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Kinetics of Nonlinear Wave-Wave Interaction

A wave is never found alone, but is mingled with as many other waves as there

are uneven places in the object where said wave is produced. At one and the same

time there will be moving over the greatest wave of a sea innumerable other waves,

proceeding in different directions.

– Leonardo da Vinci, “Codice Atlantico”

5.1 Introduction and Overview

5.1.1 Central issues and scope

After our discussions of quasilinear theory and nonlinear wave-particle inter-

action, it is appropriate to pause, to review where we’ve been, and to survey

where we’re going. Stepping back, one can say that the central issues which

plasma turbulence theory must address may be classified as:

a) mean field relaxation — how the mean distribution function evolves

in the presence of turbulence, and what sort of heating, cross-field
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transport, etc. result from that evolution. Though much maligned,

mean field theory forms the backbone of most approaches to turbu-

lence. Chapter 3 deals with the most basic approach to the mean

field theory of relaxation, namely quasilinear theory—based upon

closure using the linear response. Future chapters will discuss more

advanced approaches to describing relaxation in a turbulent, colli-

sionless plasma.

b) response — how the distribution function evolves in response to a test

perturbation in a turbulent collisionless plasma. Problems of re-

sponse including nonlinear Landau damping, resonance broadening

theory, propagator renormalization, etc are discussed in Chapters 3

and 4, on the kinetics of nonlinear wave-particle interaction.

c) spectra and excitation — how a system of nonlinearly interacting

waves or modes couples energy or ‘wave quanta density’ across a

range of space-time scales, given a distribution of forcing, growth

and dissipation. In essence, the quest to understand the mechanism

of spectral energy transfer and distribution defines the “problem

of turbulence”—the classic Kolmogorov 1941 (K41) theory of 3D

Navier-Stokes turbulence being the most familiar and compelling

example. Hence, the discussion of this chapter, now turns to the

problem of spectra and excitation.

We approach the problem of spectral transfer dynamics by examining a

sequence of illustrative paradigms in wave-wave interaction theory. This

sequence begins with coherent wave-wave interactions, proceeds to wave

turbulence theory and its methodology, and then addresses simple scaling

models of cascades. Future chapters will discuss extensions and related top-
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ics, such as closure methods for strong turbulence, methods for the reduction

of multi-scale problems, disparate scale interactions, etc. The list of familiar

examples discussed includes, but is not limited to:

→ resonant wave interactions

→ wave kinetics

→ decay and modulational processes

→ scaling theory of turbulent cascade

Familiar conceptual issues encountered along the way include:

→ the implication of conservation laws for transfer processes

→ basic time scale orderings and their relevance to the unavoidable (yet

unjustifiable!) assumption of the applicability of statistical methods

→ restrictions on the wave kinetic equation

→ the type of interactions and couplings (i.e. local and non-local) possible.

Anticipating subsequent discussions of structure formation, we give special

attention to non-local wave-wave interactions.

→ spectral structure and its sensitivity to the distribution of sources and

sinks.

Both lists are long and together leave no doubt that the subject of wave-wave

interaction is a vast and formidable one!

5.1.2 Hierarchical progression in discussion

Given the scope of the challenge, we structure our discussion as a hierarchical

progression through three sections. These are:

a) the integrable dynamics of three coupled modes

These simple, “toy model” studies reveal the basic elements of the
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dynamics of mode-mode interactions (such as the Manley-Rowe rela-

tions) and illustrate the crucial constraints which conservation laws

impose on the nonlinear transfer processes. Though simple, these

models constitute the essential foundation of the theory of wave-

wave interaction. One appealing feature of these basic paradigms is

that their dynamics can be described using easily visualizable geo-

metrical constructions, familiar from classical mechanics.

b) the physical kinetics of multi-wave interactions and wave tur-

bulence

The culmination of this discussion is the derivation of a wave-kinetic

equation, similar to the Boltzmann equation, for the exciton or wave

population density N (k, ωk, t) and its evolution. The wave popula-

tion density N (x, k, t) may be thought of as a distribution function

for quasi-particles in the phase space (x,k). Thus, wave population

dynamics resembles quasi-particle dynamics. Like the Boltzmann

equation for particles, the wave kinetic equation is fundamentally

statistical, rests on assumptions of weak correlation and microscopic

chaos, and takes the generic form:

∂N

∂t
+ (vgr + v) ·∇N − ∂

∂x
(ω + k · v) · ∂N

∂k
= C (N)

C (N) =
∑

k′,k′′
k′+k′′=k

δ (ωk − ωk′ − ωk′′)

× {
Cs

(
k′, k′′

)
Nk′Nk′′ − Cs

(
k′, k

)
Nk′Nk

}
.

Wave kinetics first appeared in the theory of the statistical mechanics

of lattice vibrational modes—i.e. as in the Einstein and Debye theory

of solids, etc. We emphasize, though, that those early applications
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were concerned with systems of thermal fluctuations near equilib-

rium, while wave turbulence deals with strongly excited systems far

from equilibrium. One quantity which distinguishes ‘equilibrium’

from ‘non-equilibrium’ solutions of the wave-kinetic equation is the

exciton density flux in k, i.e.

—near equilibrium, the flux of exciton density (i.e. energy) from

mode to mode is weak, so the spectrum is determined by a scale-

by-scale balance of emission and absorption, consistent with the

fluctuation-dissipation theorem (Fig. 2.1)

—far from equilibrium the scale-to-scale flux (which can be either

local or non-local in k !) dominates local emission and absorption,

as in the inertial rage cascade in fluid turbulence. The spectrum

is determined by the condition of flux stationarity, which entails

the solution of a differential equation with appropriate boundary

conditions.

The wave kinetic equation can either be solved to obtain the spec-

trum or can be integrated to derive (moment) equations for net wave

energy and momentum density. The latter may be used to calculate

macroscopic consequences of wave interaction, such as wave-induced

stresses and wave energy flux, by analogy with the theory of radia-

tion hydrodynamics.

c) the scaling theory of cascades in wave turbulence.

The classic example of a cascade scaling theory is the K41 model of

Navier-Stokes turbulence. Though they may appear simple, or even

crude, to a casual observer, scaling theories can be subtle and fre-

quently are the only viable approach to problems of wave turbulence.
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Scaling theories and wave kinetics are often used synergistically when

approaching complex problems in wave turbulence.

d) non-local interaction in wave turbulence.

Wave turbulence can transfer energy both locally (i.e. between

modes with neighboring k’s) and non-locally (i.e. between modes

of very different scale). In this respect, wave turbulence is much

richer and more complex than high Re fluid turbulence (as usually

thought of), despite the fact that wave turbulence is usually weaker,

with a lower ‘effective Reynolds number’. Non-local interaction is im-

portant to the dynamics of structure formation, as a possible origin

of intermittency in wave turbulence, and as an energy flow channel

which cannot be ignored.

Note that as we progress through the sequence of sections a) → b) →
c), the level of rigor with which we treat the dynamics degrades, in return

for access to a broader regime of applicability—i.e. to systems with more

degrees of freedom or higher wave intensity levels. Thus, in a), the analysis

is exact but restricted to resonant interaction of only three modes. In b),

the description is statistical and cast in terms of a Boltzmann-like wave ki-

netic equation. As for the Boltzmann equation in the kinetic theory of gases

(KTG) (Chapman and Cowling, 1952), wave kinetics rests upon assumptions

of weak interaction (akin to weak correlations in KTG) and microscopic

chaos—i.e. the Random Phase Approximation (akin to the Principle of

Molecular Chaos in KTG). However, wave kinetics does capture anisotropy

and scale dependency in the coupling coefficients and in the selection rules

which arise from the need for resonant matching of frequencies. In contrast

to the toy models discussed in a), the wave kinetics of b) can describe the
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evolution of broad spectra with many interacting waves, though this gain

comes with the loss of all phase information. However, wave kinetics cannot

address wave breaking (i.e. fluctuation levels at or beyond the mixing length

level) or other instances where nonlinear rates exceed linear wave frequen-

cies. A systematic treatment of breaking, wave resonance broadening and

other strongly nonlinear stochastic phenomena requires the use of renor-

malized closure theory, which is the subject of Chapter 6. At the crudest

level, as discussed in c), one can proceed in the spirit of the Kolmogorov

and Richardson model of the energy cascade in Navier-Stokes turbulence

and construct scaling theories for spectral evolution. Scaling models, which

are basically zero-D, constitute one further step along the path of simplifi-

cation, in that they release all phase and memory constraints in return for

ease of applicability to systems with greater complexity. In scaling models,

scale-dependent couplings are represented by simple multiplicative factors,

anisotropy is often (though not always) ignored and spectral transfer is as-

sumed to be local in scale. Nevertheless, scaling arguments are often the

only tractable way to deal with problems of strong wave turbulence, and so

merit discussion in this chapter.

5.2 The Integrable Dynamics of Three Coupled Modes

“When shall we three meet again?”

– Shakespeare, “Macbeth”

In this section, we discuss the simple and fundamental paradigm of three

resonantly coupled waves. This discussion forms the foundation for much of

our later treatment of wave kinetics and so is of some considerable impor-

tance.
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5.2.1 Free asymmetric top (FAT)

Surely the simplest example of a system with three resonantly coupled de-

grees of freedom is the free asymmetric top (FAT), familiar from elementary

mechanics (Landau and Lifshitz, 1976). The FAT satisfies Euler’s equation

dL

dt
+ Ω×L = 0, (5.1a)

which may be written component-by-component as

dΩ1

dt
+

(
I3 − I2

I1

)
Ω2Ω3 = 0, (5.1b)

dΩ2

dt
+

(
I1 − I3

I2

)
Ω3Ω1 = 0, (5.1c)

dΩ3

dt
+

(
I2 − I1

I3

)
Ω1Ω2 = 0. (5.1d)

Here the three components of the angular momentum Ω may be thought

of as analogous to evolving coupled mode amplitudes. The inertia tensor is

diagonal, with principal axes 1, 2, 3 and I3 > I2 > I1. Of course L = I ·Ω
where I is the moment of inertia. Equation (5.1) can be solved straightfor-

wardly in terms of elliptic functions, but it is far more illuminating to ‘solve’

the FAT geometrically, via the elegant Poinsot construction. The essence of

the Poinsot construction exploits the fact that, the FAT has two quadratic

integrals of the motion, namely L2 = L · L—the magnitude of the angular

momentum vector, and the energy. These invariants follow from Euler’s

equation. Thus, since

L2 = L2
1 + L2

2 + L2
3 = L2

0, (5.2a)

E =
L2

1

2I1
+

L2
2

2I2
+

L2
3

2I3
= E0, (5.2b)

L (t) = I ·Ω (t) is simultaneously constrained to evolve on:
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i) the surface of a sphere of constant radius L0

ii) the surface of ellipsoid, with semi-majour axes of length (2E0I1,2,3)
1/2

The set of curves which trace out the possible intersections of the sphere

and ellipsoid also trace the possible trajectories of FAT motion. This con-

struction constitutes the Poinsot construction, and is shown in Fig. 5.1.

Fig. 5.1. Poinsot constructing for the Free Asymmetric Top. Note that trajectories

originating at the poles of the “2” axis encircle the ellipsoid.

Several features of the FAT motion can be deduced simply by inspection of

the Poinsot construction. First, all trajectories are closed, so the dynamics

are reversible. There is no intrinsic tendency for energy to accumulate in

any one degree of freedom. Second, trajectories originating near the “1” or

“3” axes (corresponding to I1 or I3) are closed and localized to the vicinity

of those axes, while trajectories initialized near the “2” axis wrap around

the body of the ellipsoid, and so are not localized. Thus, an initial condition

starting near the “2” axis is linearly unstable, as is well known from rigid

body stability theory. However, the fact that all trajectories are closed

tells us that the linear solution breaks down as instability grows and then

saturates, and L ultimately returns to its point of origin.
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5.2.2 Geometrical construction of three coupled modes

Interestingly, a similar geometrical construction which captures the essen-

tial dynamics of resonant 3-mode coupling may be derived from the resonant

mode coupling equations and their conservation properties. Most generally,

resonant coupling dynamics arises in the perturbative solution to the inter-

action of three nonlinearly coupled harmonic oscillators, with Hamiltonian

H =
∑

i

(
p2

i

2m
+

ω2
i q

2
i

2
+ 2V q1q2q3

)
(5.3a)

and Hamiltonian equations of motion (EOM)

ṗi = −∂H/∂qi, q̇i = ∂H/∂pi, (5.3b)

so the coupled oscillator EOMs are

q̈i + ω2
i qi = 2V qjqk. (5.3c)

The essence of the perturbative, weak coupling approximation applied here

is to restrict amplitudes to the limit where nonlinearity is small relative

to the wave frequency (i.e.
∣∣V q ¿ ω2

∣∣), so the time for nonlinear energy

transfer is slower than a wave oscillation time. Thus,

qi (t) = ai (t) e−iωit + a∗i (t) eiωit (5.4)

where the time variation of the phase factor exp (±iωit) accounts for the

fast oscillation frequency and that of the amplitude ai (t) accounts for slow

variation due to nonlinear interaction. The basic ordering is |ȧi/a| ¿ ωi.

Substitution of Eq. (5.4) into Eq. (5.3c) (for i = 1) then yields, after some



5.2 The Integrable Dynamics of Three Coupled Modes 213

rearrangement:

d2a1

dt2
− 2iω1

da1 (t)
dt

= e2iω1t

(
d2a∗1
dt2

+ 2iω1
da∗1
dt

)

− 2V
(
a2a3 exp [i (ω1 − ω2 − ω3) t] + a2a

∗
3 exp [i (ω1 − ω2 + ω3) t]

+ a∗2a3 exp [i (ω1 + ω2 − ω3) t] + a∗2a
∗
3 exp [i (ω1 + ω2 + ω3) t]

)
. (5.5)

Since the question of concern here is the nature of energy transfer among

oscillators on time scales long compared to the wave period 2π/ω1, we aim

to describe secular evolution of a1 (t), which can occur only if the RHS of Eq.

