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Abstract

Effective theories of quantum liquids (superconductotsarperfluids of various types)
are derived starting from microscopic models at the abedeto of temperature. Spe-
cial care is taken to assure Galilei invariance. The efiectheories are employed
to investigate the quantum numbers carried by the topcdbgiefects present in the
phases with spontaneously broken symmetries. Due to tgjmalioterms induced by

guantum fluctuations, these numbers are sometimes foural frattional. The zero-

temperature effective theories are further used to stueygtlantum critical behavior

of the liquid-to-insulator transition which these systemmslergo as the applied mag-
netic field, the amount of impurities, or the charge carresity varies. The classical,
finite-temperature phase transitions to the normal stateliacussed from the point of
view of dual theories, where the defects of the original folation become the ele-
mentary excitations. A connection with bosonization isyedl out.
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Preface v

Preface

The title of this report, Boulevard of Broken Symmetries;h®sen to indicate that the
(condensed matter) systems we will be discussing in thegesgeave a spontaneously
broken symmetry in commtﬂn The notion of a spontaneously broken symmetry is one
of the paradigms of modern physics. It plays a central rol®day’s understanding
of many startling phenomena known in condensed matter physiatistical physics,
high-energy physics, and cosmology. A spontaneously lorekmmetry indicates the
presence of a global symmetry which is not apparent in the the system is in. The
symmetry is not lost, but implemented in a nontrivial waytHé symmetry involved
is a continuous one (and the dimensionality is larger tham),twhe breaking is ac-
companied by the occurrence of gapless modes. Due to thgliegsmess, they are
the dominant elements in an effective description of théesgswith broken symmetry
valid at low energy and small momentum.

This will be the subject of the first chapter. The topic haswglbistory, what is rel-
atively new is how the effective description can be recatbitith Galilei invariance—
one of the symmetries governing the nonrelativistic wofldandensed matter physics.
More specific, we will derive the effective theories at thealhte zero of temperature
of classical hydrodynamics, of a superconductor both inttbak-coupling as well as
in the strong-coupling limit, of superfluitHe, and of a bosonic superfluid. We also
consider the behavior of a superconductor and the bosopérfuid at finite tempera-
ture. Throughoutthis report we employ the powerful apperaf quantum field theory,
mostly in the functional-integral formulation. In this appach, the effective theories
are obtained by integrating out certain degrees of freedmtained in the microscopic
description of the quantum system under consideration.

The occurrence of gapless modes is not the only manifestafia broken contin-
uous symmetry. A closely related one is the appearance ofdgjzal defects. These
objects, which are often of paramountimportance to undedsthe physical properties
of a system with a broken symmetry, can have peculiar quantumbers associated
with them. This will be the subject of Cheﬁ. 2. We shall coasid superfluidHe
film, one-dimensional metals, a two-dimensional model leitinig an exotic mecha-
nism which leads to superconductivity, and free electramdined to move in a plane.
Again using the functional-integral approach to quantuid tieeory, we shall see how

*The true story behind this title is the following. Every latemmer during the eighties, Amsterdam was
visited by a traveling theater group. They built up theirt$ein a central park of the city surrounded by the
Concert Building and the major museums (and also by the higbd this author attended). The name of
this enterprise, marking the end of the summer and its feastawas called “Boulevard of Broken Dreams”
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Preface Vi

so-called topological terms arise in the effective theoafter the fermionic degrees of
freedom contained in the microscopic models are integratd These terms are the
cause of the peculiar quantum numbers which are expectettoia these systems.

The next chapter, Chaﬂ 3, deals with so-called dual theorfizuality is one of
the hottest topics in contemporary condensed matter phySlaite generally, a dual
description of a system refers to a description in terms offardnt set of variables
than the original set. The systems we will consider in thispter—a superfluidHe
film, a superconducting film, and a bulk superconductor, &firdte temperature—
have vortex solutions in common. In the original formulatithese topological defects
are described as singular objects. In the dual theoriesisbed in this chapter, these
objects are instead described in a nonsingular fashion loptfieory. The dual theories
are employed to discuss the (equilibrium) phase transitiese systems undergo as a
function of temperature. It will also be pointed out in thisapter that the concept of
duality in two dimensions is closely related to bosonizatiea powerful computational
tool in this reduced dimensionality.

In the last chapter, Chaﬂ. 4, we discuss quantum phasetioassiThese are phase
transitions, taking place close to the absolute zero of &xatpre, which are driven not
by temperature, but by some other parameter in the systeouonimast to equilibrium
transitions at finite temperature, time is important in quanphase transitions. This
naturally leads to the use of quantum field theory to desdtibse. Recent experi-
ments on quantum phase transitions in various two-dimeakgystems have raised
some very interesting questions. It is generally believed the concept of duality
will play a decisive role in answering these. We will be camesl in this chapter with
2nd-order quantum phase transitions. In addition to a dingrcorrelation length,
which is common for 2nd-oder equilibrium transitions attértemperature, these tran-
sitions also have a diverging correlation time. We will diss in detail the universality
class defined by repulsively interacting bosons which wlerso-called superfluid-
to-Mott-insulating phase transition. We will consider thestem both in the absence
and in the presence of disorder. We then continue to desitrédbguantum phase tran-
sition which a quantum-Hall liquid undergoes in the abserfatisorder as the applied
magnetic field varies. We shall discuss scaling theory amdider some relevant ex-
periments.
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Notation Vii

Notation

We adopt Feynman’s notation and denote a spacetime pointby:,, = (¢,x), u =
0,1,---,d,withdthe number of space dimensions, while the enégggnd momentum
k of a particle will be denoted by = k&, = (ko, k). The time derivativé), = 0/t
and the gradienV are sometimes combined in a single vetﬁgr: (0o, —V). The
tilde ond,, is to alert the reader for the minus sign appearing in théamaimponents
of this vector. We define the scalar prodécte = k,x, = k.9 k., = kot —k - x,
with g, = diag(1,—1,---,—1) and use Einstein’s summation convention. Because
of the minus sign in the definition of the veci@y it follows thatd,a, = dyao+V - a,
with a,, an arbitrary vector.

Integrals over spacetime are denoted by

/ = / = / dt d'z,
z t,x
while those over energy and momentum by
dko d’k
= Lo [ S
When no integration limits are indicated, the integralsaasumed to be over all pos-

sible values of the integration variables.
Natural unitsh = ¢ = kg = 1 are adopted throughout unless explicitly stated.
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Chapter 1

Nonrelativistic Effective
Theories

In this chapter we shall derive effective theories govegrtine low-energy, small-
momentum behavior of some nonrelativistic systems. Thé&eBys considered here
have in common a spontaneously broken global symmetry. Gouat of Goldstone’s
theorem such a breakdown is always accompanied by gapledssmdf the origi-
nal symmetry G is spontaneously broken to some subgroupeHGGtiidstone modes
parameterize the coset space G/H. Being gapless, thesesradthe dominant exci-
tations at low energy and small momentum and for this redsemdlevant degrees of
freedom to build effective theories from.

In a Lorenz-invarianttheory, massive elementary exctethave a spectrum of the
form E%(k) ~ k?+m?, with k the momentum anch the mass of the excitation. In this
case, a gapless excitation is easily described by takintptitern. — 0 in the massive
theory. In a Galilei-invariant theory, however, it is a prinot clear how to describe
a gapless mode. Here, elementary excitations of a freetheme a spectrum of the
form E(k) ~ k?/2m, so that the limitn — 0 cannot be taken. Although elements
of the solution to this problem were present in the literat{see, e.g.,[[]l] 2]), it was
not until a paper by Greitner, Wilczek, and Witteﬁh [3] that fhsue was settled. They
considered the nonrelativistic Goldstone mode of a spewasly broken global U(1)
symmetry generated by the total particle number. Their gdrensiderations based
on symmetry principles were powerful enough to fully detiererthe effective theory.

In the following, we shall compute the effective theory désiag the nonrela-
tivistic Goldstone modes as they arise in an ideal clas§licial (Sec.), in a BCS
superconductor (SeEILS), in superfliide-a (Sec5), and in a weakly interacting
Bose gas (Se¢. 1.6). In addition, we investigate the stamgpling limit of the pairing
theory (Sed. 1|4) and the high-temperature limit of a weaklgracting Bose gas (Sec.
fL.7) as well as that of the BCS theory (Skc] 1.8).
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1.1 Effective Theory of Hydrodynamics 2

1.1 Effective Theory of Hydrodynamics

The hydrodynamics of an ideal, classical fluid was alreadyuvalerstood in the 19th
century. The case of isentropic flow, for which the entropyyr@t mass is constant,
is particularly simple. The pressureis then a function of the mass densijtyonly,
and the flow is automatically a potential flow. A feature oftsacfluid is that it sup-
ports unattenuated sound waves, i.e., propagating dersstifations. The waves are
unattenuated because viscosity and thermal conductwitich usually serve to dis-
sipate the energy of a propagating mode, are absent. Moreriam to our present
considerations is that sound waves are gapless. It wouldétidying to identify them
as the Goldstone mode of a broken continuous symmetry diatevbuld explain their
gaplessness. We will argue in this section that such anifaetion is indeed possible.

To describe the hydrodynamics of an isentropic fluid, we udeaHE's variational
principle B] and start with the Lagrangian

L= 3pv?—pe+ ¢dop+ V- (pv)], (1.1)

wherev is the velocity field,p the mass density, andthe internal energy per unit
mass. For isentropic flowis a function ofp alone. The first and second term E[l.l)
represent the kinetic and potential energy density, résehe The variabley is a
Lagrange multiplier introduced to impose the conservatiomass:

dop+ V- (pv) =0; (1.2)

its dimension isj¢] = m2s~!. The variation of [(1]1) with respect to yields the
equation
v = V. (1.3)

It shows that, indeed, isentropic flow is automatically agptial flow and it also iden-
tifies the Lagrange multipliep as the velocity potential. (How to incorporate vortices
in this variational approach will be discussed in the nektiea.) With ), the La-
grangian 1) becomes

L=—plood+ 1(Ve)® +e], (1.9)

where we performed integrations by part. A second field egua&ian be obtained by
varying the Lagrangian with respect o This yields the Bernoulli equation

dod+ (Vo) +h=0, (1.5)

with h = 9(pe)/dp the specific enthalpy. From this definition bf one can easily
derive the thermodynamic relation for isentropic flow

Vh=1vp, (1.6)
P
with P = p2de/0p the pressure. On taking the gradient[of](1.5) and uging (iné)

obtains Euler's equation
1
dov+ivvi+-VP =0 (1.7)
p
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1.1 Effective Theory of Hydrodynamics 3

governing the flow of the fluid.
We next wish to investigate the symmetry content of the the@lassical hydrody-
namics has the following invariances:

(i) Invariance under spacetime translatians,— =, +¢,, with ¢, a constant vector.

(ii) Invariance under global translations of the velocittgntial,¢ — ¢ + «a, with
« a constant.

(i) Invariance under Galilei boosts,

t—t =t x — x =x—ut;

O—0)=0+u-V, V-V =V, (1.8)
with u a constant velocity.

According to Noether’s theorem, symmetries imply conséovdaws. Associated with
the above invariances we obtain the following conservdtioms:

0] 5#15#,, = 0, wheret,, (¢, v = 0,1,2,3) is the energy-momentum tensor, with
to; = p; the momentum density angy, = H the Hamiltonian;

(ii) 5Mgu = 0, with go the mass density ang the mass current;

(i) 9,9.; = 0, with go; = —gox; + tp; andgi; = giz; — tt;; the corresponding
charge densities and currents. Physically, the consenvav,; /dt = 0 of the
charges; = [, go; means that the center of mass of the flkd= [ _xp/M,
with M = fx p the total mass, moves with constant velocity,

dX

Here, the right-hand side denotes the total momentum of ik fl

From the LagrangiarmA) we obtain as explicit form for teious charge densities
and currents[J5]:

oL
Jgo = _5)60¢ =p (1.10)

oL
9i = _5)81-¢ = pv; (1.12)

oL
pi(=toj) = _maqu = pvj (1.12)

oL
tij = ﬁéw — %(%d) = P5ij =+ PUV; (113)
- _oc _ P 2
H(=too) = m@m —L=5vitpe (1.14)
oL

tio = m80¢ = (H+ P)v;. (1.15)
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1.1 Effective Theory of Hydrodynamics 4

Time derivatives), ¢ have been eliminated through the field equatjor (1.5), s fitra
example L in the last equation is replaced with

L — ph — pe = (pgp - 1) (pe) = P. (1.16)
A few remarks are in order. First, the Hamiltoniahis the sum of the kinetic and
potential energy density, as required. Second, the eaquiealof the mass curregt
and the momentum density, which is a hallmark of Galilei invariance, is satisfied by
the theory. Finally, the set of equatiods (1.10)—(L.14)stitutes all the equations of
hydrodynamics. This brings us to the conclusion that thedagjan ) encodes all
the relevant information for the description of an isenicdfuid.

