of time. The conservation of I(t) is due to the
power-law growth of Z1 with time being offset by the
decorrelation between the directions of the B vectors
along the separating trajectories.

Up to now, we have been considering the covariance
in the isotropic sector. The scaling exponents in the
nonisotropic sectors can also be calculated nonperturba-
tively (Lanotte and Mazzino, 1999; Arad, Biferale, and
Procaccia, 2000). The problem is analogous to that for
the scalar in Sec. II.E.5, solved by the expression (88).
Here, the calculation is more involved since in each sec-
tor j ,m of SO(3) there are nine independent tensors into
which C 2

ij may be decomposed. Their explicit expression
may be found in (Arad et al., 1999). As in the isotropic
case, it is shown that no dynamo takes place for j,1
and the scaling properties at the stationary state can
then be calculated. For odd j , one has, for example,

g 2
j 52~31j!/211/2A1210j1j212j~ j11 !~j12 !.

(175)

The expression for the other sectors can be found in
Lanotte and Mazzino (1999) and Arad, Biferale, and
Procaccia (2000). An important point (we shall come
back to it in Sec. III.F) is that the exponents increase
with j : the more anisotropic the contribution, the faster
it decays going toward the small scales.

Higher-order correlation functions of the magnetic
field also obey closed equations. Their analysis proceeds
along the same lines as for the scalar, with the additional
difficulty of the tensorial structure. The extra terms in
the equations for the correlation functions of the mag-
netic field come from the presence of the stretching term
B•“v. Since the gradient of the velocity appears, they
are all proportional to j. On the other hand, the stabi-
lizing effective-diffusivity terms do not vanish as j→0.
We conclude that the forced correlation functions at any
arbitrary yet finite order will relax to time-independent
expressions for sufficiently small j. It makes then sense
to consider their scaling properties at the stationary
state, as it was done in (Adzhemyan and Antonov,
1998). For the correlation functions ^@B(r,t)•B(0,t)#N&
}rgN, the perturbative expression in j reads gN52Nj
2 2N(N21)j/(d12) 1O(j2), demonstrating the inter-
mittency of the magnetic-field distribution.

Let us conclude by discussing the behavior of the
magnetic helicity ^A•B&, considered in Borue and Ya-
khot (1996). This quantity is conserved in the absence of
the molecular diffusivity, as can be easily verified using
Eq. (95) and the equation for A:

] tA5v3B2“f1k“2A. (176)

The function f may be fixed by the choice of a specific
gauge, e.g., “•A50. The spatial behavior of the helicity
correlation functions ^A(r,t)•B(0,t)& is derived using
Eqs. (95) and (176) and averaging over the Gaussian
velocity with the variance (48). The resulting equation
coincides with that for the scalar covariance (145), im-
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plying the dimensional scaling r22j and a constant helic-
ity flux. We conclude that it is possible to have coexist-
ence of normal and anomalous scaling for different
components of the correlation tensor of a given order.
Note also that the helicity correlation functions relax to
a stationary form even for j.1, i.e., when the magnetic
correlation functions do not. The increase of the
magnetic-field magnitude is indeed accompanied by a
modification of its orientation and the quasi-
orthogonality between A and B ensures the stationarity
of the helicity correlation functions. For a helical veloc-
ity, considered in Rogachevskii and Kleeorin (1999), the
magnetic and the helicity correlators are coupled via the
so-called a effect, see, e.g., Moffatt (1978), and the sys-
tem is unstable in the limit k→0 considered here.

D. Lagrangian numerics

The basic idea of the Lagrangian numerical strategy is
to calculate the scalar correlation functions using the
particle trajectories. The expressions (101) and (134)
naturally provide for such a Lagrangian Monte Carlo
formulation: the N Lagrangian trajectories are gener-
ated by integrating the stochastic Eqs. (5), the right-
hand side of Eqs. (101) and (134) is calculated for a
large ensemble of realizations and averaged over it. If
we are interested in correlation functions of finite order,
the Lagrangian procedure involves the integration of a
few differential equations. This is clearly more conve-
nient than having to deal with the partial differential
equation for the scalar field. The drawback is that quan-
tities involving a large number of particles, such as the
tails of the PDF’s, are not accessible. Once the correla-
tion functions have been measured, their appropriate
combinations will give the structure functions. For the
second-order S2(r ,t) two different configurations of par-
ticles are needed. One corresponding to ^u2& , where the
particles are at the same point at time t , and another one
corresponding to ^u(r)u(0)&, where they are spaced by
r. For the 2nth-order structure function, n11 particle
configurations are needed.

Another advantage of the Lagrangian method is that
it gives direct access to the scaling in l of the structure
functions (157), that is, to the anomalous dimensions
DN5Nz2/22zN . The quantities (101) and (134) for vari-
ous l’s can indeed be calculated along the same
Lagrangian trajectories. That is more efficient than mea-
suring the scaling in r , i.e., changing the final positions
of the particles and generating a new ensemble of
trajectories.

1. Numerical method

The Lagrangian method as presented up to now might
be applied to any velocity field. The situation with the
Kraichnan model is simpler in two respects. First, the
velocity statistics is time reversible and the Lagrangian
trajectories can be generated forward in time. Second,
the velocity fields at different times are independent.
Only (N21)d random variables are needed at each
time step, corresponding to the velocity increments at
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
the location of the N particles. The major advantage is
that there is no need to generate the whole velocity field.
Finite-size effects, such as the space periodicity for pseu-
dospectral methods, are thus avoided.

The Lagrangian trajectories for the Kraichnan model
are conveniently generated as follows. The relevant vari-
ables are the interparticle separations, e.g., RnN5Rn
2RN for n51,. . . ,N21. Their equations of motion are
easily derived from Eq. (5) and conveniently discretized
by the standard Euler-Itô scheme of order 1/2 (Kloeden
and Platen, 1992),

RnN~ t1Dt !2RnN~ t !5ADt~Vn1A2kWn!, (177)

where Dt is the time step. The quantities Vn and Wn are
d-dimensional Gaussian, independent random vectors
generated at each time step. Both have zero mean and
their covariance matrices follow directly from the defi-
nition (48) of the Kraichnan velocity correlation:

^Vn
i Vm

j &5dij~RnN!1dij~RmN!2dij~RnN2RmN!,

^Wn
i Wm

j &5~11dnm!d ij. (178)

The most convenient numerical procedure to generate
the two sets of vectors is the classical Cholesky decom-
position method (Ralston and Rabinowitz, 1978). The
covariance matrices are triangularized in the form MMT

and the lower triangular matrix M is then multiplied by
a set of (N21)d Gaussian, independent random vari-
ables with zero mean and unit variance. The resulting
vectors have the appropriate correlations.

Various possibilities to extract the anomalous scaling
exponents are available for the Kraichnan model. The
straightforward one, used in Frisch et al. (1998), is to
take the forcing correlation close to a step function
(equal to unity for r/l,1 and vanishing otherwise). The
correlation functions (134) involve then the products of
the average residence times of couples of particles at
distances smaller than l . An alternative method is based
on the shape dynamics discussed in Sec. II.E.4. Measur-
ing first-exit times and not residence times gives an ob-
vious advantage in computational time. As stressed in
Gat et al. (1998), the numerical problem here is to mea-
sure reliably the contributions of the irreducible zero
modes, masked by the fluctuations of the reducible ones.
The latter were filtered out by Celani et al. (1999) taking
various initial conditions and combining appropriately
the corresponding first-exit times. A relevant combina-
tion for the fourth order is for example Tl(0,0,0,0)
24Tl(r0 ,0,0,0)13Tl(r0 ,r0 ,0,0), where Tl is the first time
the size of the particle configuration reaches l .

2. Numerical results

We shall now present the results for the Kraichnan
model obtained by the Lagrangian numerical methods
just discussed.

The fourth-order anomaly 2z22z4 vs the exponent j
of the velocity field is shown in Fig. 5 for both 2D and
3D (Frisch et al., 1998, 1999). A few remarks are in or-
der. First, the comparison between the 3D curve and the
prediction 4j/5 for small j’s provides direct support
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for the perturbation theory discussed in Sec. II.E.5.
Similar numerical support for the expansion in 1/d has
been obtained in Mazzino and Muratore-Ginanneschi
(2001). Second, the curve close to j52 is fitted with
reasonable accuracy by a(22j)1b(22j)3/2 for a
50.06 and b51.13. That is compatible with an expan-
sion in powers of (22j)1/2 (Shraiman and Siggia, 1996),
where the first term is ruled out by the Schwartz in-
equality z4<2z252(22j). Third, remark that the
anomalies are stronger in 2D than in 3D and their maxi-
mum shifts towards smaller j as the dimension de-
creases. The former remark is in agreement with the
general idea which emerged in previous sections that
intermittency is associated with the particles staying
close to each other for times longer than expected. It is
indeed physically quite sensible that those processes are
favored by lowering the space dimensionality. The sec-
ond remark can be qualitatively interpreted as follows
(Frisch et al., 1998). Consider scalar fluctuations at a
given scale. The smaller-scale components of the veloc-
ity act like an effective diffusivity whilst its larger-scale
components affect the scalar as in the Batchelor regime.
Neither of them leads to any anomalous scaling of the
scalar. Those nonlocal interactions are dominant as j
→0 and j→2, respectively. For intermediate values of j
the velocity components having a scale comparable to
that of the scalar fluctuations become important and in-
termittency is produced. The strongest anomalies are at-
tained when the relevant interactions are mostly local.
To qualitatively explain how the maximum of the
anomalies moves with the space dimensionality, it is then
enough to note that the effective diffusivity increases
with d but not the large-scale stretching. As for the de-
pendence on the order of the moments, the maximum
moves toward smaller j as N increases, see the 3D

FIG. 5. The fourth-order anomalous exponent 2z22z4 of the
scalar field vs the roughness parameter j of the velocity field in
the Kraichnan model. The circles and the stars refer to the
three-dimensional and the two-dimensional cases, respectively.
The dashed lines are the perturbative predictions for small j
and 22j in 3D.
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curves for the sixth-order anomaly 3z22z6 (Mazzino
and Muratore-Ginanneschi, 2001). It is indeed natural
that higher moments are more sensitive to multiplicative
effects due to large-scale stretching than to additive ef-
fects of small-scale eddy diffusivity.