(5.5) does not oscillate rapidly in time. Hence, we arrive at the resonance

or frequency matching condition or ‘selection rule’ which is:

ω1 ± ω2 ± ω3 = 0. (5.6)

Satisfying this 3-wave resonance condition ensures the secular drive of each

mode by the other two. Proceeding without loss of generality by taking

ω3 = ω1 + ω2, we obtain

iω1
da1 (t)

dt
= V a∗2a3 + oscillatory terms,

which for weak interaction as t →∞ reduces to

iω1
da1 (t)

dt
= V a∗2a3. (5.7)

Implementing similar expansions for i = 2, 3 yields the resonant 3-wave

coupling equations

iω1
da1 (t)

dt
= V a∗2 (t) a3 (t) , (5.8a)

iω2
da2 (t)

dt
= V a∗1 (t) a3 (t) , (5.8b)

iω3
da3 (t)

dt
= V a1 (t) a2 (t) . (5.8c)
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In general, the coupling coefficient V may be complex and may depend on

the parameters of waves 1, 2, 3. For example, the resonant coupling equa-

tions for three interacting Rossby waves (as given by Pedlosky (Pedlosky,

1987), after Longuet-Higgins and Gill (Longuet-Higgins et al., 1967)) are:

da1

dt
+

B (k2, k3)
k2

1 + F
a2a3 = 0,

da2

dt
+

B (k3, k1)
k2

2 + F
a3a1 = 0,

da3

dt
+

B (k1, k2)
k2

3 + F
a1a2 = 0.

(5.9a)

See Appendix for explanation of the equations for Rossby waves. Here the

coupling coefficient is

B (km,kn) =
1
2

(
k2

m − k2
n

)
(km × kn · ẑ) . (5.9b)

The parameter F indicates the scale length that dictates the wave dispersion,

and the resonance conditions are

ωmn ± ωm ± ωn = 0,

kmn ± km ± kn = 0.

(5.9c)

Certainly, the resonant coupling equations for model amplitudes a1 (t),

a2 (t), a3 (t) bare a close resemblance to the Euler equations for Ω1 (t), Ω2 (t),

Ω3 (t) in the FAT. Analogy with the top suggests we should immediately

identify the integrals of the motion (IOM’s) for the resonant coupling equa-

tions. It is no surprise that one quantity conserved by Eq. (5.8) is the total

energy of the system, i.e.

E =
1
2
ω2

1 |a1 (t)|2 +
1
2
ω2

2 |a2 (t)|2 +
1
2
ω2

3 |a3 (t)|2 , (5.10)

which is also derived from Eq. (5.8) by noting the relation ω3 = ω1 + ω2
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Conservation of energy, i.e. dE/dt = 0, is demonstrated straightforwardly

using Eqs. (5.8a)-(5.8c), their complex conjugates, and the resonance condi-

tion ω3−ω1−ω2 = 0. A (somewhat) less obvious conservation relation may

be derived from the mode amplitude equations (Eq. (5.8)) by observing

d
dt

(
ω1 |a1|2

)
=

d
dt

(
ω2

1

∣∣a2
1

∣∣
ω1

)
= V Re (−ia∗1a

∗
2a3)

= V Im (a∗1a
∗
2a3) ,

(5.11a)

and similarly

d
dt

(
ω2

2 |a2|2
ω2

)
= V Im (a∗1a

∗
2a3) , (5.11b)

d
dt

(
ω2

3 |a3|2
ω3

)
= V Im (a∗3a1a2)

= −V Im (a∗1a
∗
2a3) ,

(5.11c)

since Im a∗ = −Im a. Taken together, Eqs. (5.11a), (5.11b), (5.11c) state

that

d
dt

(E1/ω1) =
d
dt

(E2/ω2) = − d
dt

(E3/ω3) , (5.12)

where Ej = ω2
j |aj |2 (j = 1, 2, 3). We remind the reader that here, the

selection or frequency match rule is ω3 = ω2 +ω1. That is, ω3 is the highest

frequency.

5.2.3 Manley-Rowe relation

Equations (5.11) and (5.12) form a geometrical construction for three (res-

onantly) coupled modes. Equation (5.12) is a particular statement of an

important and general identity called the Manley-Rowe relation. This re-

lation is best understand by observing that Ei/ωi has dimension of action
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(i.e. energy ∗ time) and so may be thought of as a mode action

Ni = Ei/ωi, Ei = Niωi

also reminds us of the familiar semi-classical formula E = Nω, which relates

N , the number of quanta, to the energy E and frequency ω (for N À 1).

Hence N may also be usefully thought of as the ‘number’ of wave quanta.

The significance of the Manley-Rowe relation then emerges as an input-

out balance for wave quanta! Specifically, the Manley-Rowe relation (M-R

relation) which (most generally) requires that if

ωkα + ωkβ
= ωkγ , (5.13a)

then

dN (kα)
dt

=
dN (kβ)

dt
= −dN (kγ)

dt
, (5.13b)

effectively states that should modes α, β beat together to drive mode γ,

then for every exciton or wave ‘created’ in modes γ, one quantum each

must be lost from modes α, β. The M-R relation is also reversible, so

that if instead one quantum of mode γ is destroyed, then one quantum

each for modes α, β must then be created as a result of the interaction

process. The M-R relation is depicted graphically in Fig. 5.2. The M-R

(a)
∂N3

∂t
= −∂N2

∂t
= −∂N1

∂t (b)
∂N1

∂t
=

∂N2

∂t
= −∂N3

∂t

Fig. 5.2. Equivalent statements of the Manley-Rowe relations for three interacting

waves.
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relation has interesting implications for the often relevant limit where one

mode has frequency much lower than the other two, i.e. ω1 + ω2 = ω3 but

ω1 ¿ ω2, ω3. Such instances of slow modulation are relevant to problems of

drift wave-zonal flow interaction, Langmuir turbulence and other important

applications involving structure formation, which is discussed in Chapter 6.

In this case, where ω2
∼= ω3, the behavior of modes 2 and 3 must be virtually

identical, but the M-R relation forces dN2/dt = −dN3/dt!? This paradox

is resolved by requiring

dN2

dt
=

dN3

dt
= 0,

so that the number of quanta N is conserved in the interaction (i.e. dN/dt =

0). Thus, in the case where one mode is a slow modulator of the other

two, the Manley-Rowe relation is equivalent to the statement of adiabatic

invariance of the wave quanta population. This is sketched in Figure 5.3.

Fig. 5.3. For slow modulation by mode 1, Manley-Rowe relation implies adiabatic

invariance of quanta populations.

Taken together, then, energy conservation and the M-R relations, i.e.

E0 =
(
ω2

1a
2
1 + ω2

2a
2
2 + ω2

3a
2
3

)
(5.14)

and

ω1a
2
1 + ω3a

2
3 = N1 (0) + N3 (0) (5.15a)
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or equivalently

ω2a
2
2 + ω3a

2
3 = N2 (0) + N3 (0) (5.15b)

specify two constraints on the interacting mode amplitudes in a resonant

tried. Here, the number of quanta of mode i, Ni (0), refers to the initial

quanta number of mode i, and so, E0 = ω1N1 (0) + ω2N2 (0) + ω3N3 (0).

Consideration of Eqs. (5.14), (5.15b) reveals that the system’s trajecto-

ries in the phase space
(√

ω1a1,
√

ω2a2,
√

ω3a3

)
are given by the curves of

intersection between:

— the ellipsoid of constant energy, with semi-majour axes (E0/ω1)
1/2, (E0/ω2)

1/2,

(E0/ω3)
1/2 and

— Manley-Rowe cylinders, oriented parallel to the a1 and a2 axes,

with radii (N2 (0) + N3 (0))1/2, (N1 (0) + N3 (0))1/2.

This construction clearly resembles, but is subtlely different from, the Poinsot

construction for the FAT trajectories. From Fig. 5.4, we can immediately

see that:

Fig. 5.4. Poinsot construction for three interacting modes. Note that trajectories

originating at the “3” axis encircle the ellipsoid.
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→ as for the FAT, all trajectories are closed curves, so all motion is reversible

and periodic

but,

— since ω3 > ω2 > ω1, the intersections of the Manley-Rowe cylinders and

the energy ellipsoid always encircle the ellipsoid if N3 (0) À N2 (0) , N1 (0),

while trajectories with initial conditions for which N2 (0) À N1 (0) , N3 (0)

remain localized near the poles at the a2 or a1 axes.

5.2.4 Decay instability

This tells us that the highest frequency mode is subject to decay instability

if it is initialized with the largest population or externally driven. Recall for

contrast that in the FAT, decay instability occurred for initialization near

the Ω2 axis, i.e. which corresponds to the mode with intermediate moment

of inertia (I3 > I2 > I1). In both cases, however, the nonlinear motion is

periodic and all trajectories close on themselves.

The prediction of decay instability may be verified by linearizing Eqs.

(5.8a)-(5.8c) about the state a3 (t) ∼= a0, a1,2 (t) = δa1,2 ¿ a0. This gives

iω1
dδa1

dt
= V δa∗2a0 (5.16a)

iω2
dδa2

dt
= V δa∗1a0 (5.16b)

iω3
da3

dt
= V δa1δa2 ' 0, (5.16c)

so

ω1ω2
d2

dt2
δa1 = |V a0|2 δa1, (5.17)
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and the decay instability growth rate is given by the energy exchange rate

γ2
E = |V |2 |a0|2 /ω1ω2. (5.18)

Here, we took ω1, ω2 > 0, with ω3 = ω1 +ω2. It is easy to verify that should

the pump be a mode other that the one with the highest frequency, then the

decay process is stable. The time evolutions for decay unstable and decay

stable processes are shown in Fig. 5.4. If initial state is very close to the X-

point (i.e., the intersection with the third axis), the trajectory deviates from

the X-point, and the energy of the mode-3 is converted to those of mode-1

and mode-2. In contrast, if the initial state is close to the O-point (e.g., the

intersection with the 2nd axis), the trajectory encircles the O-point, and the

deviation does not grow. Observe that the important limit of the parametric

subharmonic instability , with ω1 ∼ ω2 and ω3 ∼ 2ω1, is a particular case of

the decay instability described here. (See (Mima and Nishikawa, 1984) for

detailed explanation of parametric instabilities.)

The decay instability growth rate γE is a fundamental time scale. Equa-

tion (5.18) sets the rate of coherent energy transfer out of a strongly pop-

ulated or ‘pumped’ mode. The rate γE is one of a few characteristic rates,

the ordering of which determines which theoretical description is appropriate

for the system under study. For example, whether a coherent or stochastic

mode coupling approach is relevant depends on the relative size of the spec-

tral auto-correlation (self-coherence) rate and the decay instability rate of

Eq. (5.16). This comparison is discussed further in the next section.

5.2.5 Example—drift-Rossby waves

As drift-Rossby waves and drift wave turbulence are critically important

to this discussion of plasma turbulence and self-organization, the problem
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of three interacting drift-Rossby waves merits special discussion here. The

alert reader may already have noted that Eqs. (5.9a)— the mode amplitude

equations for three interacting Rossby waves—don’t have quite the same

structure as Eqs. (5.8)—the usual, generic amplitude equations for three

coupled nonlinear oscillators, and that no analogue of Eq. (5.12) is appar-

ent. However, given that the Hasegawa-Mima or quasi-geostrophic equation

(Hasegawa and Mima, 1978) conserves both energy and potential enstrophy

(see Appendix 1), it is evident that Eq. (5.9a) must also conserve these, so

we can simply state that

E0 =
∑

i

(
k2

i + F
)
a2

i /2 (5.19a)

and

Ω0 =
∑

i

(
k2

i + F
)2

a2
i /2 (5.19b)

are both integral of motions (IOMs). Interestingly, the structure of these

IOMs—and, more generally, the structure of the problem of 3-mode inter-

action for drift waves—are virtually identical to their counterparts for the

FAT. Thus, the correspondence rules
(
k2

i + F
)
a2

i → L2
i

(
k2

i + F
) → 1/Ii

(5.20)

effectively map the problem of 3 interacting drift-Rossby waves to the fa-

miliar example of the FAT. This isomorphism enables us to again utilize

geometrical intuition gained from experience with the Poinsot construction.

To this end, we can immediately note that

— the ordering of moments of inertia I1 < I2 < I3 maps to the wave number

ordering k2
1 > k2

2 > k2
3
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— then for three interacting drift-Rossby waves, the correspondence to Fig.

5.1 indicates that the wave with the intermediate value of k2 (i.e. k2)

should be unstable to decay, if it is strongly excited.

— this expectation is supported by a “calculation by correspondence”, i.e.

since for the FAT

γ2
decay =

(
(I3 − I2) (I2 − I1)

I1I3

)
Ω2

2 (0) , (5.21)

so using the correspondence ‘rules’ gives

→

[(
1

(k2
3+F) −

1

(k2
2+F)

)(
1

(k2
2+F) −

1

(k2
1+F)

)]
A2

0

(
1/

(
k2

1 + F
)) (

1/
(
k2

3 + F
))

so

γ2
decay ∼

(
k2

2 − k2
3

) (
k2

1 − k2
2

)
(
k2

2 + F
)2 A2

0. (5.22)

Here A2
0 ∼ a2 (0)2. This calculation by correspondence confirms our ex-

pectations that the intermediate wave number mode is the one which can

be decay unstable. These results may also be obtained from a straight-

forward linear analysis of Eqs. (5.9).

— again, the three wave interaction dynamics is intrinsically periodic and

reversible. There is no apriori tendency for energy to accumulate in any

single mode.

Two comments are in order here. First, the decay instability of the in-

termediate wave number mode pumps both the shorter and longer wave

length modes, and so may be thought of as a “dual decay process”. This

has sometimes been invoked as a harbinger of the familiar dual cascade of

2D turbulence. Though both the dual decay and dual cascade have their



5.2 The Integrable Dynamics of Three Coupled Modes 223

origins in the simultaneous conservation of energy and enstrophy, the direct

relevance of dual decay to dual cascade is dubious since:

— the decay process is one of resonant 3 wave coupling—i.e. frequency match

is required.

— the 3-wave interaction process is time reversible, while the cascade is not.

Second, care must be taken to recognize that the decay of intermediate wave

number does not translate trivially to frequency. Since ωk = kyVde/
(
F + k2

)
,

where Vde is the diamagnetic velocity of electrons for drift waves, the decay

instability criterion

(
k2

3 − k2
2

) (
k2

2 − k2
1

)
> 0 (5.23a)

can be re-expressed as

(
ky2

ω2
− ky1

ω1

)(
ky3

ω3
− ky2

ω2

)
> 0. (5.23b)

This implies that

(ω3ky2 − ω2ky3)
2

ω1ω3ω2
2

> 0 (5.24)

for instability. Hence, instability requires ω1ω3 > 0, but the triad resonance

condition also requires ω2 = − (ω1 + ω3). These two requirements are rec-

oncilable only if the unstable wave has the highest frequency in the triad.

