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High mode number stability of an 
axisymmetric toroidal plasma 

BY J. W. CONNOR, R. J. HASTIE AND J. B. TAYLOR, F.R.S. 

Culham Laboratory, Abingdon, Oxfordshire, OX14 3DB, U.K. 
(Euratom/UKAEA Fusion Association) 

(Received 9 May 1978) 

In the investigation of stability of a plasma confined by magnetic fields 
some of the most important modes of oscillation are those with long 
wavelength parallel to the magnetic field and short wavelength perpendi- 
cular to it. However, these characteristics conflict with the requirement 
of periodicity in a toroidal magnetic field with shear. This conflict can be 
resolved by transforming the calculation to one in an infinite domain with- 
out periodicity constraints. This transformation is the starting point for a 
full investigation of the magnetohydrodynamic stability of an axisym- 
metric plasma at large toroidal wave number n. (Small values of n can be 
studied by direct numerical computation but this fails when n is large.) 
For n > 1 there are two distinct length scales in the problem and a 
systematic approximation is developed around an eikonal representation, 
formally as an expansion in 1/n. In lowest order the oscillations of each 
magnetic surface are decoupled and a local eigenvalue is obtained. How- 
ever, the mode structure is not fully determined in this lowest order. In 
higher orders a second eigenvalue equation is obtained which completes 
the determination of the structure of the mode and relates the local eigen- 
value of the lower order theory to the true eigenvalue for the problem. This 
higher order theory shows that unstable modes are localized in the vicinity 
of the surface with the smallest local eigenvalue, that the true eigenvalue 
is close to the lowest local eigenvalue and that the most unstable high n 
modes occur for n -> X. Hence the local theory, which involves no more 
than the solution of an ordinary differential equation, is normally adequate 
for the determination of stability of any axisymmetric plasma to high 
mode number oscillations. 

1. INTRODUCTION 

It is well known that plasmas confined by magnetic fields are often unstable. In 
a simple idealized configuration, such as an infinite cylinder, there is a single 
comprehensive test for the magnetohydrodynamic (m.h.d.) stability of the plasma, 
given by Newcomb (i960). For any given cylindrical equilibrium profile this 
requires only the solution of an ordinary differential equation. However in a more 
realistic toroidal configuration, such as a Tokamak or Toroidal Pinch, there is no 
such comprehensive method for determining stability even though the system may 
be axisymmetric so that Fourier modes oc exp (inc) (where C is the angle around the 
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2 J. W. Connor, R. J. Hastie and J. B. Taylor 

symmetry axis) may be considered individually. There are certain necessary criteria 
for m.h.d. stability, such as Mercier (i960), which can be applied and there are 
elaborate two-dimensional numerical codes (Wesson & Sykes I975, Todd et al. 1977, 

Berger et al. I977) which can be used to test for stability. But these two-dimensional 
codes can describe only oscillations of small toroidal mode number n. 

In this paper we develop a method for determining m.h.d. stability of toroidal 
axisymmetric plasmas to high n perturbations. Since this theory encompasses all 
high mode number perturbations it complements the two-dimensional numerical 
computations and so essentially completes the ideal m.h.d. stability theory of 
axisymmetric toroidal systems. 

From studies of simple configurations we know that some of the most persistent 
instabilities are those which have short wavelength perpendicular to the magnetic 
field but long wavelength parallel to it. (These characteristics minimize the 
stabilizing influence of the magnetic field.) However in a toroidal magnetic field 
with shear (that is when the rotational transform varies from surface to surface) 
these characteristics conflict with the requirement that the perturbation be periodic 
in both toroidal and poloidal directions. The first problem in the investigation of 
stability of toroidal systems is therefore that of reconciling long parallel wave- 
length, short perpendicular wavelength and periodicity. 

In ? 2 we describe a general method for achieving this reconciliation, by means of 
a transformation from the periodic domain to an infinite domain. With this trans- 
formation the theory of high mode number oscillations is then developed in ? 3. 
There we show that in the leading order of an expansion in 1/n, the oscillations of 
each magnetic surface 3> = const. are decoupled. The lowest order theory therefore 
defines a local oscillation frequency o02( /,f) and fixes the structure of the mode along 
the magnetic field. However this lowest order theory does not determine the 
structure of the mode transverse to the magnetic surfaces. This transverse structure, 
and the relation of the local oscillation frequency w2(0 ) to the true frequency Q2, are 
determined in higher orders of the expansion. 

Although the higher order theory is necessary to complete the solution, this 
solution itself can be expressed entirely in terms of quantities calculated from 
the lowest-order theory. Consequently the lowest-order theory alone is sufficient 
for the determination of stability. Like Newcomb's analysis this involves no more 
than the solution of an ordinary differential equation which can readily be solved for 
any given equilibrium profile. 

2. SHEAR, PERIODICITY AND LONG PARALLEL WAVELENGTH 

In this section we review the problem of reconciling long-parallel and short- 
perpendicular wavelength with periodicity in a sheared toroidal magnetic field and 
show how it may be overcome. 