Let us now discuss the phenomenon of saturation, i.e.,
the fact that zN tend to a constant at large N . The orders
where saturation is taking place are expected to increase
with j and diverge as j→0. It is then convenient to con-
sider small values of 22j . On the other hand, approach-
ing the Batchelor limit too closely makes nonlocal ef-
fects important and the range of scales needed for
reliable measurements becomes huge. A convenient
tradeoff is that considered in Celani et al. (2000) with
the 3D cases 22j50.125, 0.16, and 0.25. For the first
value of j it is found there that the fourth- and the sixth-
order exponents are the same within the error bars. The
curves for the other j values show that the order of satu-
ration increases with 22j , as expected. How do those
data constrain the zN curve? It follows from the Hölder
inequalities that the curve for N.6 must lie below the
straight line joining z4 and z6 . Furthermore, from the
results in Sec. III.A.3 we know that the spatial scaling
exponents in the forced and the decaying cases are the
same and independent of the scalar initial conditions.
For the unforced Eq. (92), the maximum value of u can-
not increase with time. Taking an initial condition with a
finite maximum value, we have the inequality SN(r ,t)
<(2 max u)pSN2p(r,t). We conclude that the zN curve
cannot decrease with the order. The presence of error
bars makes it, of course, impossible to state rigorously
that the zN curves tend to a constant. It is, however,
clear that the combination of the numerical data in
Celani et al. (2000) and the theoretical arguments dis-
cussed in Sec. III.C.2 leaves little doubt about the satu-
ration effect in the Kraichnan model. The situation with
an arbitrary velocity field is the subject of Sec. III.F.

E. Inverse cascade in the compressible Kraichnan model

The uniqueness of the Lagrangian trajectories dis-
cussed in Sec. II.D for the strongly compressible Kraich-
nan model has its counterpart in an inverse cascade of
the scalar field, that is, in the appearance of correlations
at larger and larger scales. Moreover, the absence of dis-
sipative anomaly allows us to calculate analytically the
statistics of scalar increments and to show that intermit-
tency is suppressed in the inverse cascade regime. In
other words, the scalar increment PDF tends at long
times to a scale-invariant form.

Let us first discuss the simple physical reasons for
those results. The absence of a dissipative anomaly is an
immediate consequence of the expression (101) for the
scalar correlation functions. If the trajectories are
unique, particles that start from the same point will re-
main together throughout the evolution and all the mo-
ments ^uN&(t) are preserved. Note that the conservation
laws are statistical: the moments are not dynamically
conserved in every realization, but their average over
the velocity ensemble are.
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In the presence of pumping, fluctuations are injected
and a flux of scalar variance toward the large scales is
established. As explained in Sec. III.B.3, scalar correla-
tion functions at very large scales are related to the
probability for initially distant particles to come close. In
strongly compressible flow, the trajectories are typically
contracting, the particles tend to approach and the dis-
tances will reduce to the forcing correlation length l
(and smaller) for long enough times. Strong correlations
at larger and larger scales are therefore established as
time increases, signaling the inverse cascade process.

The absence of intermittency is due to the fact that
the Nth-order structure function is dynamically related
to a two-particle process. Correlation functions of the
Nth order are generally determined by the evolution of
N-particle configurations. However, the structure func-
tions involve initial configurations with just two groups
of particles separated by a distance r . The particles ex-
plosively separate in the incompressible case and we are
immediately back to an N-particle problem. Conversely,
the particles that are initially in the same group remain
together if the trajectories are unique. The only relevant
degrees of freedom are then given by the intergroup
separation and we are reduced to a two-particle dynam-
ics. It is therefore not surprising that the scaling behav-
iors at the various orders are simply related in the in-
verse cascade regime.

Specifically, let us consider the equations for the
single-point moments ^uN&(t). Since the moments are
conserved by the advective term, see Eq. (101), their
behavior in the limit k→0 (nonsingular now) is the same
as for the equation ] tu5w . It follows that the single-
point statistics is Gaussian, with ^u2& coinciding with the
total injection F(0)t by the forcing.

The equation for the structure functions SN(r ,t) is
derived from Eq. (143). That was impossible in the in-
compressible case since the diffusive terms could not be
expressed in terms of SN (another sign of the dissipative
anomaly). No such anomaly exists here so we can disre-
gard the diffusion term and simply derive the equation
for SN from Eq. (143). This is the central technical point
allowing for the analytical solution. The equations at the
various orders are recast in a compact form via the gen-
erating function Z(l ;r,t)5^eilDru& for the scalar incre-
ments Dru5u(r,t)2u(0,t). The equation for the gener-
ating function is

] tZ~l ;r,t !5MZ~l ;r,t !1l2@F~0 !2F~r/l !#Z~l ;r,t !,
(179)

where the operator M was defined in Eq. (62) and Z
51 at the initial time. Note that M is the restriction of
M2 , signaling the two-particle nature of the dynamics at
any order. The stationary solution for Z depends on the
pumping, but two different regions with a universal be-
havior can be identified.

1. Large scales r @ l

In this region, F(r) in Eq. (179) can be neglected and
the generating function is an eigenfunction of M with
eigenvalue l2F(0). Introducing a new variable r(22j)/2,
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Eq. (179) is transformed into a Bessel form and solved
analytically. The solution takes a scale-invariant form
Z(ulur(22j)/2) whose detailed expression may be found
in Gawȩdzki and Vergassola (2000). It follows that
S2(r)}r22j. The associated scalar flux is calculated as in
Eq. (148) and turns out to be constant in the upscale
direction, the footprint of the inverse cascade. The scale-
invariant form of the generating function signals that no
anomalous scaling is present in the inverse cascade re-
gime. As we shall discuss in Sec. IV.B.2, the phenom-
enon is not accidental and other physical systems with
inverse cascades share the same property. Note that, de-
spite its scale invariance, the statistics of the scalar field
is strongly non-Gaussian. The expression for the scalar
increment PDF is obtained by the Fourier transform of
the generating function. The tails of the PDF decay al-
gebraically with the power 2(2b11), where b511(g
2d)/(22j) and g was defined in Eq. (62). The slow
decay of the PDF renders moments of order N.2b di-
vergent (as tN/22brb(22j)) when time increases. A special
case is that of smooth velocities j52, considered in
Chertkov, Falkovich, and Kolokolov (1998). The PDF of
scalar increments reduces then to the same form as in
the direct cascade at small scales. For amplitudes smaller
than ln(r/l) the PDF is Gaussian. The reason is the same
as in Sec. III.B.2: the time to reach the integral scale l
from an initial distance r@l is typically proportional to
ln(r/l); the fluctuations of the travel time are Gaussian.
For larger amplitudes, the PDF has an exponential tail
whose exponent depends on the whole hierarchy of the
Lyapunov exponents, as in the smooth incompressible
case.

2. Small scales r ! l

Contrary to large scales, the scalar increments are
now strongly intermittent. The structure functions of in-
teger orders are all dominated by the zero mode of the
M operator scaling as rb(22j), with b defined in the pre-
vious paragraph. The exponent of the constant flux so-
lution }r22j crosses that of the zero mode at the thresh-
old of compressibility b51 for the inverse cascade.

Let us now consider the role of an infrared cutoff in
the inverse cascade dynamics. The natural motivation is
the quasistationarity of the statistics: due to the excita-
tion of larger and larger scales, some observables do not
reach a stationary form. It is therefore of interest to ana-
lyze the effects of physical processes, such as friction,
acting at very large scales. The corresponding equation
of motion is

] tu1v•“u1au2k“2u5w , (180)

and we are interested in the limit a→0. For nonsmooth
velocities, the friction and the advection balance at a
scale h f;a21/(22j), much larger than l as a→0. The
smooth case j52 is special as no such scale separation is
present and it will be considered at the end of the sec-
tion. For nonsmooth flows, the energy is injected at the
integral scale l , transferred upwards in the inertial range
and finally extracted by friction at the scale h f .
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The friction term in Eq. (180) is taken into account by
noting that the field exp(at)u satisfies the usual passive
scalar equation with a forcing exp(at)f. It follows that
the previous Lagrangian formulas can be carried over by
just introducing the appropriate weights. The expression
(154) for the N-point correlation function becomes, for
instance,

CN~r,t !5E
0

t
dsE e2(t2s)NaPN

t ,s~r;r8!

3 (
n,m

CN22~r18 , . . .
n̂m̂

,rN8 ;s !F~ urn82rm8 u/l !dr8.

(181)

From Eq. (181), one can derive the equations for
^uN&(t) and the structure functions SN(r ,t) and analyze
them (Gawȩdzki and Vergassola, 2000). The single-point
moments are finite and the scalar distribution is Gauss-
ian with ^u2&5F(0)/2a . The structure functions of or-
der N,2b are not affected by friction. The orders that
were previously diverging are now finite and they all
scale as rb(22j) in the inertial range, with a logarithmic
correction for N52b . The algebraic tails that existed
without friction are replaced by an exponential fall off
for amplitudes larger than AF(0)/a . The saturation of
the exponents comes from the fact that the moments of
order N/2>b are all dominated by the contribution near
the cut.

