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plane in the collisional case with ones in the col-
lisionless case, we found that they clearly de-
parted from each other between g, and q~. Mo-
tions of test particles in the collisional case be-
come more irregular and their bounce periods
also become longer because of the reduced am-
plitude of the wave. The energy exchange be-
tween the wave and the beam electrons ceases
after q, as shown in Fig. l.

Oscillations could be destroyed' as a result of
particle phase mixing by either (a) wave damp-
ing or (b) modulation of the main wave by unsta-
ble sidebands. In the former case, a catastrophic
effect on the oscillation is expected, similar to
the results presented here.

We wish to thank Professor H. Momota and
H. Naitou for their useful discussions. This work
was carried out under the Collaborating Research
Program at the Institute of Plasma Physics, Na-
goya University.

FIG. 4. Phase-space loci in the collisionless case
plotted for two positions, viz. , (a) the third maximum
and (b) the third minimum of E~(q), respectively. Other
conditions are the same as in Fig. 3.

damping of the amplitude near g, . As is shown
in Fig. 3, after q„ the beam electrons spill into
adjacent wave troughs and spread in phase space.
This tendency becomes even greater beyond q, .
Furthermore, when we compared phase-space
trajectories of some test particles in the ~-g
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A procedure which reconciles long parallel wavelength, characteristic of plasma in-
stabilities, with periodicity in a sheared toroidal magnetic field is described. Applied to
the problem of high-n ballooning modes in tokamaks it makes possible a fu11 minimiza-
tion of the potential energy functional QV and shows that previous calculations overesti-
mated stability.

In many investigations of plasma stability, ' '
in both fluid and kinetic theories, the principal
difficulty is that of reconciling the characteris-
tics of unstable oscillations —such as long paral-
lel wavelength and short perpendicular wave-
'length —with the constraints imposed by perio-
dicity in a sheared toroidal magnetic field. In this

Letter we describe a general method for over-
coming this difficulty and apply it to the important
problem" of determining the stability limit for
ballooning modes —which in turn determines the
maximum P attainable in a tokamak.

To describe an axisymmetric toroida, l system
we may choose a set of orthogonal coordinates4
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(g, y, g) in which g labels the magnetic surfaces,
X is a poloidal anglelike variable, and g is the
toroidal angle. The magnetic field is B= VyxV&
+f(y)Vg and the metric is

(ds) 2 = (d g/RB~) 2 + (JB&d y) 2+ (Rd g) 2,

with J the Jacobian, R the radius, and B~ the
poloidal field ~VyxV&~. We also define v=f8/R'
so that avdp= 2mq where q is the "safety factor. "

Then the conventional representation of waves
with short perpendicular and long parallel wave-
length would be in the eikonal form

X

q(g, X) exp(in[/ —f vdx]),

with n» 1 and q varying slowly compared to the
phase. (The phase is constant along B but varies
rapidly perpendicular to B.) However it is easily
seen that in a magnetic field with shear dq/dg g0,
this form is incompatible with periodicity in X.

Recent calculations of ballooning modes'~ at-
tempted to overcome this difficulty by imposing
an artificial constraint that @=0at the ends of
the basic interval in y. However, as we shall
show, one does not then obtain the most unstable
mode so that such calculations overestimate the
stability of the system. Other authors' have at-
tempted to circumvent the problem by introduc-
ing discontinuous jumps in y at the ends of the
basic interval in X but this is incompatible with
the assumption that the amplitude y(p, y) varies
slowly compared to the phase. An alternative
approach" is to modify the eikonal by an arbi-
trary function G such that g(v+ G)dx = 2vm on all
surfaces but no satisfactory method for determin-
ing G has been given.

These difficulties can be overcome as follows. '
In any axisymmetric system the determination
of stability can be reduced to a two-dimensional
eigenvalue problem

R(8, x) (p(8, x) = zy(8, x),
where 8 represents the poloidal angle and x the

flux surface coordinate. The operator Z is peri-
odic in 8 and y(8, x) must also be periodic in 8

and bounded in x. We now express y in the form

(p(8, x)=Q e '"eJ e' "P(q, x)dq.

This transformation can be regarded as the fol-
lowing sequence: (i) representation of the peri-
odic function y by a Fourier sum with coefficients
a, (ii) analytic continuation of a to a function

a(m), and (iii) representation of a(m) as a Fourier
integral. Any P(q, x) which is a solution of the
equation

Z(q, x)q(q, x) =ZP(q, x) (4)

in the infinite domain, —~ & q & ~, will generate a
periodic solution of Eq. (2) with the same eigen-
value and it can be shown that there are no other
solutions of Eq. (2). (A fuller discussion will be
given in a later paper. )

The function y need not be periodic and can
therefore be expressed in the eikonal form (1).
Of course P(q, x) is not the actual plasma pertur-
bation, but the real, periodic, perturbation can be
constructed from it.

