
PHYSICS 239.c : CONDENSED MATTER PHYSICS
FINAL EXAMINATION

Instructions: Do problem 0 and any three of problems 1 through 4.

(0) Provide brief but accurate answers to each of the following questions:

(a) What is the Hohenberg-Mermin-Wagner theorem, and what is Goldstone’s theorem?

(b) In the context of the Boltzmann equation, what is meant by the term, ”collisional
invariant”? What are two examples of collisional invariants in the case of (single
band) electron transport?

(c) The point group D8, describing the symmetries of a planar octagon, is relevant to
molecular chemistry, but is not among the 32 crystallographic point groups. Why
not?

(d) What is the Mössbauer effect?

(e) What is a Wannier state? What quantum numbers are necessary to specify a Wan-
nier state? What completeness and orthonormality conditions to the Wannier states
satisfy?

(1) The hexagonal close packed (hcp) structure is a simple hexagonal (sh) Bravais lattice
with a two-element basis. The three elementary direct lattice vectors of the sh structure are

a1 = a(12 x̂−
√
3
2 ŷ) , a2 = a(12 x̂+

√
3
2 ŷ) , a3 = cẑ

The two basis vectors are 0 and δ = 1
3a1 + 2

3a2 + 1
2a3 .

(a) The hcp lattice is close-packed, which means that |δ| = a. Find the value of c in terms
of the in-plane lattice spacing a.

(b) What is the coordination number z (i.e. the number of nearest neighbors of any given
site) of the hcp lattice? Write down the positions of all z neighbors of the lattice site 0 in
terms of a1,2,3 and δ .

(c) What are the three elementary reciprocal lattice vectors b1 , b2 , and b3 ?

(d) The space group of the hcp structure (P63/mmc) is nonsymmorphic (it contains a
twofold screw operation). Consider the Bragg peaks located at wavevectors G = n1 b1 +
n2 b2 + n3 b3 . What is the condition on {n1, n2, n3} for there to be an extinction in the
diffraction pattern atG?

(2) Consider the tight binding Hamiltonian for s-orbitals on the railroad trestle lattice,
depicted in Fig. 1. The hopping amplitude along each rail is t and the hopping amplitude
between the rails is t′. Both t and t′ are positive.
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Figure 1: Railroad trestle lattice

(a) Write the tight-binding Hamiltonian in real space. You may use either braket notation
with local orthonormal orbitals |n, a 〉 and |n, b 〉 or fermionic second quantized operators
an and bn and their conjugates.

(b) Write the tight-binding Hamiltonian in crystal momentum space, i.e. using the Fourier
transformed states | k, a 〉 and | k, b 〉 or the second quantized operators ak and bk (and their
conjugates).

(c) Solve for the electronic energy bands Ej(θ), where θ = ka and a is the lattice spacing
along either rail. How many bands are there? Sketch their dispersion.

(3) Consider an infinite one-dimensional chain of atoms, each of mass m, located at posi-
tions xn = na+ un , with potential energy

V = 1
2

∑
n<n′

Knn′ (un − un′)2 .

Thus, each pair of atoms (n, n′) is connected by a spring of spring constant Knn′ whose
unstretched length is |n−n′|a, where a is the lattice constant. You may assume the potential
has the lattice translation symmetry, i.e. Knn′ = K(n− n′) = K(n′ − n) is an even function
of the difference n− n′.

(a) Find the equation of motion for the Fourier modes ûk ≡ N−1/2
∑

n un e
−ikna, where

N →∞ is the number of unit cells.

(b) Find an expression for the phonon dispersion ω(k).

(c) Write down an expression for the ground state wavefunction Ψ0

(
{un}

)
.

(d) Suppose K(`) = K0 `
−2. Compute the phonon frequency ω(k) and the zero temper-

ature quantum fluctuation 〈Ψ0 |u2n |Ψ0 〉 of the atomic positions. It may interest you to
know that for θ ∈ [0, 2π], it is a True Fact that

Re Li2(e
iθ) =

∞∑
n=1

cos(nθ)

n2
= 1

6π
2 − 1

4θ (2π − θ) ,
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where

Lik(z) =

∞∑
n=1

zn

nk
.

is the polylogarithm function.

(e) For K(`) = K0 (δ`,1 + δ`,−1) , we found ωk = 2(K0/m)1/2
∣∣sin(12ka)

∣∣, hence ω(k) = c|k|
at long wavelengths. The zero temperature fluctuations Ψ0

(
{un}

)
then diverge. Yet your

result for the fluctuations in part (d) should have been finite. Why do you suppose this
might be the case?

(4) Consider the currents

j = −2e

∫
Ω̂

d3k

(2π)3
v δf

J ≡ 2

∫
Ω̂

d3k

(2π)3
(ε− µ)2 v δf .

Define the response coefficients ρ, Q, ω, and υ by the relations

E = ρ j +Q∇T

J = ωj − υ∇T .

For a system with cubic symmetry, find expressions for the transport coefficients ρ, Q, ω,
and υ in terms of the integrals

Kn =
τ

12π3~

∞∫
−∞

dε (ε− µ)n
(
− ∂f0

∂ε

)∫
dSε |v|

=
σ0
e2
ε
−3/2
F S

[
ε3/2(ε− µ)n

]∣∣∣
ε=µ

,

where

S = πD cscπD = 1 +
π2

6
D2 +

7π4

360
D4 + . . . ,

with D = kBT ∂ε .
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