Let us conclude by considering the smooth case j
52, where the velocity increments scale linearly with the
distance. The advective term v•“ has zero dimension,
like the friction term. As first noted by Chertkov (1998,
1999), this naturally leads to an anomalous scaling and
intermittency. Let us consider, for example, the second-
order correlation function C2(r ,t)5^u(r,t)u(0,t)&. Its
governing equation is derived from Eq. (181):

] tC25MC21F~r !C222aC2 , (182)

with the same M operator as in Eq. (179). At large
scales r@l , the forcing term is negligible and we look for
a stationary solution. Its nontrivial decay C2}(r/l)2D2 is
due to the zero mode arising from the balance between
the M operator and the friction term:

D25
1
2 FA~g2d !21

8a

~d21 !~112` !
2~g2d !G ,

(183)

where g is as in Eq. (62) and ` is the compressibility
degree of the velocity. The notation D2 is meant to stress
that dimensional arguments would predict an exponent
zero. Higher-order connected correlation functions also
exhibit anomalous decay laws. Similar mechanisms for
anomalous scaling and intermittency for the 2D direct
enstrophy cascade in the presence of friction are dis-
cussed in Sec. IV.B.1.

F. Lessons for general scalar turbulence

The results for spatially nonsmooth flows have mostly
been derived within the framework of the Kraichnan
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model. Both the forcing and the velocity were Gaussian
and short correlated in time. As discussed in Sec. III.C.1,
the conditions on the forcing are not crucial and may be
easily relaxed. The scaling properties of the scalar cor-
relation functions are universal with respect to the forc-
ing, i.e., independent of its details, while the constant
prefactors are not. The situation with the velocity field is
more interesting and nontrivial. Even though a short-
correlated flow might in principle be produced by an
appropriate forcing, all the cases of physical interest
have a finite correlation time. The very existence of
closed equations of motion for the particle propagators,
which we heavily relied upon, is then lost. It is therefore
natural to ask about the lessons drawn from the Kraich-
nan model for scalar turbulence in the generic situation
of finite-correlated flows. The existing numerical evi-
dence is that the basic mechanisms for scalar intermit-
tency are quite robust: anomalous scaling is still associ-
ated with statistically conserved quantities and the
expansion (75) for the multiparticle propagator seems to
carry over. The specific statistics of the advecting flow
affects only quantitative details, such as the numerical
values of the exponents. The general consequences for
the universality of the scalar statistics and the decay of
the anisotropies are presented in what follows. We also
show that the phenomenon of saturation, discussed in
Secs. III.C.2 and III.D.2 for the Kraichnan model, is
quite general.

A convenient choice of the velocity v to investigate
the previous issues is a 2D flow generated by an inverse
energy cascade (Kraichnan, 1967). The flow is isotropic,
it has a constant upscale energy flux and is scale invari-
ant with exponent 1/3, i.e., without intermittency correc-
tions as shown both by experiments and numerical simu-
lations (Smith and Yakhot, 1993; Paret and Tabeling,
1998; Boffetta et al., 2000). The inverse cascade flow is
thus akin to the Kraichnan ensemble, but its correlation
times are finite.

Let us first discuss the preserved Lagrangian struc-
tures. The simplest nontrivial case to analyze anomalous
scaling is the third-order correlation function C3(r)
5^u(r1 ,t)u(r2 ,t)u(r3 ,t)&. The function is nonzero only
if the symmetry u°2u is broken, which often happens
in real systems via the presence of a mean scalar gradi-
ent ^u&5g•r. The function C3(r) depends then on the

size, the orientation with respect to ĝ and the shape of
the triangle defined by r1 , r2 , and r3 . For a scalar field
advected by the 2D in-verse energy cascade flow, the
dependence on the size R of the triangle is a power law
with anomalous exponent z351.25, smaller than the di-
mensional prediction 5/3 (Celani et al., 2000). To look
for statistical invariants under the Lagrangian dynamics,
let us take a translation-invariant function f(r) of the N
points rn and define its Lagrangian average as in Eq.
(72), i.e., as the average of the function calculated along
the Lagrangian trajectories. In the 2D inverse energy
cascade, the distances grow as utu3/2 and the Lagrangian
average of a scaling function of positive degree s is ex-
pected to grow as utu3s/2. The numerical evidence pre-
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sented in Celani and Vergassola (2001) is that the
anomalous scaling is again due to statistical integrals of
motion: the Lagrangian average of the anomalous part
of the correlation functions remains constant in time.
The shape of the figures identified by the tracer particles
plays again a crucial role: the growth }utu3z3/2 of the size
factor Rz3 in C3(r) is compensated by its shape depen-
dence. As we indicated in Sec. II.E.4, anomalous scaling
reflects slowed-down separations among subgroups of
particles and the fact that triangles with large aspect ra-
tios live much longer than expected. It is also immediate
to provide an example of slow mode, see Eq. (75), for
the two-particle dynamics. The Lagrangian average of
(g•r12) is obviously preserved as its time derivative is
proportional to ^(v12v2)&50. Its first slow mode is
given by (g•r12)r12

2/3 , whose Lagrangian average is found
to grow as utu (that is much slower than utu5/2) at large
times. In the presence of a finite volume and boundaries,
the statistical conservation laws hold as intermediate
asymptotic behaviors, as explicitly shown in Arad et al.
(2001).

An important consequence is about the decay rate of
the anisotropies. As already mentioned, isotropy is usu-
ally broken by the large-scale injection mechanisms.
One of the assumptions in the Oboukhov-Corrsin refor-
mulation of the Kolmogorov 1941 theory for the passive
scalar is that the statistical isotropy of the scalar is re-
stored at sufficiently small scales. Experiments do not
confirm those expectations. Consider, for example, the
case where a mean scalar gradient g is present. A quan-
titative measure of the degree of anisotropy is provided
by odd-order structure functions or by odd-order mo-
ments of ĝ•¹u . All these quantities are identically zero
for isotropic fields. The predictions of the Oboukhov-
Corrsin theory for the anisotropic situations are the fol-
lowing. The hyperskewness of the scalar increments
S2n11(r)/S2

n11/2(r) should decay with the separation as
r2/3. The corresponding behavior of the scalar gradient
hyperskewness with respect to the Péclet number should
be Pe21/2. In fact, the previous quantities are experimen-
tally found to remain constant or even to increase with
the relevant parameter (Gibson et al., 1977; Mestayer,
1982; Sreenivasan, 1991; Mydlarski and Warhaft, 1998).
There is therefore no restoration of isotropy in the origi-
nal Kolmogorov sense and the issue of the role of
anisotropies in the small-scale scalar statistics is natu-
rally raised (Sreenivasan, 1991; Warhaft, 2000). The
analysis of the same problem in the Kraichnan model is
illuminating and permits to clarify the issue in terms of
zero modes and their scaling exponents. For isotropic
velocity fields, the correlation functions may be decom-
posed according to their angular momentum j , as in Sec.
II.E.5. Each of those contributions is characterized by a
scaling exponent zN

j . The general expectation, con-
firmed in all the situations where the explicit calcula-
tions could be performed, is that zN

jÞ0.zN
j50 and that the

exponents increase with j . As their degree of anisotropy
increases, the contributions are less and less relevant at
small scales. Note that, in the presence of intermittency,
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the inequality zN
jÞ0,(N/2) z2 is still possible and

anisotropies might then have dramatic effects for ob-
servables whose isotropic dominant contribution is van-
ishing, such as S2n11 /S2

n11/2 . Rather than tending to
zero, they may well increase while going toward the
small scales, blatantly violating the restoration of isot-
ropy in the original Kolmogorov sense. Remark that no
violation of the hierarchy in j is implied though. In other
words, the degree of anisotropy of every given moment
does not increase as the scale decreases; if, however, one
measures odd moments in terms of the appropriate
power of the second one (as is customary in phenom-
enological approaches) then the degree of anisotropy
may grow downscales. The previous arguments are quite
general and compatible with all the existing experimen-
tal and numerical data for passive scalar turbulence. For
Navier-Stokes turbulence, the use of the rotation sym-
metries and the existence of a hierarchy among the an-
isotropic exponents were put forward and exploited in
Arad et al. (1998, 1999). Numerical evidence for persis-
tence of anisotropies analogous to those of the scalar
fields was first presented in Pumir and Shraiman (1995).
Kraichnan model with an anisotropic velocity statistics
has been considered by Adzhemyan, Antonov, Hnatich,
and Novikov (2001).

Let us now discuss the phenomenon of saturation. A
snapshot of the scalar field advected by the 2D inverse
cascade flow is shown in Fig. 6. A clear feature is that
strong scalar gradients tend to concentrate in sharp
fronts separated by large regions where the variations
are weak. The scalar jumps across the fronts are of the
order of urms5A^u2& , i.e., comparable to the largest val-
ues of the field itself. Furthermore, the minimal width of
the fronts reduces with the dissipation scale, pointing to
their quasidiscontinuous nature. If the probability of
having such urms jumps across a separation r decreases
as rz`, then phenomenological arguments of the multi-
fractal type suggest a saturation to the asymptotic value
z` ; see Frisch (1995). The presence of fronts in scalar
turbulence is a very well established fact, both in experi-
ments (Gibson et al., 1977; Mestayer, 1982; Sreenivasan,
1991; Mydlarski and Warhaft, 1998) and in numerical
simulations (Holzer and Siggia, 1994; Pumir, 1994). It is
shown in the latter work that fronts are formed in the
hyperbolic regions of the flow, where distant particles
are brought close to each other. The other important
remark is that fronts appear also in the Kraichnan model
(Fairhall et al., 1997; Vergassola and Mazzino, 1997;
Chen and Kraichnan, 1998), despite the d correlation of
the velocity. What matters for bringing distant particles
close to each other are indeed the effects cumulated in
time. The integral of a d-correlated random process be-
haves as a Brownian motion in time, whose sign is
known to have strong persistence properties (Feller,
1950). Even a d-correlated flow might then efficiently
compress the particles (locally) and this naturally ex-
plains how fronts may be formed in the Kraichnan
model. It is also clear from the previous arguments that
a finite correlation time favors the formation of fronts
and that the Kraichnan model is somehow the most un-
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FIG. 6. A typical snapshot of a scalar field transported by a turbulent flow.
favorable case in this respect. The fact that fronts still
form and that the saturation takes place points to gen-
erality of the phenomenon for scalar turbulence. The
order of the moments and the value where the zN curve
flattens out might depend on the statistics of the advect-
ing velocity, but the saturation itself should generally
hold. Direct evidence for the advection by a 2D inverse
cascade flow is provided in (Celani et al., 2000, 2001).
Saturation is equivalent to the scalar increment PDF
taking the form P(Dru)5rz`q(Dru/urms) for amplitudes
larger than urms . The tails at various r can thus be all
collapsed by plotting r2z`P, as shown in Fig. 7. Note
finally that the saturation exponent z` coincides with the
fractal codimension of the fronts, see Celani et al. (2001)
for a more detailed discussion.
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As far as the compressible Kraichnan model is con-
cerned, applying even qualitative predictions requires
much more care than in the incompressible case. Indeed,
the compressibility of the flow makes the sum of the
Lyapunov exponents nonzero and leads to the perma-
nent growth of density perturbations described in Sec.
III.A.4. In a real fluid, such growth is stopped by the
back reaction of the density on the velocity, providing
for a long-time memory of the divergence “•v of the
velocity along the Lagrangian trajectory. This shows that
some characteristics of the Lagrangian velocity may be
considered short correlated (like the off-diagonal com-
ponents of the strain tensor), while others are long cor-
related (like the trace of the strain).