Thus, we see that in the resonant interaction of drift-Rossby waves, the

highest frequency wave is the unstable one. Note that the resemblance of

this result to that of Eq. (5.18) is somewhat coincidental. Here, an explicit

form of the drift wave dispersion relation was used to relate k to ωk, while

in the discussion leading up to Eq. (5.18), we considered generic nonlinear

oscillators.
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5.2.6 Example—unstable modes in a family of drift waves

Another illustrative example of the three coupled mode is constructed for

unstable modes in a family of drift waves. Analysis of the ion-temperature-

gradient mode (ITG mode (Rudakov and Sagdeev, 1960; Coppi et al., 1967;

Mikailowski, 1992; Horton, 1999; Weiland, 2000)) instability is briefly shown

here following the discussion in (Lee and Tang, 1988; Parker et al., 1994;

Watanabe et al., 2000).

A simple inhomogeneous plasma slab is chosen (main magnetic field is in

the z-direction, and the density and ion temperature have gradients in the

x-direction, the scale lengths of gradients of them are given by Ln and LTi ,

respectively). Unstable waves propagate in the direction of the diamagnetic

drift (y-direction). In order to construct a three-mode model, one unstable

mode with (kx, ky) = (±k,±k) is kept, which has a linear growth rate γL,

and the second harmonics with (kx.ky) = (±2k, 0), which works for the

nonlinear stabilization of the linearly unstable mode, is taken into account

as well. The wave number component in the direction of the magnetic field

is given by kz = θρiL
−1
n ky, where θ is a fixed parameter here. The Vlasov

equation, which is truncated at these two components, takes a form
(

∂

∂t
+ ikθv

)
f1,1 + 2ik2φIm f2,0 = −ikφ

(
1 +

2Ln

LTi

(
v2 − 1

)
+ θv

)
FM,

(5.25a)

∂

∂t
Im f2,0 = 4k2Im (φf1,1) , (5.25b)

where φ is the normalized electrostatic potential perturbation for the unsta-

ble mode, v is the parallel velocity, FM is the local Maxwellian distribution,

the suffix 1, 1 and 2, 0 denote unstable and stable modes, respectively, and

length and velocity are normalized to the ion gyroradius ρi and ion thermal
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velocity, respectively. In the linear response, the growth rate is determined

by the eigenvalue equation
∫

dv f1,1 = φ

∫
dv

1 + 2LnL−1
Ti

(
v2 − 1

)
+ θv

ω − kθv + iγL
kFM = 1.

When the gradient ratio LnL−1
Ti

is large, strong instability is possible to

occur.

The eigenfunction of the linearly unstable mode for the perturbed distri-

bution function, fL (v) = fL, r (v)+ ifL, i (v), is employed and the perturbed

distribution function of the unstable mode is set as

f1,1 (v, t) = {a (t) fL, r (v) + ib (t) fL, i (v)} exp (−iωt) , (5.26a)

where ω is the real frequency, and a (t) and b (t) indicate the amplitude.

The imaginary part of the second harmonics has the same functional form

as fL, i (v), and

Im f2,0 (v, t) = c (t) fL, i (v) . (5.26b)

Substituting Eq. (5.26) into Eq. (5.25), with the help of charge neutrality

condition, φ (t) =
∫

dv f1,1 (v, t), a set of coupled equations for amplitudes

(a, b, c) is obtained as

d
dt

a = γLb, (5.27a)

d
dt

b = γLa− 2k2ac, (5.27b)

d
dt

c = 4k2ac. (5.27c)

The nonlinear coupling terms are quadratic, although not identical to those

in Eq. (5.8).

This set of equations shows an exponential growth when the amplitude is
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small, a, b, c → 0. In addition, this set has two types of stationary solutions:
(
a0, 0, γLk−2/2

)
and (0, 0, c0), where a0 and c0 are arbitrary constants. The

integrals of motions are deduced from Eqs. (5.27) as

a2 + b2 +
1
2
c2 − γL

k2
c = E0, (5.28a)

b2 +
1
2
c2 − γL

2k2
c = E1, (5.28b)

a2 − γL

2k2
c = E2. (5.28c)

Similar geometrical constructions, using an ellipsoid, a cylinder and a parabola,

are thus derived. (Note that one integral of motion is deduced from the other

two in Eq. (5.28)). Figure 5.5 illustrates an example of the construction.

Orbits are shown to be periodic. A typical orbit is illustrated by a solid

curve in Fig. 5.5.
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Fig. 5.5. Three-wave model for the case that includes an unstable wave. Integrals

of motion are illustrated in the (a, b, c) space (a). A trajectory (the initial value of

which is characterized by a small amplitude b and a = c = 0) is shown in (b).
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5.3 The Physical Kinetics of Wave Turbulence

5.3.1 Key concepts

We now boldly leap from the terra firma of deterministic, integrable sys-

tems of 3 interacting modal degrees of freedom to the terra nova of wave

turbulence—systems of N interacting waves, where N À 1. Statistical

methods are required to treat such problems which involve the nonlinear in-

teraction of many degrees of freedom. The fundamental idea of the statistical

theory of wave or weak turbulence is that energy transfer occurs by a random

walk of mode couplings in the space of possible resonant interactions. Each

coupling event persists for a coherence time, which is short in comparison

to the spectral evolution time. A net mode population density (i.e. energy)

evolution then occurs via the accumulation of many of these short kicks or

energy transfer events which add incoherently, as in a diffusion process. We

remind the reader that the familiar theory of random walks and diffusion is

based on:

1. two disparate time scales τac, τD such that τac ¿ τD. These are:

a) the spectral auto-correlation time τac—which corresponds to an inverse

bandwidth—and sets the duration of one random kick or step time

and

b) the diffusion time τD ∼ ∆v2/Dv—the time to diffuse some finite interval

in velocity ∆v. Many steps occur during one τD

2. an evolution equation involving a fluctuating force, i.e. dv/dt = qẼ/m so

δv ∼ (q/m) Ẽτac/m sets the step size.
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Thus, D ∼ 〈
δv2

〉
/τac ∼ (q/m)2

〈
E2

〉
τac is the diffusion coefficient which

gives the rate of evolution. By analogy, we can say that the statistical

theory of wave turbulence is based on

1. having two disparate time scale τTc and τE , such that τTc ¿ τE . Here,

the fundamental time scales correspond to

a) the coupling or triad coherence time τTc—which is the duration time of

any specific three wave coupling. Possible triad structures are shown in

Figure 5.6. τTc is set by the inverse bandwidth (i.e. net dispersion) of

the frequency mismatch.

b) the energy transfer time, τE which is analogous to γ−1
E for the case of

coherent coupling (γE : definded as Eq. (5.18).).

2. the stochastic mode population evolution equation. Here, additional as-

sumptions such as the Random Phase Approximations are required for

closure, since stochastic amplitudes mean that the noise is multiplicative,

not additive, as in the case of Brownian motion.

k k

k
k k

k

k k

k

Fig. 5.6. Possible triads where k + k′ + k′′ = 0

We should add here that wave turbulence or weak turbulence differs from

fully developed or ‘strong’ turbulence, since for the latter, linear frequen-

cies are completely washed out, so the triad coherence and energy trans-

fer times are not distinguishable. For wave turbulence, standard perturba-
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tion theory based on linear wave response is possible, while for strong tur-

bulence, renormalization—an uncontrolled approximation which effectively

sums some portion of perturbation theory to all orders—is required.

Given that N À 1, even wave turbulence theory is highly non-trivial, and

several assumptions are needed to make progress. The central element of the

statistical theory of wave turbulence is the wave kinetic equation (WKE),

which is effectively a Boltzmann equation for the wave population density

N (x,k, t). Since N is proportional to the wave intensity, all phase infor-

mation is lost enroute to the WKE, which is derived by utilizing a ‘random

phase’ or ‘weak coupling’ approximation. Attempts at justifying the random

phase approximation often invoke notions of “many modes” (i.e. N À 1) or

“broad spectra”, but it must be said that these criteria are rather clearly in-

adequate and can indeed be misleading. For example, the Kuramoto model

of synchronization involves N À 1 coupled nonlinear oscillators, yet exhibits

states of synchronization—perfect phase coherence in the N → ∞ limit—

diametrically opposite behavior to that of a randomly phased ensemble of

waves! Simply having a large number of degrees of freedom does not—in and

of itself—ensure stochasticity! A more plausible rationale for a statistical

approach is to appeal to the possibility that the triad coherence time τTc is

shorter than the coherent energy transfer time τE , i.e. τTc ¿ τE . In this

case, since a particular mode k will participate in many uncorrelated triad

couplings prier to significant change of its population via nonlinear energy

transfer, such dynamics are amenable to description as a random walk in

the space of possible resonant interactions. Having N À 1 modes suggests

that M > 1 resonant couplings or kicks can occur in the course of spectral

evolution, thus permitting us to invoke the Central Limit Theorem to justify

a statistical approach. Truth in advertising compels us to admit that this is
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little more than a physically appealing plausibility argument though, since

we have no apriori knowledge of the density of resonant triads in k-space or

the statistical distribution of triad coherence times. In this regard, we re-

mark that a tail on the coherence time pdf—due to long lived triads—could

be one possible indication of intermittency in wave turbulence.

5.3.2 Structure of wave kinetic equation

It is useful to heuristically survey the theory of wave turbulence prior to

delivering into the technical exposition—both to see the ‘big picture’ and

to identify key time and space scales. Since much of the structure of wave

turbulence theory is analogous to that of the kinetic theory of gases (KTG),

it is advantageous to discuss the theory by comparison and contrast with

the KTG. Just as the Boltzmann equation (BE) evolves the one-body dis-

tribution function f (1) via single particle orbits and collisions, i.e.

Fig. 5.7. Two-particle collision for gas kinetics.

∂f

∂t
+ Lf = C (f) , (5.29)

the wave kinetic equation (WKE) evolves the wave quanta density—usually

the wave action density, given by Ek/ωk, according to

∂Nk
∂t

+ LkNk = C {N} . (5.30)

Here, L is the linear evolution operator, and Lk generates the evolution of

N along ray trajectories. The Boltzmann collision integral (the centerpiece



5.3 The Physical Kinetics of Wave Turbulence 231

of the KTG) has the structure

C (f) =
∫

dΓ1dΓ′dΓ′1 wT

(
f ′f ′1 − ff1

)
(5.31a)

where wT is the transition probability for an individual scattering event

(sketched in the cartoon in Fig. 5.7) and has the structure

wT ∼ wδ
((

p′1 + p′
)− (p + p1)

)
δ
((

E′
1 + E′)− (E + E1)

)
. (5.31b)

Here, the delta functions enforce conservation of energy and momentum

in an individual collision event and the weight w is proportioned to the

collisional cross-section σ. It’s useful to comment that in the relevant case

of number conserving interactions with small momentum transfer (i.e. p′ =

p− q, where |q| ¿ |p|), C (f) can be written in the form of a divergence of

a flux, i.e.

C (f) = −∇p · Sp (5.32a)

where the phase space flux Spα is

Spα =
∫

qα>0
d3p′d3q w

(
p, p′, q

)
[
f (p)

∂f ′ (p′)
∂p′β

− f ′
(
p′

) ∂f (p)
∂pβ

]
qαqβ.

(5.32b)

The reader should not be surprised to discover that the collision integral in

the wave kinetic equation often takes the form

C {N} =
∫

d3k′
[∣∣Vk′,k−k′

∣∣2 Nk′Nk−k′ −
∣∣Vk,k′

∣∣2 Nk′Nk

]

× δ
(
k′′ − k − k′

)
δ (ωk+k′ − ωk − ωk′) ,

(5.33)

since the theory of wave kinetics also models pdf evolution as a sequence of

many weak interactions which add incoherently. Here the transition prob-

ability w and the coupling functions Vk,k′,k′′ parametrize the basic interac-

tion strengths, f (p′) and Nk′ account for the distribution of ‘field parti-
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cles’ (which scatter a given test particle) or the background mode popula-

tion (which scatters a given test mode), and the factor of δ (k′′ − k − k′)

×δ (ωk′′ − ωk − ωk′) enforces momentum and energy conservation in an ele-

mentary interaction. In the case where couplings result in small increments

of the test mode wave vector, C {N} can also be simplified to the convection-

diffusion form

C {N} = −∇k · Sk, (5.34a)

Skα = Vα 〈N (k)〉 −Dαβ
∂ 〈N〉
∂kβ

. (5.34b)

Here the convection velocity Vα is usually associated with local interactions

between comparable scales, and the diffusion Dαβ (called induced diffusion)

is usually due to random straining or refraction of small scales by larger

ones. Both C (f) and C {N} appear as the difference of two competing

terms, since both model evolution by a succession of inputs and outputs,

or emissions and absorptions. Both C (f) and C {N} are derived from an

assumption of microscopic chaos—in the case of KTG, the “Principle of

Molecular Chaos” is used to justify the factorization

f (1, 2) = f (1) f (2) . (5.35)

For wave turbulence, the Random Phase Approximation (RPA)—which ap-

proximates all modal phases as random variables (i.e. Φk = Ake
−iαk , with

αk random) with Gaussian distribution allows

〈Φk1Φk2Φk3Φk4〉 = |Φk1 |2 |Φk3 |2 δ (k1 − k2) δ (k3 − k4) + symmetric term

∼ N (k1) N (k3) δ (k1 − k2) δ (k3 − k4) + s.t..

(5.36)
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In a related vein, C (f) is derived from an assumption of diluteness or weak

correlation, while C {N} is based on a test mode hypothesis, which assumes

that the statistics and other properties of all modes are similar. Table 5.1

summarizes the comparison and contrast of the KTG and wave kinetics.

One advantage of the ‘preview’ of wave turbulence theory given above is

that we can identify the basic time scales and explore the implications of

their ordering. Inspection of Eq. (5.19b) reveals the basic temporal rates;

— the mismatch frequency

ωMM = ωk′′ − ωk − ωk′ , (5.37)

which gives the net oscillation rate for any given triad. Obviously, ωMM →
0 for resonant triads. The number density of resonant triads in a given

range of wave vectors is central to quantifying the efficiency of resonant

interactions and determing if they are stochastic or coherent. In practice,

this number density is set by the range of wave-vectors, the dissipative

cut-off, and the structure of the dispersion relation.