In any axisymmetric toroidal system the magnetic field may be expressed as 
B -V?/f x Vat+ I(Ir) VC, where l _ constant defines a toroidal magnetic surface and 
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( is the angle around the axis of the torus. We can then introduce an orthogonal 
coordinate system (3f, ', x) (Mercier i960) where x is a poloidal, angle-like, co- 
ordinate (so that X, C locate a point on a magnetic surface). If R is the distance from 
the axis of symmetry, the metric for these coordinates is ds2 - (d#f/RBX)2 + 

(JBxdx)2 + (Rd~)2 where the volume element dT = Jd~Irdxdg. A field line is defined 
by f = constant, X = Xo(C) and (d~/dyo) IJ/R2=_ v is an important parameter of 
the field structure. It is related to the 'toroidal safety factor' q by q = (2)1)-1 v dy. 

Now the usual representation of short wave oscillations in a slowly varying 
medium is in an eikonal form 0 oc 1 exp (inS), where the phase varies rapidly 
(n > 1) but F and S vary slowly. In the present problem the magnetic field intro- 
duces an overwhelming anisotropy and the important oscillations are those with 
short wavelength transverse to the field but long wavelength parallel to it. Since C 

is an ignorable coordinate the appropriate eikonal form for such oscillations is 

yF(,x)exp[inQ-fvdx)1, (1) 

where the phase varies rapidly across the magnetic field but is constant along it. In 
this expression the parallel wavelength of the oscillation and the effect of the slowly 
varying medium (which have comparable scale lengths) are both embodied in the 
slowly varying function F(f, X). 

If no other consideration intervened (1) would indeed be the appropriate repre- 
sentation of a perturbation with long parallel and short perpendicular wavelength. 
Unfortunately, when there is shear in the magnetic field it is impossible to reconcile 
the expression (1) with the requirement of periodicity in the poloidal angle X for all 
values of ?I, without abandoning the hypothesis that F(V,x) varies slowly-and 
with it the whole concept of an eikonal representation. 

Several attempts have been made to overcome this difficulty while retaining 
the form (1). In a recent calculation of ballooning modes (Dobrott et al. 1977) the 
periodicity condition was replaced by the constraint that F = 0 at each end of the 
basic interval in xy However the most unstable mode cannot be constructed in this 
way so that the stability of the system is overestimated (Connor, Hastie & Taylor 
1978). Another approach (Rutherford et al i969) is to introduce a discontinuous 
change in F at the ends of a basic period to compensate for the change in the 
exponential factor over that period. However, except when the shear is very weak, 
this is contrary to the requirement that F varies slowly. Yet another technique 
(Connor & Hastie I975) is to introduce an arbitrary function G into the eikonal, 
such that if(v + G) dX = 2tnm, where m is integer, on all surfaces, but no satisfactory 
method for determining G has been given. One choice, (Coppi & Rewoldt 1975, 

Coppi I 977) is G = (- Vdy) 8(x -,Xo); but the discontinuity which this introduces 
requires that F(Xo) = 0 and this constraint again prevents construction of the most 
unstable modes. 

It is clear that in order to obtain the correct compromise between long parallel 
wavelength and periodicity an alternative representation for the perturbation is 
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needed. The construction of this representation can be described in general terms 
as follows. (The method is actually an extension of that used to describe the influence 
of shear on drift waves (Taylor 1977) and a preliminary account has been given by 
Connor, Hastie & Taylor (1978).) 

After Fourier decomposition cc exp (inc) in the ignorable coordinate, the calcu- 
lation of linear oscillations in any axisymmetric system can always be reduced to a 
two-dimensional eigenvalue problem 

Y(O, x) O(Ox) = b(O, x), (2) 

where 0 represents the poloidal angle and x the flux surface coordinate. The operator 
Y is periodic in 0, 0 < 0 < 2ir, and 0 must be periodic in 0 and bounded in x. We now 
express 0 in the form 

0(0, x) Ee-imof eim $(, x) d, (3) 
m. -oo 

which automatically ensures that q5 is periodic in 0. The function $ need not be 
periodic. 

This transformation from A to $ can be regarded as made up of three successive 
steps. In the first the periodic function 0 is represented by a Fourier sum 
lam exp ( - imO); in the second the coefficients am are extended into a function a(m) 
coinciding with a,, when m is an integer and in the third step this function a(m) is 
itself represented by a Fourier integral. 

By direct substitution of the transformation (3) into (2) it can be seen that any 
$(i, x) which is a solution of 

Y(, x) (y, x) = A4(, x) (4) 

in the infinite domain -0o < y < + oo will generate a periodic solution 0(0, x) of (2) 
with the same eigenvalue. In fact, all the relevant periodic solutions of (2) can be 
obtained from the eigenfunctions of (4). (This and other properties of the trans- 
formation are given in appendix A.) 

In effect, the transformation (3) replaces the actual stability problem, with its 
awkward periodicity requirement, by a fictitious problem in the infinite domain 
with the same eigenvalue. The operator for the fictitious problem is identical with 
that in the real problem so that properties such as short perpendicular and long 
parallel wavelength retain their importance. The point of the transformation is 
that, because it does not have to be periodic, $(y, x) (unlike qS(O, x)) can be repre- 
sented in an eikonal form F(y, x) exp (inS) with the amplitude F(1, x) slowly varying 
compared to the phase function. The amplitude F(y, x) can then be calculated as an 
expansion in powers of 1/n. As will be seen, in the lowest order of the expansion F 
satisfies an ordinary differential equation in the y coordinate alone and the variation 
of F with x is determined by higher order equations. 