In summary, the situation with the Kraichnan model
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and general passive scalar turbulence is much like the
motto at the beginning of the review. The interest was
originally stirred by the closed equations of motion for
the correlation functions and the possibility of deriving
an explicit formula for the anomalous scaling exponents,
that are quite specific features. Actually, the model
turned out to be much richer and capable of capturing
the basic properties of the Lagrangian tracer dynamics
in generic turbulent flow. The major lessons drawn from
the model, such as the statistical integrals of motion, the
geometry of the particle configurations, the dynamics in
smooth flow, the importance of multipoint correlations,
the persistence of anisotropies, all seem to have quite
general validity.

IV. BURGERS AND NAVIER-STOKES EQUATIONS

All the previous sections were written under the as-
sumption that the velocity statistics (whatever it is) is
given. In this section, we shall describe what one can
learn about the statistics of the velocity field itself by
considering it in the Lagrangian frame. We start from
the simplest case of Burgers turbulence whose inviscid
version describes a free propagation of fluid particles,
while viscosity provides for a local interaction. We then
consider an incompressible turbulence where the pres-
sure field provides for a nonlocal interaction between
infinitely many particles.

A. Burgers turbulence

The d-dimensional Burgers equation (Burgers, 1974)
is a pressureless version of the Navier-Stokes Eq. (1):

] tv1v•“v2n¹2v5f (184)

for irrotational (potential) velocity v(r,t) and force
f(r,t). It is used to describe a variety of physical situa-
tions from the evolution of dislocations in solids to the
formation of large scale structures in the universe, see,
e.g., Krug and Spohn (1992) and Shandarin and
Zel’dovich (1989). Involving a compressible v, it allows
for a meaningful (and nontrivial) one-dimensional case

FIG. 7. The PDF’s P(Dru) of the scalar increments Dru
5u(r)2u(0) for three values of r inside the inertial range of
scales, multiplied by the factor r2z`. The observed collapse of
the curves implies the saturation of the scaling exponents of
the scalar structure functions.
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that describes small-amplitude perturbations of velocity,
density, or pressure depending on a single spatial coor-
dinate in the frame moving with sound velocity, see, e.g.,
Landau and Lifshitz (1959). Without force, the evolution
described by Eq. (184) conserves total momentum
*v dr. By the substitutions v5“f and f5“g the Bur-
gers equation is related to the KPZ equation

] tf1
1
2

~¹f!22n¹2f5g , (185)

governing an interface growth (Kardar et al., 1986).
Already the one-dimensional case of Eq. (184) illus-

trates the themes that we discussed in previous sections:
turbulent cascade, Lagrangian statistics, and anomalous
scaling. Under the action of a large-scale forcing (or in
free decay of large-scale initial data) a cascade of kinetic
energy towards the small scales takes place. The nonlin-
ear term provides for steepening of negative gradients
and the viscous term causes energy dissipation in the
fronts that appear this way. In the limit of vanishing vis-
cosity, the energy dissipation stays finite due to the ap-
pearance of velocity discontinuities called shocks. The
Lagrangian statistics is peculiar in such an extremely
nonsmooth flow and can be closely analyzed even
though it does not correspond to a Markov process. For-
ward and backward Lagrangian statistics are different,
as it has to be in an irreversible flow. Lagrangian trajec-
tories stick to the shocks. That provides for a strong
interaction between the particles and results in an ex-
treme anomalous scaling of the velocity field. A tracer
field passively advected by such a flow undergoes an in-
verse cascade.

At vanishing viscosity, the Burgers equation may be
considered as describing a gas of particles moving in a
force field. Indeed, in the Lagrangian frame defined for
a regular velocity by Ṙ5v(R,t), relation (184) becomes
the equation of motion of noninteracting unit-mass par-
ticles whose acceleration is determined by the force

R̈5f~R,t !. (186)

In order to find the Lagrangian trajectory R(t ;r) passing
at time zero through r it is then enough to solve the
second-order Eq. (186) with the initial conditions R(0)
5r and Ṙ(0)5v(r,0). For sufficiently short times such
trajectories do not cross and the Lagrangian map
r°R(t ;r) is invertible. One may then reconstruct v at
time t from the relation v„R(t),t…5Ṙ(t). The velocity
stays potential if the force is potential. At longer times,
however, the particles collide creating velocity disconti-
nuities, i.e., shocks. The nature and the dynamics of the
shocks may be understood by treating the inviscid equa-
tion as the limit of the viscous one. Positive viscosity
removes the singularities. As is well known, the KPZ
Eq. (185) may be linearized by the Hopf-Cole substitu-
tion Z5exp@2f/2n# that gives rise to the heat equation
in an external potential:
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F] t2n¹21
1

2n
gGZ50. (187)

The solution of the initial value problem for the latter
may be written as the Feynman-Kac path integral

Z~r,t !5E
R~ t !5r

expF2
1

2n
S~R!GZ„R~0 !,0…DR (188)

with the classical action S(R)5*0
t @1/2Ṙ21g(t ,R)#dt of

a path R(t). The limit of vanishing viscosity selects the
least-action path:

f~r,t !5 min
R:R~ t !5r

$S~R!1f„R~0 !,0…%. (189)

Equating to zero the variation of the minimized expres-
sion, one infers that the minimizing path R(t)
[R(t ;r,t) is a solution of Eq. (186) such that Ṙ(0)
5v„R(0),0…. Taking the gradient of Eq. (189), one also
infers that v(r,t)5Ṙ(t). The above procedure extends
the short-time construction of the solutions of the invis-
cid Burgurs equation to all times at the cost of admitting
shocks where v is discontinuous. The velocity still
evolves along the solutions of Eq. (186) with Ṙ(0) given
by the initial velocity field, but if there are many such
solutions reaching the same point at the same moment,
the ones that do not realize the minimum (189) should
be disregarded. The shocks arise when there are several
minimizing paths. At fixed time, shocks are, generically,
hypersurfaces which may intersect, have boundaries,
corners, etc. (Vergassola et al., 1994; Frisch et al., 1999;
Frisch and Bec, 2000). This may be best visualized in the
case without forcing where Eq. (189) takes the form

f~r,t !5min
r8

H 1
2t

~r2r8!21f~r8,0!J (190)

with a clear geometric interpretation: f(r,t) is the

FIG. 8. Geometric construction of the Hopf-Cole inviscid so-
lution of the 1D Burgers equation. The inverted parabola C
2 (1/2t)(r2r8)2 is moved upwards until the first contact point
with the profile of the initial potential f(r8,0). The corre-
sponding height C gives the potential f(r ,t) at time t . Shocks
correspond to positions r where there are several contact
points r8, as for the first parabola on the left.
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height C of the inverted paraboloid C2 (1/2t) (r2r8)2

touching but not overpassing the graph of f(r8,0). The
points of contact between the paraboloid and the graph
correspond to r8 in Eq. (190) on which the minimum is
attained. Shock loci are composed of those r for which
there are several such contact points.

The simplest situation occurs in one dimension with
r[x . Here, shocks are located at points xi where the
velocity jumps, i.e., where the two-sided limits v6(x ,t)
[lime→0v(x6e ,t) are different. The limits correspond
to the velocities of two minimizing paths that do not
cross except at xi . The shock height si5v1(xi ,t)
2v2(xi ,t) has to be negative. Once created shocks
never disappear but they may merge so that they form a
tree branching backward in time. For no forcing, the
shock positions xi correspond to the inverse parabolas
C2 (1/2t) (xi2x8)2 that touch the graph of f(x8,0) in
(at least) two points xi8

6 , xi8
1.xi8

2 , such that
v6(xi ,t)5 (xi2xi8

6)/t ; see Fig. 8. Below, we shall limit
our discussion to the one-dimensional case that was
most extensively studied in the literature; see Burgers
(1974), Woyczyński (1998) and E and Vanden Eijnden
(2000a). In particular, the asymptotic long-time large-
distance behavior of freely decaying initial data with
Gaussian finitely correlated velocities or velocity poten-
tials has been intensively studied. In the first case, the
asymptotic solution for x3/2t215O(1) has the form (190)
with f(x8,0) representing a Brownian motion. In the
second case, the solution settles under the diffusive scal-
ing with a logarithmic correction x2t21 ln1/4 x5O(1) to
the form

f~x ,t !5min
j

H 1
2t

~x2yj!
21f jJ , (191)

where (yj ,f j) is the Poisson point process with intensity
ef dy df . In both cases explicit calculations of the ve-
locity statistics have been possible, see, respectively,
Burgers (1974), Frachebourg and Martin (2000), Kida
(1979), and Woyczyński (1998). Other asymptotic re-
gimes of decaying Gaussian initial data were analyzed in
Gurbatov et al. (1997).