— the rate of dispersion of ωMM

∆ωT =
∣∣∣∣
dωMM

dk
∆k′

∣∣∣∣ ∼=
∣∣∣∣
(

dωk′′

dk′′
− dωk′

dk′

)
∆k′

∣∣∣∣ (5.38)

which gives the rate at which a particular triad disperses due to wave

propagation. ∆ω−1
T is a plausible estimate for the dispersion-induced

triad coherence time τTc . It is enlightening to observe that the triad

decoherence rate ∆ωT ∼ |(vg (k′)− vg (k′′)) ·∆k′| i.e. the typical rate

at which two interacting wave packets disperse at their different group

speeds. Thus, the triad coherence which enters the lifetime of mode k is

set simply by the rate at which the interacting packets stream away from

each other at their respective group velocities. Note also that ∆ωT ∼
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Table 5.1. Comparison and contrast of the kinetic theory of gases and wave

kinetics.

Kinetic Theory of Gases Wave Kinetics

Time Scales

collision frequency νc triad de-coherence rate (1/τTc)

relaxation time spectral evolution time

Structure

particle Liouvillian L eikonal Liouvillian Lk

Boltzmann C (f) wave-wave interaction operator C {Nk}

Landau collision operator wave Fokker-Planck operator

cross-section σ coupling coefficients |Vk,k′,k′′ |2

energy and momentum conservation

factors i.e.

δ (
∑

Pin −
∑

Pout) δ (
∑

Ein − Eout)

selection rules for k, ω matching i.e.

δ (k′′ − k − k′) δ (ωk′′ − ωk − ωk′)

field particles background, ambient waves

test particle test wave

Irreversibility

principle of molecular chaos random phase approximation

micro-reversibility due detailed balance micro-reversibility due selection rules,

conservation laws

coarse graining → macro irreversibility

→ H-Theorem

coarse graining → macro irreversibility

→ H-Theorem

uniform Maxwellian equilibrium solu-

tion

Bose-Einstein, zero-flux equilibrium

solution

transport → finite flux in x cascade solution → finite flux in k
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∣∣(∂2ω/∂kα∂kβ

)
∆kα∆kβ

∣∣ is related to the strength of diffraction in the

waves, and is sensitive to anisotropy in dispersion.

— the energy transfer rate γE . For coherent interactions, γcoh
E is similar to

that given by Eq. (5.16), i.e.

γcoh
E ∼

(
|V |2 |a|2 /ω1ω2

)1/2
.

For stochastic interactions in wave kinetics, we will soon see that

γstoch
E ∼

∑

k′
Vk,k′,k−k′Nk′τTc ∼

(
γcoh

E

)2
τTc . (5.39)

Expressing the results for these two limiting cases in a consistent notation

γstoch/γcoh ∼ τTcγ
coh, (5.40)

indicates that for comparable intensity levels, energy transfer is slower

in wave kinetics than for coherent interaction. This is because in wave

kinetics transfer occurs via a random walk of step duration τTc , where

τTc < γ−1
E , so many steps are required to stochastically transfer an amount

of energy comparable to that transferred in a single coherent interaction.

Validity of wave kinetics requires ∆ωT < γcoh
E and ∆ωT < γstoch

E . We

again emphasize that, as in quasilinear theory, wave dispersion is cru-

cial to the applicability of perturbative, weak turbulence methodology. A

broad spectrum (large |∆k|) alone is not sufficient for validity of wave ki-

netics, since in the absence of dispersion, resonant triads in that spectrum

remain correlated for dynamically long times, forcing τTcγ
E → 1. This is

suggestive of either nonlinear structure formation (i.e. shocks, developed

by steeping), or the onset of strong turbulence.
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5.3.3 ‘Collision’ integral

Moving beyond generality, we now turn to the concrete task of construct-

ing the collision integral for the wave kinetic equation. As with coherent

interaction, this is best done via two complementary examples:

i) a general calculation for a ‘generic’ model evolution equation, assuming

random transitions. This parallels the treatment for coherent interac-

tion.

ii) a calculation for the specific and relevant example of the Hasegawa-

Mima equation for drift-Rossby waves.

5.3.3.1 Model dynamical equation

A generic form for the nonlinear oscillator equation is

d2ak
dt2

+ ω2
kak =

∑

k′
Vk,k′,k−k′ak′ak−k′ . (5.41)

Here, ak is the field variable of mode k, ωk is the linear wave frequency and

Vk,k′,k−k′ is the coupling function which ordinarily is k-dependent. Here

Vk,k′,k−k′ has the symmetries

Vk,k′,k−k′ = Vk,k−k′,k′ = V−k,−k′,−k+k′ , (5.42a)

Vk,k′,k−k′ = Vk−k′,−k′,k sgn (ωkωk−k′) . (5.42b)

Extracting the fast oscillation, i.e.

ak (t) = ak (t) e−iωkt,

where ak (t) indicates the wave amplitude, gives

d
dt

ak (t) = i
∑

k′
Vk,k′,k−k′ak′ (t) ak−k′ (t) exp [−i (ωk′ + ωk−k′ − ωk) t]

(5.43)
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which may be thought of as the multi-mode counterpart of Eqs. (5.8), the

modal amplitude equation. A factor of ω has been absorbed in the coupling

coefficient. Here the occupation density or number of quanta for a particular

mode k is Nk = |ak|2. Since ultimately we seek the collision operator for

the evolution of Nk (t), we proceed by standard time-dependent perturbation

theory. As the change in occupation ∆Nk (t) is given by

∆Nk (t) =
〈
|ak (t)|2

〉
−

〈
|ak (0)|2

〉
(5.44a)

working to second order in δa, ak (t)− ak (0) = δa
(1)
k + δa

(2)
k + · · · , gives

∆Nk (t) =
〈∣∣∣δa(1)

k (t)
∣∣∣
2
〉

+
〈
a∗k (0) δa

(2)
k (t)

〉
+

〈
δa

(2)∗
k ak (0)

〉
. (5.44b)

Expanding in a straightforward manner gives:

d
dt

(
δa

(1)
k (t) + δa

(2)
k (t) + · · ·

)
= i

∑

k′
Vk,k′,k−k′

(
ak′ (0) + δa

(1)
k

)

×
(
ak−k′ (0) + δa

(1)
k−k′

)
exp [−i (ωk′ + ωk−k′ − ωk) t] , (5.45a)

so

δa
(1)
k (t) = i

∑

k′,k′′
ak′ (0) ak′′ (0)

∫ t

0
dt′ V̂k,k′,k′′

(
t′
)
, (5.45b)

where

V̂k,k′,k′′ (t) = Vk,k′,k′′ exp [−i (ωk′ − ωk′′ − ωk) t] , (5.45c)

and we understand that k′′ = k − k′ here. Similar straightforward calcula-

tions give for δa(2):

δa
(2)
k = −

∑

k′,k′′
q′,q′′

{
ak′ (0) aq′ (0) aq′′ (0)

∫ t

0
dt′

∫ t′

0
dt′′ V̂k,k′,k′′

(
t′
)
V̂k′,q′q′′

(
t′′

)

+ ak′′ (0) aq′ (0) aq′′ (0)
∫ t

0
dt′

∫ t′

0
dt′′V̂k,k′,k′′

(
t′
)
V̂k.q′,q′′

(
t′′

)}
.

(5.45d)
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In the first term on the RHS of Eq. (5.45d), q′ + q′′ = k − k′, while in the

second q′ + q′′ = k′.

5.3.3.2 Extraction of response and closure

To close the calculation of ∆Nk (t)—the change in occupation number, cor-

relators such as
〈
δa(1)δa(1)

〉
and

〈
δaδa(2)

〉
are simplified by the Random

Phase Approximation (RPA). The essence of the RPA is that if the dura-

tion of phase correlations is shorter than any other time scale in the problem,

then the phases of the modal amplitude may be taken as random, i.e.

ak → âke
iθk

with θk random. Then, for

〈 〉 = 〈 〉ensemble =
∫

dθ P (θ) ,

where P (θ) is the pdf of phase θk,

〈akak′〉 =
〈
âke

iθk âk′e
iθk′

〉

= |âk|2 δk,−k′
(5.46a)

and

Nk = |âk|2 . (5.46b)

We should comment that:

i) the RPA should be considered as arising from the need to close the mo-

ment hierarchy. Truly random phases of the physical modal amplitudes

would preclude any energy transfer, since all triad couplings would nec-

essarily vanish. Rather, the RPA states that modal correlations are in

some sense weak, and induced only via nonlinear interaction of resonant

triads,
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ii) the RPA is an uncontrolled approximation. It lacks rigorous justifica-

tion and cannot predict its own error.

iii) the RPA is seemingly relevant to a system with short triad coherence

time (i.e. γEτTc ¿ 1), and so it should be most applicable to ensem-

bles of waves where many strongly dispersive waves resonantly interact,

though this connection has not been firmly established.

Having stated all those caveats, we must add that there is no way to make

even the crudest, most minimal progress on wave turbulence without utiliz-

ing the RPA. It is the only game in town.

Closure modelling is explained in detail in the next chapter, and we discuss

here the extraction of interaction time briefly. Proceeding, the increment in

occupation ∆N driven by weak coupling can thus be written as

∆Nk (t) =
〈

Re
∑

k′,k′′
q′,q′′

{
ak′ (0) ak′′ (0) a∗q′ (0) a∗q′′ (0)

∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k,q′,q′′
(
t′′

)

− ak (0) ak′ (0) a∗q′ (0) a∗q′′ (0)
∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k′′,q′,q′′
(
t′′

)

− ak (0) ak′′ (0) a∗q′ (0) a∗q′′ (0)
∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k′,q′,q′′
(
t′′

)}
〉

.

(5.47)

Since the bracket refers to an average over phase, we can factorize and reduce

the averages of quartic products by the requirement of phase matching. For

example, the first term on the RHS of Eq. (5.47) may be written as:

∆N1 =
∑

k′,k′′
q′,q′′

〈
ak′ (0) ak′′ (0) a∗q′a

∗
q′′

〉 ∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k,q′,q′′
(
t′′

)
,

(5.48a)
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where possible factorizations of the quartic product are given by:

〈

ak′ (0) ak′′ (0) a
∗

q′a
∗

q′′

〉

→

〈

ak′ (0) ak′′ (0) a
∗

q′a
∗

q′′

〉

1 2 3 4

= |âk′ |2 δk′,q′ |âk′′ |2 δk′′,q′′ + |âk′ |2 δk′,q′′ |âk′′ |2 δk′′,q′ .

Thus

∆N1 =
∑

k′,k′′
Nk′Nk′′

∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k,k′,k′′
(
t′′

)

+
∑

k′,k′′
Nk′Nk′′

∫ t

0
dt′ V̂k,k′,k′′

(
t′
) ∫ t

0
dt′′ V̂ ∗

k,k′′,k′
(
t′′

)
.

(5.48b)

Using the coupling function symmetries as given by Eq. (5.42), simple but

tedious manipulation then gives

∆N1 = 2
∑

k′,k′′
Nk′Nk′′

[∫ t

0
dt′ V̂ ∗

k,k′,k′′
(
t′
) ∫ t

0
dt′′ V̂k,k′,k′′

(
t′′

)]
. (5.49)

To perform the time integration, as in the case of Brownian motion it is con-

venient to transform to relative (τ = (t′ − t′′) /2) and average (T = (t′ + t′′) /2)

time variables and then symmetrize to obtain
[∫ t

0
dt′V̂ ∗

k,k′,k′′
(
t′
) ∫ t

0
dt′′V̂k,k′,k′′

(
t′′

)]

=
∣∣Vk,k′,k′′

∣∣2 2
∫ t

0
dT

∫ T

0
dτ exp [i (ωk − ωk′ − ωk′′) τ ]

=
∣∣Vk,k′,k′′

∣∣2 2
∫ t

0
dT

(exp (i (ωk − ωk′ − ωk′′) T )− 1)
i (ωk − ωk′ − ωk′′)

(5.50a)

so taking T À ω−1
MM, ∆ω−1

MM then gives

= 2πt
∣∣Vk,k′,k′′

∣∣2 δ (ωk − ωk′ − ωk′′) . (5.50b)

Equation (5.50) has the classic structure of a transition probability element,

as given by the Fermi Golden Rule for incoherent couplings induced by



5.3 The Physical Kinetics of Wave Turbulence 241

time-dependent perturbations. Here the time dependency arises from the

limited duration of the triad coherence set by the dispersion in ωMM. ∆N

is in proportion to t. Since t is, by construction, large in comparison to any

other time scale in the problem, as in Fokker-Planck theory we can write,

∂N1

∂t
= 4π

∑

k′,k′′
Nk′Nk′′

∣∣Vk,k′,k′′
∣∣2 δ (ωk − ωk′ − ωk′′) . (5.51)

A similar set of calculations for the second and third terms on the RHS then

gives the total collision integral for population evolution due to stochastic

wave-wave interaction with short coherence time as

C {Nk} =4π
∑

k′,k′′

(
Vk,k′,k′′

)2
δk,k′,k′′δ (ωk − ωk′ − ωk′′)

× [Nk′Nk′′ − (sgn (ωkωk′′) Nk′ + sgn (ωkωk′) Nk′′) Nk] .

(5.52a)

A related form of C {Nk} with more general symmetry properties is

C {Nk} =π
∑

k′,k′′

{∣∣Vk,k′,k′′
∣∣2 (Nk′Nk′′ − (Nk′ + Nk′′) Nk)

× δ
(
k − k′ − k′′

)
δ (ωk − ωk′ − ωk′′)

+ 2
∣∣Vk′,k,k′′

∣∣2 (Nk′′Nk −Nk′ (Nk′′ + Nk))

× δ
(
k′ − k − k′′

)
δ (ωk′ − ωk − ωk′′)

}
.

(5.52b)

The factor of 2 arises from the arbitrary choice of k′ to interchange with k

in the second term. The full wave kinetic equation is then

∂N

∂t
+ (vgr + v) ·∇N − ∂

∂x
(ω + k · v) · ∂N

∂k
= 2γkNk + C {Nk} . (5.53)

Here v is an ambient large scale shear flow which advects the interacting

wave population and γk is the linear growth or damping rate for the wave

population. The LHS of Eq. (5.53) is conservative—i.e. can be written in

the form dN/dt—and describes evolving N along Hamiltoninan ray trajec-
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tories (see Fig.5.8)

dx

dt
= vgr + v,

dk

dt
= −∂ (ω + k · v)

∂x
.