We next turn to the description of sound waves. We restrict@lues to waves
of small amplitude. These generate only small deviatiorthénmass density and
pressureP of the fluid at rest, so that we can expand the Lagran i1 gowers of
p—p=p,With [p] << p:

L=—(0op+ 5v*)(p+p) —ep—hp— 50 p° + O(°). (1.17)

The derivative(’) is with respect tq and is to be evaluated at= p. Since for the
system at resp is constant, it follows from5) that = 0. If we denote the thermo-
dynamic derivativé) P/dp by 2, which has the dimension of a velocity squared, the
coefficient of the quadratic term jcan be written as

B lp_

P
Apart from an irrelevant constant term¢p) the Lagrangian becomes to this order

. (1.18)

NIESY

62

L= @0+ 1) (P +9) ~ 557" (1.19)

We next eliminate by substituting

p= —%(80925 +1v?), (1.20)
which follows from expanding the field equati1.5). Plegtliy, this equation reflects
Bernoulli’s principle: in regions of rapid flow, the mass diénp = p+ p and therefore
the pressure is low. It also shows that the expansiohisone in derivatives. The
higher-order terms that have been neglected correspon@jerorder derivatives.
At low energy and small momentum, these additional termsheairgnored. After
eliminatingp, we obtain a Lagrangian governing the velocity potemti@]:

‘bl

Low = =p(Oo¢ + 3V°) + 55 (006 + 7v7)*. (1.21)

2c

oN

This is precisely the effective theory of a nonrelativigibelian) Goldstone mode
obtained in Ref. |]]3] using general arguments. Apart fromreglévant constant it is
identical to a proposal by Takahasﬂi [2] which was also basesymmetry principles.
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1.1 Effective Theory of Hydrodynamics 5

The field equation one obtains for the velocity potentiflom (1.21) is nonlinear:
p(O5¢ + 200v°) — pcgV - v + Lp(9gv? + v - Vv?) = 0. (1.22)

The information contained in this equation cannot be moam e conservation of
mass becausg was initially introduced inl) as a Lagrange multiplieegisely to
enforce this conservation law. Indeed, remembering tleattimbinatiors(9y ¢+ 5 v?2)
denotes:3 timesp(z) = p(z) — p, with p the constant mass density of the fluid at
rest, we see thal (122) reprodudes](1.2) in this approiomaTo simplify (1.22), we
replacep in the first and last term with the full mass densitgwhich is justified to this
order) to arrive at the kn0W|E|[7], but unfamiliar field equati

B — gV =—0ov* — tv-Vv? (1.23)

of sound waves. If we ignore the nonlinear terms, it becoinesrtore familiar wave
equation
9o — gV =0, (1.24)

implying a gapless linear spectrum, and identifyingvhich was introduced via the
thermodynamic derivativeé P/dp = 2, as the sound velocity.

The combinatiordy¢ + %(qu)2 appearing in the description of a nonrelativistic
gapless field is dictated by Galilei invariance. To obtaia ttansformation property
of the velocity potentialy under a Galilei boost@.8) we note that siri¢e is a ve-
locity field, Vo(z) — V'¢/(2') = Vo(z) — u, with 2’ = (¢,x — ut). This gives as
transformation rule fop

¢(x) = ¢'(2') = ¢(x) —u-x+ f(t), (1.25)

with f(t) a yet undetermined function of time. To determifig¢) we note that the
factor —dy¢ in the Lagrangian.4) is the chemical potential per unissndndeed,
using the standard definitign= 0+ /9p, we find

1= 3v?+h=—-00, (1.26)

where in the second equality we used the field equa (THa%. identification fixes
the transformation rule of 9y ¢:

— Opp(z) — —9)¢' (2') = —0pp(x) —u-v(z) + %uQ (1.27)
and in combination with[(1.25), yields fgf(t)
Ao f(t) = %uQ, or f(t)= %u2t (1.28)

up to an irrelevant constant. It is easily checked that bbéhdombinatiordy¢ +
%(ngf))2 appearing in the effective theoty (1}21) as well as the figlabion ) are
invariant under Galilei boosts. So, contrary to what is stimmes stated in the literature
[H], sound waves are invariant under Galilei boosts. Thediized wave equation
1.24) is, of course, not invariant because essential neaftiterms are omitted.
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1.1 Effective Theory of Hydrodynamics 6

Greitner, Wilczek, and Witten arrived at the effective Laggian 1) by requir-
ing that the effective theory of sound waves can only be cootd with the help of
the Galilei-invariant combinatiofly¢ + 3 (V¢)?, and that it should give the dispersion
relationE%(k) = c?k2.

From the effective Lagrangia21) one can again caleuls various Noether
charge densities and curre&f]. They are, as might beceegheof the same form as

the exact expressions (1}1 .14), but now with the apprations

P p— L (006 + 1v?) (1.29)

0
as follows from Eq.[(1.0),
2
~Py2 S0, 52

H=ovi+ 2ﬁ(P P, (1.30)

and
P~ —p(0od + 1) ~ c§(p — p). (1.31)

This last equation is consistent with the expression ongdfrom directly expanding
the pressureP(p) = P + pP’ sinceP = 0 andP’ = c2.

To recapitulate, we have derived an effective theory desugia gapless mode
starting from the Lagrangia.4) which entails the corgpleydrodynamics of an
isentropic fluid. We now wish to argue that this gapless mede Goldstone mode
associated with a spontaneously broken symmetry. A firstatidn in favor of such
an interpretation follows because the Hamiltontardisplays a property typical for a
system with broken symmetry, namely that it is a functionafdhe velocity potential
itself, but of the gradient of the field. The energy is mininfiah is uniform throughout
the sample, i.e., there is rigiditﬂ [9].

Usually the broken symmetry can be identified by the genexgbgrty that the
Goldstone mode is translated under the broken symmetratipas. (There may be
other effects too, but the translation is always presergrekthis general characteristic
does not uniquely identify the broken symmetry becagise translated under two
symmetry operations. According to the transformation ) with f(¢) given in
(L.28), we have that under a Galilei boost

55 d(x) = ¢ (x) — d(x) = —u-x+tu- Vo(a), (1.32)

where we took the transformation paramaténfinitesimal small so that quadratic and
higher powers ima may be ignored. The first term at the right-hand side showts tha
the velocity potential is translated under a Galilei bodste second symmetry under
which ¢ is translated is generated by the total particle numbeearivalently, by the
total mass\f = fx p. To see this we first compute fro@A) the conjugate monmentu
7y Of ¢,

oL
Ty = 860¢ == (133)
implying that¢ andp are canonically conjugatﬂlO]:
{d)(ta X)v p(tv X/)} = _5(X - X/)v (134)
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1.1 Effective Theory of Hydrodynamics 7

where{, } denotes the Poisson bracket. We then use a central residssfaal field
theory stating that the chargg of a continuous symmetry is the generator of the cor-
responding transformations of the fieldgixz) — x’(z). More specifically, for an
infinitesimal transformatiod% x(x) = x/(x) — x(x) one has

(SSX(.T) = _a{X(‘T)aQ}v (135)

with « the transformation parameter. Equatipn (IL.34) thus insptiat under the global
U(1) symmetry generated by the total magss indeed translated

5 p(z) = —afp(x), M} = . (1.36)

The point is that the generators of Galilei boaSts = [, (—x;g0 + tp;) also contain
the mass density = go. It is therefore impossible to distinguish a broken Galilei
invariance from a broken mass symmetry by considering tebah alone.

Let us at this point pause for a moment and consider the casswgberfluid. It is
well established that in the normal-to-superfluid phasasiten, the global U(1) sym-
metry generated by the total mass is spontaneously brokes cémes about because
in a superfluid, which is a quantum system, many particlegHgiastein condense in
a single quantum state. The coherence allows us to deshelsystem by a complex

field
$(x) = V/p(x) /meme®/n (1.37)

normalized such thaty|? yields the particle number densitym of the condensate.
To underscore the quantum nature of a superfluid, Planckistaat has been made
explicit. The fieldy, which turns out to describe the Goldstone mode of the broken
global U(1) symmetry, is a phase field and therefore comJduet.fieldy is frequently
referred to as the condensate wavefunction, even in the mditkrature. In our view,
this is somewhat misleading. As has been stressed by Fey[@}mb is a classical
field describing the coherent behavior of many condenseiiclzar in the same way
as the classical field of electrodynamics describes thevi@haf many photons in a
single state. For these classical fields there is no prabaibilerpretation as is required
for wavefunctions[[12].

It has been argued by Feynm@[ll] that¢héeld is governed by a nonrelativistic
|y|*-theory defined by the Lagrangian

N h? < _
Ly = i O — 5 IVOI = 52 (muf* —p)*. (1.38)

The potential energy has its minimum along a circle away ftbenorigin at|y|? =
p/m, implying a spontaneous breakdown of the global U(1) symyn&he Lagrangian

(L:38) with [1.3]) reduces to the one given[in (IL.19) whertéhe —1>(Vp)? /8m?p
is ignored. Using the expression for the pressure[cf. Jj1.16

P=o( 5~ 05 ) ~1| o) (1.39)

we find that it gives the contribution?(V?2p)/4m? to the pressure—the so-called
quantum pressure. The reason for calling it this way is thiatthe only place where
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1.2 Including Vortices 8

Planck’s constant appears in the equations. To the ordehichwve are working, it
is consistent to ignore this term. Because the field equédiort derived from 8)
has theform of a nonlinear Schrodinger equation, we will refert@s a Schrodinger
field. We trust however that the reader realizes that it imasital field unrelated to a
Schrodinger wavefunction.

Let us compare the transformation properties of the Schgid field with that of
the velocity potentiab of an isentropic fluid. Under a Galilei boosi(x) transforms
as [L2]

Y(z) — ¢’ (') = expli(—u-x + 2u’t)m/h] (). (1.40)

With me/h denoting the phase of the Schrodinger field, we seegheansforms in
the same way as does the velocity potential.

Using that the canonical conjugate of thefield is 7, = ihy™*, we easily derive
the Poisson bracket

{tb(x), M} = —i(m/Nh)¢(z). (1.41)

This shows that the total magd generates phase transformations on ¢héeld:
Y(x) — ' (x) = exp(iam/h)y(z). The phase of the Schrodinger field is conse-
quently translated under the symmetry, just like the vé&ygadtentiale. This transfor-
mation property identifieg as the Goldstone mode of the broken U(1) mass symmetry.
Th-ePoisson brackelt (1]41) also implies thaand p are canonical conjugatf] [9], cf.
{.34)

{o(t, %), plt,X')} = —3(x — x'). (1.42)

A similar relation holds for superconductors. On quantizithe Poisson bracket is
replaced by a commutator. The Heisenberg uncertaintyioaldhat results for the
conjugate pair has recently been demonstrated experil‘r}e[.

As remarked above, a necessary condition for the spontari@eakdown of the
global U(1) symmetry is the presence of a condensate. Sudht@msic quantum
phenomenon, requiring many particles in a single state hbaanalog in a classical
setting. Hence, the U(1) symmetry cannot be broken in dakbydrodynamics. This
leaves us with the second possibility, namely that of a spwtusly broken Galilei
invariance. The breakdown is a result of the presence ofte fimass density. This can
be inferred [HZ] from considering the transformation of thementum densityp ()
under a Galilei boost:

59 pi(x) = —u{pi(z), Go; (1)} = —uip(x) + tu - Vpi(z), (1.43)

or with 6§ = u;0¢
57Gpl(ar) = —p(z)d;; + td;pi(x). (1.44)

If the mass density is finite, the right-hand side is nonzero, which is a symmetry
breaking condition.

1.2 Including Vortices

There is an essential difference between the spontaneeaisdown of the Galilei sym-
metry and that of the global U(1) symmetry. Although both ayetries are Abelian,
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1.2 Including Vortices 9

the latter is a compact symmetry, whereas the Galilei grguponcompact. More
specifically, the transformation parameterof the U(1) group has a finite domain
(0 < «a < 27), while the domain ofu, the transformation parameter of the Galilei
group, is infinite. As a result, the velocity potential ofsdécal hydrodynamics cannot
be represented as the phase of a complex field. An immedigggath manifestation
of the difference is that a system with broken U(1) invar@asapports topologically
stable vortices, whereas a system with broken Galilei iamae does not. This is not
to say that vortices are absent in the latter case, it metatgssthat their stability is
not guaranteed by topological conservation laws. Closehnected to this is that the
circulation is not quantized in classical hydrodynamicsicl is known to exist in su-
perfluids. Yet, the circulation is conserved also in isgnitrdluids. This is again not
for topological, but for dynamical reasons, the conseoveltieing proven by invoking
Euler’s equation?) as was first done for an ideal, incasgible fluid by Helmholtz
[L4] and generalized to a compressible fluid by Thom§ah [15].

The easiest way to observe vortices in a classical fluid isutich a hole in the
bottom of the vessel containing the fluid. As the fluid poursauortex is formed in
the remaining fluid—a phenomenon daily observed by peoptdugiging a sinkhole.
Often, as happens in, for example, superfiihig, the core of a vortex is in the normal
state so that the symmetry is restored there. In the presatext this would mean that
inside the vortex core, the fluid mass dengiig zero. This is indeed what is observed:
the vortex core consists of air, therefore no fluid is preseny = 0 there.

In the eye of a tropical cyclone—another example of a voriayre does its best to
restore the Galilei symmetry, record low atmospheric pnessbeing measured there.
(A complete restoration would imply the absence of air cspomding to zero pres-
sure.)

It is customary to incorporate vortices in a potential flow the introduction of
so-called Clebsch potentialE[lG]. We will not follow thisute, but instead use the
powerful principle of defect gauge symmetry developed bgiért ,|j|9]. In
this approach, one introduces a so-called vortex gaugegﬁ@ld: (5, ") in the
Lagrangian via minimally coupling to the Goldstone field:

D — Dud + % (1.45)

o
with 9, = (dy, —V) and
V x ¢F = —2w, (1.46)
so thatV x v = 2w yields (twice) the vorticityw of the vortex. The combination
Oud + qSE is invariant under the local gauge transformation

d(z) = d(x) + alx);  @f — ¢, — dua(a), (1.47)
with ¢F playing the role of a gauge field. The left-hand side[of {18y be thought of

as defining the “magnetic field” associated with the vortexggefieldBY = V x ¢F.