The equation of motion of the one-dimensional
shocks xi(t) is easy to obtain even in the presence of
forcing. To this aim, note that along the shock there are
two minimizing solutions determining the same function
f and that

d

dt
f~xi ,t !5] tf~xi ,t !1 ẋ i]xf~xi ,t !

52
1
2

v6~xi ,t !21g~xi ,t !1 ẋ iv
6~xi ,t !.

(192)

Equating both expressions, we infer that ẋ i
5 1

2 @v1(xi ,t)1v2(xi ,t)#[ v̄(xi ,t)[ v̄ i , i.e., that the
shock speed is the mean of the velocities on both sides
of the shock. The crucial question for the Lagrangian
description of the Burgers velocities is what happens
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with the fluid particles after they reach shocks where
their equation of motion ẋ5v(x ,t) becomes ambiguous.
The question may be easily answered by considering the
inviscid case as a limit of the viscous one where shocks
become steep fronts with large negative velocity gradi-
ents. It is easy to see that the Lagrangian particles are
trapped within such fronts and keep moving with them.
We should then define the inviscid Lagrangian trajecto-
ries as solutions of the equation ẋ5 v̄(x ,t), with ẋ un-
derstood as the right derivative. Indeed, the solutions of
that equation clearly move with the shocks after reach-
ing them. In other words, the two particles arriving at
the shock from the right and the left at a given moment
aggregate upon the collision. Momentum is conserved so
that their velocity after the collision is the mean of the
incoming ones (recall that the particles have unit mass)
and is equal to the velocity of the particles moving with
the shock that have been absorbed at earlier times. Note
that in the presence of shocks the Lagrangian map be-
comes many-to-one, compressing whole space intervals
into the shock locations.

It is not difficult to write field evolution equations that
take into account the presence of shocks (Vol’pert, 1967;
Bernard and Gawȩdzki, 1998; E and Vanden Eijnden,
2000a). We shall do it for local functions of the velocity
of the form elv(x ,t). For positive viscosity, these func-
tions obey the equation of motion

~] t1l]ll21]x2lf !elv52l2e~l!, (193)

where e(l)5n@(]xv)22l22]x
2#elv is the contribution of

the viscous term in Eq. (184). In the limit n→0 the dis-
sipation becomes concentrated within the shocks.
Using the representation elv(x ,t)5elv1(x ,t)u@x2xi(t)#

1elv2(x ,t)u@xi(t)2x# around the shocks, it is easy to
check that Eq. (193) still holds for n50 with

e~l ;x ,t !5(
i

F~ v̄ i ,si!d@x2xi~ t !# , (194)

concentrated at shock locations. The ‘‘form factor’’
F( v̄ ,s)522el v̄l21]ll21 sinh(ls/2).

When the forcing and/or initial data are random, the
equation of motion (193) induces the Hopf evolution
equations for the correlation functions. For example, in
the stationary homogeneous state ^felv&5l^e(l)& .
Upon expanding into powers of l, this relates the single-
point expectations ^vn& to the shock statistics. The first
of these relations says that the average force should van-
ish and the second gives the energy balance ^fv&5 ēv ,
where the mean energy dissipation rate ēv5^e(0)&5
2r^s3&/12 and r5^( id@x2xi(t)#& is the mean shock
density. Similarly, for the generating function of the ve-
locity increments ^exp(lDv)& with Dv5v12v2 , one ob-
tains

l2]ll22]1^elDv&2l^DfelDv&

52l2^e~l!1e2lv21elv1e~2l!2&. (195)

For a Gaussian force with ^f(x ,t)f(0,0)&5d(t)x(x/L),
where L is the injection scale, ^DfelDv&5@x(0)
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2x(Dx/L)#^elDv&. For a spatially smooth force, the sec-
ond term in Eq. (195) tends to zero when the separation
Dx (taken positive) shrinks. In the same limit, the quan-
tity inside the expectation value on the right-hand side
tends to a local operator concentrated on shocks,
as in Eq. (194), but with the height-dependent form fac-
tor 24els/2l21]ll21 sinh(ls/2) 52]ll22(els212ls).
Comparing the terms, one infers that for N53,4 . . . ,

lim
x2→x1

]1^~Dv !N&5r^sN&. (196)

The first of these equalities is the one-dimensional ver-
sion of the Kolmogorov flux relation (2). The higher
ones express the fact that, for small Dx , the higher mo-
ments of velocity increments are dominated by the con-
tribution from a single shock of height s occurring with
probability rDx . That implies the anomalous scaling of
the velocity structure functions

SN~Dx ![^~Dv !N&5r^sN&Dx1o~Dx !, (197)

that is a signature of an extreme intermittency. In fact,
due to the shock contributions, all moments of velocity
increments of order p>1 scale with exponents zp51. In
contrast, for 0<p<1, zp5p since the fractional mo-
ments are dominated by the regular contributions to ve-
locity. Indeed, denoting by j the regular part of the ve-
locity gradient, one obtains (E et al., 1997; E, Khanin,
et al., 2000; E and Vanden Eijnden, 2000a)

^~ uDvu!p&5^ujup&~Dx !p1o@~Dx !p# . (198)

The shock contribution proportional to Dx is subleading
in that case.

The Lagrangian interpretation of these results can be
based on the fact that the velocity is a Lagrangian invari-
ant of the unforced inviscid system. In the presence of
the force,

v~x ,t !5v„x~0 !,0…1E
0

t
f„x~s !,s…ds (199)

along the Lagrangian trajectories. The velocity is an ac-
tive scalar and the Lagrangian trajectories are evidently
dependent on the force that drives the velocity. One can-
not write a formula like Eq. (135) obtained by two inde-
pendent averages over the force and over the trajecto-
ries. Nevertheless, the main contribution to the distance-
dependent part of the two-point function
^v(x ,t)v(x8,t)& is due, for small distances, to realiza-
tions with a shock in between the particles. It is insensi-
tive to a large-scale force and hence approximately pro-
portional to the time that the two Lagrangian
trajectories ending at x and x8 take to separate back-
wards to the injection scale L . With a shock in between
x and x8 at time t , the initial backward separation is
linear so that the second-order structure function be-
comes proportional to Dx , in accordance with Eq. (197).
Other structure functions may be analyzed similarly and
give the same linear dependence on the distance (all
terms involve at most two trajectories). This mechanism
of the anomalous scaling is similar to that of the collin-
ear case in Sec. III.B.3.
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Following numerical observations of Chekhlov and
Yakhot (1995, 1996), a considerable effort has been in-
vested to understand the shape of the PDF’s P(Dv) of
the velocity increments and P(j) of the regular part of
]xv . The stationary expectation of the exponential of j
satisfies for a white-in-time forcing the relation

~l]l
22]l2Dl2!^elj&5^rl& (200)

that may established the same way as Eq. (195). Here
D52 1

2 x9(0)L22 and rl is an operator supported on
shocks with the form-factor (s/2) (elj1

1elj2
). For the

PDF of j this gives the identity (E and Vanden Eijnden,
1999, 2000a)

~D]j
21j2]j13j!P~j!1E dl

2pi
e2lj^rl&50. (201)

Various closures for this equation or for Eq. (195) have
been proposed (Polyakov, 1995; Bouchaud and Mézard,
1996; Boldyrev, 1997; Gotoh and Kraichnan, 1998). They
all give the right tail }e2j3/(3D) of the distribution, as
determined by the first two terms with derivatives in Eq.
(201), with the power-law prefactors depending on the
details of the closure. That right tail was first obtained
by Feigel’man (1980) and also reproduced for P(Dv) by
an instanton calculation in Gurarie and Migdal (1996).
The instanton appears to be a solution of a deterministic
Burgers equation with a force linear in space, see also
Balkovsky et al. (1997). The right tail may be also under-
stood from the stochastic equation along the trajectory
(d2/dt2) Dx5Df . For Dx much smaller than the injec-
tion scale L , the force increment may be linearized Df
5s(t)Dx . In the first approximation, s(t) is a white
noise and we obtain a problem familiar from the one-
dimensional localization in a d-correlated potential. In
particular, z5 (d/dt) (Dx)/Dx satisfies ż5s(t)2z2.
This is a Langevin dynamics in the unbounded from be-
low potential }z3 (Bouchaud and Mézard, 1996). Upon
conditioning against escape to z52` , one gets a sta-
tionary distribution for z with the right tail }e2z3/(3D)

and the left tail }z22. In reality, due to the shock cre-
ation, Df/Dx']xf„x(t),t… is a white noise only if we fix
the value of v at the end point of the Lagrangian trajec-
tory. This introduces subtle correlations which effect the
power-law factors in P(j), in particular its left tail
}uju2a. Large negative values of j appear in the vicinity
of preshocks, as stressed in (E et al., 1997) where the
value a57/2 was argued for, based on a geometric
analysis of the preshocks, the birth points of the shock
discontinuities. E and Vanden Eijnden (2000a), have
proved by analysis of realizability conditions for the so-
lutions of Eq. (201) that a.3 and made a strong case
for a57/2, assuming that shocks are born with vanishing
heights and that preshocks do not accumulate. The ex-
ponent a57/2 was subsequently found in the decaying
case with random large scale initial conditions both in
1D (Bec and Frisch, 2000) and in higher dimensions
(Frisch et al., 2001), and in the forced case when the
forcing consists of deterministic large scale kicks re-
peated periodically (Bec et al., 2000). In those cases, the
Rev. Mod. Phys., Vol. 73, No. 4, October 2001
statistics of the shocks and their creation process are
easier to control than for the d-correlated forcing. The
numerical analysis of the latter case clearly confirms,
however, the prediction a57/2. As to the PDF P(Dv)
of the velocity increment in the decaying case and, pos-
sibly, in the forced case, it exhibits a crossover from the
behavior characteristic for the velocity gradients to the
one reproducing the behaviors (197) and (198). Note
that the single-point velocity PDF also has cubic tails
ln P(v)}2uvu3 (Avellaneda et al., 1995; Balkovsky et al.,
1997). The same is true for white-driven Navier-Stokes
equation and may be generalized for a non-Gaussian
force (Falkovich and Lebedev, 1997).