Equation (5.52) gives the collision integral for stochastic wave-wave interac-

tion by random triad couplings of short duration, and constitutes a central

result in the theory of wave-wave interactions.

Fig. 5.8. Wave packet (which is denoted by the shade) with wave vector k (thick

solid arrow) moves in the presence of large-scale strain field v (x). Thin dotted

arrows show motion of a packet in real space.

Equation (5.52), (5.53) certainly merit discussion in detail.

→ C {N} has the characteristic structure indicating evolution of the popu-

lation Nk at a given wave vector k via a competition between input by

(incoherent) noise and relaxation by nonlinear couplings which produce

outflow to other k′s, i.e.

∂N

∂t
∼

∑
|V |2 {

Nk′Nk′′︸ ︷︷ ︸
— noise/incoherent

emission INTO k
from k′, k′′
interaction

— not ∼ Nk

− ( ) Nk′Nk︸ ︷︷ ︸
— relaxation OUTFLOW

from k via
nonlinear interaction

— ∼ Nk

}
.

This structure is common to virtually all wave kinetic equations.

→ The population outflow or damping term in Eq. (5.53) identifies the

characteristic nonlinear relaxation rate of a test mode k in wave turbulence
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theory, as ∂Nk/∂t ∼ −Nk/τRk, where the relaxation rate 1/τRk is

1/τRk ∼
∑

k′,k′

∣∣Vk,k′,k′′
∣∣2 δk,k′,k′′δ (ωk′′ − ωk′ − ωk) Nk′

∼
∑

k′
resonant

∣∣Vk,k′
∣∣2 τTckNk′ .

Notice that the relaxation rate is set by:

— the resonance condition and the number of resonant triads involving

the test mode k

— the coherence time τTck of triads involving the test mode k

— the mean square coupling strength and the ambient mode intensity.

The relaxation rate 1/τRk is the stochastic counterpart of the coherent

energy decay rate γcoh
E . Most estimates of solution levels and transport in

weak turbulence theory are derived by the balance of some linear growth

rate γL,k with 1/τRk. This gives a generic scaling of the form for a fluc-

tuation level

N ∼ (γL/τTc)
∣∣Vk,k′

∣∣−2

→ C {N} conserves the spectrum integrated wave energy E (E = Nω) and

momentum P (P = Nk) densities since the resonance conditions enforce

these conservation laws in the microscopic interactions. In the case where

the scattering increment (∆k) of the test mode is small, so C {N} →
−∇k · Sk, C {N} also conserves excitation number. In general, however,

the Manley-Rowe relations tell us that total exciton number need not be

conserved in three mode interactions—i.e. two waves in, one out (or the

reverse)—though it is for the case of resonant four-wave processes (i.e.

two in → two out).

→ As should be apparent from the triad resonance conditions, C {N} sup-
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ports several types of wave-wave interaction processes, depending on dis-

persion, coupling strength and behavior, etc. Interactions can be local in

k, in which case C {N} takes the generic form

C {N} = − ∂

∂k
(V (k, N) Nk)

as in the Leith model of turbulence. Here V (k, N) represents a flux or

flow of quanta density in wave vector. Interactions can be non-local in k

but proceed via small ∆k increments, in which case Sk is diffusive, i.e.

Sk = −Dk
∂N

∂k

so

C {N} =
∂

∂k
Dk

∂Nk
∂k

.

Such interaction are referred to as induced diffusion. The physics of certain

generic classes of non-local wave interactions including induced diffusion,

will be discussed later in this chapter.

→ Given the parallel development of wave kinetics and the kinetic theory of

gas, its no surprise that one can construct and prove an H-theorem for

C {N} in analogy to the Boltzmann H-theorem. Here, the entropy is

S =
∫

dk ln (Nk) (5.54)

and the distribution for which dS/dt = 0 corresponds to a Rayleigh-Jeans

type distribution, Nk = T/ωk. This implies that equipartition of energy is

one stationary population distribution Nk in the limit ωk ¿ T . This equi-

librium distribution corresponds to a state of zero spectral flux or energy

dissipation rate. The theory of entropy production in wave turbulence is

developed further in the monograph by Zakharov, et.al. (Zakharov et al.,

1992), and discussed furthur in the next chapter.
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5.3.4 Application to drift-Rossby wave

Proceeding as in our discussion of coherent wave-wave interactions, we now

present the theory of wave kinetics for the very relevant case of drift-Rossby

wave turbulence in its simplest incarnation, namely the Hasegawa-Mima

equation. There are several reasons for explicit consideration of this exam-

ple, which include:

— the relevance of drift-Rossby wave turbulence to confinement physics

— the impact of the dual conservation of energy and potential enstrophy—

both quadratic invariant of moments—on the wave spectrum evolution

— the consequent appearance of ‘negative viscosity phenomena’—i.e. the

tendency of wave energy to be scattered toward large scale.

— the relation of wave interaction to potential vorticity transport.

— the breaking of scale in variance in the coupling factors, on account of

k⊥ρs independence.

5.3.4.1 Model

The quasi-geostrophic or Hasegawa-Mima equation for drift-Rossby waves

is

d
dt

(
Fφ−∇2φ

)
+ Vde

∂φ

∂y
= 0 (5.55a)

where advection is by E ×B velocity

d
dt

=
∂

∂t
+ ∇φ× ẑ ·∇. (5.55b)

So for mode k, we have the generic amplitude evolution equation

∂φk (t)
∂t

+ iωkφk (t) =
∑

k′+k′′=k

Vk,k′,k′′φk′ (t) φk′′ (t) (5.56a)
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where the coupling coefficient is

Vk,k′,k′′ =
1
2

(k′ · k′′ × ẑ)
(
k′′2 − k′2

)

F + k2
(5.56b)

and the drift wave frequency is just

ωk = kyVde/
(
F + k2

⊥
)
. (5.57)

Derivation and explanation for the model equation (5.55) are given in the

Appendix. Equation (5.56a) is the basic equation for the evolution of modal

amplitudes φk (t). The long time evolution of the wave intensity |φk|2 due

to nonlinear couplings is given by the triad correlator i.e.

∂

∂t
|φk (t)|2 =

∑

k′+k′′=k

Vk,k′,k′′ 〈φ∗k (t)φk′ (t) φk′′ (t)〉 = Tk. (5.58)

The triad correlater Tk is non-vanishing due to test wave couplings which

survive the ensemble average over random phases denoted by the brackets

〈 〉, and which satisfy the resonance condition. Hence,

Tk =
∑

k′+k00=k

Vk,k′,k′′

[〈
φk′ (t) φk′′ (t) δφ∗k

(2) (t)
〉

︸ ︷︷ ︸
incoherent emission T1

+
〈
φk (t) δφk′′

(2)φ∗k (t)
〉

︸ ︷︷ ︸
relaxation T2

+
〈
δφk′

(2) (t) φk′′ (t) φ∗k (t)
〉

︸ ︷︷ ︸
relaxation T2

]

(5.59)

where in the first term, which ultimately represents nonlinear noise or inco-

herent emission,

δφ
(2)
k ∼ φk′φk′′ , so T1k ∼ |φk′ |2 |φk−k′ |2

and the second two ultimately represent nonlinear relaxation i.e.

δφ
(2)
k′′ ∼ φk′φk, so T2k ∼ |φk′ |2 |φk|2 .
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To complement our derivation of Eq. (5.52), here we will explicitly calculate

T2—the nonlinear relaxation response—and simply state the result for the

incoherent contribution to Tk. For the nonlinear response contribution T2,

after symmetrization, etc. we straightforwardly obtain

T2k =
∑

k′

(
k′ · k × ẑ

F + k2

)(
k′′2 − k′2

)〈
φ−k (t) φ−k′ (t) δφ

(2)
k+k′ (t)

〉

(5.60a)

and

∂

∂t
δφ

(2)
k+k′ + iωk+k′δφ

(2)
k+k′ =

(
k′ · k × ẑ

F + k′′2

)(
k′2 − k2

)
φk′ (t) φk (t)

(5.60b)

so

δφ
(2)
k+k′ =

∫ t

−∞
dt′ exp

[
iωk+k′

(
t− t′

)](
k′ · k × ẑ

F + k′′2

) (
k′2 − k2

)
φk′

(
t′
)
φk

(
t′
)
.

(5.60c)

Causality and t > t′ together imply that ωk+k → ω + iε, so φ2 is damped at

t → −∞. Combining all this gives the T2 contribution

T2k =
∑

k′

(k′ · k × ẑ)2

(F + k2)
(
F + k′′2

)
(
k′′2 − k′2

)(
k′2 − k2

)

×
∫ t

−∞
dt′ exp [iωk+k′ ]

〈
φ−k (t)φ−k′ (t) φk′ (t) φk

(
t′
)〉

.

(5.61)

We further take the two time correlator as set by wave frequency, nonlinear

dynamics and causality, alone. This allows the two time scale ansatz

〈
φ∗k (t) φk′

(
t′
)〉

=
∣∣φk

(
t′
)∣∣2 δk+k′,0 exp

[−iωk
(
t− t′

)]
(5.62)

since t′ > t, ω → ω + iε guarantees that correlation decays as t → ∞. It

is understood that the amplitude varies slowly relative to the phase. Using
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Eq. (5.62) in Eq. (5.61) then gives

T2k =
∑

k′

(k · k′ × ẑ)2

(F + k2)
(
F + k′2

)
(
k′′2 − k′2

)(
k′2 − k2

)
|φk′ |2 |φk|2 Θk,k′,k′′ ,

(5.63a)

where Θ, the triad coherence time, is

Θk,k′,k′′ =
∫ t

−∞
dt′ exp

[−i (ωk + ωk′ − ωk′′)
(
t− t′

)]
(5.63b)

and k′′ = k + k′ taking the real part finally gives (for weak nonlinear inter-

action)

ReΘk,k′,k′′ = πδ (ωk + ωk′ − ωk′′) , (5.63c)

from where appears the resonant coupling condition. Hence, the nonlinear

response contribution to T is

T2k =
∑

k′

(k · k′ × ẑ)2

(F + k2)
(
F + k′′2

)
(
k′′2 − k′2

) (
k′2 − k2

)

× |φk′ |2 |φk|2 πδ (ωk + ωk′ − ωk′′) . (5.64)

T1—the noise emission part of the spectral transfer— can similarly shown

to be

T1k =
∑
p,q

p+q=k

(p · q × ẑ)2

(F + k2)2
(
q2 − p2

) (
q2 − p2

)

× |φp|2 |φq|2 πδ (ωk − ωp − ωq) (5.65)

so

Tk = T1k + T2k. (5.66)

Several aspects of Eqs. (5.64) and (5.65) merit detailed discussion.
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→ The relaxation time τR,k can be read off directly from Eq. (5.64) as

1/τR,k =
∑

k′

(k · k′ × ẑ)2

(1 + k2)
(
1 + k′′2

)
(
k′′2 − k′2

)(
k2 − k′2

)

× |φk′ |2 πδ (ωk + ωk′ − ωk′′) . (5.67)

For |k| ¿ |k′|, 1/τR,k < 0, while for |k| À |k′| as usual, 1/τR,k > 0. This

is suggestive of ‘inverse transfer’ or a ‘negative viscosity’ phenomenon,

whereby intensity is scattered to large scales from smaller scales. This is

a recurring theme in 2D and drift-Rossby turbulence and follows from the

dual conservation of energy and potential enstrophy. 2D and geostrophic

turbulence dynamics is discussed in Chapter 2, while geostrophic turbu-

lence is discussed further in Chapter 6 and in Volume II. The reader should

be cautioned here that “negative viscosity” refers only to the tendency of

the system to scatter energy to large scale. A patch of turbulence in such

systems tends to broaden and spread itself in space by scattering via mu-

tual induction of the interacting vortices. (See Fig. 5.9 for illustration.)

Also, while the dynamics of negative viscosity phenomena in drift-Rossby

wave turbulence resembles that of the inverse cascade, familiar from 2D

fluids, we stress that these two are not identical. Wave turbulence dynam-

ics depends sensitively on triad resonance and thus on dispersion, etc. and

transfer of energy need not be local in k. The inverse cascade is a local

process in k, and is insensitive to the details of wave dynamics. Further

discussion is given in Chapter 7.

→ The conservation property for the transfer function Tk must be noted.
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Fig. 5.9. Broadening or spreading (l2 > l1, t2 > t1) of a patch of 2D turbulence by

mutual induction of vortex motion.

One can straightforwardly show that

∑

k

(
F + k2

)
Tk = 0

∑

k

(
F + k2

)2
Tk = 0

so both energy E and potential enstrophy Ω

E =
∑

k

(
1 + k2

) |φk|2

Ω =
∑

k

(
1 + k2

)2 |φk|2

are conserved by the wave coupling process. (See also the explanation of

conservation in the Appendix.) Note that proper treatment of both noise

and nonlinear response is required for balance of the energy and poten-

tial enstrophy budgets. In particular, potential enstrophy conservation is

manifested in wave kinetics from the direct correlation between nonlin-

ear noise and response terms. Conservation is a simple consequence of

symmetrization of the perturbation theory and is not an especially dis-

criminating test of a turbulence theory.

→ In general, drift wave dispersion is quite strong, so resonant triads are,
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in the same sense, rather ‘special’. This is due at least in part, to the

gyro/Rossby radius dependence (i.e. k2
⊥ρ2

i factor (ρi: ion gyro radius))

in the dispersion relation, which breaks scale invariance. An exception

to this occurs at long wavelength, i.e. k2 ¿ F (i.e. k2
⊥ρ2

i < 1), where

ωk ∼ (kyVde/F )
(
1− k2

⊥/F
)

(i.e. ωk ∼ kyVde

(
1− k2

⊥ρ2
i

)
), so the waves

are nearly dispersion free. There τTc ∼ O
(
F/k2

)
(i.e. ∼ O

(
1/k2ρ2

i

)
),

so the triad coherence diverges and renormalization is definitely required.

The general structure of resonant triads for Rossby wave turbulence was

considered by Longuet-Higgins and Gill (Longuet-Higgins et al., 1967),

and we refer the reader to that original source for further discussion. We

do remark, though, that if one of the interacting modes is a low frequency

or zero frequency shear flow (i.e. a Zonal flow or GAM (Diamond et al.,

2005b)), resonance occurs much more easily. This is one reason for the

dominant role of zonal flows in drift wave turbulence. This topic will be

extensively descussed in Volume II.