It is interesting that this eikonal form for $ is essentially the 'quasi-mode' intro- 
duced intuitively by Roberts & Taylor (I965); it is a perturbation in the form of a 
'twisted slice' which is everywhere almost parallel to the magnetic field. However, 
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here $ is not the actual plasma perturbation. The real, periodic, perturbation 0(O, x) 
which can be constructed from it will resemble a superposition of quasi-modes 
(appendix A). It is this superposition of quasi-modes which is the sought for repre- 
sentation of oscillations with short perpendicular and long;parallel wavelength in 
a torus. 

In order to complete the eigenvalue problem in the infinite domain one needs the 
appropriate boundary conditions as 1I1 -?- oo. These follow from the requirement 
that $(y, x) must generate a physically acceptable 0q(O, x). In particular, as -* 00, 

$ must be such that the integration in (3) will converge and in many cases this 
alone is sufficient to distinguish the acceptable from the non-acceptable solutions 
of (4). A particularly interesting example where a more subtle test of acceptability 
is required is described in ? 4. 

3. MAGNETOHYDRODYNAMIC STABILITY WITH n> 1 

In this section we investigate the m.h.d. stability of an axisymmetric toroidal 
plasma to high mode number perturbations starting from the ideal m.h.d. energy 
principle (Bernstein et al. I958). According to this the change in potential energy due 
to a displacement 4 is given by the functional 

6W=1 f dT[Q2-J. Q x + ({ Vp) (V. + yp(V *)2], (5) 

where Q = V x (I x B) is the perturbation of the magnetic field. The given equi- 
librium is specified by the pressure p and the current density J, and y is the specific 
heat ratio. The sign of the minimum value of 6 W({, I) with respect to 4 determines 
the stability of the equilibrium. 

We introduce an individual Fourier mode =- X) exp (inc). Then by carrying 
out the minimization of 6W with respect to 6 (the component of 4 parallel to B) 
and with respect to 6s (the component of go lying in the magnetic surface) the 
potential energy can be reduced to a quadratic form in 6, (the component of s 
normal to the magnetic surface) alone. From this one then constructs an Euler 
equation for the minimizing 6V. 

To describe this minimization in detail it is convenient to introduce 

X x@~ 
U 

R R2BX6X Bx 6 

so that U is proportional to the displacement s. In terms of these quantities 6W 
takes the form 

W 1 2JJdVf d~dxB 2B2 kllXl +J2| ax a JX2i 

+B 2inU+ax+R2X -2KfXf2+yp Ia j(JX)+inU+iBk-Z}1 ) (7) 
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where we have made use of the equilibrium relations for the toroidal current jg and 
pressure gradient p'(Vr) (prime denotes a V derivative): 

P + Y2 = j - - -l(JB (8) 

The coefficient K is K= X - (1nR)-jk - ln(JBX), (9) 

and k11 represents the 'parallel gradient' operator 

ik 
B8% inv) (10) 

The first step in minimization of 6W is to select Z so that the last term in 6W 
vanishes. This is always possible (unless the shear vanishes) and corresponds to 
making V 7* = 0. 

For the next step, minimization with respect to U, we first observe that when 
n -> so, 6 W will be positive and large unless k,, X and k,, U are 0(1) in this limit. (This 
represents the predominance of the parallel gradient operator which requires that 
the least stable modes have long parallel wavelength.) This feature of k,, U allows 
us to carry out a systematic minimization with respect to U as an expansion in 
1/n. We replace DU/DX in (7) by iteration of the relation 

aU/X _ - inv U + iJBkl11 U, (1 1) 

and U can then be determined in each order of 1/n by an algebraic minimization 
of 6TW. Correct to 0(1/n) the minimizing U is given by 

ox n 12 _J2 I1ox\ +U + + X 1+ 2) + _2B2JBkI (- ) = 0 (12) 

which represents the fact that V * {l is an 0(1) quantity as n -> oo. By using ( 11) and 
(12) we obtain 6W, correct to O(1/n), in terms of X alone 

6W = W f d %YdX{ 2 fklXJ2+ X 2BX 1 - (JBk1C X) 2 
JB2 n f 1 

2),Jp' IX128, a B2 ) l - BB x(2 )* OXa 

+-JBkl (Xur')-- [P*JBkll Q + PJBk* Q*] (13) 

where pXp X-- i VBk X), Q = + a(JB x) 

IBp C=B2+1'. 
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This expression (13) forms the starting point for the investigation of high mode 
number perturbations. It must be minimized with respect to all periodic functions X 
subject to an appropriate normalization, which we take to be 

j'Jd~fdX(1J2+ (B x2 1 OX 2} .(4 n df dy %(X22+ (B ) nar (14) 
This represents the kinetic energy of the transverse motion (to leading order in 1/n) 
and is convenient because it retains most of the features of the total energy normal- 
ization without affecting the minimization of 6 W with respect to Z and U. 