The Lagrangian picture of the Burgers velocities al-
lows for a simple analysis of advection of scalar quanti-
ties carried by the flow. In the inviscid and diffusionless
limit, the advected tracer satisfies the evolution equation

] tu1 v̄]xu5w , (202)

where w represents an external source. As usual, the
solution of the initial value problem is given in terms of
the PDF p(x ,t ;y ,0uv) to find the backward Lagrangian
trajectory at y at time 0, given that at later time t it
passed by x ; see Eq. (100). Except for the discrete set of
time t shock locations, the backward trajectories are
uniquely determined by x . As a result, a smooth initial
scalar will develop discontinuities at shock locations but
no stronger singularities. Since a given set of points
(x1 , . . . ,xN)[xI avoids the shocks with probability 1, the
joint backward PDF’s of N trajectories PN(xI ;yI ;2t), see
Eq. (65), should be regular for distinct xn and should
possess the collapse property (67). This leads to the con-
servation of ^u2& in the absence of scalar sources and to
the linear pumping of the scalar variance into a soft
mode when a stationary source is present. Such behavior
corresponds to an inverse cascade of the passive scalar,
as in the strongly compressible phase of the
Kraichnan model discussed in Sec. (III.E).

The Burgers velocity itself and all its powers consti-
tute an example of advected scalars. Indeed, the equa-
tion of motion (193) may be also rewritten as

~] t1 v̄]x2lf !elv50 (203)

from which the relation (202) for u5vn and w5nfvn21

follows. Of course, vn are active scalars so that in the
random case their initial data, the source terms, and the
Lagrangian trajectories are not independent, contrary to
the case of passive scalars. That correlation makes the
unlimited growth of ^v2& impossible: the larger the value
of local velocity, the faster it creates a shock and dissi-
pates the energy. The difference between active and pas-
sive tracers is thus substantial enough to switch the di-
rection of the energy cascade from inverse for the
passive scalar to direct for the velocity.

As usual in compressible flows, the advected density n
satisfies the continuity equation

] tn1]x~ v̄ !n5w (204)

different from Eq. (202) for the tracer. The solution of
the initial value problem is given by the forward La-
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grangian PDF p(y ,0;x ,tuv); see Eq. (100). Since the tra-
jectories collapse, a smooth initial density will become
singular under the evolution, with d-function contribu-
tions concentrating all the mass from the regions com-
pressed to shocks by the Lagrangian flow. Since the tra-
jectories are determined by the initial point y , the joint
forward PDF’s PN(yI ;xI ;t) should have the collapse prop-
erty (67) but they will also have contact terms in xn’s
when the initial points yn are distinct. Such terms signal
a finite probability of the trajectories to aggregate in the
forward evolution, the phenomenon that we have al-
ready met in the strongly compressible Kraichnan model
discussed in Sec. II.D. The velocity gradient ]xv is an
example of an (active) density satisfying Eq. (204) with
w5]xf .

In Bernard and Bauer (1999), the behavior of the La-
grangian PDF’s and the advected scalars summarized
above have been established by a direct calculation in
freely decaying Burgers velocities with random Gauss-
ian finitely correlated initial potentials f.

B. Incompressible turbulence from a Lagrangian
viewpoint

As we learned from the study of passive fields, treat-
ing the dissipation is rather easy as it is a linear mecha-
nism. The main difficulty resides in proper understand-
ing advection. For incompressible turbulence, the
problem is even more complicated than for the Burgers
equation due to spatial nonlocality of the pressure term.
The Euler equation may indeed be written as the equa-
tion

R̈5f~R,t !2“P , (205)

for the Lagrangian trajectories R(t ;r) where f is the ex-
ternal force and the pressure field is determined by the
incompressibility condition “

2P52“•@v•“v# with v
5Ṙ and the spatial derivatives taken with respect to R.
The inversion of the Laplace operator in the previous
relation brings in nonlocality via the kernel decaying as
a power law. We thus have a system of infinitely many
particles interacting strongly and nonlocally. In such a
situation, any attempt at an analytic description looks
unavoidably dependent on possible simplifications in
limiting cases. The natural parameter to exploit for the
incompressible Euler equation is the space dimensional-
ity, varying between 2 and infinity. The two-dimensional
case indeed presents important simplifications since the
vorticity is a scalar Lagrangian invariant of the inviscid
dynamics, as we shall discuss hereafter. The opposite
limit of the infinite-dimensional Euler equation is very
tempting for some kind of mean-field approximation to
the interaction among the fluid particles but nobody has
derived it yet. The level of discussion in this section is
thus naturally different from the rest of the review: as a
consistent theory is absent, we present a set of particular
arguments and remarks that, on one hand, make contact
with the previously discussed subjects, and, on the other
hand, may inspire further progress.
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1. Enstrophy cascade in two dimensions

The Euler equation in any even-dimensional space
has an infinite set of integrals of motion besides energy.
One may indeed show that the determinant of the ma-
trix v ij5¹ jv

i2¹ iv
j is the non-negative density of an in-

tegral of motion, i.e., *(det v)dr is conserved for any
function F . The quadratic invariant *(det v)2 dr is called
enstrophy. In the presence of an external pumping f
injecting energy and enstrophy, it is clear that both
quantities may flow throughout the scales. If both cas-
cades are present, they cannot go in the same direction:
the different dependence of energy and enstrophy on
the scale prevents their fluxes to be both constant in the
same interval. A finite energy dissipation would imply
an infinite enstrophy dissipation in the limit n→0. The
natural conclusion is that, given a single pumping at
some intermediate scale and assuming the presence of
two cascades, the energy and the enstrophy flow toward
the large and the small scales, respectively (Kraichnan,
1967; Batchelor, 1969). This is indeed the case for the
two-dimensional case.

In this section, we shall focus on the 2D direct enstro-
phy cascade. The basic knowledge of the Lagrangian dy-
namics presented in Secs. II.B.1 and III.B is essentially
everything needed. Vorticity in 2D is a scalar and the
analogy between vorticity and passive scalar was noticed
by Batchelor and Kraichnan already in the 1960s. Vor-
ticity is not passive though and such analogies may be
very misleading, as it is the case for vorticity and mag-
netic field in 3D and for velocity and passive scalar in 1D
Burgers. The basic flux relation for the enstrophy cas-
cade is analogous to Eq. (132):

^~v1•“11v2•“2!v1v2&5^w1v21w2v1&5P2 . (206)

The subscripts indicate the spatial points r1 and r2 and
the pumping is assumed to be Gaussian with
^w(r,t)f(0,0)&5d(t)F(r/L) decaying rapidly for r
.L . The constant P2[F(0), having dimensionality
time23, is the input rate of the enstrophy v2. Equation
(206) states that the enstrophy flux is constant in the
inertial range, that is for r12 much smaller than L and
much larger than the viscous scale. A simple power
counting suggests that the velocity differences and the
vorticity scale as the first and the zeroth power of r12 ,
respectively. That fits the idea of a scalar cascade in a
spatially smooth velocity: scalar correlation functions
are indeed logarithmic in that case, as it was discussed in
Sec. III.B.

Even though one can imagine hypothetical power-law
vorticity spectra (Saffman, 1971; Moffatt, 1986; Polya-
kov, 1993), one can argue that they are structurally un-
stable (Falkovich and Lebedev, 1994). Indeed, imagine
for a moment that the pumping at L produces the spec-
trum ^(v12v2)p&}r12

zp at r12!L . Regularity of the Eu-
ler equation in 2D requires zp.0, see, e.g., Eyink
(1995), and references therein. In the spirit of the stabil-
ity theory of Kolmogorov spectra (Zakharov et al.,
1992), let us add an infinitesimal pumping at some l in
the inertial interval producing a small yet nonzero flux
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of enstrophy. Small perturbations dv obey the equation
] tdv1(v¹)dv1(dv¹)v5n¹2dv . Here, dv is the ve-
locity perturbation related to dv . The perturbation dv
has the typical scale l while vorticity v, associated with
the main spectrum, is concentrated at L when z2.0.
The third term can be neglected as it is (l/L)2 times
smaller than the second one. Therefore dv behaves as a
passive scalar convected by main turbulence, i.e., the
Batchelor regime from Sec. III.B takes place. The cor-
relation functions of the scalar are logarithmic in this
case for any velocity statistics. The perturbation in any
vorticity structure function thus decreases downscales
slower than the contribution of the main flow. That
means that any hypothetical power-law spectrum is
structurally unstable with respect to the pumping varia-
tion. Stability analysis cannot of course describe the
spectrum downscales where the perturbations is getting
comparable to the main flow. It is logical though to as-
sume that since only the logarithmic regime may be neu-
trally stable, it represents the universal small-scale as-
ymptotics of steady forced turbulence. Experiments
(Rutgers, 1998; Paret et al., 1999; Jullien et al., 2000) and
numerical simulations (Borue, 1993; Gotoh, 1998; Bow-
man et al., 1999) are compatible with that conclusion.