For illustrative purposes, let us consider an externaicstartex with circulatior”
located along aliné, which may be closed or infinitely Ionﬂ14]. Then,= %FJ(L),
whered (L) is a delta function on the ling,

(D) = [ dsx—y). (1.48)
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1.2 Including Vortices 10

This model with a static, external vortex may be thought oflescribing the steady
flow in the presence of a vortex pinned to a fixed impurity. Tled&dfiequation forp
obtained after the substitutioh (1}45) reads

dop+ gV -v=0yv?+ iv-Vv? —v.EF (1.49)
with = —(9p¢ + ¢§ ) the chemical potential and = V¢ — ¢" the velocity of the

flow in the presence of the vortex. The last term gives a cagpif the velocity field
to the “electric field” associated wit&:ﬁ ,

EF = —Vob — dpp". (1.50)

Note that the field equati049) is invariant under locatex gauge transformations.
Ignoring the higher-order terms and choosing the gaijge- 0, we obtain as equation
for the flow in the presence of a static vortex:

V-v=0, or V-(Vo—o¢")=0, (1.51)
which is solved by
60 = - [ Glx -7 9" (1.52)
Yy
Here,G(x) is the Green function of the Laplace operator
eik-x 1

Straightforward manipulations then yield the well-knowioB8Savart law for the ve-
locity field in the presence of a static vortdx][{4] 17]

vo(x) = & /Ldyx X7y (1.54)

" ar Ix —yl*’

where the integration is along the vortex. This exemplifiesyiability of the vortex
gauge principle as an alternative to describe vortices ioterial flow.

Let us continue to study the dynamics of vortices—a subjeatt has recently re-
ceived considerable attention in the Iiterat@ [20]. Besesthe vortex motion is deter-
mined by the flow itself, the vortex can no longer be considex®external. We shall
see that the nonlinear part of the field equat1.49) besmelevant here.

In the absence of external forces, the vortex moves with ateohvelocityy, say.
The flow in the presence of a moving vortex can be obtained trarstatic solution
) by replacing the coordinatewith x — v ¢. This implies that

Oovy(x —vpt) = —vp - Vvy(x — vii). (1.55)

Since the solutiow, is curl-free outside the vortex core, the right-hand sidg thare
be written as-V (v, - vy). To study sound waves in the presence of a moving vortex,
we write the velocity field as(z) = vy (x — vit) + Vo(z), with ¢ describing small
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1.3 Anderson-Bogoliubov Mode 11

variations around the moving vortex solution. Equatil.then requires that we
write for the chemical potential irf (1}9)

p(x) = v - vo(x = vit) — dod(x). (1.56)
This leads to the linearized field equati[21]
9(x) — gV (x) = —vv(x) - VOo[20(t,x) — 6(t,0)], (1.57)

describing sound waves in the presence of a moving vortederining ) we again
used the gaugél = 0, and approximated, (x — v t) by v, (x). To linear order inp
this is allowed since the vortex, being driven by the soundexhas a velocity

vi(t) =V(t,x = vit) = Vg(t,0). (1.58)

We also neglected a term quadraticvn which is justified because this velocity is
much smaller than the sound velocity outside the vortex @]a The first term at
the right-hand side i7) stems from the nonlinear t8w¥ in the general field
equation 9). Thus the nonlinearity of sound waves besodetectable. Equation
([L.57) can be used as a basis to study the scattering of phafiarfree moving vortex
[RQ1.

So far we have contrasted the spontaneous breakdown of tliei Gevariance
(caused by a finite mass density) and that of the global U(@nsgtry (caused by
a nonzero condensate). A superfluid, however, has a finits dessity as well as a
nonzero condensate. Both symmetries are therefore brokbrn@expect two different
Goldstone modes to be present. This is indeed what is olzsgreaiperfluidtHe. The
system supports besides first sound, which are the usuatylemses associated with
the spontaneously broken Galilei invariance, also secoadd; or entropy waves. The
latter mode depends crucially on the presence of the coatkernad is the Goldstone
mode associated with the spontaneously broken global W¢hyetry generated by
the total mass. At the transition point, the second soundcitgl vanishes, whereas
the first sound velocity remains finite. This is as expectadesbnly the condensate
vanishes at the superfluid phase transition; the total messity remains finite.

1.3 Anderson-Bogoliubov Mode

In this section we study the so-called Anderson-Bogoliunode ] of a neutral
superconductor. This mode is known to be the gapless Goldstmde associated with
the spontaneously broken global U(1) symmetry generatdiddotptal mass. Given the
general arguments of Reﬂ [3] we expect that the effectieemh of a superconductor
is exactly of the forml) we obtained for sound waves @ssical hydrodynamics,
but with ¢ replaced by a compact field.

Our starting point is the famous microscopic model of Banj&woper, and Schri-
effer (BCS) defined by the Lagrangi[24]

L = §7lid — &(=iV)]Yy + ¢[i00 — £(=iV)]ehy — Ao¥T U] by ¢y
= Lo+ L, (1.59)
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1.3 Anderson-Bogoliubov Mode 12

whereL; = —A\op} ¢] ) ¢y is a contact interaction term, representing the effective,
phonon mediated, attraction between electrons with cogglonstanf\, < 0, and.,
is the remainder. In9), the field; | is an anticommuting field describing the
electrons with mass: and spin up (down)(—iV) = e(—iV) — po, With ¢(—iV) =
—V?2/2m, is the kinetic energy operator with the chemical potentigsubtracted.

The Lagrangia9) is invariant under global U(1) transfations. Under such
a transformation, the electron fields pick up an additiomalse factor

Vo — eiaz/]a (160)

with ¢ =7, | and « a constant. Notwithstanding its simple form, the microscop
model ) is a good starting point to describe BCS supetlectors. The reason
is that the interaction term allows for the formation of Ceopairs which below a
critical temperature condense. This results in a nonzepe@ation value of the field
A describing the Cooper pairs, and a spontaneous breakdathie gfobal U(1) sym-
metry. This in turn gives rise to the gapless Anderson-Biogol mode which—after
incorporating the electromagnetic field—lies at the roataist startling properties of
superconductorg [P5].

To obtain the effective theory of this mode, the fermionigies of freedom have
to be integrated out. To this end we introduce Nambu’s nmtadind rewrite the La-
grangian[(1.§9) in terms of a two-component field

v=() ¥ =i, (1.61
In this notation £, becomes

_ i0p — &(—1V) 0
fo=v! ( 0 0 + £(—iV) ) ¥, (1.62)

where we explicitly employed the anticommuting characfehe electron fields and
neglected terms which are a total derivative. The partifimetion,

Z:/Dwmpexp (ZL £>, (1.63)

must for our purpose be written in a form bilinear in the alecfields. This is achieved
by rewriting the quartic interaction term as a functionaégral over auxiliary fieldg\
andA*:

exp (—Mo/w}* W, ¢T> - (1.64)
/DA*DAexp [—z/ (A* by 1+ DT YT A - %A*A)} ,
x 0

where, as always, an overall normalization factor is omitt€lassically,A merely
abbreviates the product of two electron fields

A = dovydr. (1.65)
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1.3 Anderson-Bogoliubov Mode 13

It would therefore be more appropriate to giteéwo spin labelsA 1. Sincey; andy
are anticommuting fields) is antisymmetric in these indices. Physically, it desaibe
the Cooper pairs of the superconducting state.

By employing ), we can cast the partition function ia tlesired bilinear form:

_ i . A
Z_/Du; Du;/ DA*DA exp(/\o /wA A) (1.66)
. iy — £(—iV) —A
P {Z/z 4 ( i —A* ido + &(—iV) >w] '

Changing the order of integration and performing the Gaunsisitegral over the Grass-
mann fields, we obtain

7 - /DA*DA exp <iscﬁ»[A*,A] - / A*A> , (1.67)
0 Jax

whereS.g is the one-loop effective action which, using the identitgt(®) = exp[Tr
In(A)], can be cast in the form

* _ pO_g(p) —-A
Se[A*, A] = zTrln( AT po+E(D) ) (1.68)

wherepy = i0p andé(p) = e(p) — o, With €(p) = p?/2m. The trace Tr appearing
here needs some explanation. Explicitly, it is defined as

Seg = —iTr In [K (p, z)] = —itrIn [K(p, x)6(x — y)’y:z] ) (1.69)

where the trace tr is the usual one over discrete indices. Weegiated the matrix
appearing in8) byK (p, ) so as to cover the entire class of actions of the form

5= [ 6@k, (1.70)
The delta function in[(1.§9) arises becausé, ) is obtained as a second functional
derivative of the action
529
59T (x) 6¢(x)

each of which gives a delta function. Since the action hag oné integral[ over
spacetime, one delta function remains. Because it is degimmay be taken out of
the logarithm and[(1.69) can be written as

= K(p,x)8(z —y)| (1.71)

y=a’

y=x

= —itr/z/ke“” In[K (p, )] e e, (1.72)

Seg = —itr /ln [K(p,x)] d(x — y)’
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1.3 Anderson-Bogoliubov Mode 14

In the last step, we used the integral representation oféha flinction:
8(x) = / e ke (1.73)
k

shifted the exponential functiosxp(ik - y) to the left, which is justified because the
derivativep,, does not operate on it, and, finally, ggtequal taz,,. We thus see that the
trace Trin ) stands for the trace over discrete indisasell as the integration over
spacetime and over energy and momentum. The intgfgmiises because the effective
action calculated here is a one-loop result withthe loop energy and momentum.

The integrals in 2) cannot in general be evaluated isetldorm because the
logarithm contains energy-momentum operators and spageatependent functions in
a mixed order. To disentangle the integrals resort has takentto a derivative ex-
pansion ] in which the logarithm is expanded in a Taylorese Each term contains
powers of the energy-momentum operatpwhich acts on every spacetime-dependent
function to its right. All these operators are shifted to ke by repeatedly applying
the identity ~

f@)pug(x) = (pp — i0,) f(7)g(2), (1.74)

where f(x) and g(z) are arbitrary functions of spacetime and the derivatlye=
(0o, —V) actsonly on the next object to the right. One then integrates by pads,
that all thep,,’s act to the left where only a factexp(ik - «) stands. Ignoring total
derivatives and taking into account the minus signs thaeawhen integrating by parts,
one sees that all occurrencesppf (an operator) are replaced wikh, (an integration
variable). The exponential functienp(—ik - ) can at this stage be moved to the left
where it is annihilated by the functiaxp(ik - ). The energy-momentum integration
can now in principle be carried out and the effective actierchst in the form of an
integral over a local densitg.g:

Sett = / Lot (1.75)

This is in a nutshell how the derivative expansion works.
In the mean-field approximation, the functional integfab@) is approximated by
the saddle point:

Z = exp <'LSCH[ ;f, Ami] + )\L / A:‘anmf) 5 (176)
0 Jz
whereA,;; is the solution of mean-field equation
0Seft 1
=——A. 1.77
OA*(x) Ao ( )

If we assume the system to be spacetime independent sathét) = A, Eq. (L.7)
yields the celebrated BCS gdp]24] equation:

1 . 1
EY ‘Z/kka—E%kmn
1 1
- _Z - 1.78
Q/kE(k)’ (1.78)

©Amstex



1.3 Anderson-Bogoliubov Mode 15

wheren is an infinitesimal positive constant that is to be set to zrihe end of the
calculation, and

E(k) = \/&(k) + |A[? (1.79)

is the spectrum of the elementary fermionic excitationshil equation yields a solu-
tion with A # 0, the global U(1) symmetn{ (160) is spontaneously brokanesi

A oA £ A (1.80)

under this transformation. The fact®iin the exponential function arises because
describing the Cooper pairs, is built from two electron feldt satisfies Landau’s
definition of an order parameter as its value is zero in thersgiric, disordered state
and nonzero in the state with broken symmetry. It directlasuges whether the U(1)
symmetry is spontaneously broken.

In the case of a spacetime-independent system, the effexttion ) is readily
evaluated. Writing

(72" e ) (70 i)

0 A
(28, wa

and expanding the second logarithm in a Taylor series, wegréze the form

Se[A*, A] = —i Trln ( po _05(1’) " +0€(p) )

, A )
—¢Trln - 1.82
* <1 g — &M@/’ (1.82)

up to an irrelevant constant. The integral over the loop@nkg gives for the corre-
sponding effective Lagrangian

zﬁ:AWM—am. (1.83)

To this one-loop result we have to add the tree t&fi?/)\o. ExpandingF(k) in a
Taylor series, we see that the effective Lagrangian alstagma term quadratic in.
This term amounts to a renormalization of the coupling camistwe find to this order
for the renormalized coupling constaxt

1 1 1 / 1
~=v+z [ = (1.84)
Ao 2 k€K

The integral at the right-hand side diverges, to regulatize introduce a momentum

cutoff A. In this way we obtain

1 1 m
—=— 4+ —A 1.85
A )\0 + 271’2 ’ ( )
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1.3 Anderson-Bogoliubov Mode 16

where we omitted the (irrelevant) finite part of the integialshould be remembered
that the bare coupling constaky is negative, so that there is an attractive interaction
between the fermions. We can distinguish two limits. Onghdfbare coupling constant
is taken to zero)y — 0—, which is the famous weak-coupling BCS limit. Second, the
limit where the bare coupling is taken to minus infiniy — —oo. This is the strong-
coupling limit, where the attractive interaction is suchttthe fermions form tightly
bound pairs|E7]. These composite bosons have a weak repitéeraction and can
undergo a Bose-Einstein condensation (see succeedingrgect

To this order there is no renormalization of the chemicaépbaél, so that we can
write . = pig.