5.3.5 Issues to be considered

After this introduction to the derivation and structure of the theory of wave

kinetics, it is appropriate to pause to take stock of the situation and to reflect

on what has and has not been accomplished. So far, we have developed a

perturbative, statistical theory of wave population evolution dynamics. In-

deed, by construction the structure of wave kinetics closely resembles the

theory for incoherent emission and absorption of photons in atomic transi-

tions and the theory of vibrational mode interactions in a solid. Wave kinet-

ics is built upon the dual assumptions of negligible mode-mode coherency

(i.e. the RPA) and short triad lifetime (τTcγE < 1), and so is limited in
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applicability to system of a large number of dispersive waves. Wave kinetics

does

— provide a framework within which we may identify and assess nonlin-

ear interaction mechanisms and with which to calculate mode population

evolution

— preserve relevant energy, momentum etc. conservation properties of the

primitive equations. We emphasize that this is not an especially rigorous

test of the theory, however.

— provide a collision operator C {N} for the wave kinetic equation which

enables the construction of radiation hydrodynamic equations for the wave

momentum and energy fields, etc.

— enable the identification of relevant time and space scales. However, from

the trivial solution of energy equipartition, we have not yet:

→ demonstrated the actual existence of any solutions to the wave kinetic

equation which annihilate C {N}
→ characterized the class of possible local and non-local interactions and

their impact on spectral evolution

→ considered the stability of possible solutions.

We now turn to these issues.

5.4 The Scaling Theory of Local Wave Cascades

5.4.1 Basic ideas

We now turn from the formal development of wave interaction theory to

discuss:

— how one might actually use wave kinetics to calculate the wave spectrum.
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We discuss several examples of wave cascades

— solutions of the WKE with finite spectral flux

— the relation of local cascades in wave turbulence to the K41 theory dis-

cussed in Chapter 2.

Truth in advertising compels us to admit the wave kinetic equation is rarely

solved outright, except in a few very simple and rather academic cases.

Given its complexity, this should be no surprise. Instead, usually its struc-

ture is analyzed to determine which types of coupling mechanisms are domi-

nant, and how to construct a simpler dynamical model of spectral evolution

for that particular case. In this section, we present some instructive ‘stud-

ies’ in this approach. For these, wave kinetics plays an important role as a

general structure within which to determine relaxation time. Sadly though,

there is no universal solution. Rather, the form of the dispersion relation

and compling coefficients make each case a challenge and opportunity.

5.4.1.1 Fokker-Planck approach

We begin by examining processes which produce a small increment in the

wave vector k. Here, small increment refers to couplings between roughly

comparable scales or k values, which results in a slight shift ∆k in the test

mode wave-vector. The Kolmogorov (K41) cascade is a classic example of

a small increment process in scale space. For small increments, one might

think of N (N : action density in k space) evolving as in a Fokker-Planck

process, i.e.

N (t + ∆t,k) =
∫

d∆k N (t,k −∆k) T (∆k, ∆t) , (5.68a)
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where T (∆k, ∆t) is the transition probability for a step or k-increment of

size ∆k in a time interval ∆t. The usual algebra then gives

∂Nk
∂t

= − ∂

∂k
·
{〈

dk

dt

〉
N − ∂

∂k
·
〈

∆k∆k

2∆t

〉
N

}

= − ∂

∂k
·
{

(VkN)− ∂

∂k
· (DkN)

}
,

(5.68b)

where

→ Vk = 〈dk/dt〉 is the mean ‘flow velocity’ in k. This flux in k results from

a series of small increments ∆k, as shown in Fig. 5.10.

→ Dk = 〈∆k∆k/2∆t〉 is the k-space diffusivity which describes evolution of

the k-variance of N .

Fig. 5.10. Flux of Nk induced by a series of small increments in steps ∆k.

Since the flow and diffusion in k are produced by mode-mode interactions,

obviously Vk = Vk {N}, Dk = Dk {N}. Sources (i.e. growth) and sinks

(i.e. damping) may also be added to Eq.(5.41). While k-space diffusion is a

small increment process, it is in general not a local one. Rather, the strain

field driving Dk usually is localized at larger and slower scales than those

of the test wave. For local interactions producing a net mean exciton flux

in k-space, the lowest order description of a small increment process simply

neglects diffusion and, in the absence of sources and sinks, reduces to

∂Nk
∂t

+
∂

∂k
· (VkNk) = 0. (5.69a)
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Here, the stationary spectrum is just that which produces a divergence-free

flux in k—i.e. that for which

∂

∂k
· (VkNk) = 0. (5.69b)

5.4.1.2 Leith model

Frequently, it is useful to formulate the flux in a 1D (i.e. scalar) k-space,

or scale (i.e. l) space. In such cases, the relaxation rate ∼ 1/τRk is often

easier to construct than a flow velocity. When the spectrum is isotropic,

Nk depends only on k = |k|, the one dimensional densityN (k) = 4πk2Nk is

used, and a measure of the wave number quanta within the wave number k,

n (k) = kN (k) ,

is introduced. The velocity in the k-space is also specified by a scalar variable

V (k), which denotes the velocity in the |k|-direction. In the next step, the

velocity in the k-space V (k) is rewritten in terms of the relaxation rate as,

1
k
V (k) =

d
dt

ln k ∼ 1
τRk

. (5.70a)

Rewriting the divergence operator (∂/∂k) · in one-dimensional form k−2 (d/dk) k2,

Eq.(5.69a) is rewritten as

∂

∂t
n (k) +

d
d ln k

(
1

τRk
n (k)

)
= 0. (5.70b)

The stationary spectrum satisfies

d
dk

(
1

τRk
n (k)

)
= 0. (5.71)

This is the idea underpinning the Leith model, a useful and generalizable

approach to modelling cascades and local processes. The Leith model, which

is motivated by analogy with radiation and neutron transport theory, aims to

represent the cascade’s flux of energy in k-space as a simple, local nonlinear
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diffusion process. Such a representation is extremely useful for applications

to multi-scale modelling, transport, wave radiation hydrodynamics, etc. Of

course, other assumptions or physics information is required to determine Vk

or 1/τRk and relate them to Nk. Wave kinetic theory provides a framework

with which to determine these quantities.

Like most things in turbulence theory, the Leith model is motivated by

the K41 theory of Navier-Stokes turbulence, which balances local energy flux

through scale l at the rate v(l)/l with a constant dissipation rate ε, taken

to be independent of scale and viscosity. Thus, we recall that

ε =
E(l)
τ(l)

=
v3 (l)

l

or equivalently in k-space

ε = [kE (k)]
[
k3E (k)

]1/2
.

Here E (k) is in the 1D spectrum, so kE (k) is a measure of the energy in

wavenumber k and
[
k3E (k)

]1/2 = k [kE (k)]1/2 = 1/τRk is just the eddy

turn-over rate. In essence, k appears as a density-of-states factor. Hence,

E(k) ∼ ε2/3k−5/3, so we recover the familiar K41 spectrum, which has fi-

nite, constant spectral energy flux ε. Now in the Leith model of fluid turbu-

lence, the effective quanta density n (k) is just kE(k), the relaxation rate is

1/τRk =
[
k3E (k)

]1/2 and so Eq. (5.71) is just

∂

∂ ln k

(
k (kE (k))3/2

)
=

∂

∂ ln k

(
k5/2E (k)3/2

)
= 0, (5.72)

the solution of which recovers the K41 spectrum.

5.4.1.3 Leith model with dissipation

It is instructive to discuss a slightly more complicated example of the Leith

model, in order to get a feel for spectral flow constructions in a familiar
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context. Retaining viscous damping as an explicit high-k sink changes the

Leith model spectral flow continuity equation to

∂

∂t
n (k) +

∂

∂ ln k

(
kn (k)3/2

)
+ νk2n (k) = 0. (5.73)

Here n (k) = kE (k). The stationary state spectrum must then balance

spectral flux and dissipation to satisfy

∂

∂ ln k

(
kn (k)3/2

)
+ νk2n (k) = 0,

with an initial condition (influx condition) that at k0, the stirring or input

wavenumber, n(k0) = v2
0. Then taking U = kn(k)3/2 (note U is just the

energy flow rate!) transforms the flow equation to

dU(k)
dk

+ νk1/3U(k)2/3 = 0, (5.74)

so

U(k) = ε− νk4/3/4. (5.75)

In the inertial range, ε À νk4/3/4, so U(k) = ε, n(k) = (ε/k)2/3 and E(k) =

ε2/3k−5/3, the familiar Kolmogorov spectrum. Observe that in the Leith

model, the energy dissipation rate ε appears as a constant of integration.

Matching the boundary condition at k0 requires U(k0) = k0n(k0)3/2 =

k0v
3
0 ∼ v3

0/l0. This gives the integration constant ε as

ε = U(k0) + νk
4/3
0 /4

∼= k0v
3
0.

(5.76)

The second term on the RHS is just a negligible O (1/Re) correction to

the familiar formula which relates the dissipation rate to the stirring scale

parameters. (Re: Reynolds number. Illustration is given in Fig. 5.11.)

From this simple example, we see that the essence of the Leith model ap-
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Fig. 5.11. Leith model with small but finite molecular viscosity ν. Spectrum is cut

at kc, which satisfies the relation kc = (4ε/ν)3/4.

proach, which is useful and applicable only for local, steady small increment

processes, is to

→ identify an exciton density which ‘flows’ in k or scale space by local in-

crements. The relevent quantity is usually suggested by some indication

of self-similarity (i.e. a power-law spectrum over a range of scales).

→ use physics input or insight to identify a flow rate or relaxation time and,

in particular, its depedence on Nk. Wave kinetics is very helpful here.

→ impose stationarity to determine the spectrum. A quanta source and sink

must be identified, and the necessary constant of integration is usually

related to the net flow rate.

5.4.2 Gravity waves

Another instructive application of wave kinetics is to the spectrum of surface

gravity waves (Lighthill, 1978). Indeed, three of the earliest and best known

studies of wave kinetics are the pioneering works of Phillips (Phillips, 1966),

Hasselman (Hasselmann, 1962; Hasselmann, 1968), and Zakharov and Filo-

nenko (Zakharov and Filonenko, 1967), all of which dealt with surface wave
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turbulence. Ocean surface gravity waves are excited by the wind, and con-

tinuously fill a range of scales with wavenumber kw < k < kcap. Here kw is

the wave number of the wind wave kw = g/v2
w, and kcap is set by the small

scale where surface tension becomes important, i.e. kcap ∼ (ρg/σ)1/2 (where

σ is the coefficient of surface tension, g is the gravitational acceleration, and

ρ is the mass density). The surface wave displacement spectrum is a power

law over this range, and asymptotes to a quasi-universal form
∣∣∣ξ̃

∣∣∣
2
∼ k−4,

at the upper end of the gravity wave range (ξ: displacement of surface).

This universal spectrum is referred to as the ‘Phillips spectrum,’ after O.

Fig. 5.12. Formation of wave slope discontinuity at crest of breaking wave. ds̃/dx =

δ (x− x′)

M. Phillips, who first proposed it in 1955. The basic idea of the Phillips

model is that the waves are saturated, i.e. sitting just at the threshold of

breaking, so the wave slope s̃ is discontinuous, i.e. ds̃/dx = δ (x− x′) at a

wave crest (see Fig. 5.12). Since s̃ = kξ̃, this implies a displacement spec-

trum of
∣∣∣ξ̃

∣∣∣
2
∼ 1/k4, the essence of the Phillips model. Intensive studies by

a variety of sensing and analysis techniques all indicate that

— the excitations on the ocean surface are very well approximated by an

ensemble of surface waves, with a power law spectrum of wave slopes.

— the Phillips spectrum is a good fit, at least at the upper end of the gravity

wave range.
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The scale invariance of gravity waves on the interval kw < k < kcap, the

universality of the Phillips spectrum, and the strong excitation of gravity

waves by even modest wind speeds have all combined to motivate application

of the theory of wave kinetics to the problem of the gravity wave spectrum, in

the hope of developing a first principles of theory. Gravity waves have several

interesting features which distinguish them from Alfvén or drift waves, and

which also make this example especially instructive. In particular:

— on account of the gravity wave dispersion relation ω =
√

gk, there are no

three-wave resonant couplings among gravity waves. Rather, the funda-

mental resonant interaction is four-wave coupling . Resonant three-wave

coupling is possible among two gravity waves and a very small gravity-

capillary wave. Indeed, the absence of the three-wave resonance among

gravity waves is one likely reason why they are seemingly such a good

model for ocean surface excitations.

— unlike Alfvén waves in incompressible MHD, gravity waves can break, so

applicability of weak turbulence theory requires that wave displacement

ξ̃ be small enough so that the wave slope is subcritical to breaking (i.e.

kξ̃ < 1). This imposes a limit on the wave amplitudes and energies which

are compatible with wave kinetics. More generally, it is plausible to expect

the weak turbulence spectrum to be ‘softer’ than the Phillips spectrum

(i.e. ∼ k−α, α < 4), since resonant four-wave coupling is not as efficient

as wave breaking in disposing of wave energy. (Fig. 5.13)

Given the self-similar power law structure of the gravity wave spectrum, it

is natural to try to model gravity wave interaction as a local energy cascade

from large (wind-wave scale) to small (gravity-capillary wave scale) scales.

In this sense, the gravity wave energy cascade resembles the Kolmogorov
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Fig. 5.13. Spectral steepening as waves approach saturation at the Phillips spec-

trum S ∼ k−4.

cascade. An important difference between these two cascades is the nature

of the effective dissipation which terminates them. Instead of viscosity as

for ordinary Navier-Stokes turbulence, the gravity wave cascade terminates

by some combination of wave crest instability and wave breaking, which in-

volves the combined effects of surface tension, vorticity at the surface layer,

and the dynamics of air-sea interaction (i.e. white capping, foam and bub-

ble formation, etc.). The dissipative dynamics of the gravity wave cascade

remains an open question. Indeed, it is interesting to note that in both

Kolmogorov turbulence and gravity wave turbulence, a fractal distribution

of singular structures forms on the smallest scales. These may be thought of

as vortex tubes and sheets for K41, and to marginally breaking wave crests

or a foam of small bubbles for ocean waves. Also, in neither case does a

rigorous understanding of the dissipation rate exist at present. That said,

motivated by the empirical self-similarity of ocean wave turbulence, we will

plunge ahead boldly and impose constant energy flux as

ε =
kE(k)
τRk

.
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Here, it is understood that the system is 2D, so kE(k) is energy/area. The

relaxation time is determined by four considerations, namely:

— that the dynamics are scale invariant and self-similar

— that the characteristic transfer rate is proportional to the surface wave

frequency ωk =
√

gk—the only temporal rate in the gravity wave range.