The physics of the enstrophy cascade is thus basically
the same as that for a passive scalar: a fluid blob embed-
ded into a larger-scale velocity shear is extended along
the direction of a positive strain and compressed along
its negative eigendirection; such stretching provides for
the vorticity flux toward the small scales, with the rate of
transfer proportional to the strain. The vorticity rotates
the blob decelerating the stretching due to the rotation
of the axes of positive and negative strain. One can show
that the vorticity correlators are indeed solely deter-
mined by the influence of larger scales (that give expo-
nential separation of the fluid particles) rather than
smaller scales (that would lead to a diffusive growth as
the square root of time). The subtle differences from the
passive scalar case come from the active nature of the
vorticity. Consider, for example, the relation (135) ex-
pressing the fact that the correlation function of a pas-
sive scalar is essentially the time spent by the particles at
distances smaller than L . The passive nature of the sca-
lar makes Lagrangian trajectories independent of scalar
pumping which is crucial in deriving Eq. (135) by two
independent averages. For an active scalar, the two av-
erages are coupled since the forcing affects the velocity
and thus the Lagrangian trajectories. In particular, the
statistics of the forcing along the Lagrangian trajectories
f@R(t)# involves nonvanishing multipoint correlations
at different times. Falkovich and Lebedev (1994) argued
that, as far as the dominant logarithmic scaling of the
correlation functions is concerned, the active nature of
vorticity simply amounts to the following: the field can
be treated as a passive scalar, but the strain acting on it
must be renormalized with the scale. Their arguments
are based on the analysis of the infinite system of equa-
tions for the variational derivatives of the vorticity cor-
relation functions with respect to the pumping and the
relations between the strain and the vorticity correlation
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functions. The law of renormalization is then established
as follows, along the line suggested earlier by Kraichnan
(1967, 1971, 1975). From Eq. (12), one has the dimen-
sional relation that times behave as v21 ln(L/r). Further-
more, by using the relation (135) for the vorticity corre-
lation function, one has ^vv&}P23time. Combining the
two previous relations, the scaling v;@P2 ln(L/r)#1/3 fol-
lows. The consequences are that the distance between
two fluid particles satisfies ln(R/r);P2

1/2t3/2, and that the
pair-correlation function ^v1v2&;@P2 ln(L/r12)#2/3. Note
that the fluxes of higher powers v2n are not constant in
the inertial range due to the same phenomenon of ‘‘dis-
tributed pumping’’ discussed in Sect. III.C.1.f. The vor-
ticity statistics is thus determined by the enstrophy pro-
duction rate alone.

It is worth stressing that the logarithmic regime de-
scribed above is a small-scale asymptotics of a steady
turbulence. Depending on the conditions of excitation
and dissipation, different other regimes can be observed
either during an intermediate time or in an intermediate
interval of scales. First, a constant friction that provides
for the velocity decay rate a prevails (if present) over
viscosity at scales larger than (n/a)1/2. At such scales,
the vorticity correlation functions are expected to be-
have as power laws rather than logarithmically, very
much like for the passive scalar as described in Chertkov
(1999) and in Sec. III.E. Indeed, the advective and the
friction terms v•“v and 2av have again the same di-
mension for a smooth velocity. Nontrivial scaling is
therefore expected, including for the second-order cor-
relation function (and hence for the energy spectrum).
The difficulty is of course that the system is now nonlin-
ear and exact closed equations, such as those in Sec.
III.E, are not available. For theoretical attempts to cir-
cumvent that problem by some approximations, not
quite controlled yet, see Bernard (2000) and Nam et al.
(2000). Second, strong large-scale vortices often exist
with their (steeper) spectrum masking the enstrophy
cascade in some intermediate interval of scales (Legras
et al., 1988).

2. On the energy cascades in incompressible turbulence

The phenomenology of the energy cascade suggests
that the energy flux ē is a major quantity characterizing
the velocity statistics. It is interesting to understand the
difference between the direct and the inverse energy
cascades from the Lagrangian perspective. The mean
Lagrangian time derivative of the squared velocity dif-
ference is as follows:

K d~Dv!2

dt L 52^DvDf1n~2v•¹2v2v1•¹2v22v2•¹2v1!&.

(207)

The right-hand side coincides with minus twice the flux
and this gives the Lagrangian interpretation of the flux
relations. In the 2D inverse energy cascade, there is no
energy dissipative anomaly and the right-hand side in
the inertial range is determined by the injection term
4^f•v& . The energy flux is negative (directed upscale)
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and the mean Lagrangian derivative is positive. On the
contrary, in the 3D direct cascade the injection terms
cancel and the right-hand side becomes equal to
24n^(¹v)2&. The mean Lagrangian derivative is nega-
tive while the flux is positive (directed downscale). This
is natural as a small-scale stirring causes opposite effects
with respect to a small-scale viscous dissipation. The
negative sign of the mean Lagrangian time derivative in
3D does not contradict the fact that any couple of La-
grangian trajectories eventually separates and their ve-
locity difference increases. It tells, however, that the
squared velocity difference between two trajectories
generally behaves in a nonmonotonic way: the trans-
verse contraction of a fluid element makes initially the
difference between the two velocities decrease, while
eventually the stretching along the trajectories takes
over (Pumir and Shraiman, 2000).

The Eulerian form of Eq. (207) is the generalization
of 4/5 law (2) for the d-dimensional case: ^(Drv)3&5
212ēr/d(d12) if Drv is the longitudinal velocity incre-
ment and ē is positive for the direct cascade and nega-
tive for the inverse one. Since the average velocity dif-
ference vanishes, a negative ^(Drv)3& means that small
longitudinal velocity differences are predominantly posi-
tive, while large ones are negative. In other words, in 3D
if the longitudinal velocities of two particles differ
strongly then the particles are likely to attract each
other; if the velocities are close, then the particles pref-
erentially repel each other. The opposite behavior takes
place in 2D, where the third-order moment of the longi-
tudinal velocity difference is positive. Another Lagrang-
ian meaning of the flux law in 3D can be appreciated by
extrapolating it down to the viscous interval. Here, Drv
'sr and the positivity of the flux is likely to be related
to the fact that the negative Lyapunov exponent is the
largest one (in absolute value) in 3D incompressible
turbulence.

If one assumes (after Kolmogorov) that ē is the only
pumping-related quantity that determines the statistics
then the separation between the particles R125R(t ;r1)
2R(t ;r2) has to obey the already mentioned Richardson
law: ^R12

2 &}ēt3. The equation for the separation imme-
diately follows from the Euler Eq. (205): ] t

2R125f12
2“P12 . The corresponding forcing term f12[f„R(t ;r1)…
2f„R(t ;r2)… has completely different properties for an
inverse energy cascade in 2D than for a direct energy
cascade in 3D. For the former, R12 in the inertial range is
much larger than the forcing correlation length. The
forcing can therefore be considered short correlated
both in time and in space. Was the pressure term absent,
one would get the separation growth: ^R12

2 &/ ēt354/3.
The experimental data by Jullien et al. (1999) give a
smaller numerical factor .0.5, which is quite natural
since the incompressibility constrains the motion. What
is, however, important to note is that already the forcing
term prescribes the law ^R12

2 &}t3 consistent with the
scaling of the energy cascade. Conversely, for the direct
cascade the forcing is concentrated at the large scales
and f12}R12 in the inertial range. The forcing term is
thus negligible and even the scaling behavior comes en-
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tirely from the advective terms (the viscous term should
be accounted as well). Another amazing aspect of the
2D inverse energy cascade can be inferred if one consid-
ers it from the viewpoint of vorticity. Enstrophy is trans-
ferred toward the small scales and its flux at the large
scales (where the inverse energy cascade is taking place)
vanishes. By analogy with the passive scalar behavior at
the large scales discussed in Sec. III.C.1, one may expect
the behavior ^v1v2&}r12

12a2d , where a is the scaling ex-
ponent of the velocity. The self-consistency of the argu-
ment dictated by the relation v5“3v requires 12a
2d52a22 which indeed gives the Kolmogorov scaling
a51/3 for d52. Experiments (Paret and Tabeling, 1997,
1998) as well as numerical simulations (Smith and Ya-
khot, 1993; Boffetta et al., 2000) indicate that the inverse
energy cascade has a normal Kolmogorov scaling for all
measured correlation functions. No consistent theory is
available yet, but the previous arguments based on the
enstrophy equipartition might give an interesting clue.
To avoid misunderstanding, note that in considering the
inverse cascades one ought to have some large-scale dis-
sipation (like bottom and wall friction in the experi-
ments with a fluid layer) to avoid the growth of conden-
sate modes on the scale of the container. Another
example of inverse cascade is that of the magnetic vector
potential in two-dimensional magnetohydrodynamics,
where the numerical simulations also indicate that inter-
mittency is suppressed (Biskamp and Bremer, 1994).
The generality of the absence of intermittency for in-
verse cascades and its physical reasons is still an open
problem. The only inverse cascade fully understood is
that of the passive scalar in Sec. III.E, where the absence
of anomalous scaling was related to the uniqueness of
the trajectories in strongly compressible flow. That ex-
planation applies neither to 2D Navier-Stokes nor to
magnetohydrodynamics since the scalar is active in both
cases. Qualitatively, it is likely that the scale invariance
of an inverse cascade is physically associated to the
growth of the typical times with the scale. As the cas-
cade proceeds, the fluctuations have indeed time to get
smoothed out and not multiplicatively transferred as in
the direct cascades, where the typical times decrease in
the direction of the cascade.

An interesting phenomenological Lagrangian model
of 3D turbulence based on the consideration of four par-
ticles was introduced by Chertkov, Pumir, and Shraiman
(1999). As far as an anomalous scaling observed in the
3D energy cascade is concerned, the primary target is to
understand the nature of the statistical integrals of mo-
tion responsible for it. Note that the velocity exponent
s351 and experiments demonstrate that sp→ap as p
→0 with a exceeding 1/3 beyond the measurement er-
ror; see Sreenivasan and Antonia (1997) and the refer-
ences therein. The convexity of sp means then that s2
.2/3. In other words, already the pair-correlation func-
tion should be determined by some nontrivial conserva-
tion law (like for magnetic fields in Sec. III.C.3).

V. CONCLUSIONS

This review is intended to bring home to the reader
two main points: the power of the Lagrangian approach
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to fluid turbulence and the importance of statistical in-
tegrals of motion for systems far from equilibrium.