Since there are two unknowns contained in the thefsrgnd ., we need a second
equation to determine these variables in the mean-fieldoappation. To find the
second equation we note that the average fermion nuivhevhich is obtained by
differentiating the effective actior (1]68) with respexjit

8Scﬁ'
= 1.86
o (1.86)
is fixed. If the system is spacetime independent, this resliece
n = —itr/ Go(k)T3, (1.87)
k

wheren = N/V, with V' the volume of the system, is the constant fermion humber
density,r3 is the diagonal Pauli matrix in Nambu space,

1 0
T3 = < 0 —1 ) , (1.88)
andGy (k) is the Feynman propagator,
_ (ko—gk) A\
B 1 ko e“““? +¢(k) A
ki — E2(k) +in A koeon —¢(k) )

Here,n is an infinitesimal positive constant that is to be set to zrthe end of the
calculation. The exponential functions in the diagonaisats of the propagator are
an additional convergence factor needed in nonrelati,vlibéories@S]. If the integral
over the loop energy, in the particle number equati087) is carried out, ietak

the familiar form £
o= (- 5w) (190

The two equationd (1.78) anfd (1.87) determiandy. They are usually evaluated in
the weak-coupling BCS limit. However, as was first pointetitpuLeggett ], they

can also be easily solved in the strong-coupling limit (sezeeding section), where
the fermions are tightly bound in pairs. More recently, alse crossover between
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1.3 Anderson-Bogoliubov Mode 17

the weak-coupling BCS limit and the strong-coupling conitgdsoson limit has been

studied in detail[[29 3d, 3L, B2].

We continue by writing the order paramet®y, ¢ as
Ape(z) = A 9@, (1.92)

whereA is a spacetime-independent solution of the mean-field imu). This
approximation, where the phase of the order parameteioised to vary in spacetime
while the modulus is kept fixed, is called the London limit.€lghase fiele>(z), which
is a background field, physically represents the Goldstoogenof the spontaneously
broken U(1) symmetry. Our objective is to derive the effextheory describing this
Goldstone mode.

To this end we decompose the Grassmann field aﬂf. [33]

Vo () = @y, () (1.92)

and substitute the specific forfh (1191) of the order paranietiae partition function
(L.68). Instead of the effective actidn (1.68) we now obtain

. — 0o — E(p + Vo) —A
S = —iTrln [P0~ ¥~ 1.93
! ' n( —A* po+dop +&(p— Vo) )7 (1.93)

where the derivativ§#<p of the Goldstone field plays the role of an Abelian background
gauge field. We next write this effective action in the eqleémaform

=1
Sest = —iTrIn [Gy " (1 — GoA)] = iTr Y 7 (GoA)*, (1.94)
=1

where in the last step we ignored an irrelevant constantlandhiatrixA is given by
1 .
A(p) = Urs + —p - Voo + — V2, (1.95)
m 2m
with U the Galilei-invariant combination
1
U=0dp+—(Vep). (1.96)
2m
We shall consider only the first two terms in the series atittetthand side of (1.94),

and ignore for the moment higher than first derivatives onGbklstone fieldp. The
first term yields

. 1
Sid =i TrGo(p)rs [5090 + %(W)r‘} : (1.97)
On account of[(1.§7), this can be written as
1 _ 1
S\ = _/z n [30%7 + %(V%ﬂ)g} ) (1.98)

wheren = k3 /37 is the fermion number density. We see that the phase of trer ord
parameter appears only in the Galilei-invariant comboradL.95).
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1.3 Anderson-Bogoliubov Mode 18

We continue with the second term in the series (1.94). Wd fihetlrestrict our-
selves to the weak-coupling BCS limit, where the chemicé¢piial is well approxi-
mated by the Fermi energy,~ k% /2m. In this limit, we can make the approximation

/km(o)/iif/fdem(o)/%/:;dg, (1.99)

wherev(0) = mkr /272 is the density of states per spin degree of freedom at theiFerm
level and [ dk denotes the integral over the solid angle. In the last stepextended
the range of thé = ¢ — p integration from[— i, 00) to (—oo, oo) which is justified by

the rapid convergence of the integrals involved. After sahgebra, using the integrals

1 . JTU=-3) 1
~/ko A )R 2 (1.100)
1 INO) 1

= =7 1.101
/£E2l+1 ﬁp(l + %) |Al2 ( )

with! =1,2,..., andl'(!) the gamma function, we obtain

1 2
5 =v10) [ oo+ 5707 (1102)

which is again invariant under Galilei transformations.
Equations[(Z1.98) anq (1.702) give the effective theory ef@vldstone mode asso-
ciated with the spontaneous breakdown of the global U(1)sgtry ],

2
Lo = —7 [aoso + %(W)z] +v(0) [%so + %(W)z] : (1.103)

As expected, it is of the same form as the effective theory btained in Eq. 1) of
the previous section describing a hydrodynamic sound wafter rescalinge — me,
the two forms become identical. The only difference beirag the present Goldstone
field ¢ is a compact field. For the velocityof the Anderson-Bogoliubov mode we find

62:

v, (1.104)

Wl

wherevp = kr/m is the Fermi velocity. The effective theory (1.103) has bessi
erived by various other authois [45] $6] 37].

Graphically, the effective theory is represented by thgidimns depicted in Fi@.l,
where a line with a shaded bubble inserted standstiares thefull Green functionG
and the black bubble denotetimes thefull interactionI” of the x,-fields, introduced
in (1.92), with the background fiell which is denoted by a wiggly line. Boif¥ and
I" are2 x 2 matrices. The full interaction is obtained from the inve@een function
by differentiation with respect to the chemical potential,

oG
op

r= (1.105)
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1.3 Anderson-Bogoliubov Mode 19

O g

Figure 1.1: Graphical representation of the effective the.103). The symbols are
explained in the text.

This follows becaus#’, as defined in6), appears in the theory only in the combi-
nationy — U. To lowest order, the interaction is given byr;. Employing Eq. 7),
with G replaced by the full Green function, we conclude that the diisgram indeed
corresponds to the first part of the effective the.lO':Bl)s second diagram with-
out the wiggly lines denotegimes the (0 0)-component of tifigll polarization tensor,
Ty, at zero energy transfer and low momentgm

i lim Ty (0, q) = lim tr/ 73GT' G (ko,k + q), (1.106)
q—0 q—0 k

where the minus sign associated with the fermion loop isuithedl. To see that this

represents the second part of the effective theory we inaolegument due to Gavoret

and Nozieres[[38]. By virtue of relatiof (1.105) betwees fiall Green functiorG' and

the full interactionl”, the (0 0)-component of the polarization tensor can be casis

form

oG~!
lim ITpo(0 = 4limt G G(ko, k
o 00(0,q) ¢ 1"/1673 o (ko k +q)

= —i% éLIIlotr/kTgG(k()’k +q)

on 1 0%Q

= —=—-=— 1.107

o Vo ( )
where() is the thermodynamic potential andthe volume of the system. The right-
hand side of[(1.107) i&?«, with » the compressibility. Because it is related to the
macroscopic sound velocityvia

1
mnc

we conclude that the (0 0)-component of the full polarizatiensor satisfies the so-
called compressibility sum rule of statistical physi@][Ss

10?20  n

T " e (1.109)

lim Igo(0,q) =
q—0

It now follows immediately that the second diagram in fepresents the second
part of the effective theory (1.103).
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1.3 Anderson-Bogoliubov Mode 20

Both the particle number density and the sound velocity bas &lso be obtained
from the thermodynamic potenti@l by differentiating it with respect to the chemical
potential:

1 09 1 1 m 0%Q

Von 2 VhowE (2.110)
In the weak-coupling BCS limit, the spectrum of the elemgntarmionic excitations
does not differ significantly from the free-particle speatr The thermodynamic po-
tential may therefore be approximated by that of a free femgas. The partition

function (1.6B) withC the free Lagrangiar (1.p2) reads

Ltree = exp (_'L / Vfrc9> s (1111)

where the spacetime integral over the potentigl. is given by minus the effective
action [1.6B) withA set to zero. We used a potential rather than an actiop inJ}.11
because the free fermion system is homogeneous in spacetiang/ing out the inte-
grals over the loop energy and momentum, we obtain for thenpiad

4\/5 3/2,5/2
~Tgm
This physically represents the ground-state energy penohime. The thermody-

namic potential (at the absolute zero of temperature) iginbt by integratingy over
space,

n=—

Vfree = (1112)

Q:/XV. (1.113)

With the help of 0), the velocity of the Anderson-Bdgbbv mode can now be
calculated; this yields agaifi (1.104).

One can of course continue and calculate higher-order tefritee effective the-
ory. Since these involve always higher-order derivatithsy are irrelevant at low
energy and small momentum. To identify the expansion patenriet us compute the
quadratic terms in the Goldstone fields, involving fourtider derivatives. A somewhat
tedious but straightforward calculation yields in the weakipling BCS limit:

v(0)
Lar = g [969) = 50R(@00)(V20) + 5ur (V7)) (1.114)
This equation shows us that the higher-order terms havereithextra facto3 /| A|?
or (vpV)?/|AJ?, where we recall that the BCS correlation lengtlat zero temperature
is given by
VR
=—. 1.115

€o Al ( )
It sets the scale over which the modulus of the order paramates. At low energy
and small momentum these additional terms can indeed besdntn deriving [1.134)
we integrated various times by parts and neglected the mgs$oiial derivatives. With
the additional terms included, the energy spectrum of théeson-Bogoliubov mode
becomes

E2(k) = 102k (1 — 27%63K2) (1.116)
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1.4 Composite Boson Limit 21

in accordance with Refs[ [B9,]4f, 1]. The minus sign[in (1 st&ws the stability of
this Goldstone mode against decaying.

When one considers even higher energies and momenta, anhas<o account
for variations in the modulus of the order parameter so thatliondon limit, where
the modulus is taken to be constant, is no longer applicable.

1.4 Composite Boson Limit

In this section we shall investigate the strong-couplingtliof the pairing theory. In
this limit, the attractive interaction between the ferngassuch that they form tightly
bound pairs of maskn. To explicate this limit in arbitrary space dimensigrwe swap
the bare coupling constant for a more convenient parameter-binding energy, of
a fermion pair in vacuunml]. Both parameters charactehieestrength of the contact
interaction. To see the connection between the two, let asider the Schrodinger
equation for the problem at hand. In reduced coordinatesads
VQ

{—E + Ao 5(x)} Y(x) = —eq, (1.117)
where the reduced massris/2 and the delta-function potential, witky < 0, repre-
sents the attractive contact interactionin ([L.59). We stress that this is a two-particle
problem in vacuum; it is not the famous Cooper problem of tateriacting fermions

on top of afilled Fermi sea. The equation is most easily sdbyggourier transforming
it. This yields the bound-state equation

0(k) =~ (0), (1.118)
or 1 1
-5 - /k e (1.119)

This equation allows us to swap the coupling constant fobthding energy,. When
substituted in the gap equatidn (1.78), the latter becomes

1 1 1
/ﬁ/mm - 5/km. (1.120)

By inspection, it is easily seen that this equation has disolgiven by ]
A—0, po— —%ea, (1.121)

where it should be noted that the chemical potential is ivghere. This is the strong-
coupling limit. To appreciate the physical significancelod specific value found for
the chemical potential in this limit, we note that the speet#;, (q) of the two-fermion
bound state measured relative to the pair chemical potentiareads

2

Ev(q) = —€, + 4 2410. (1.122)
dm
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1.4 Composite Boson Limit 22

The negative value fqr, found in (T.12]L) is precisely the condition for a Bose-Eéirst
condensation of the composite bosons inghe 0 state.

To investigate this limit further, we consider the effeetaction 8) and expand
A(x) around a constant valu® satisfying the gap equatio78),

Alz) = A+ Az). (1.123)

We obtain in this way,

[eS) ~ 4
S =iTrY [Go(p)( I ﬁ)} , (1.124)
=1

whereG) is given in [1.8p). We are interested in terms quadrati& irEmploying the
derivative expansion outlined on the pafjdq 13-14, we find

1 1
P — B*(p) (po + q0)? — E*(p — q)
x {82 A*A" + [po +&(P)]po + 90 — £(p — q)]

+AAA + [po — €(p)][po + 60 + E(p — @) ATA L,

S& (@) = §iTr

(1.125)

A*

>

whereg,, = id,. Itis to be recalled here that the derivatjvg operates on everything
to its right, Whileéu operates only on the first object to its right. Let us for a mome
ignore the derivatives in this expression. After carrying the integral over the loop
energyk, and using the gap equatidn (1.78), we then obtain

1 1 e <2 % .
c<2>(0)=—§/kE3—(k) (8242 + A7 A% +21APIAP) (1.126)

In the composite boson limiA — 0, so that the spectrunf (1]79) of the elementary
fermionic excitations can be approximated by

E(k) ~ e(k) + 3ea. (1.127)

The remaining integrals irf (1.126) become elementary mliiit,

1 APB—d/2) 42 ao-3

= . 1.128

e (129

We next consider the terms involving derivatives[in (1} 12B9llowing Ref. [2p]

we setA to zero here. The integral over the loop energy is easilyiezhout, with the
result

1 1 .
(2) - _ - .
£70) 2/kqo—kz/m*'zﬂo—(12/47”AA
1 1 N
—= A*A. 1.129
2/1«-Q0—k2/m+2uo—q2/4m ( )
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The integral over the loop momentuknwill be carried out using the dimensional-
regularized integral

1 ~T(1-4d/2) 1
/k (k2 + M?2) - (47)d/2 (MQ)l,d/Q (1.130)

to suppress irrelevant ultraviolet divergences. To ifaist the power of dimensional
regularization, let us consider the case= 3 in detail. Introducing a momentum
cutoff, we find in the large limit

1 A 1 1
= - —M — . 1.131
/k(kQ-l-Mz) 272 Arw +0 <A) ( )

From (1.13D) however only the finite part emerges. This e)ifiepthat terms diverg-
ing with a strictly positive power of the momentum cutoff angppressed in dimen-
sional regularization. These contributions, which conwrfrthe ultraviolet region,
cannot physically be very relevant because the simple BC8eha.59) stops being
valid here and new theories are required. It is a virtue ofedigional regularization
that these irrelevant divergences are suppressed.