The two-dimensional Euler equation for the minimizing function X(?/, x) is then 

JBk 1211- (X ?_2 JBk1X~ - Xp'I (p+ 'B2) (JR2B2 L B) n2 afr2J B2 a2 f 2 

iaOX pIaB2 1 a1R2.B 2 1 a 
?------ ax i JBk1 - JB2x -- (JBk X) +n Ofr B4 ax n III Of JB nO~ 

+ 
I 

JBki (i'x)-f JBkQ- 2 JBk P 

1 a _I~ 
12 _1 

--JBk (- [|j- JBkI Q +? JBkl ( R 2B2 JBk11 P 

[ JR2B2 I a2X I a ('JR2B2\ I aX 
= Q2 I X_ X X ____ - Il (15) 

LR2Bk 
2 

2 n2aO~f2 na~' B2! 
n OJ 

This partial differential equation, with the periodicity condition X( + Xo) = X(x) 
where Xo = fd%, determines the stability of the system through the sign of its 
lowest eigenvalue Q2. It is an equation of the general type discussed in ? 2 and hence 
it is amenable to the transformation described there: 

X(3f, X) = 2exp (- 2i)f dyep (e n)X Y)) (16) 

This converts equation (15) for X into an identical equation for X but with X in the 
infinite domain and free of periodicity requirements. Because X is free of periodicity 
constraints it can be represented in the form 

k(?fr, y) = Fl, y) exp (-in vdy) . (17) 

in which all the rapid variation of X is contained in the exponential phase factor 
and the amplitude F(lr, y) remains a more slowly varying function as n --s o. 

To demonstrate this formally, we introduce two length scales in the direction 
normal to the magnetic surfaces: the equilibrium scale which we continue to denote 
by #f and a more rapid scale x = ni(?r - ?fo), where #f0 will be identified later. Then 
when (16) and (17) are introduced into the eigenvalue equation (15) the result can 
be written (L+ Q22M) F = 0, (18) 
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where L = Lo+WjL +nL2 

M=Mo+- Ml+-M2( 

The leading order operators Lo and Mo are 

a 1 ~~R2B 2 ny \2 OF' 
0ay (JR2B2 [ B J 1 ]yj 

+F(2J a(P 2 Ip (fy dy)Vk). (20a) 

B a B4Vf ay) 

and MO? = R2 [2(1f+ vdy)] F. (20b) 

Note that Lo is a differential operator in the extended parallel coordinate 
y(- oo < y < co) alone and depends only parametrically on the coordinate ?f . If we 
write 

Lo = Lo Y; 2~ Yo) MO = Mo(Y; 
r 

YO), 

then the higher order operators, which are given in full in appendix B, can be written 

L,- L ia-, M1 M (21) 

with L~=- ~P91 l aMM 

.- 02 1^ a> 82 el- 

and L2 -L2y-+?L21 M2 -M2 5xi + M2, (22) 

with L2 M22v )j(,() ?) 

L2 and M2 also being differential operators in y alone. 
We now seek a solution of (18) by an expansion in powers of 1/n'. The lowest 

order approximation is 
[Lo + c =2(fy)M]F0 0, (23) 

or explicitly 

2?22 O a~ IJ2X[ + 
R 

BJ o/ dy) ] y 

+ 2 [~ 2!a l(pS + 2B )-B2 V dy)J 
a (-!B 2)] 

R2B, Y) 1+ ( B B J X I XI0 (24) 
B2XB~vYJo~ 
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Thus the lowest order approximation yields an eigenvalue problem in one dimension 
only. The oscillations of each surface are decoupled and each has an oscillation 
frequency w2(i/, yo) which depends on the flux surface ?fr and the quasi-mode 
origin yo. Because (24) is a differential equation in y alone the eigenfunction can be 
multiplied by an arbitrary function of x and is therefore of the form 

F0 = A (x)fo(y; V', y0), (25) 

where the variation of fo with ?fr arises only from the parametric dependence of Lo 
on the equilibrium profile. 

To calculate the eigenvalue (w2(?/, yo) the boundary conditions for f0 as yI oo 
are required. To find these we must examine the behaviour of the two solutions of 
(24) at large fyj. If w02 < 0 one of these two solutions is exponentially growing as 

IyI -0 0X and one is exponentially damped. Clearly the growing solution is unaccept- 
able and the appropriate boundary condition on fo is therefore simply that fo -? 0 
as JyJ -* oo. Hence the determination of unstable solutions of (24), if they exist, is 
straightforward: we simply solve (24) as an orthodox two point eigenvalue equation. 

On the other hand, when (w2 > 0 the two solutions of (24) both behave like 
(1/y) exp (iwy) as JyJ -> o0 and both are acceptable. Thus an acceptable solution of 
(24) can be constructed for any positive ()2. [This is presumably related to the 
existence of a continuous spectrum of stable modes for a cylindrical plasma (Grad 
1973).] When (w2 = 0 a more detailed investigation is necessary. This case, which is 
of special interest because it leads directly to a necessary criterion for the stability 
of all high n m.h.d. modes, is discussed in ? 4. 