As it was shown in Secs. II and III, the Lagrangian
approach allows for a systematic description of most im-
portant aspects of particle and field statistics. In a spa-
tially smooth flow, Lagrangian chaos and exponentially
separating trajectories are generally present. The associ-
ated statistics of passive scalar and vector fields is re-
lated to the statistics of large deviations of stretching
and contraction rates in a way that is well understood.
The theory is quite general and it finds a natural domain
of application in the viscous range of turbulence. The
most important open problem here seems to be the un-
derstanding of the back reaction of the advected field on
the velocity. That would include an account of the buoy-
ancy force in inhomogeneously heated fluids, the satura-
tion of the small-scale magnetic dynamo and the poly-
mer drag reduction. In nonsmooth velocities, pertaining
to the inertial interval of developed turbulence, the main
Lagrangian phenomenon is the intrinsic stochasticity of
the particle trajectories that accounts for the energy
depletion at short distances. This phenomenon is fully
captured in the Kraichnan model of nonsmooth time-
decorrelated velocities. To exhibit it for more realistic
nonsmooth velocities and to relate it to the hydrody-
namical evolution equations governing the velocity field
remains an open problem. The spontaneous stochasticity
of Lagrangian trajectories enhances the interaction be-
tween fluid particles leading to intricate multiparticle
stochastic conservation laws. Here, there are open prob-
lems already in the framework of the Kraichnan model.
First, there is the issue of whether one can build an op-
erator product expansion, classifying the zero modes
and revealing their possible underlying algebraic struc-
ture, both at large and small scales. The second class of
problems is related to a consistent description of high-
order moments of scalar, vector and tensor fields. In the
situations where the amplitudes of the fields are grow-
ing, this would be an important step towards a descrip-
tion of feedback effects.

Our inability to derive the Lagrangian statistics di-
rectly from the Navier-Stokes equations of motion for
the fluid particles is related to the fact that the particle
coupling is strong and nonlocal due to pressure effects.
Some small parameter for perturbative approaches, like
those discussed for the Kraichnan model, has often been
sought for. We would like to stress, however, that most
strongly coupled systems, even if local, are not analyti-
cally solvable and that not all measurable quantities may
be derived from first principles. In fluid turbulence, it
seems more important to reach basic understanding of
the underlying physical mechanisms, than it is to find out
the numerical values of the scaling exponents. Such an
understanding has been achieved in passive scalar and
magnetic fields through the statistical conservation laws.
We consider the notion of statistical integrals of motion
to be of central importance for fluid turbulence and gen-
eral enough to apply to other systems in nonequilibrium
statistical physics. Indeed, nondimensionally scaling cor-
relation functions appearing in such systems should gen-
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erally be dominated by terms that solve dynamical equa-
tions in the absence of forcing (zero modes). As we
explained throughout the review, for passively advected
fields, such terms describe conservation laws that are re-
lated to the geometry either of the configuration of par-
ticles (for the scalar) or of the particle-plus-field configu-
rations (for the magnetic field). It is a major open
problem to identify the appropriate configurations for
active and nonlocal cases. New particle-tracking meth-
ods (La Porta et al., 2001) open promising experimental
possibilities in this direction. An investigation of geo-
metrical statistics of fluid turbulence by combined ana-
lytical, experimental and numerical methods aimed at
identifying the underlying conservation laws is a chal-
lenge for future research.
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APPENDIX: REGULARIZATION OF STOCHASTIC
INTEGRALS

For the d-correlated strain, Eq. (12) becomes a sto-
chastic differential equation. Let us present here a few
elementary facts about such equations for that simple
case. The differential Eq. (12) is equivalent to the inte-
gral equation

R~ t !5R~0 !1E
0

t
s~s !ds R~s !, (A1)

where R[R12 . The right-hand side involves a stochastic
integral whose distinctive feature is that s(t)dt is of or-
der (dt)1/2, as indicated by the relation ^@*0

t s ij(s)ds#2&
}t . Such integrals require second-order manipulations
of differentials and, in general, are not unambiguously
defined without the choice of a defining convention. The
most popular are the Itô, the Stratonovich, and the anti-
Itô ones. Physically, different choices reflect finer details
of the strain correlations wiped out in the white-noise
scaling limit, like the presence or the absence of time
reversibility of the velocity distribution. The Itô, Stra-
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tonovich, and anti-Itô versions of the stochastic integral
in Eq. (A1) are given by the limits over partitions of the
time interval of different Riemann sums:

E
0

t
s~s !ds R~s !

55
lim(

n
E

tn

tn11
s~s !ds R~ tn!

lim(
n

E
tn

tn11
s~s !ds 1

2 @R~ tn!1R~ tn11!#

lim(
n

E
tn

tn11
s~s !ds R~ tn11!,

(A2)

respectively, where 05t0,t1,¯,tN5t . It is not diffi-
cult to compare the different choices. For example, the
difference between the second and the first one is

1
2 lim(

n
E

tn

tn11
s~s !ds@R~ tn11!2R~ tn!#

5 1
2 lim(

n
F E

tn

tn11
s~s !dsG 2

R~ tn!

5E
0

t
C̃R~s !ds , (A3)

where C̃il5Cijjl (sum over j) and the last equality is a
consequence of the central limit theorem that suppresses
the fluctuations in lim (n@* tn

tn11s(s)ds#2. Similarly, the

difference between the anti-Itô and the Itô procedure is
twice the latter expression. In other words, the Stra-
tonovich and anti-Itô versions of Eq. (12) are equiva-
lent, respectively, to the Itô stochastic equations

dR5H @s~ t !dt1C̃ dt#R

@s~ t !dt12C̃ dt#R.
(A4)

Given the stochastic Eq. (12) with a fixed convention, its
solution can be obtained by iteration from Eq. (A1) and
has the form (13) with W(t) given by Eq. (16) and the
integrals interpreted with the same convention. Note
that the value of ^*0

t s(s)ds *0
s s(s8)ds8& depends on the

choice of the convention: it vanishes for the Itô one and
is equal to C̃t for the Stratonovich and twice that for the
anti-Itô ones. The conventions are clearly related to the
time reversibility of the finite-correlated strain before
the white-noise scaling limit is taken. For example, time-
reversible strains have even two-point correlation func-
tions and produce the Stratonovich value for the above
integrals in the white-noise scaling limit. Most of these
stochastic subtleties may be forgotten for the incom-
pressible strain where C̃50 as follows from Eq. (30) so
that the difference between different conventions for
Eq. (12) disappears.

We shall often have to consider functions of solutions
of stochastic differential equations so one should be
aware that the latter behave under such operation in a
somewhat peculiar way. For the Itô convention, this is
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the content of the so-called Itô formula which results
from straightforward second-order manipulations of the
stochastic differentials and takes in the case of Eq. (12)
the form

df~R!5@s~ t !dt R#•“f~R!1CijklR
jRl¹ i¹kf~R!dt .

(A5)

Note the extra second-order term absent in the normal
rules of differential calculus. The latter are, however,
preserved in the Stratonovich convention. Note that the
latter difference may appear even for the incompressible
strain.

More general stochastic equations may be treated
similarly. For example, Eq. (5) for Kraichnan velocities
may be rewritten as an integral equation involving the
stochastic integral *0

t v„R(s),s…ds . The latter is defined
as

lim (
n

E
tn

tn11 1
2

@v„R~ tn!,s…1v„R~ tn11!,s…#ds (A6)

in the Stratonovich convention, with the last tn11 (tn)
replaced by tn (tn11) in the (anti-) Itô one. The differ-
ence is

6 1
2 lim (

n
E

tn

tn11E
tn

tn11
„v~R~ tn!,s8…•“ !v„R~ tn!,s…ds8ds

56¹ jD
ij~0!t , (A7)

where the left-hand side was replaced by its mean by
virtue of the central limit theorem. The last term van-
ishes if the velocity two-point function is isotropic and
parity invariant. Hence the choice of the convention is
unimportant here even for the compressible velocities.

It may seem bizarre that the choice of convention in
compressible velocities does not matter for individual
trajectories but it does for Eq. (12) which describes the
evolution of small trajectory differences. It is not diffi-
cult to explain this discrepancy (Horvai, 2000). The sto-
chastic equation for R12[R leads (in the absence of
noise) to the integral equation

R~ t !5R~0 !1E
0

t
@v„R~s !1R2~s !,s…2v„R2~s !,s…#ds .

(A8)

The difference between the Stratonovich and the Itô
conventions for the latter integral is

1
2 lim (

n
E

tn

tn11E
tn

tn11
$@v„R~ tn!1R2~ tn!,s8…

2v„R2~ tn!,s8…#•“%v„R~ tn!1R2~ tn!,s…

1 1
2 lim (

n
E

tn

tn11E
tn

tn11
v„R2~ tn!,s8…•“)

3@v„R~ tn!1R2~ tn!,s…2v„R2~ tn!,s…#ds

5E
0

t

$¹ jD
ij@R~s !#2¹ jD

ij~0!%ds

1E
0

t

$¹ jD
ij~0!2¹ jD

ij@R~s !#%ds50, (A9)
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where the two first lines that cancel each other are due
to the time dependence of R and R2 , respectively. If we
replace R by eR then, when e→0, the right-hand side of
Eq. (A8) is replaced by the right-hand side of Eq. (A1)
if we use the Itô convention for the stochastic integrals.
The similar limiting procedure applied to the (vanishing)
difference (A9) does not reproduce the difference be-
tween the values of the integral (A1) for different con-
ventions. The latter corresponds to the limit of the first
line of Eq. (A9) only and does not reproduce the limit of
the term of Eq. (A9) due to the R2 dependence. The
approximation (12) is then valid only within the Itô con-
vention.

As for the PDF (43), it may be viewed as a (general-
ized) function of the trajectory R(t). The advection Eq.
(45) results then from the equation for R(t) by applying
the standard rules of differential calculus which hold
when the Stratonovich convention is used. The Itô rules
produce the equivalent Itô form of the equation with an
additional second-order term containing the eddy diffu-
sion generator D0¹R

2 .
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