We thus obtain in the strong-coupling limit

1
/I<QO—k2/m—6a—q2/4m - (1.132)

I'(1—-4d/2 _
- ((47T)d//2 )md/Q(_qo + €+ q2/4m)d/2 15

or expanded in derivatives

1
= 1.133
/kqo—kQ/m—ea—qQ/élm ( )
D(1—d/2) 45 ao-1 D(2—=4d/2) 45 422 9’
_7(47‘—)(1/2 m €q — 7(47_‘_)(1/2 m €a qo — % .

The first term at the right-hand side yields as contributmtht effective theory

@  PA=4d/2) 45 a1 72
E}\ = Wm / Ea/ |A| . (1134)

To this we have to add the contributidf|? /), coming from the tree potential, i.e.,
the last term in the partition functioff (1]67). But this cdnation is no other than
the one needed to define the renormalized coupling consiafL:84), which in the
strong-coupling limit reads using dimensional regulaiaa
1 1 TI'(1-4d/2

LA =d/2) ap it (1.135)

X X (dm)dr a

In other words, the contributiof (1.134) can be combineth Wit tree contribution to
yield the term A|2 /). Expanding the square root in (1.132) in powers of the déviva
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1.4 Composite Boson Limit 24

q,. using the value[(1.1P1) for the chemical potential, andipgshe pieces together,
we obtain for the terms quadratic ia [E],

£o = %%md/%g/“ B My(q) ¥, © = ( 2* > (1.136)
whereMy(q) is the2 x 2 matrix,
My(q) = (1.137)
w-afAm— Q- d/ARje,  —(2-d/DAe,
—(2—d/2)A* /e, —qo — @*/Am — (2 —d/2)|A|?/eq |’

As we will see shortly in SeB.G, this describes the supdréitate of a weakly inter-
acting composite boson system. On comparing with @.mmw, we conclude
that the composite bosons have—as expected—a mass 2m twice the fermion
massm, and a small chemical potential
AP

pob = (2 — d/2)6—. (1.138)
From (1.13F) one easily extracts the so-called Bogoliulpmcsum and the velocity
co of the sound mode it describes (see $ed. 1.6),

2 Ho,b
= =(1-4d/4 1.139
=0 = (- d/a) (1.139)
Also the number density, ;, of condensed composite bosons,
— F(2_d/2) d/2 _d/2—2) A |2
Rop = —GaE ™ /2ed/22|A (1.140)

as well as the weak repulsive interactidy), between the composite bosons,

1—-d/2
g 1—d/a e
T(2— d/2) mir2

Xop = (47) (1.141)

follow immediately. We in this way have explicitly demoretied that the BCS theory
in the composite boson limit maps onto the Bogoliubov theory

In concluding this section, we remark thatdn= 2 various integrals we encoun-
tered become elementary for arbitrary values®of For example, the gap equation

(- 120) reads explicitly il = 2

€a = \/ :u2 + |A|2 — My (1142)

while the particle number equatiop (1].90) becomes
S M) A2
n=o- ( w? 4 |A| —l—u) . (1.143)
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Since in two dimensions,
kR om
n=-L = Tep, (1.144)
27 T
with kg ander = k2 /2m the Fermi momentum and energy, the two equations can be
combined to yield[41]
2 A 2 _
fa _ QM_ (1.145)
v \VIZ+AP+p
The composite boson limit we have been discussing in thisoseis easily retrieved
from these more general equations. Also note that in this, litn= 27 1.

1.5 Superfluid*He-a

In this section we extend the previous analysis to a more toatpd system, namely
that of superfluidHe [@]. Whereas the Cooper-pairing in a BCS supercondigtor
a spin-singlet state, the pairing fkie is in a triplet state. This means that besides the
global U(1)V group generated by the particle numBeésmlso the SO(3) spin rotation
group has to be considered. Moreover, since on account oéxbleision principle
the pairs must have an odd angular momentum, also the spat@®mnaroup must be
included. In®He, it is generally excepted that the pairing is in the= 1 state. The
relevant symmetry group is now much larger than that of a B@&%es which leads
to a much richer structure of possible superfluid phasé 4@, Since in most phases
the three symmetries become intertwined, superfltid displays surprising physical
properties([46].

We will consider @He film. The specific superfluid state we will study is the two-
dimensional analog of the three-dimensiottaé-A phase, the so-calleiHe-a phase,
first considered by Stein and Cro[47] (see also IEf [40iis state is characterized
by the magnetic quantum numbersy = 0, m; = —1, where the orbital magnetic
quantum numbem may be considered as the projection of the orbital angular mo
mentum on the nonexistingaxis. The corresponding symmetry breakdown is

SO(3)% x SO(2)L x U()YN 2 80(2)° x U(1)L+Y, (1.146)

where the generator of the residual symmetry group Yi?)is the sum of the gener-
ators of the group SO(2)of space rotations and the group U{19f phase transforma-
tions. We see that in this state, the spin rotation group $0¢3pontaneously broken
to SO(2Y, as in ferro- and antiferromagnets. Sineg = 0, the superfluiddHe-a
phase is, in addition, an antiferromagnet. We choose tesept the order parameter
by the matrixA$* with spin indexa = 1, 2, 3 referring to ther, y or = component in
spin space, and with orbital indéx= 1, 2 referring to thex or y component in real
space. (We will always denote vector spin indices—such-ass superscript to dis-
tinguish them from ordinary space indices.) In this basis>He-a order parameter is
given by [43]

0

01, (1.147)

—1

A2 =A

= o O
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1.5 Superfluid®He-a 26

whereA is a constant whose physical significance will become clé@mwe proceed.
Without loss of generality, we have chosArto be real.

It follows from (L.14p) that the coset space is three dimemai, implying three
Goldstone modes. To make these degrees of freedom expleityrite the order pa-
rameter in the more general form

AY = Ad® (e —ie?); e?'?, (1.148)

wheree! ande? are two orthonormal vectors in real spade,is a unit vector in spin
space, parameterizing the coset SG(SPD(2)° ~ S?, and2¢ is the phase of the order
parameter. The residual U(t)"V symmetry is reflected in the invariance of the order
parameter[(1.148) under the combined action of a U(1) teansdtiony — ¢+ 4a and
arotation of thee-frame throughy about the: axis: (e! —ie?) — (e! —ie?) exp(—ia).
The transformation parametemay be taken to be spacetime dependent. The specific
form ({L.147) is recovered by choosidg in the z direction of spin space, and and
e? in thex andy direction of real space, respectively, and by takjng 0.

Superfluid®He can be modeled by the Lagrangi@ [39]

L =P%[i00 — E(—iV)o — o[k (—id;)0E] [1br (—id;)bs), (1.149)

where the last term, with, a positive coupling constant, is an attractive interaction
term appropriate for P-wave pairing. I49)5 are Grassmann fields describing
the ?He atoms with spinr =1, |, and&(—iV) is as defined below[ (1.59). Finally,

o; = (0;— 51-)/2/@, with ¢ = 1,2. We again linearize the theory by introducing
auxiliary fieldsA andA* using the functional identity

exp {22 [1050031 e -idw] } =

[oapaes <—§ J{ast wriiea + i -idus AL,

1 o
——AAL . 1.150
oo m}> (1.150)

The Euler-Lagrange equation fdrshows that classically it merely stands for a product
of two Grassmann fields: ‘ R
Al = Aot (—i;) by (1.151)

As may be inferred from this equation), is symmetric in its spin indices, i.e., it is a
spin triplet. Moreover, the indexindicates that the field is a vector under spatial rota-
tions. The partition functio of the theory can now be represented by the functional
integral:

7 = /D\I/TD\IJ/ DA*DA exp (%/A;iAig) (1.152)
0 Jx
i - ~3ps/kr, Al}g!
v gt Po g(p) ) 51Pi/RF; g >\I/:|
XGXPL/I < —Sg{pi/ke, A%} po+&(p) ’
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where{, } denotes the anticommutator. We recall that the opeyatet id,, acts on
everything to its right. The derivativésA® andd; A** contained in[(1.152) arise after

a partial integration in the corresponding terms[in (1. 15@)e tenso in ([.152) is
the metric spinor

0 1
g= ( 1 0 ), (1.153)
andV¥ stands for the Nambu multiplet
(0 ) ( ¥y )
U= « | = . 1.154
( g v g, ( )

The reason for introducing the spingrin this multiplet is that the two symmetric
matricesA’ (i = 1,2) may be expressed as a linear combination of the symmetric
matricess®g, with o (o = 1, 2, 3) the Pauli matrices:

Ai’T = A?(Oﬂg)ara (1.155)
whereA$ are the expansion coefficients, so that
Algt = A%e?, (1.156)

In this way, the metric spinay disappears from the argument of the exponential func-
tion in ({L.15R). This will simplify the calculation. With évalue [1.148) for the matrix
A%, the Lagrangian appearing in the partition functipn (1])ich be cast in the con-
cise form

A
L=3u (po —&(p)3 — A(p) — %n{pi,d“}&‘) v, (1.157)

wherer; (i = 1,2) are Pauli matrices in Nambu space which should not be codifuse
with the Pauli matrices® in spin space. The verteX(p) is the same as the one
we encountered before in the context of the BCS theory [se@)]. In deriving
({L.157) we have given theframe the standard orientation.

We proceed in the same way as in the previous section, andngese the Grass-
mann fields as in Eq[ (1p2). The partition functipn (I} 152ytbecomes after carrying
out the Gaussian integration over the fermionic degreessefiom

7 = / DA*DA exp <iscﬁ»[A*, A] + %A;;’Aiﬂ,) : (1.158)
0
with S.g the effective action,
1. A [ @
Set = —5i Trlog  po — &(P)73 — A(P) — %Ti{m, d*}o” ). (1.159)

A general orientation of the-frame, which may vary in spacetime, is accounted for
by requiring the action to be invariant under the residud)tt” symmetry. This is
achieved by the replacement

5#90 — 5#90 —el- 5#e2. (1.160)
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Since in this section we are not interested in the Goldstordasof the spontaneously
broken spin rotation group, we keep the spin vedtofixed in thez direction.

We continue as in the previous section and expand the eféegtition in a Taylor
series:

o0

Set = 4Te > 2 [Go(p) A’ (1.161)

=1
where the Feynman propagator now reads

X -1
Go(k) = [ko —¢(k)r3 — kék : 703] (1.162)
F

1 , A
_ kqetkonTs k k- 31
R+ [ 0e™ + L(k)ms + k- 7o

Here,E (k) is the spectrum of the elementary fermionic excitations

2
E%(k) = £3(k) + (ké) : (1.163)
F
The constanf\ introduced in 8) is—apart from a factgr—seen to be the energy
gap of these excitations at the Fermi circle.

The expressior] (1.1p1) can be evaluated in the weak-cayijiiit along the lines
of Sec.[1.B to obtain the effective theory of the Abelian Gade mode[[49]. We
arrive in this way again at the theotly (1.103) we calculatedhfthe BCS theory with
v(0) = m/27 now the two-dimensional density of states per spin degréeeetiom
andn = ki /27 the two-dimensional fermion number density. It describesand
wave traveling with the speeg: /v/2. It is remarkable that to this order the additional
contributions arising from the derivatives in the intetrastterm of the Lagrangian
([L.149) cancel so that the same effective theory is obtaised the previous section
where these derivatives were absent.

In the next chapter we shall consider the effective theoscdeing the antiferro-
magnetic spin waves associated with the spontaneous lmeakaf the spin rotation
group SO(3§ ©SO(2Y in this particular superfluidHe phase. Since this symmetry
is an internal symmetry unrelated to Galilei invarianceréhis no reason to expect a
theory that is invariant under Galilei transformations.

1.6 Weakly Interacting Bose Gas

The model commonly used to describe a weakly interactingeRs (for a general
introduction, see the textbooKs [40] 42} 51]), is definedieyltagrangian[§2]

L= ¢*[i0 — e(—iV) + po) & — Aol |, (1.164)

wheree(—iV) = —V?2/2m andyu is the chemical potential. The self-couplingis taken
to be positive,\; > 0, so that the contact interaction is repulsive. We will trésas
model perturbatively in a loop expansion. For this to be igpble the (renormalized)

©Amstex



1.6 Weakly Interacting Bose Gas 29

&2;‘2’:’1%5{%.'1
e RN

Figure 1.2: Graphical representation of the potential gndt.165).

coupling constant must be small. Superfitiite is a strongly interacting system where
this premise does not hold. Fortunately, after almost twoades of experimental
efforts by various groups in the US as well as in Europe, Béisstein condensation
(BEC) has recently been found in weakly interacting Bosega group in Boulder,
Colorado were the first to produce such a BEC in a cloutf Bb atoms trapped in a
magnetic field E3]. The condensate formed at a temperatosd 170 nK and was
comprised of up to 2000 atoms; it was stable for about 15 s. cArsd unequivocal
observation of BEC was subsequently established in a systeia atoms, with a
condensate containing two orders of magnitude more pastitian in the Colorado
experiments|E4]. Various other systems of bosonic alkalire are presently under
study.