In the lowest order calculation the 'envelope' A(x), the origin yo of the quasi- 
mode and the relation of w2(2fr, yo) to the global eigenvalue Q2 are all undetermined. 
To resolve this indeterminacy one must proceed to higher order in the 1 /ni expan- 
sion. The next order yields the equation 

(Lo 2M)F1 + (L1 + 2M1)Fo= 0, (26) 

and it is clear from (21) and (25) that 

F, =jidAf1, (27) 

where (Lo + w2Mo)fi + CL, + w221)f0 = 0. (28) 

An integrability condition, for the existence of fl, is obtained using the self- 
adjointness of the operator (Lo+ w2MO) and the fact that fo satisfies (23), (two 
properties which will be exploited frequently in subsequent analysis). This 
integrability condition is 

KfoI It + w2Mil fo> = 0 (29) 
(with the obvious notation (f f 
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Differentiating (23) with respect to yo shows that the condition (29) is equivalent 
to the more useful result a 

ay 02(*7 y0) \_ 0. (30) 

This fixes the hitherto undetermined parameter yO: on each magnetic surface Vfr it 
must be located at an extremum of w2(2f , yo). In most cases the location of the 
extrema will be obvious from the symmetry of the system and such that y0 is 
independent of ?fr- as we have assumed. (The general case can be incorporated by 
adding infv(dyO/d3/)dVr to the phase of the eikonal (17) so that (20) remains 
unchanged.) 

An equation for the amplitude A(x) is obtained from a similar integrability 
condition on the next order equation for F2, 

(Lo + W2M0) 2 +(L1 + 2M1) 1 + (L2 + 2M2) F0 + n(Q2- - ,)2) MO O 0. (31) 
This integrability condition is 

r ~~~~1 02(w2] 
<fo LI + (w2M IF1,) +<foI L2 2M2 IF> + In(Q2-w)--2 x2 x f02 F0> 0, 

(32) 

where 3b!0 has now been chosen to be at a minimum of &)2(Z, Yo) (with yo determined as 
above) and we have expanded w02(?) about that minimum (in anticipation of the 
fact that the envelope A (x) is localized in the neighbourhood of So) At this point 
we note an important property of the second order operator L2 (see appendix B), 

namely2 
naey <fL2?w2M2 Ifo> =2 UKfolt1?2Mi If0>-j(0< M1 ifl> (33) 

From this property and (29) it follows that 

Kfol L2 + 0)2M2 Ifo> = 0 (34) 

on V = Vr0. Then, by using the properties (21) and (22) of the operators, the result 
(30) and the identity 2 

<fol Lo+ 2Mo Ifo> = ?0 (35) 

equation (32) becomes 

a22 dx2 ?(M'(yo))2 [ Q2 -w 62)- /2 x2] A -0 (36) 

(A simple heuristic derivation of this equation is given in appendix C.) The most 
unstable mode (smallest Q2) will be found by taking y., which we have shown must 
be at an extremum, to be at a minimum of 02(f, yo). Then 82w2/ay2 > 0 and A(x) is 
a Gaussian function: 

A(x) = exp{- . P'(Yo)I (I02/ 2 2)} (37) 

The corresponding eigenvalue is 

2no r( 1) (38) 
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These results show that the 'amplitude' A (x) is indeed localized near V = V/o and 
that the eigenvalue of the overall system, Q2, is equal to the minimum of the 'local' 
eigenvalue o)2(?/f, yo) plus a small correction of 0(1/n) which is itself defined in terms 
of w2(Vf, yo). Because this correction is positive the most unstable high-n mode occurs 
in the limit n -*oo. 

Thus, although the lowest order theory alone is incomplete, all the relevant 
features of the higher order calculation are expressed in terms of the function 
N2(f, g0) which is obtained from the lowest order calculation! In practice therefore 
we need calculate only the solution of the lowest order equation (24) in order to 
determine both stability and the structure of the unstable modes. 

4. BOUNDARY CONDITIONS WHEN 02 = 0 AND 

THE MERCIER CRITERION 

In this section we consider the behaviour of solutions of (24) as II Y . , which 
we noted requires special treatment when 0)2 = 0. 

Before investigating its behaviour at large IjI, we note that (24) is an Euler 
equation of a variational form 6W(- ox, co), where 

6W(Y1 Y2) jyJ2JdY(QJ)2 
1 [(f2BJ[ +) B)] 

P2P[ 2W- ~2)f 
S B2 [k ( + 2 B2J ay 2 

This is a one-dimensional energy integral for our problem and the stability of the 
AA 

system is determined by the sign of min 6 W(-oo,oo). This form for 5jW closely 
resembles that studied in the analysis of the cylindrical pinch by Newcomb (i960). 

We can therefore use this analysis, in particular theorem 5, which states that if a 
solution of the Euler equation which vanishes at yj also vanishes at some other point 
of an interval (Y1, Y2) containing no singular points, then a function f(y) can be 
constructed such that f (yj) = f(Y2) = 0 and 

8 W(Y11 Y2) < 0 (40 

In the present problem there are no singular points: hence if a solution of (24) 
oscillates as IyI -0- 0x the system must be unstable. 