— that the fundamental interaction is four-wave coupling, so 1/τRk = [kE(k)]2

—i.e. an extra power of energy appears, as compared to three-wave cou-

pling.

— that the waves must be subcritical to breaking, i.e. fluid parcel veloci-

ties vk should be less than the wave phase ω/k (vk < ω/k), so kE(k) <

ρw(ω2/k2)k. Nonlinear transfer must thus be small in the ratio E(k)(ω/k)−2ρ−1
w .

Here ρw is the density of water and the additional factor of k−1 appears

since kE(k) has dimensions of energy/area. The particular association of

length with wavelength follows from the fact that ocean wave perturba-

tions decay exponentially with depth as ∼ e−|kz|.

Assembling these pieces enables us to construct the spectral flow equation

(with ε constant)

ε =
kE(k)
τRk

, (5.77a)

where

1
τRk

=
(

kE(k)
ρw (ω2/k2) k

)2

ωk, (5.77b)

i.e. the relaxation rate is the wave frequency, multiplied by two powers

(four-wave interaction!) of intensity, normalized to the breaking threshold.

Thus, the spectral transfer equation is

ε = ωk

(
kE(k)

ρw (ω2/k2) k

)2

(kE(k)) . (5.78)
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Subsequently using the dispersion relation ω =
√

gk gives E(k) ∼ k−5/2 and

a surface displacement spectrum
∣∣∣ξ̃(k)

∣∣∣
2
∼ k−7/2. This does not agree with

the scaling of the Phillips spectrum, nor should it, since the latter is based

on a hypothesis of saturation by wave breaking, which is outside the ‘event

horizon’ of weak turbulence theory! It is indeed reassuring to see that the

weak turbulence gravity wave spectrum is softer than the Phillips spectrum

(i.e. α = 7/2 < 4), as we expect. The self-similar gravity wave spectrum∣∣∣ξ̃(k)
∣∣∣
2
∼ k−7/2, sometimes referred to as the ‘Kolmogorov spectrum’ for

gravity waves by Zakharov and collaborators (Zakharov et al., 1992), might

be relevant to regimes where waves are driven weakly, slightly above the wind

excitation threshold. Certainly, it cannot properly describe the process of

wave spectrum saturation at high wind speed. Indeed, no attempt to connect

the Phillips spectrum to perturbation theory or wave turbulence theory has

yet succeeded, though recent efforts by Newell and Zakharov (Newell and

Zakharov, 2008) appear promissing in this respect. We include this example

here as an illustration of how to apply wave turbulence theory to obtain

results for a more complex problem. The applications of wave kinetics to

Alfvén and gravity wave turbulence are summarized in Table 5.2. (See

Chapter 9 for detailed explanation of Alfvén wave turbulence.)

5.5 Non-Local Interaction in Wave Turbulence

No doubt the reader who has persevered this far is thinking, “Surely not all

wave interaction processes are simply local cascades!?” Such skepticism is

now to be rewarded as we turn to the important and often-neglected sub-

ject of non-local interaction in wave turbulence. Non-local interaction in

wave turbulence refers to the resonant interaction processes of three waves
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Table 5.2. Elements of local wave cascade models

Constituent

Alfvén wave gravity wave

ω = k‖vA ω =
√

kg

incompressible MHD surface of ocean

Interaction

3-wave 4-wave

Basic Rate

v2 (x⊥)
l2⊥

(
∆k‖vA

) ωk

(
kE (k)

ρw (ω2/k2) k

)2

Constraint Limit

critical balance sub-critical to breaking

∆k‖vA ∼ v (l⊥) /l⊥ kE (k) < ρw

(
ω2/k2

)
k

Spectral Balance

ε =
v2 (l⊥) v (l⊥)
l2⊥

(
∆k‖vA

) α ≡ ω (k)
(

kE (k)
ρw (ω2/k2) k

)2

kE (k)

Limiting Result

k‖ ∼
ε1/3k

2/3
⊥

vA
|ε̃ (k)|2 ∼ k−7/2

E (k) ala K41 softer than Phillips

in which the magnitudes of the three frequencies and/or wave vectors are

not comparable. These are contrasted with local interactions in the cartoon

of Fig. 5.6 (left). Crudely put, in local interactions, the triangles defined by

resonant triad k vectors are nearly equilateral, while those corresponding to

non-local interaction deviate markedly from equilateral structure, as shown

in Fig. 5.6 (center). Local interactions transfer exciton density (i.e. energy)

between neighboring k, while non-local interaction can transfer energy be-

tween quite disparate scales—as occurs when large scale shears strain smaller
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scales, for example. However, non-local interaction is compatible with the

notion of a “small-increment process,” as discussed earlier. Indeed, we shall

see that stochastic shearing by large scales produces a random walk in k

space at small scales—a classic example of non-local interaction resulting in

a small increment, diffusive scattering of the population density.

5.5.1 Elements in disparate scale interaction

We have already encoutered one generic example of a non-local wave in-

teraction process, namely the decay or parametric subharmonic instability

in a resonant triad, discussed in section 5.2 of this chapter. There, a pop-

ulated high frequency mode at ω ∼ 2Ω decays to two daughter waves at

ω ∼ Ω. Note that this mechanism requires a population inversion—the oc-

cupation density of the pump, or high frequency mode, must exceed those

of the daughters in order for decay to occur. Another generic type of inter-

action is induced diffusion—an interaction where large scale, low-frequency

waves strain smaller, higher-frequency waves. Induced diffusion arises nat-

urally when one leg of the resonant triad is much shorter than the other

two, indicative of a near self-beat interaction of two short-wavelength, high-

frequency waves with one long-wavelength, low-frequency wave. Thus, the

interaction triad is a thin, nearly isoceles triangle, as shown in Fig. 5.6

(center). The “diffusion” in induced diffusion occurs in k-space, and is a

consequence of the spatio-temporal scale disparity between the interacting

waves. This allows an eikonal theory description of the interaction between

the long-wavelength strain field and the short-wavelength mode with wave

vector k, which undergoes refractive scattering. Thus since

dk

dt
= −∇ (ω + k · v) , (5.79a)
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δk, the excursion in k due to inhomogeneities in ωk and v, is

d
dt

δk = −∇ (ω̃ + k · ṽ) , (5.79b)

(see Fig. 5.14 for illustration. (Diamond et al., 2005b)) So

Fig. 5.14. Distortion of a small-scale perturbation (shown by circular or elliptic

vortex) by an ambient large-scale sheared flow. The large scale flow changes its

sign so that the wave vector of small scale perturbation is subject to diffusive

change.

Dk =
d
dt

〈
δk2

〉
=

∑
q

qq
∣∣∣(ω̃ + k · ṽ)q

∣∣∣
2
τk;q, (5.80)

where τk;q is the coherence time of the scattering field q with the scattered

ray k. Insight into the physics of τk;q follows from consideration of the triad

resonance function in the limit where |q| ¿ k, k′, i.e.

Θk,k′,q =
i

ωq + ωk′ − ωk′+q

' i

ωq + ωk′ − ωk′ − q · (∂ωk′/∂k′)

=
i

ωq − q · vgr(k)
,

(5.81a)

so

ReΘk,k′,q ∼= πδ (ωq − q · vgr(k)) . (5.81b)

Hence, the coherence time τk;q is set by larger of:

— the dispersion rate of the strain field spectrum (i.e. the q’s), as “seen” by
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a wavepacket with group velocity vgr(k), i.e.

1
τac,q,k

=
∣∣∣∣
(

dωq
dq

− vgr(k)
)
·∆q

∣∣∣∣ . (5.82)

For resonant packets, this is proportional to the difference of straining

wave group and phase speeds, reminiscent of what we encountered in our

discussion of quasi-linear theory. This time scale is relevant to ‘pure’ weak

turbulence theory

— with resonance broadening—the self-decorrelation rate of the straining

wave or test wave. These are nonlinear timescales related to wave dynam-

ics and enter when resonance broadening is considered. For example, the

test wave lifetime is often of the order of magnitude of the inverse growth

rate |γk|.

Like the parametric subharmonic process, the effect of induced diffusion

also is sensitive to the exciton population profile. Thus, for energy density

E = Nω, diffusion of N means the net change of the short wave energy is

given by

dEsw

dt
=

d
dt

∫
dk E(k, t) = −

∫
dk

dω

dk
· D · dN

dk
. (5.83)

Hence, the poulation profile gradient dN/dk and the group velocity dω/dk

together determine dEsw/dt. For dω/dk > 0, dN/dk ≶ 0 implies dEsw/dt ≷

0, with correspondingly opposite results for dω/dk < 0. Of course, dEsw/dt >

0 means the short waves are gaining energy from the straining waves, while

dEsw/dt < 0 means that they are losing energy to the longer wavelengths.

It is interesting to note that induced diffusion is one limit where the

fundamental origin of irreversibility in wave turbulence is rigorously clear.

In eikonal theory, k = ∇φ, where φ is the wave phase function. Then,
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integrating the eikonal equation for k gives

d
dt

δφ = − (ω̃ + k · ṽ) , (5.84a)

so

〈
δφ2

〉
= Dφt, (5.84b)

where the phase diffusion coefficient is

Dφ =
∑
q

∣∣∣(ω̃ + k · ṽ)q
∣∣∣
2
τk,q (5.85a)

and in weak wave turbulence,

τk,q → πδ (ωq − q · vgr(k)) . (5.85b)

Thus, we see that if resonances between the strain field phase velocity and

the wave packet group velocity overlap (in the sense of island overlap, ala

Chirikov, the wave phase will evolve diffusively, consistent with the notion

of a random phase. Here then, ray stochasticity , emerges as the dynamical

underpinning of irreversibility for induced diffusion. More generally, since

a range of large scale waves or straining flows is an ubiquitous element in

fluctuation spectra, it is tempting to speculate that the utility of RPA-based

techniques may be rooted in phase stochasticity driven by induced diffusion.

This is especially likely when the straining field and the energy containing

regions of the spectrum coincide. This speculation could be explored by

comparing the coherent energy transfer rate in a resonant triad (i.e. γE)

with the rate at which the frequency wanders due to phase stochastization

by straining during that time period, i.e. ∆ωphase ∼ (v2
grq

2Dφ/γE)1/2.
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5.5.2 Effects of large/meso scale modes on micro fluctuations

Non-local interactions have received far less attention than local, ’Kolmogorov’

cascades in wave turbulence. Nevertheless, non-local interactions are of great

importance since they:

— are useful as a framework for describing large scale structure formation in

turbulence.

— describe and account for interactions which break scale invariance and so

induce intermittency.

We now briefly discuss these two important roles of non-local interactions.

One frequently utilized approach to the problem of structure formation is

to consider when and how an ambient spectrum of waves and turbulence

is, in some sense, unstable to the growth of a large scale seed perturbation.

For example, in mean field dynamo theory one considers the stability of a

spectrum of turbulence to a large scale magnetic field. The induced diffusion

interaction, introduced here and developed much further in Chapter 7, is

especially useful for this type of consideration, since it naturally describes the

exchange of energy between an ambient short wavelength wave spectrum and

a seed spectrum of large scale excitations. The theory can be extended to

address saturation of structure formation by a variety of processes, including

self-consistent alteration or evolution of the ambient wave spectrum. This

picture of coupled evolution of the large scale strain field and smaller scale

wave field (which exerts a stress on the former) leads naturally to a ‘predator-

prey’ type model of the self-consistent interaction of the two components,

as discussed further in Vol. II. Parametric subharmonic decay interaction

is also interesting as a means for non-local transfer of energy in frequency
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—from a pump to lower frequency waves. This mechanism is exploited in

some scenarios of low-frequency structure formation.

Non-local interactions are of interest as a possible origin of intermittency.

Of course, intermittency has many forms and many manifestations. One

frequently invoked definition of intermittency is that of “a process which

breaks scale similarity by inducing an explicit memory of one class of scales

in another,” the connection of which is driven by a cascade. For example,

the β-model and multi-fractal models of inertial range intermittancy in K41

turbulence all invoke a notion of embedded turbulence, where a ‘footprint’

of the stirring scale l0 survives in the inertial range via explicit spectral

dependence on l0 (N.B. Here ‘explicit’ means dependence on (l0) not only

via the dissipation rate ε). Non-local interactions clearly can produce such

multi-scale memory—random straining (as occurs in induced diffusion) will

surely leave an imprint of a large scale, energetic strain field on smaller

wave scales. Of course, the size and strength of this effect will to some

extent depend upon the relative sizes of the large-scale induced distortion

or strain rate and the rate of local energy transfer among smaller scales.

In this regard it is worth noting that a recent interesting line of research

(Laval et al., 2001) on the dynamics of intermittency in 3D Navier-Stokes

turbulence has suggested a picture where:

— like-scale interactions are self-similar and non-intermittent, and are re-

sponsible for most of the energy transfer. These are well described by

conventional scaling arguments.

— disparate scale straining is the origin of scale symmetry breaking and

intermittency, and is well described by Rapid Distortion Theory, which is

closely related to induced diffusion.
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Apart from its intrinsic interest, this approach to the problem of intermit-

tency is noteworthy since it is entirely compatible with a simple statistical

or weak turbulence model, and does not require invoking more exotic theo-

retical concepts such as multi-fractality, coherent structures, etc.

5.5.3 Induced diffusion equation for internal waves

As a case study in non-local interaction, we focus on the interaction of

oceanic internal waves. Internal waves (IW’s) have dispersion relation

ω2 = k2
HN2

BV/k2, (5.86a)

where NBV is the Brunt-Väisälä (BV) buoyancy frequency, i.e.

N2
BV = +

g

ρ0

dρ0

dz
, (5.86b)

where z grows with depth, down from the surface, so IW’s may be thought

of as the stable counterpart to the Rayleigh-Taylor instability for the case

of a continuous density profile (i.e. no interface). Here kH refers to the

horizontal wavenumber and kV is the vertical wavenumber, so k2 = k2
H +k2

V.

Internal waves are excited at mesoscales by Rossby waves, the interaction

of large currents with bottom topography, and large storms. IW interaction

generates a broad spectrum of IW’s which is ultimately limited by breaking

and over-turning at small scales. A phenomenological model of the IW

spectrum, called the Garret-Munk (GM) model (Garret and Munk, 1975),

provides a reasonable fit to the measured IW spectrum. The GM spectrum

density of IW’s is peaked at large scales.