At zero temperature, the global U(1) symmetry is spontaskgdaroken by a non-
trivial ground state. This can be easily seen by considdtiaghape of the potential
energy

V = — ol + Nolo|", (1.165)

depicted in FigZ which is seen to have a minimum away friognoriging = 0. To
account for this, we shifb by a (complex) constant and write

d(z) = &) [§ + ¢(x)]. (1.166)

The scalar fieldp(x) is a background field representing the Goldstone mode of the
spontaneously broken global U(1) symmetry. At zero tempegathe constant value

7 1 po
2= 2 1.167
91" =5 o ( )
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minimizes the potential energy. It physically represem¢srtumber density of particles
contained in the condensate for the total particle numbesitieis given by

n(z) = |¢(x)[*. (1.168)

Becausep is a constant, the condensate is a uniform, zero-momentts sthat is,
the particles residing in the ground state are inkhe 0 mode. In terms of the new
variables, the quadratic terms of the Lagrangfan (}.164)ezcast in the matrix form

with
Mo(p) = (1.170)
po — €(p) + po — g — 4Xo|o[? —2Xo¢?
—2X09* —po — €(p) + po — U — 4Xo|o|* )’

whereU is the Galilei-invariant combinatior (1]96). In writingishwe have omitted a
term V2¢ containing two derivatives which is irrelevant at low morhen and also a
term of the formVy - j, wherej is the Noether current associated with the global U(1)
symmetry,

i= 0"V o. (1171)

2im

This term, which after a partial integration becomegV - j, is also irrelevant at low
energy and small momentum because in a first approximat@opatticle number den-
sity is constant, so that the classical current satisfiesdhéition

V.j=0. (1.172)

The Feynman propagator of the theory is easily extractednsriing the matrixi/,
with the background field’ set to zero. This yields upon using the mean-field value

({.167) forg

1
) 1.173
Go(k) k2 — E2(k) + in ( )
y ko e 4 e(k) 4 20| @2 —2\0?
—2* ke *on 4 e(k) + 200l)2 |

with n a small positive constant that is to be set to zero aftekghietegration has been
performed, andZ (k) the single-particle Bogoliubov spectruEl[SS],

Ek) = +e'(k)+2uoe(k)
= e+ 4nlde(k). (1.174)

The most notable feature of this spectrum is that it is gapleshaving for small mo-
mentum as

E(K) ~ ug K|, (1.175)
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with ug = /po/m a velocity which is sometimes referred to as the microscepimd
velocity. It was first shown by BeIiaeElSB] that the gaplesssof the single-particle
spectrum persists at the one-loop order. This was substgyeaven to hold to all
orders in perturbation theory by Hugenholtz and PiIEIS [6@}.large momentum, the
Bogoliubov spectrum takes a form

E(k) ~ e(k) + 2Xo|0|? (1.176)

typical for a nonrelativistic particle with mags moving in a medium. To highlight the
condensate we have chosen here the second fofm in|(1.17#4 whis replaced with
20|02

Since gapless modes in general require a justification &retbxistence, we expect
the gaplessness of the single-particle spectrum to be & oésboldstone’s theorem.
This is corroborated by the relativistic version of the ttyeoThere, one finds two
spectra, one corresponding to a massive Higgs particlehniniche nonrelativistic
limit becomes too heavy and decouples from the theory, amdoconresponding to
the Goldstone mode of the spontaneously broken global Uhnetry ]. The
latter reduces in the nonrelativistic limit to the Bogolawspectrum. Also, when the
theory is coupled to an electromagnetic field, one finds tiesingle-particle spectrum
acquires an energy gap. This is what one expects to happéntlvétspectrum of
a Goldstone mode when the Higgs mechanism is operating. qiigaéence of the
single-particle excitation and the collective density fliation has been proven to all
orders in perturbation by Gavoret and Nozi‘e@ [38].

Given this observation we immediately infer that at low gryeand small momen-
tum the superfluid phase is described by the theory we enemabefore
2

(w)“‘] + # {aow + ﬁ(wﬁ , (1.177)
of a nonrelativistic sound wave, with the real scalar figlctepresenting the Goldstone
mode of the spontaneously broken global U(1) symmetry. Téw eeader might be
worrying about an apparent mismatch in the number of degriefeesedom in the nor-
mal and the superfluid phase. Whereas the normal phase ighéesby a complex
¢-field, the superfluid phase is described by a real scalar fieldhe resolution of
this paradox lies in the spectrum of the mo [59]. In themadiphase, the spec-
trum E(k) = k?/2m is linear in the energy, so that only positive energies appea
in the Fourier decomposition, and one needs—as is well kmowm fstandard quan-
tum mechanics—a complex field to describe a single partinléhe superfluid phase,
where the spectrum i8%(k) = ¢?k?, the counting goes differently. The Fourier de-
composition now contains positive as well as negative éesm@nd a single real field
suffice to describe this mode. In other words, although thelrer of fields is different,
the number of degrees of freedom is the same in both phases.

The effective theory is graphically again represented Ig;y@. To lowest order,
the inverse propagator is given by the mattif in ), so that the vertex describ-
ing the interaction between ttié and thed-fields is minus the unit matrix. In terms of
the full Green functiortz, the particle number density now reads

0= §tr/kG(k). (1.178)

1

Leg = —7 [Ogp +
2m
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The (0 0)-component of thiill polarization tensorlyg, at zero energy transfer and
low momentuny,

i lim Ig0(0,q) = L lim tr/ GT' G (ko,k+q) (2.179)
q—0 2 q—0 k

contains a symmetry facto% which is absent in fermionic theories. Following the
same steps as in the case of superconductors, we again artive compressibility
sum rule [1.1d9).

The diagrams of Fiﬂ.l can also be evaluated in a loop eigrathereby inte-
grating out the complex scalar fielg) to obtain explicit expressions for the particle
number density: and the sound velocity to any given order|E0]. In doing so, one
encounters—apart from ultraviolet divergences which earebormalized away—also
infrared divergences because the Bogoliubov spectrumpkegs When however all
on-loop contributions are added together, these divergeare seen to cancéI[GO].
We will in this report not proceed in this way, but instead qute the thermodynamic
potential2 from which bothn andc are obtained by differentiating with respect to the

chemical potential [se¢ (1.110)].

In the approximation| (1.169) of ignoring higher than secordkr in the fields, the
integration over theb field is Gaussian. Carrying out this integral, we obtain fue t
partition function

Z=e" LY [ Ddexp (2 / co) — e LY Det VM (p)], (1.180)

where), is the potential[(1.165) with replaced byp,

1 g
= ———. 1.181
Vo 1 h ( )
Writing
7 = exp [—i/(Vo + Veﬂ?):| ; (1.182)

we find from (1.18D) that the effective potential is givenhistorder by
Vet = —%tr / In[Mo(k)]. (1.183)
k
The use of a potential rather than an action here is to inglibait we are working with
a spacetime-independent condensate, so thatalso). The easiest way to evaluate

the loop integral ovek,, is to assume—uwithout loss of generality—thiais real and
to first differentiate the expression with respect:to

9 ko — e(k) — po —lo )
—tr [1 =
oo /k " ( —Ho —ko — e(k) — o
(k)
2 [ mw (1-184)
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whereE(k) is the Bogoliubov spectrunj (1.174). The integral okgican be carried
out with the help of a contour integration, yielding

e(k) i e(k)
Le—rwre =3 L 5w (1.189)

This in turn is easily integrated with respectg. Putting the pieces together, we
obtain for the effective potential

Vet = % /k B(k). (1.186)

The remaining integral over the loop momentiuis diverging in the ultraviolet. We
regularize it by introducing a momentum cutdff The model 4) is only valid
far below the cutoff. Above it, the model breaks down and néwysics starts. In the
largeA limit, we arrive at

1

Vet = 153

A3 — 4—71TQAmu(2) + Figmgﬂug/?, (1.187)
ignoring an irrelevant termo{ A®) independent of the chemical potential. Equation
(L.187) contains two ultraviolet-diverging terms. It shibbe realized that they arise
from a region where the moddl (1.364) is not applicable. Tteynot therefore be
of deep significance. As a consequence of the uncertaintgipte, stating that large
momenta correspond to small distances, terms arising fh@mltraviolet region are
always local and can be absorbed by redefining the paranmsgipesaring in the La-
grangian [EL]. Sinc@ = 2X|4|?, the two ultraviolet-diverging terms ifi (1.187) can
be absorbed by introducing the renormalized parameters

1

o

A

Ao — izmAgA. (1.189)
T

Because the diverging terms are—at least to this order—arfa &lready presentin the
original Lagrangian, the theory is called “renormalizdblehe renormalized parame-
ters are the physical ones that are to be identified with thusssured in experiment.
In this way, we see that the contributions to the loop integpemming from the ultra-
violet region are of no importance. What remains is the fipég

Vet = %mw,ﬁ/?. (1.190)
This result could have been obtained directly without remadization if we, instead
of introducing a momentum cutoff to regularize the integrélad employed analytic
regularization. In such a regularization scheme, wherefample the integrals are
analytically continued to arbitrary real values of the spdimensiond, divergences
proportional to powers of the cutoff never show up as was detnated in SeﬂA.
Only logarithmic divergences appear b& poles, where: tends to zero when the
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parameter in which the analytic continuation is carriediswiven its physical value.
These logarithmic divergencés(A/E), with E an energy scale, are relevant also in
the infrared because for fixed cutdfff A/E) — —oo whenE is taken to zero.

In so-called “nonrenormalizable” theories, the terms \Whége diverging in the
ultraviolet are still local but not of a form present in thégimal Lagrangian. Whereas
in former days such theories were rejected because theposeg lack of predictive
power, the modern view is that there are no fundamental ieand that there is no
basic difference between renormalizable and nonrenozatalé theoried [§2]. Even a
renormalizable theory likg (1.1164) should be extendeddhuite all higher-order terms
such as ag|%-term which are allowed by symmetry. These additional terensler the
theory “nonrenormalizable”. This does not however chahggtedictive power of the
theory. The point is that when describing the physics at anggnscaleF far below
the cutoff, the higher-order terms are suppressed by pawie A, as follows from
dimensional analysis. Therefore, far below the cutoff,rtbarenormalizable terms are
negligible.

The thermodynamic potenti@ becomes to the order in which we are working

Q= / (Vo + Vett) - (1.191)

We are now in a position to determine the particle numberiteaad the sound ve-

locity using (1.11)0). We find

1 8\
and n
2= % (1 + 3?m3/2,ﬂ/2) , (1.193)

where in the last equation we made an expansion in the (reali@ed) coupling con-
stantA which was assumed to be small. These equations reveal thakgansion is
more precisely one in terms of the dimensionless parametéf>,.'/2, or reintroduc-
ing Planck’s constantm?/2 /2 /h®.

Up to this point, we have considered the chemical potertiskt the independent
parameter, thereby assuming the presence of a reservbaahdreely exchange par-
ticles with the system under study. It can thus contain amaber of particles, only
the average number is fixed by external conditions. From tpermental point of
view it is, however, often more realistic to consider thetigly number fixed. If this is
the case, the particle number densitghould be considered as independent variable
and the chemical potential should be expressed in terms Dfiis can be achieved by

inverting relation [1.192):

i 2nA |1+ i(2ﬁm?’/\3)1/2
32

_ 3 1/2
1432 (ﬂ) 1 , (1.194)
s

4mna

3
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where in the last step we employed the relation between #m(malized) coupling
constant\ and the S-wave scattering lengtiif3, 42],

2

A= T2 (1.195)

m
This relation follows from comparing the differential ceosections for scattering of
a slowly moving boson from a hard-core sphere of radiasid from a delta function
potential with strength\ in the Born approximation. For the sound velocity (1]193)
expressed in terms of the particle number density we find

A [ 4
2 - {1 + = (2nm3)\3)1/2}
™

_ ey 1/2
- 47”;“ [1 +16 (ﬂ) ] . (1.196)
m ™

It is important to note that? is linear in the coupling constant. Without the interpar-
ticle interaction characterized by, the sound velocity would be zero. Moreover, the
interaction must be repulsive for the system to support dauaves. Let us in this
connection mention that a third experimental group hasrtedavidence of BEC in
a system of Li atoms @1]. This would be a surprising result ds atoms have—in
contrast td"Rb and Na atoms—an attractive interaction and thus a negstattering
length.

The effective theory[(1.1] 7) can also be put in a equivalemnf

Lo = —nU(z) + iU(x))\iOU(x), (1.197)

which can be easily generalized to systems with long-ramgedactions. A case of
particular interest to us is the Coulomb potential

C

e2
V(x) = —2, (1.198)
|
whose Fourier transform it space dimensions reads
2
V(k) =24 17@=D/2p [L(d - 1)] — (1.199)

|k|d—1 :
The simple contact interactialy = —X [, [¢(z)|* in (L.164) gets now replaced by

Li—-1 / 166,32V (x — y)l6(t,y) 2. (1.200)

2
The rationale for using the three-dimensional Coulomb mzéeven when consider-
ing charges confined to move in a lower dimensional spaceatslie electromagnetic
interaction remains three-dimensional. The effectivethd[l.197) now becomes in
the Fourier representation

Log = —nU (k) + %U(ko, k) —— U (ko, —k) (1.201)

1
V (k)
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and leads to the dispersion relation
ne?
E*(k) = 247 D/21 [L(g - 1)] 2 [k[P (1.202)
m

Ford = 3, this yields the famous plasma mode with an energy gap giy¢neoplasma
frequencyw? = 4rned/m.

To appreciate under which circumstances the Coulomb ictierabecomes impor-
tant, we note that for electronic systemdx| ~ kr for dimensional reasons and the
fermion number density ~ kg, wherekr is the Fermi momentum. The ratio of the
Coulomb interaction energy- to the Fermi energyr = kZ/2m is therefore pro-
portional toz~'/¢. This means that the lower the electron number density, thiem
important the Coulomb interaction becomes.