We now return to the behaviour of solutions of (24) as JyI 0 when Qj2 = 0. It is 

clear that in this limit the solution depends on the 'stretched' variable z = v'dy 

and on the period of the equilibrium. We therefore write the solution at large y in 
the form 1 1 

f (y)- go(y) + g(Y)+ Z22(Y)+** 

where the gn(y) have the same period as the equilibrium. Then equating powers of 
z we find d [R2B2 dyo (41) 
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with solution go = 1. For gj, we have 

dy[R2B2(du?as) +Ip] =0. (42) 

The first integral, dyl/dy, contains an arbitrary constant which must be chosen so 
that g, is indeed periodic. Then 

dq1 , B~v a VIdy +p'j"V 
d 

P' 

dS+av,=B v VP- (43) dy B frB 2d j x 

The next order in I/z provides an equation for 2. Because 2 is periodic it may be 
annihilated by integration over one period in y. The resulting equation is 

lgdJB2 (dy 2+2p Bdy O B dy 

After substituting for dyl/dy this provides an indicial equation for the index a, 
specifying it in terms of field line averages of the equilibrium quantities. The two 
values of a are ( --2 + (4-D)1 (45) 

(1, 2 2 - (45 
where 

(2irqg')2I(B X P+B 7 J+ JW2 2X z I+ B2- ( B2) 
(46) 

The quantity D is exactly that which appears in the Mercier (i960) stability 
criterion when this is expressed in the form 4 -D > 0. 

In the present context we see that if D > 4 the indices a are complex. In this 
event both solutions of (24) are oscillatory as yf --> oo and, by the Newcomb 
theorem, the system is unstable. Thus the Mercier criterion emerges naturally from 
our analysis as a necessary condition for the stability of all high n m.h.d. modes. 
Furthermore when D > an acceptable solution of (24) always exists for J2 - 0 as 
it does for w02 > 0. 

When D < 4 the indices are real and unequal. In this case both asymptotic 
solutions may decay (O < D < w), or one may decay and the other increase (D < 0). 
In either event only the smaller asymptotic solution is acceptable because, even 
though it may approach zero as IyI ->- oo, the larger solution can be shown to lead 
to a divergent 6 W. Thus if D < I and 02 - Othe appropriate boundary condition for 
eigenfunctions of (24) is that they tend to the smaller asymptotic form as IYf -?> o. 
(An equivalent condition is that yif(y) -> 0 as fyf -* oo.) 

We can now summarize the boundary conditions for (24) as jyf -> c0. When 
wO2> 0 both asymptotic solutions are acceptable. When w02 < 0 (the unstable case) 
only the decaying solution is acceptable and the boundary condition isfo -> 0. When 

2- 0 two cases must be distinguished: if D > 4 both asymptotic solutions are 
acceptable (but the system is unstable), while if D < { only the smaller solution is 
acceptable and the boundary condition is yAfo 0. 
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5. CONCLUSIONS 

In the investigation of high mode number oscillations of an axisymmetric toroidal 
plasma one must reconcile long parallel and short perpendicular wavelength with 
periodicity in a sheared magnetic field. This problem has been overcome with the 
help of a transformation which converts the problem into one in an infinite domain 
y without periodicity constraints. Then, and only then, one is able to introduce an 
eikonal or quasi-mode form 

X-= Fl ,y)exp( -in vdy), 

in which the rapid short wavelength variation is contained in the exponential factor 
(through n > 1) and the amplitude varies only slowly. The quasi-mode k is not the 
physical perturbation; this can be constructed from X and will resemble a super- 
position of quasi-modes. 

The existence of two distinct length scales then provides the basis for a systematic 
calculation of the amplitude F(lf, y) and of the frequency of oscillation as an 
expansion in 1/n. In lowest order the oscillations of each surface are decoupled 
and the 'local' eigenvalue 02(3f, yo) is determined by an ordinary differential 
equation (24). In this equation the independent variable is the extended poloidal 
coordinate y(- oo < y < co); the flux surface coordinate if and the lower limit yo of 
the quasi-mode appear only as parameters. 

The boundary conditions as IyI -0- o associated with the equation for w02(*f, yo) are 
obtained from the requirement that any acceptable solution in the infinite domain 
must generate a physically acceptable function in the periodic domain when used 
in the transformation (3). For w,2 < 0 (the interesting case for stability analysis) the 

boundary condition is simply fo -> 0 as IyI -> oo. For w02 > 0 an acceptable eigen- 
function can always be found: presumably a reflection of a continuous spectrum of 

eigenvalues. For w02 -0 the analysis of the asymptotic solutions as fyI -> o0 shows 
that the present theory encompasses earlier necessary stability criteria such as that 
of Mercier (i960). 

Solution of the 'local' lowest order equation is straightforward, but it does not 
determine the structure of the maode in the radial 3f coordinate. The determination 
of this structure, and of the relation between the 'local' eigenvalue w2(*f, yo) and the 
true eigenvalue Q2 requires a higher order theory. 

In higher orders of the 1/n expansion one first finds a condition determining the 
parameter yo: it must be at an extremum of w2(2f, yo), in fact at a minimum. Next one 
finds a second eigenvalue equation, this time in the radial coordinate Vt alone, which 
determines the mode structure and the global eigenvalue Q2. The coefficients of this 
second equation can be expressed entirely in terms of the function O2(2f, yo) obtained 
from the lower order calculation. Hence, although the higher order theory is 
essential, because the lower order theory alone is incomplete, the solution to the 
higher order theory involves only quantities calculated from the lowest order 
equation. The salient features of this solution are: (i) an unstable mode is localized 
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in the vicinity of that magnetic surface 3fo which is associated with the lowest local 
eigenvalue 02(3fo) = 02, (ii) the true eigenvalue Q2 for the system is equal to o02 plus 
a correction of 0(1/n) which is itself given in terms of w02(*f, yo), and (iii) the most 
unstable of the high-n modes occurs in the limit n --- oo and in this limit Q2 = (O2. 