We now apply this technique to the problem of
high-mode-number ballooning modes" in toka-
maks. Stability of these modes can be determined
by minimizing the potential energy functional
5W($, $). The perturbation is decomposed into
modes -exping and, provided shear is nonvanish-

ing, 6W is minimized by displacements which
are divergence free; then 5%' can be expressed
in terms of the components of $ perpendicular to
B. For small values of n further minimization
of 6R' has been done numerically, "but this fails
for large n. However in this limit the minimiza-
tion can be performed analytically. When n» 1,
5%' will be positive unless the perpendicular grad-
ients of the perturbation are of order n but the
parallel gradients remain of order unity (i.e.,
unless the mode varies rapidly perpendicular to
B but slowly parallel to B). The divergence
(V ~ $~) must also be of order unity. A further
minimization can be carried out and 6W then de-
pends only on the normal displacement through
X =RB~)&. Thus, in an expansion in 1/n, the
dominant contribution to 6S' is

0= X -2,— k( +g'jg~' ——k( —2—— "-- X '—

where K„and ~, are the normal and geodesic components of the curvature K= —B x[Bx V(p+ —'p2) j p-4
and

ik,
~

=(ZB) '(8/ex+ inv) .
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The Euler equation, obtained by minimizing (5) over all functions X(g, }() which are periodic in y, is

B R'B~' ' &' I dp (('„X iK jB~ &X
II g2B 2 ~B () 2 I d gB B (6)

Thus far, our calculation follows that of Ref. 1. However we now make the crucial step by introduc-
ing the transformation discussed earlier, namely

&((, x) = L ~w " f ~ r &((,v) d~ .
m dX dg

Then X((l), }() will be periodic in }( and will satisfy the Euler equation (6) provided that X satisfies the
same equation in the infinite domain -~&y &~. The solution of Eq. (6) in the infinite domain may be
obtained by writings in the form of a (nonperiodic) "quasimode"'

X(g, y) = F(g, y) exp(-in J v dy), (8)

where the exponential factor contains all the rapid cross-field variation and where E satisfies the
ordinary differential equation

Jdy JA'B-'1+ 8'- —,
'dy

dy AB, d~
'" B' " ydy E 0 (9)

in which P appears only as a parameter. Equa-
tion (9) can readily be solved for any prescribed
equilibrium and determines its stability against
high-n ballooning modes. (In this lowest-order
calculation the slow ( variation of F is not deter-
mined; it can be obtained from higher orders of
the 1/n expansion. ')

We see, therefore, that the introduction of the
transformation (7) follosued by the quasimode
form (8) decouples the stability analysis from sur-
face to surface and provides a complete minimiza-
tion of 6W at large n. (If the quasimode form
were introduced directly for X((t), }(), as in Ref. 1,
one would obtain Eq. (9) [which is identical to Eq.
(6) of Ref. 1]but with }( as the independent varia-
ble. However, since the quasimode form is not
periodic, an additional constraint such as F(y) = 0
at X= +-,'gd}( would be required to ensure periodic-
ity and one would not then obtain the full minimi-
zation of 6W.j

The correct boundary conditions on F(y) are
obtained by considering the behavior of Eq. (9)
as !y!-~. In this limit F-F,(y)+y 'F,(y),
where F,(y) is independent of the periodic poloid-
al variation of the equilibrium and is a solution
of the averaged equation

y2 0 DQ 0
d 2 d+o

where the coefficient D is that which appears in
Mercier's necessary criterion for stability, ' D

Thus the asymptotic solution is F-(Ay~i
+By 2), where n, ,=--,'+(-,' —D)' '. If D& —,

' both
asymptotic solutions are acceptable and an un-

! stable displacement can always be found. (Hence
our analysis incorporates the Mercier criterion. )
If D& —,

' only the small solution is acceptable (the
large solution leads to a divergent 6W) and this
provides the appropriate boundary condition for
Eq. (9).

As a specific example we have considered a
model problem representing a large-aspect-ratio
tokamak with circular flux surfaces. In this mod-
el the magnetic field is uniform over the magnet-
ic surface but the shear is nonuniform. Equation
(9) becomes

d dI'
[I + (s q —n sin q)']—

+ n[cosq+ sing(s q —o.'sing) ]F = 0, (10)

whel e

s =—d(lnq)/d(lnr) and n =— (2Rq'/B') d-p/dr

are measures of the mean shear and pressure
gradient, respectively.

Equation (10) has been integrated numerically
with the boundary condition F -0 as ! q! -~
(which is numerically equivalent to selecting only
the small asymptotic solution). The boundary be-
tween stability and instability is shown in Fig. 1,
which indicates that, for this model, the critical
pressure gradient for ballooning modes is rather
insensitive to shear. Qver most of the range it
is roughly dp/dr -0.25 Bo'/Rq'. Also shown in
Fig. 1 (dotted line) is the stability boundary ob-
tained by imposing the boundary condition F(+m)
= 0 used by Dobrott et a/. ' This overestimates
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FIG. 2. Marginally stable eigenfunctions. Curve A,
low shear s = 0.1; curve 8, high shear s= 0.7.

FIG. 1. Maximum stable pressure gradient n as
function of shear s.

the stability of the system and produces a thresh-
old value of dp/dr about 20/o greater. This effect
becomes more marked at low shear because, as
shown in Fig. 2, the eigenfunction E(q) then ex-
tends considerably beyond +m.

In conclusion, we have shown that a complete
minimization of DS' in the limit n- can be ob-
tained by the transformation (7) together with the
quasimode form (8). This reduces the problem
to an ordinary differential equation which can
readily be solved to determine the stability of any
prescribed equilibrium and whose asymptotic
behavior is related to the Mercier criterion, "

We are grateful to Marion Turner for the com-
putation of Eq. (10).
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