For later reference, we close this section by calculatimgfthction of particles
residing in the condensate. In deriving the Bogoliubov Bpm‘l.l?]ﬁl), we sdtp|? =
to/2Xo. For our present consideration we have to kées independent variable. The
spectrum of the elementary excitation expressed in termssf

E(k) = \/[e(k) — o + 4X0|6[2]” — 4X2| B . (1.203)

It reduces to the Bogoliubov spectrum when the mean-fieldevll.16f7) fors is in-
serted. Equatior] (1.1B6) for the effective potential i gélid, and so is[(1.191). We
thus obtain for the particle number density

_ o 10
S 10 E(k)‘ , (1.204)
2Xo  20uo0 Jx 1812=10/20

where the mean-field value faris to be substituted after the differentiation with re-
spect to the chemical potential has been carried out. Tegriatin [1.204) gives rise
to an ultraviolet-diverging term which can can be cancdiigdoing over to the renor-
malized parameter§ (1.189) afid (1]188) in the first terrh @0@). In the second term,
being a one-loop result, we may to this order simply replheedare by the (one-loop)
renormalized parameters. We find in this w@ [65]

A= % + #(MMQEP)W% (1.205)
or for the so-called depletion of the condenshté [6p, 67]
7% EERN g (%“3>1/2, (1.206)
where ) u
o = oy (1.207)

is the number density of particles in the condensate. Eguli.20p) shows that even
at zero temperature not all the particles reside in the cosate. Due to the inter-
particle repulsion, particles are removed from the grouwatesand put in states of
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finite momentum. It has been estimated that in superfidie—a strongly interacting
system—only about 8% of the particles condense in the zmpérature statﬂbS].
However, it is well known (see next section) that at zero terafure all the particles
nevertheless participate in the superfluid mot@h [69]. apemtly, the condensate drags
the normal fluid along with it.

1.7 BEC at Finite Temperature

We continue to consider BEC in a weakly interacting Bose ¢gdmide temperature.
Some finite-temperature considerations can be found intadek by Popov! 2|0]. At
the absolute zero of temperature, we saw that the Bogoliebe\ztrum: 1.174) van-
ishes linearly as the momentum goes to zero. Since this pyojsea direct conse-
quence of the spontaneously broken global U(1) symmetrgxpect it to hold at any
temperature below the critical temperattte We shall compute the sound velocity in
the vicinity of T..

To calculate the thermodynamic potential at finite tempeetwe have to general-
ize the zero-temperature quantum field theory used up tpdid to finite temperature.
For our purposes, this is achieved simply by going over togimery timet — —ir,
with 0 < 7 < 1/T, and by replacing integrals over energywith summations over
frequencies([41],

/k glko) = iT > gliwn), (1.208)

whereg is an arbitrary function, and,, are the so-called Matsubara frequencies,

oy = { 2nmT for bosons (1.209)

(2n+ 1)7T for fermions.

These rules allow us to calculate the partition functiomt finite temperature. The
thermodynamic potential is then obtained using the refatio

Q=-Th(Z). (1.210)

As in the previous section, we evaluate the thermodynantierpial for the case
where the condensate is spacetime independent. Thairigoduced in 6) is as-
sumed to depend only on temperature and the scalardisdgresenting the Goldstone
mode is set to zero. It was shown [n (1]191) that in the Bogouapproximation of
ignoring terms higher than second order in the complex figlthe thermodynamic
potential is given by the effective potential. Applying thdes outlined above to the
zero-temperature expressidn (1]183), we obtain

Verr(T') = g Z/ktr In[ My (iwn, k)], (1.211)

with the matrixd/, given by (1.17D) witH/ = 0. The mean-field value of the potential
energy is given by B B
Vo(T) = —pold(T)* + Xold(T)|*, (1.212)
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with |¢(T)|? denoting the number density of particle residing in the eorste.
The summation over the Matsubara frequencies can be cawuiteasing standard
methods. In this way, one obtains for the effective poténtia

Vear(T) = %/E(k)—kT/ln (1—e—E<k>/T). (1.213)
k k

The first term at the right-hand side has been analyzed in tidqus section and
was shown to lead to a renormalization of the parametgrand o in addition to
the contribution 0) which we will ignore here. We shsilidy the second term
in the vicinity of the critical point by expanding it in a higkemperature series. The
expansion is justified only if. is in the high-temperature regime. It will turn out that
this is indeed the case for the weak-coupling theory we aeudsing. We obtain for
the thermodynamic potential

Q _ (2m)3/2 5/2 OO

2

. 1 -
x{q2 In (1 —e qz) + T(4)\|¢|2 — 1) —eq2q_ 1

1
277

+O (7}3) } (1.214)

where the integration variable is= |k|/v/2mT. The potential is denoted by(T)
to indicate that we included the zero-temperature renazatédn of the parametersin
(L.212). The first integral appearing here is finite and weld

_ @
+ (4N — p)? L=
ed

2| 714
gl —

/OO dyy? In (1 — efyz) = —%F(%)C(%)v (1.215)
0

with T' the gamma function an¢l the Riemann zeta function. The last two integrals,
however, are infrared divergent. We regularize these biytoally continue the fol-
lowing equations to arbitrary values af

/OO d; ef_ 7 = Tle)¢(a), (1.216)
0

* dx %
/0 2 o1 L@lkle—1) =@, (1.217)

with the result

0=V + (%)3/2{—<(§>T5/2 (4A|¢|2 — n)C()T?

(1.218)
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To this order in1/T' the thermodynamic potential is of the Landau form, invafvin
terms up to fourth order in the order parameter

o = a0 aalf + sl (1219)
with
o0 = ()" [T - uc(HT?2 - hc(yr?] (1.220)
a¢-independent term, and
= -4 (%)3/2 [g(g)TW + ug(%)TW} (1.221)
0y = A {1 122 (%)3/2 g(%)Tl/Q} , (1.222)

We note, however, that our expansion is not one in terms sifice the higher-order
terms in1/7 contain, besides higher-order termspinalso|¢|- and|¢|*-terms.

The critical temperature is determined by setting the cdefit «; to zero. An
approximate solution to this equation is given by

™ 1 2/3 QC(%) 2
R g (B Sifprown

where we expanded in the coupling constantThis justifies the high-temperature
expansion we have been using because the leading term is ofder\—2/3 which is
large for a weak-coupling theory.

Equation 3) expresses the critical temperature mdef ., the chemical po-
tential. As we mentioned in the previous section, from thgeexnental point of view
it is sometimes more realistic to consider the particle nentensity as independent
variable. To express, in terms of the particle number density, we invert the equnati

for n obtained from[(1.239) witlp = 0,

T 3/2 3/2
)<Tgw) +/‘(%) BT, (1.224)

_ 100

=¢(

T=T,

N

to obtainy = p(72). When this is substituted in the condition = 0, the latter can be
manipulated in the form

3/2 3/2

A(Te) = 4T (5=) T2 = () c@md =0, (1.229)
27 2w

from which the critical temperature as function of the paetnumber density can be

determined. Setting equal to zero, we obtain the critical temperature

27 n 2/3
L (L 1.226
fo m<<<%)> (1.226)
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of a free Bose gas. To first nontrivial order in an expansiok iwe find

1
T. = Tp [1— %Cf/(gi)%)mmlm(ﬂ)}
n ad 1/3
= [1- 5 (55 ) ], (1.227)

where in the last equation we replaced the coupling constamith the scattering
lengtha using relation 5). This equation implies a (slightyrease of the critical
temperature due to the weak interaction sitj@) < 0. This is qualitatively different
from the strongly interactingHe system. A free gas withHe parameters at vapor
pressure would have a critical temperature of about 3 K, edeliquid*He becomes
superfluid at thédowertemperature of 2.17 K.

The value of the order parametg(T’) obtained from Eq.9) reads

- 1 (651
P =-—. 1.228
()P =50 (1.228)
Near the critical temperature this can be cast in the form
B T 3/2 T
T2 ~ 3¢(3) (2= 1- —
sk ~ s (52) (1-7)
_ T
~ 3n(T.) (1 - 7) . (1.229)

Recalling thato(T)|? represents the particle number densigyT") of the condensate,
we see that when the critical temperature is approachedifaw, the Bose-Einstein
condensate is drained of particles, and th&t.at vanishes altogether.

We are now in a position to investigate the spectrum of theeigary excitations
at finite temperature. If one simply substitutes the vaJu2g) for¢(T') in the Bo-
goliubov spectru3) one finds, contrary to what is etg@h that it has an energy
gap. The solution to this paradox, which also exists in tiegikéstic |¢|*-theory ],
lays in the observation that, as at zero tempera [63tuiation theory should
be carried out consistently. This has not been done up topthirg. Whereas Eq.
(E.22$) included thermal fluctuations, the spectr)m not. To fix this, we go
back to Eq.|(1.231) and note that it reflects a change in thiciaé potential due to
thermal fluctuations. With this modification the finite-teengture spectrum becomes
gapless—in accordance with a theorem due to Hohenberg artth@].

Let us work this out in some detail near the critical tempeetwherd¢(T)|? is
iven by (1.229). Retaining only the leading term in 1@ expansion, we infer from
1.22]) the following change in the chemical potential

mT>3/2

— 0

(1.230)

21

u—>ﬂ—u—4<(%)/\(

and2\|¢|?> = ji, wherey is given a tilde to indicate that it is dressed by thermal
fluctuations. In this way, the finite-temperature spectr@edmes

B(k) = y/e2(k) + 4N (T) [2e(K), (1.231)

©Amstex



1.7 BEC at Finite Temperature 41

which is indeed gapless. Since we included the zero-terhpereenormalization of
the parameters stemming from the first term at the right-teide of (1.21B), the
renormalized parametepsandy feature in these equations. The gaplessness of the
finite-temperature spectrum was shown to be true in all srdéperturbation theory

by Hohenberg and MartilﬁPZ]. The result we just obtainedopletely analogous

to the zero-temperature Bogoliubov spectr.174). M™Mpeession for the sound
velocity at finite temperature we extract from the spectreads

1) = Do)
- 6%1@(1;) (1—%). (1.232)

It vanishes when the temperature approadhed his is in accord with the observation
that the gapless Goldstone mode of the spontaneously bgikbal U(1) symmetry
vanishes at the critical temperature. We note that also it¢ fiemperature, the sound
velocity squared is linear in the coupling constant—uwithtbie interparticle repulsion
the sound velocity would be zero.

At the end of the preceding section we mentioned the wellamiact that despite
only a fraction of the particles at zero temperature resideé zero-momentum state,
all particles participate in the superfluid motion. To shbistlet us assume the entire
system moves with a velocity relative to the laboratory system. As is known from
standard hydrodynamics the time derivate in the framevigfig the motion of the fluid
is Jy+u- V [see Eq.[1]8)]. If we insert this in the Lagrangifn (1]164he near-ideal
Bose gas, it becomes

£ = ¢*[i0y — e(~iV) + po — u- (—iV)]g — Ao|@l*, (1.233)

where the extra term features the total momentym*(—iV)¢ of the system. The
velocity u multiplying this is on the same footing as the chemical pt&tnvhich
multiplies the particle numbefx |¢|2. Whereag, is associated with particle number
conservationu is related to the conservation of momentum.

In the two-fluid picture, the condensate can move with a diffevelocityv, as the
rest of the system. To bring this out we introduce new fieltigfic166)

$(w) — ¢ (z) = V¢ (2) (1.234)
in terms of which the Lagrangian becom@ [73]
L = ¢"[i8—e(=iV)+po— 5mvs- (vs—2u) — (u—vy) - (=iV) ]| ¢—Ao¢|*, (1.235)

where we dropped the primes gnagain. Both velocities appear in this expression.
Apart from the changea — u — v in the second last term, the field transformation
resulted in a change of the chemical potential

Mo — Meff ‘= Mo — %mvs : (Vs - 2U—) (1236)

whereu.g may be considered as an effective chemical potential.
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The equations for the Bogoliubov spectrum and the thermaahyo potential are
readily written down for the present case when we keep thvesetanges in mind. In
particular, the effective potentidl (1.213) reads

1
Ver (1) = 5 /k E(K)+T /k In (1 —e*[E<k>+<“*Vs>'k1/T), (1.237)

where E(k) is the Bogoliubov spectrun (1.703) with the replacement ER36).
The mean-field potentidly(T") is given by (1.21J2) with the same replacement. The
momentum density, or equivalently, the mass curgeoitthe system is obtained in this
approximation by differentiating the potentid)(T") + Vs (T') with respect to-u. We
find, using the equation

Oniett _ o (1.238)

Ou

that it is given by

—mnv—/ k
BT e oxp{[E(k) + (u—vs) KJ/T}—1'

The last term is the contribution stemming from the elemmsre&acitations. In the zero-
temperature limit, this term vanishes agd= mnv,. This equation, comprising the
total particle number density, shows that at zero temperature indeed all the particles
are involved in the superflow, despite the fact that only atiom of them resides in
the condensatﬂbg]. When the condensate moves with the ezlowty as the rest
(vs = u), the last term in[(1.239) vanishes again, now by symmetry.

Assuming that the difference between the normal and sujbkfédocity is small,
we may expand the last term i39) to linear order in tiffer@nce to find

(1.239)

1 ) eE(k)/T
g = PVg + 3_T Ak m (U. — Vs), (1240)

wherep = mn is the total mass density of the fluid, and we used the genesaltr
[ E ) = 58 [ 1K), (1.241)
k 3 k

with f(|k|) an arbitrary function depending only on the lengtikof he last term stem-
ming from the elementary excitations may be used to defin@dhnemal mass density

Pn,

1 , eB0/T
o =37 | ¥ e = (1.242)
Writing
p = ps+ pn (1.243)
for the total mass density, we may cgst (1]240) in the form
g = pPsVs + pulln. (1.244)
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These last two equations are the basic equations of the tigb+fiodel @]. The
model was introduced by TiszE|74] using idea’s of Londonite @ phenomenolog-
ical description of superfluidHe. It not only successfully explained various startling
experimental properties of the strongly interacting systeut also predicted new phe-
nomena which were later confirmed by experiment

1.8 BCS at Finite Temperature

We in this section apply the high-temperature expansiome&oBCS theory to show
that it yields the usual Ginzburg-Landau theﬂ [75].