Consequently, in practical applications, the stability of any axisymmetric plasma 
against high mode number perturbations can be determined from the lowest order 
theory alone. This involves no more than an ordinary differential equation for the 
eigenvalue w2(2f , yo), which can readily be solved for any given equilibrium profile. 

APPENDIX A. TRANSFORMATION OF PERIODIC MODES 

The representation of periodic modes of long-parallel wavelength in a sheared 
magnetic field was achieved by the transformation, 

j(O, x) = e-m0f eim? $(Q,, x) dy, (A 1) 
m - 00 

which takes the perturbation from the periodic domain 0 < 0 < 2m to the infinite 
domain -0o < f < oo. In this appendix we describe some properties of this 
transformation. 

(i) As mentioned in the main text, the transformation can be regarded as made 
up of three steps. In the first, the periodic function q(O) is represented by a Fourier 
sum. This introduces the Fourier coefficients 

am = +1 eim 0(0)d0, (A2) 

for integer m. Then in the second step this definition is extended to all m. For any 
well-behaved function q(O) this is equivalent to defining the function a(8) to be 

a(s) =tEa sin[(m-s)c] (A3) 

Then a(s) takes the value am whenever s is integer, and is continuous between the 
integers and is consistent with (A 2). 

(ii) It is clear that if Y is a differential operator with periodic coefficients, then 

O(O) will be a periodic solution of 

(a/a)0(o _Aq(O), (A4) 
provided $ is a solution of Y(a/ay) 0(y) = A 0(y), 

Y(818,0 4(0 = AI 4(0, (A 5) 

in the infinite domain - oo < < oo. For, by direct substitution, followed by 
partial integration (assuming $ satisfies appropriate conditions at + oo to ensure 
convergence) 

(SY(a/a0) -A) 0q(0)-X e-imj 0eim1('(8/a8) -A) $(y) dy. (A 6) 
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(iii) The demonstration of the converse result, that all periodic solutions of (A 4) 
can be obtained from solutions of (A 5), is somewhat more involved. If 
(- A) 0S(0) = 0 then, from (A 6), by Fourier's theorem, 

eisI(Y(Oq) - A) $(y) dy = 0 when s = integer. (A 7) 

'Consequently it must be possible to write 

J 
e- 

(-A) $(g) dy - q(s) sin is, (A 8) 

where q(s) is bounded when s is an integer. Then Fourier integral inversion of (A 8) 
shows that it can be expressed as 

(I--,) AOg = Q (, + n) -Q (,q-,R) (A 9) 

Thus it may at first appear that the vanishing of (Y- A) O(6) does not necessarily 
imply that (Y - A) $(y) is zero, but only that it satisfies (A 9). However if S were 
any particular integral of (A 9) corresponding to Q :# 0 then, because Y is periodic, 
this could itself be expressed in the form 

$(v) = R(y + A) - R(y - A) (A 10) 

and in the transformation (A 1) this would give 0i= 0 whatever the function R(y). 
Thus any non-zero periodic solution of (A4) does indeed correspond to some 
solution of (A 5). 

(iv) An alternative view of the structure of the solution 0(6, x) generated by (A 1) 
can be obtained as follows. We write, assuming appropriate convergence properties, 

0(0, x) = Eexp (-im(O -)) $(y, x) dy. (A 11) 
-J c m 

Then we can regard the summation over m as the definition of an (improper) periodic 
function E exp (-im(O --)) = E Y(6-y-2tN), (A 12) 

m N 
and hence write (AIl) as ?S(O x) =X(6- 2nN, x). (A13) 

N 

Recalling that the structure of $ is 

'(y, x) = Pexp (-in| vdy) (A 14) 

we see that 0 is indeed an infinite sum of 'quasi-modes' as mentioned in ? 2. 

APPENDIX B. HIGHER ORDER OPERATORS 

The full set of operators Li and Mi appearing in (19) are given by 

L F = {J2 1 i+ (Rjkf X 
I dy)jO} 0 dy R2B 2l+ B J a B B4 ayY 

{BF a(+ B) ( Idy) -) (B 1) 



16 J. W. Connor, R. J. Hastie and J. B. Taylor 

M?F R2 [(+ ( Vf y)] 'F (B2) 

aF 2 
2B 2 

'fv d a2F 1 ip'aB2aF 
y[JB2 Yo 0 ) aJyax] B4 ay ax (B3) 

JR2B ( fY \OF M1F = 2i B2 XUY vd)dy (B4) 

a [R2B~ a 3F] a [aIR2B2Cy dOF].a(F 
ay [JB 2 

ayax2 +lay [a_( JB2Js0 vYay] +ly() 

a [QB2 y v'dy ay - a 2B2 vdyF ay 

ay [ JB2 w v d)f ayaj B 4 aya (B 5) 