In an edifying and broadly relevant study, McComas and Bretherton (Mc-

Comas and Bretherton, 1977) identified three types of non-local interactions

which occur in IW turbulence. There are:
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— induced diffusion

— parametric subharmonic instability

— elastic scattering

In all cases, the origin of the generic type of interaction can be traced to

the wave dispersion relation structure and the basic wave-wave coupling

equations. Here, we outline the key points of this instructive analysis. In this

context, the wave population density is denoted by A(k) (to avoid confusion

with BV frequency N) and the wave-wave collision integral has the generic

form following Eq. (5.33), i.e.

d
dt

A(k) = F {A} =
∫

dk′
∫

dk′′
{
D+δ

(
k′ + k′′ − k

)
δ
(
ω′ + ω′′ − ω

)

× [
A(k′)A(k′′)−A(k′)A(k)−A(k′′)A(k)

]

+ 2D−δ
(
k′ − k′′ − k

)
δ
(
ω′ − ω′′ − ω

)

× [
A(k′)A(k′′) + A(k′)A(k)−A(k′′)A(k)

]}
.

(5.87)

Here D+ and D− are coupling coefficients, and the notation is obvious.

Fig. 5.15. Cartoon of long wave-short wave interactions. The spectral function

A (k) is composed of B (k) and F (k).
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To extract induced diffusion from F {A}, it is useful to divide the spectrum

into two pieces, as shown in Fig. 5.15. In that cartoon,

— k2 refers to the straining waves at large scale, with spectral density B(k2)

— k1 and k3 are the short wavelength waves, with spectral density F (k1,3)

Thus,

A(k) = B(k) + F (k).

We assume B and F do not overlap, so B(k3) = B(k1) = 0. Since short

wavelength evolution due to large scale wave effects is of interest here, we

seek ∂F (k3)/∂t, and can re-write Eq. (5.87) as

∂

∂t
F (k3) =

∫
dk′

∫
dk′′

{
D+δ

(
k′ + k′′ − k3

)
δ
(
ω′ + ω′′ − ω3

)

× [
B(k′)

(
F (k′′)− F (k3)

)
+ B(k′′)

(
F (k′)− F (k3)

)
+ F (k′)F (k′′)

−F (k3)F (k′)− F (k3)F (k′′)
]
+ 2D−δ

(
k′ − k′′ − k3

)
δ
(
ω′ − ω′′ − ω3

)

× [
B(k′′)

(
F (k′)− F (k3)

)
+ F (k3)F (k′)− F (k3)F (k)− F (k3)F (k′′)

]}
.

(5.88)

The point here is to isolate the influence of the large scale waves on the

smaller scales. Hence, we decompose ∂F (k3)/∂t into

∂F (k3)
∂t

=
∂F (k3)

∂t

∣∣∣∣
local

+
∂F (k3)

∂t

∣∣∣∣
non-local

(5.89a)

and can read off ∂F (k3)/∂t|non-local from Eq. (5.88) as

∂

∂t
F (k3)

∣∣∣∣
non−local

= 2
∫

dk1

∫
dk2

{
D+δ (k1 + k2 − k3) δ (ω1 + ω2 − ω3) B(k2) [F (k1)− F (k3)]

+D−δ (k1 − k2 − k3) δ (ω1 − ω2 − ω3) B(k2) [F (k1)− F (k3)]
}

.

(5.89b)

Here the spectral energy is contained predominantly in B(k2). Now expand-

ing about k3 in the first term in brackets while expanding about k1 in the
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second term in brackets, and noting that D+ and D− are real and symmetric

in indices give

∂

∂t
F (k3)

∣∣∣∣
non-local

=

= 2
∫

dk1

∫
dk2 {δ (k1 + k2 − k3) δ (ω (k3 + (k2 − k3)) + ω(k3) + ω(k2))

×B(k2) [F (k3 + (k1 − k3))− F (k3)]

+ 2
∫

dk1

∫
dk2 {δ (k1 − k2 − k3) δ (ω(k1)− ω(k2)− ω (k1 + (k3 − k1)))

×B(k2) [F (k1)− F (k3 + (k1 − k3))]

= 2
∫

dk1

∫
dk2 H(k)B(k2) (k1 − k3) ·

[
∂

∂k
F (k1)− ∂

∂k
F (k3)

]
,

(5.89c)

where

H(k) = D+δ (k1 + k2 − k3) δ (ω1 + ω2 − ω3) . (5.89d)

Again expanding about k3 finally yields

∂

∂t
F (k3) =

∂

∂k3
· Dk · ∂

∂k3
F (k3). (5.90a)

Here the k-space diffusion tensor Dk is given by

Dk =2
∫

dk1

∫
dk2 D+B(k2)

× [(k3 − k1) (k3 − k1)] δ (k1 + k2 − k3) δ (ω2 − k2 · vgr(k3)) , (5.90b)

and the same procedure as in Eqs. (5.81a), (5.81b) has been used to simplify

the frequency matching condition.

The brief calculation sketched above shows that induced diffusion can be

recovered from a systematic expansion of C {N}, and so is more robust than

suggested by the heuristic, back-of-the-envelope argument using the eikonal

equations. Clearly, induced diffusion corresponds to adiabatic modulation
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of short waves by long ones, and so should conserve the total number of wave

quanta, as required by the Manley-Rowe relations (Eq. (5.13)). Equation

(5.89) clearly does satisfy quanta conservation. In view of its foundation in

adiabatic theory, it is not surprising then, that induced diffusion can also be

derived from mean field theory for the collisionless wave kinetic equation.

Treating the refractive term as multiplicative modulation induced by large

scale perturbations, and neglecting C {N}, the wave kinetic equation is

∂N

∂t
+ vgr ·∇N − ∂

∂x
(ω̃ + k · ṽ) · ∂N

∂k
= 0, (5.91a)

so the mean field equation for a spatially homogeneous (or slowly varying)

mean population 〈N〉 is

∂ 〈N〉
∂t

=
∂

∂k
·
〈(

∂

∂x
(ω̃ + k · ṽ)

)
Ñ

〉
. (5.91b)

Then, writing

 ω̃

ṽ


 =

∑

q,Ω


 ω̃q

ṽq


 exp (i (q · x− Ωt)) , (5.91c)

where |q| ¿ |k| and Ω ¿ ω and computing the linear response Ñ of the

population to the modulation field gives

Ñq,Ω =
−q (ω̃ + k · ṽ)q,Ω

(Ω− q · vgr)
· ∂ 〈N〉

∂k
. (5.92)

A simple quasilinear closure of Eq. (5.91b) finally gives the induced diffusion

equation

∂ 〈N〉
∂k

=
∂

∂k
· Dk · ∂ 〈N〉

∂k
, (5.93a)

where the diffusion tensor is

Dk =
∑
q

qq
∣∣∣(ω̃ + k · ṽ)q

∣∣∣
2
πδ (Ω− q · vgr(k)) . (5.93b)
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The correspondence between Eq. (5.93b) and Eq. (5.90b) is obvious. In-

duced diffusion and its role in the self-consistent description of disparate

scale interaction processes will be discussed in much more depth in Chapter

7 and in Volume II.

5.5.4 Parametric interactions revisited

Parametric subharmonic interaction is best approached first from the view-

point of coherent interaction, and then subsequently discussed in the context

of wave kinetics. At its roots, parametric-subharmonic interaction occurs

due to parametric variation in wave oscillation frequency. Thus for linear

internal waves (IWs), where ω2 = k2
HN2

BV/k2, a fluid element will oscillate

vertically according to

d2z

dt2
+

k2
H

k2
N2

BVz = 0.

If parametric variation is induced in the BV frequency (Eq. (5.86b)) at some

frequency Ω, so N2
BV becomes time-dependent, i.e.

N2
BV =

k2
H

k2
N2

BV,0 (1 + δ cos (Ωt)) ,

then the motion of the fluid element may exhibit parametric growth accord-

ing to the solution of the Mathieu equation

d2z

dt2
+

k2
H

k2
N2

BV,0 (1 + δ cos (Ωt)) z = 0.

In particular, it is well known that parametric instability will occur for Ω ∼
2ωIW ∼ 2

(
k2

HN2
BV,0/k2

)1/2
. Of course, this simple argument completely

ignores spatial dependence. In the context of IW’s (or any other waves),

both wave-number and frequency matching conditions must be satisfied, so
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that

k3 = k1 + k2,

ω3 = ω1 + ω2.

Now, it is interesting to observe that one can ‘arrange’ a high-frequency, but

spatially quasi-homogeneous variation in the BV frequency by a three-wave

interaction where k1 = −k2 + εk (here ε ¿ 1) and ω1 ∼ ω2. For this pair

of counter-propagating waves with comparable frequencies, we have k3 =

k1 + k2 = εk and ω3 ∼ 2ω, which is precisely the sought after situation of

spatially uniform parametric variation. Of course, coherent resonant three-

wave interactions are reversible, so we can view this traid as one consisting

of:

— a ‘pump,’ at ω3 ∼ 2ω, with |k3| ∼ O(ε)

— two ‘daughter’ waves at k1, ω1 and k2 = −k1 + εk, ω1.

In this light, we easily recognize the parametric-subharmonic instability as

a variant of the decay instability, discussed earlier in Section 5.2 of this

chapter. Thus, taking a3 ∼ const. as the pump, Eqs. (5.16) immediately

can be applied, so (noting that here, the coupling coefficient is D),

iω
da1

dt
= Da∗2a3, (5.94a)

iω
da2

dt
= Da∗1a3, (5.94b)

so the parametric-subharmonic growth rate is just:

γ2
PS =

D2

ω2
|a3|2 . (5.94c)

To see how parametric-subharmonic instability emerges in wave kinetics,

it is convenient to take k2 as the pump, so A(k2) À A(k1), A(k3), and
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|k2| ¿ |k1| , |k3|, ω2 ≈ 2ω1. In this limit, we can neglect contributions to

the wave kinetic equation for A(k2), which are proportional to the product

A(k1)A(k2), just as we neglected terms of O(a1, a2) in the coherent equa-

tions. This gives

∂A(k2)
∂t

∼= −
∫

dk1

∫
dk3 Dδ (k1 + k3 − k2) δ (ω1 + ω3 − ω2)

× [(A(k1) + A(k3))A(k2)] ,
(5.95)

which describes the depletion in the pump energy due to parametric-subharmonic

coupling to k1 and k3. Related expressions for the growth of A(k1) and

A(k3) are easily obtained from the general expression for C {A}, given in

Eq. (5.87). Energy transfer by parametric-subharmonic interaction will con-

tinue until the pump is depleted, i.e. until A(k2) ∼ A(k1), A(k3). Equation

(5.95) is also consistent with our earlier observation concerning the ratio of

the growth rates for stochastic and coherent decay processes. Once again,

for parametric-subharmonic (PS) interaction, we have γstoch
PS /γcoh

PS ∼ τTcγ
coh
E .

Thus in wave kinetics, the interaction growth is reduced in proportion to the

ratio of the triad coherence time to the coherent growth rate interaction.

Induced diffusion and parametric-subharmonic interaction both involve

the interaction of nearly counter-propagating waves with a low k wave. In

one case (induced diffusion), the frequencies nearly cancel too, while in the

other (parametric-subharmonic) the frequencies add. These triads are shown

in Fig. 5.16. The third type of non-local interaction, called elastic scattering,

is complementary to the other two, in that the magnitudes of the interact-

ing k’s are comparable and only the frequencies are disparate. For elastic

scattering, we consider a triad of k1, k2, k3 with

— k1H ∼ k3H, k1,V ∼ −k3,V with k1,V < 0

— kV1 ∼ 2kV2 , so kV1 + kV2 = kV3
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(a) Induced Diffusion:

— k1, k3 nearly parallel

— difference beat at

low frequency

(b) Parametric-

Subharmonic:

— k1, k3 nearly opposite

— pump = sum beat at high frequency

Fig. 5.16. Triad structure for non-local interactions of induced diffusion, parametric

subharmonic types.

— ω2 < ω1, ω3.

The coherent interaction equations for the amplitudes c1, c2, c3 are

iω
dc1

dt
= Dc∗2c3, (5.96a)

iω
dc2

dt
= Dc∗1c3, (5.96b)

iω
dc3

dt
= Dc1c2, (5.96c)

so the energies Ei = ω2
i |ci|2, i = 1, 2, 3 evolve according to

∂E1

∂t
= −ω1R, (5.97a)

∂E2

∂t
= ω2R, (5.97b)

∂E3

∂t
= ω3R, (5.97c)
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where R = −D Im {c∗1c∗2c3}. Since ω2 ¿ ω1, ω3, E2 is nearly constant, as

compared to E1 and E3, so the essential dynamics are described by Eqs.

(5.97a), (5.97c), i.e.

∂E1

∂t
= −ω1R ;

∂E3

∂t
= ω3R.

Thus, we see that in this system, energy is exchanged between modes 1 and 3,

moving through the static, low-frequency field of mode 2. The low-frequency

scattering field is essentially unaffected by the scattering process—hence the

name “elastic scattering.” As in the familiar case of Bragg scattering, waves

1 and 3 are back-scattered by the component of the background with half the

vertical wavelength of the scattered wave. Elastic scattering is instructive,

as it illustrates the rich variety of non-local interactions possible among

nonlinearly interacting dispersive waves in anisotropic media. The types of

non-local interactions at work in internal wave turbulence are summarized

in Table 5.3.

Some advanced topics in wave interactions such as the weak turbulence of

filamentary structures (Dyachenko et al., 1992) and limited domains of res-

onance overlap (Kartashova, 2007) are discussed in the research literatures.
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Table 5.3. Summary of non-local internal wave interactions

i.) Induced Diffusion

—





Ω2 ∼ ω1 − ω3 ¿ ω1, ω3

|k2| ∼ |k1 − k3| ¿ |k1,k3|
— slow, stochastic straining by low frequency, large scale

— diffusion in k

ii.) Parametric-Subharmonic Interaction

—





Ω2 ∼ ω1 + ω3 > ω1, ω3

|k2| ∼ |k1 + k3| < |k1| , |k3|
— pumping by high frequency

— decay instability

iii.) Elastic Scattering

—





|k1| ∼ |k2| ∼ |k3|
ω2 < ω1, ω3

— wave packets 1, 3 on static scattering field of 2

— elastic scattering, ala Bragg