MF JR2Ba2p .2 a [JR2B2 p'dF JR12B2 j (B6) 
M F = - 

JRX-8+i a L X2X v'dy + 2i B- (VI dy)# (B 6) 2 B2 0+'~f~f B2 BjV J2 2 ' ,a 
/0 Ii~~~~~~~~~~~~~~~~~~~~ 

h p +~~IBXq 'd ) aF A 
P' (J Y OF 

where P = o-F?. B-- H 'dy~, -F- J2 v'dy~? 
vB2 T o jY B 2 vB2B2 Y ,ay 

If we write L2 and M2 in the form 

L2= 2a2+ L2' M2=-M2az+MV (B7) 

1 a OLiI'l I_ a jI M 
where L = v() { a M = 1 yo) (B8) 

ayj 2 2v'(y0) ay 

then the only quantity of interest which involves L2 and M2 is 

I-= Kfo L2+w)2M2 Ifo> (B 9) 

It can be shown by integration by parts over y that the terms in this expression 
involving P and Q vanish and that the remaining terms can be cast into the form 

I = 2 K~b <fo IL1 + &2MlIf0o>- < fol IM1 ffo>. (B 10) 

APPENDIX C. EQUATION FOR MODE ENVELOPE A(x) 

It is of interest to note that, if one accepts that the 'envelope' A (x) of the mode 
must be determined from an equation of the form 

g2d2A gU dA + (Q2 
flX2+nid2 )AO= , (C01) 
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then the coefficients Y2 and g, can be deduced without recourse to the explicit 
operators Lj, M%. For the complete perturbation X is--of the form 

X-=?, 0+_ ?1 2+... (C 2) 

where = exp(-inj vdy)fo(y; yo,)A(x). (03) 

Under the transformation 

Yo 4 >Y?+ W1Y1, A(x)-*A(x)exp(inivyj), (C 4) 

the lowest order term in the expansion of X remains unchanged (any change being 
O(1/n-) and part of X1). The equation for A(x) must reflect this invariance. Intro- 
ducing the transformation (C 4) in (C 1), and equating powers of y, and y2 in the 
limit n -? oo then gives 

1 wa2 l 2O2 (0 5) gl_ 9ty)8~ 2 = 2(v9'(yo))2 ay2 (5 

For the most unstable mode we must then select yo so that g 0 and the result is 
(36) of the main text. 

REFERENCES 

Berger, D., Bernard, L., Gruber, R. & Troyon, S. I977 Plasma physics and controlled nuclear 
fusion research, vol. 2, p. 411. Vienna: IAEA. 

Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. I958 Proc. R. Soc. Lond. 
A 244, 17. 

Connor, J. W. & Hastie, R. J. I975 Plasma Phys. 17, 97. 
Connor, J. W., Hastie, R. J. & Taylor, J. B. I978 Phys. Rev. Lett. 40, 396. 
Coppi, B. & Rewoldt, G. I975 Adv. Plasma Phys. 6, 521. 
Coppi, B. I977 Phys. Rev. Lett. 39, 938. 
Dobrott, D., Nelson, D. B., Greene, J. M., Glasser, A. H., Chance, M. S. & Frieman, E. A. 

I977 Phys. Rev. Lett. 39, 943. 
Grad, H. I973 Proc. natn. Acad. Sci., U.S.A. 70, 3277. 
Mercier, C. i960 Nucl. Fusion 1, 47. 
Newcomb, W. A. i960 Ann. Phys. 10, 232. 
Roberts, K. V. & Taylor, J. B. i965 Phys. Fluids 8, 315. 
Rutherford, P. H., Rosenbluth, M. N., Horton, W., Frieman, E. A. & Coppi, B. i969 Plasma 

physics and controlled nuclear fusion research, vol. 1, p. 367. Vienna: IAEA. 
Taylor, J. B. I977 Plasma physics and controlled nuclear fusion research, vol. 2, p. 323. 

Vienna: IAEA. 
Todd, A. M. M., Chance, M. S., Greene, J. M., Grimm, R. C., Johnson, J. L. & Manickam, J. 

1977 Phys. Rev. Lett. 38, 826. 
Wesson, J. A. & Sykes, A. I975 Plasma physics and controlled nuclear fusion research, vol. 1, 

pp. 449 and 473. Vienna: IAEA. 


	Article Contents
	p. 1
	p. 2
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17

	Issue Table of Contents
	Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 365, No. 1720 (Feb. 19, 1979), pp. v-xviii+1-144
	Front Matter
	Address of the President Lord Todd, O.M. at the Anniversary Meeting, 30 November 1978 [pp. v-xviii]
	High Mode Number Stability of an Axisymmetric Toroidal Plasma [pp. 1-17]
	The Large Numbers Hypothesis and the Einstein Theory of Gravitation [pp. 19-30]
	The Ultimate Shear Stress of Fluids at High Pressures Measured by a Modified Impact Microviscometer [pp. 31-41]
	On Transient Relativistic Thermodynamics and Kinetic Theory. II [pp. 43-52]
	The Diffusion of Long-Chain Molecules Through Bulk Polyethelene [pp. 53-73]
	Optical Study of the Secondary Absorption Edge in Type I a Diamonds [pp. 75-94]
	Light Caustics from Rippling Water [pp. 95-104]
	The Spontaneous Appearance of a Singularity in the Shape of an Evolving Vortex Sheet [pp. 105-119]
	Viscoelastic Relaxation of Cyclic Displacements on the San Andreas Fault [pp. 121-144]
	Back Matter