The one-loop effective potential for a uniform system atéimémperature is readily
seen to take the form

Vit = _/E(k) —2T/1n (1+e—E<k>/T), (1.245)
k k

with E (k) the BCS spectrunj (1.J9) of the elementary fermionic exoitat The factor
—2in ([L.24%) arises because there are two fermion speciels,spihc =7 and |,
respectively. To the one-loop potential we have to add g dontribution

_1AP

Vo = o

(1.246)
The form [1.24p) for the effective potential is usually naken as starting point to
derive the Ginzburg-Landau theory. Normally, one firstiesrout the integration over
the loop energy and then performs the sum over the Matsubara frequer@s [76
But here we follow—in analogy with the previous calculatiethe opposite route and
have carried out the summation first and will now perform tiiegration ove¢ (in the
weak-coupling limit),

Vet = —2T0(0) /ln (1 + e—E/T) : (1.247)
1S

where we ignored the first term i45) corresponding ® dhe-loop quantum
contribution to the effective potential which we studiedSiec[1.]3, save for the renor-
malization of)\ it leads to. Our problem is seen to reduce to one in a singlewsion.
To cope with divergences that will appear we dimensionallaige the integral and
consider the problem iih — ¢ dimensions. Equatio47) then becomes

Vit = —AT2(0) / dyy“In (1 + ¢ VIFHRFTTE). (1.248)
0

with y the dimensionless variable= £/T. We kept the one-dimensional integration

measurds;, where
2

R = Gmyarr @y

(1.249)
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is the area of a unit sphere ihspatial dimensions divided bi27)?. BecauseA
appears only in the combinatiaa |2 /72, it follows that an expansion in this parameter
is tantamount to one ih/7". Carrying out this expansion, we arrive at

o ol 1
ot = 20/(0 dyy S —2T%In (1 +e7Y) +|AP* =
Vet V()/O Yy { n(l+e?)+| |yey+1
NN O S
4 T2 |yev +1  y2(ev+1)2

+0 (%) } (1.250)

In analogy with what we did in the case of a weakly interacBuoge gas, we regular-
ize the infrared-divergent integrals by analytically doae the following equations to
arbitrary values of

0 12’ .
®dr z¢ Y
/O — o~ D=2, (1.252)

/OOO %ﬁ — Do) [(1 - 29)¢(a) — (1 - 22)¢(a —1)] . (1.253)

In this way we obtain in the limi¢ — 0

2
Vet = =007 — O | £ 47+ 2(2) +2¢(0)

7 |Al*
To make contact with the standard approach we use the igsntit
C0) = —3@r),  (-2) = —5(03) (1.255)
and substitute )
wp
~—n (?) : (1.256)

where the Debeye energyh, being a measure of the inverse lattice spacing, is the
physical ultraviolet cutoff and the temperatudras the relevant infrared scale. [This
correspondence between the pble of dimensional regularization and the logarithm
In(A) appearing in the regularization with a cutoff is commonlgdi# the context of
quantum field theory.] The critical temperature is agairedatned by the condition
that the coefficient of the term quadratic in the order patentze zero, i.e.,

v(0) [In (T2) +7—In (37)| + % —0, (1.257)
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where we included the tree contributi¢n (1]246) with thestzaupling\ replaced with
the renormalized 0n84). This yields the standard trésuthe critical temperature
T.

2
T. = ZeVwpe!/V (O (1.258)

™
where it should be kept in mind that the coupling constargt negative in the weak-
coupling limit. Employing this expression for the critic@mperature, we can ma-
nipulate the effective potentidl (1.354) with the tree citmttion (1.24p) added in the
canonical form
Al
T2’

7'1'2 —_
V= —T/(O)T2 + v(0) ln(%) |A]? + 7<(3)1/(0) (1.259)

1672
valid close to the critical temperature. The minimizatidrites potential with respect
to A yields the well-known temperature dependence of the ordearpeter near the
critical temperature

_ 872 T
AT = 2o (1 - F) , (1.260)

which should be compared with E¢. (1.229) we obtained fopegiuid.
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Chapter 2

Induced Quantum Numbers

Solitons play an important role in condensed matter phyicsa general introduction
see Ref.ﬁﬂS]). One of the most famous solitons is the mt&guortex in a super-
conductor first discussed by Abrikos[79]. In various miedsolitons are found to
have peculiar guantum numbers associated with them. Whisithapter, exclusively
study solitons arising in fermionic systems. The unusualngum numbers induced
by the solitons can then be computed by integrating out theiémic degrees of free-
dom. The effective theory thus obtained contains the safoenation as the original
fermionic model at low energy and small momentum. In paléiclapproximate ex-
pressions for the fermionic currents—so-called Goldstdfilezek currentsEO]—can
be extracted from it. To see how this is connected to the gmantimbers of solitons, it
should be realized that the effective theory and the ensBoidstone-Wilczek currents
are built from background fields, which in our definition indé possible Goldstone
fields. But solitons are precisely specified by these fielandd, when a specific field
configuration describing a soliton is substituted in thedStdne-Wilczek currents, the
induced quantum numbers localized on the soliton can beigtel. These quantum
numbers arising in purely bosonic effective theories campdseuliar in that they can
have fermionic, or even anyonic characteristics. We witt@mter various examples
of this along the way.

We will also consider phase transitions where the induceshtgum numbers local-
ized on the solitons change from fermionic to bosonic. Sutrhrssition, first consid-
ered by Wen and Ze@l], is called a statistics-changing@transition.

2.1 Skyrmion Lattice

In this section we investigate the effective theory desaglthe spin degrees of free-
dom of superfluid®He-a. In this superfluid state, as we remarked in . 1.5, the
S0O°(3) spin rotation group is spontaneously broken to the gi®@P(2) of spin ro-
tations about the preferred spin axis. Since the state isctaized by the magnetic
quantum numbemng = 0, we expectit to display besides superfluid also antiferigpma
netic behavior. The spin waves of an ordinary uniaxial antfmagnet, which are the
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Goldstone modes of the spontaneously brokefi 8Dsymmetry, are known to be de-
scribed by the O(3) nonlinear sigma mo [82]. In 2+1 dini@ms, the model allows
for a topological term in the action—the so-called Hopf t@].

It has been suggested by Dzyaloshinski, Polyakov, and V\ﬁe@] that the
Hopf term withd = 7 should be included in the effective theory describing a-s}ain
Heisenberg antiferromagnet in 2+1 dimensions. But suls#guicroscopic calcula-
tions showed that the topological term cannot be deriveah fitee Heisenberg model
[@]. It will turn out that in3He-a the situation is different in that here the quantum-
induced effective action does accommodate such a topealagion.

To derive the effective theory, we use the well-known faet the unit spin vector
d*(x)in () can always be rotated in the third direction byddticing a spacetime-
dependen? x 2 SU(2)-matrixs(z):

d*(z)o® = s(z)o3sT (z). (2.1)

We next introduce the decomposition

e=(3)-()

in the Lagrangian[(1.157). The theory then takes the forrn@(2) gauge theory:

L= %XT <po — By — &(pi — Bi)73 (pi — Bi)i, 03}) X, (2.3)

A
2kp
whereX = (x, gx*)T, with the superscript T indicating the transpose, andtixe2

matrix-valued field R

B, = —is'0us = Blo® (2.4)
plays the role of a gauge field. Remember tB@t: (00, —V). Also recall that the
Pauli matricess andr; (i = 1, 2) operate in Nambu space, whereas the Pauli matrices

o® (a = 1,2, 3) operate in spin space. After integrating out the fermiorigrdes of
freedom, we now obtain instead ¢f (1.].59) the effective lmug-action

i A
Seft = —5 Trlog ( po — Bo — &(p — B)m3 — o—{pi — Bi, 0" }7 | . (2.5)
2 2kp
Expanded in a Taylor series this becomes, apart from aruaal constant,
| ’
where the verted (p) is now given by
1 9 , A
A(p)zBo+—[(B) —2p-B—ZV-B]T3—k—BiTi, (27)
F

2m

andG(p) is the propagatof (1.162). We have writBnB as(B)? so as not to confuse
it with the second spin component & 2) of the spatial vectoB~.
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The first termS ) in the expansior|(26) is readily shown to give

SW=-"u [ (B2 (2.8)

im  J,

The trace tr stands for the trace over the remaining sigmaiatiices, where one
should bear in mind that th8,,’s defined by 4) are elements of the SU(2) algebra.

For the second terrﬂé? in the expansior{ (2] 6) we obtain to lowest order in derivetiv

s = poye [{B2 - @52+ T(B2 B} @9)

v=14 (%)2111 (<) (2.10)

with A an ultraviolet energy cutoff andan irrelevant numerical constant. The term
proportional to(A /)2 stems from the last term in the vertdx {2.7). Sinke<<

1 ~ ep in the weak-coupling limit we are considering, the fadtdr/)? In (cA/A) is
negligible compared to 1, and may be set to zero. Adding tidriboitions ) and
[©.9), and using the identity

wherey stands for

tr[(Bu)2 - (U3Bu)2] = (auda)za (2.11)

which is easily derived from the definitions (2.1) ajd|(2w8 conclude that, apart
from a possible topological term, the effective theory dieseg the antiferromagnetic
spin waves is the O(3) nonlinear sigma mo [49]

Lo = 1(0) [(B0d*)? — S} (2ud*)?] (212)

It is gratifying to see that th8-terms obtained from the first and second term in the
expansion of the effective action conspire to preciselyegate the right combination
tr[(B)? — (°B)?.

The O(3) nonlinear sigma model can be equivalently reptesesy the CP model

Leg = v(0)(0,2'0,2 — BIBY), (2.13)

adopting units such that the spin-wave velocity is unjty+/2 = 1. Here, the complex
scalarz = (z1,22)", which is subject to the constrainiz = 1, is defined by the
equation

d® = 2oz, (2.14)
and is related to th2 x 2 matrix s in the following way
_(n %
s = < PO ) . (2.15)
In terms ofz, the field B}, reads
BY = —iz10,2. (2.16)
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Sinced” defines: only up to a phase, the Lagrangign (.13) h&zcal gauge symme-
try:
2(z) — @ 5 (). (2.17)

In the original variables, such a transformation corresisaio a spin rotation about
the preferred spin axis. That is, the unbroken componerti@fytobal SG(3) spin
rotation group becomeslacal gauge symmetry in the effective theory. We will refer
to this symmetry as local spin gauge symmetry. The readefésred to Ref.lES] for
a general discussion on this phenomenon.

We next turn to the topological term. When written in termshaf spin gauge field
Bﬁ, the Hopf term takes the form of a Chern-Simons term:

0 -
0Scs = 1 / B0, B, (2.18)

wheref is a real parameter.

The question whether a Chern-Simons term is induced at thatgqm level can
be addressed in great generality. To the author’s knowleﬁg]; Ishikawa and
Matsuyama@?] were the first to reveal the underlying strest showing thab is
determined by the Feynman propagaff) of the underlying fermionic theory

1 0G~! _9G~! aG-!
9_%ew/k tr (G o T > (2.19)

They also showed that the right-hand side.19) can ae@uopological meaning.
This work appears to have been largely ignored in the likzeatand the results have
later been rederived by othefs[§8] 89].

For3He-a, where according to Eq. (1.]62) the inverse propagesais

Gyl (k) = ko — £(k)75 — %k 10, (2.20)

the#-parameter takes the valle]90]
6 = sgn(e' x e?)r. (2.21)

Here, sgn denotes the signum, and it should be realizedibatross product of two
vectors is a scalar in two space dimensions. The dependédanahe orientation of
thee-frame is crucial because it changes sign under both a peaitgformation and
time inversion. Under a parity transformation in 2+1 diriens, one spatial coordinate
is reflected:

(t,z1,22) — (t, —x1, 22); (2.22)

and an arbitrary vectdr, transforms as:
Voo (t, 1, x2) — Voolt, —21,22), Vi(t, 21, 22) — =Vi(t, —21,22).  (2.23)

The sign change ifl offsets the one in the Chern-Simons tefigs under these trans-
formations, so that the combinatiéi s is invariant [BB[90].
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The appearance of a Chern-Simons term in the effective yhafca nonrelativis-
tic model might seem surprising. However, the two possibfmSeijBSBiB;?’ and
EijB?aoB? one can write down are related by the requirement of invagamder the

spin gauge transformatioﬂjj — Bf; + &La, in such a way that the two can be com-
bined into a single Chern-Simons term. The presence of leothst can be checked
explicitly by invoking the derivative expansion we useddref The specific form of
the interaction, reflected in the last term of the ver@)(h@' well as of the propagator
(L.162), are crucial in obtaining them.

It was pointed out by Wilczek and ZeE[Ql] that the Hopf ternparts spin to the
solitons of the (2+1)-dimensional O(3) nonlinear sigma elodrhese solitons, first
discussed by Belavin and Polyak[92], belong to the cldsspmlogical defects that
are regular throughout coordinate space. That is, they tipassess a singular core as
is often the case. They are characterized by the topologhzabe El?]

ng;/%&mwaﬁ@m, (2.24)

where the spin indices, 3, v run overl, 2, 3, and the antisymmetric Levi-Civita sym-
bol is defined such that?3 = 1. We repeat that vector spin indices are always repre-
sented by superscripts.

The natural language for the description and classificatfodefects in ordered
systems is provided by homotopy theory. (For general adsoam homotopy theory
see, for example,[[$3][[P4] o [P5].) The way to characteriz general defect of
dimensiorgg is to surround it by a spherical surface of dimenst@uch that|E6]

r=d—eq— 1, (2.25)

with d the dimension of the medium under consideration. The mimasad the right-
hand side represents the distance from the defect to theusuting hypersphere. In
each point of this surface, the Goldstone fields define a malpeof-sphereS™ onto
the coset spacé&//H. Topologically stable defects arise when the contour in the
coset space is not contractable. They are therefore ctbbigi the homotopy groups
- (G/H).

For the case at hand, the topological cha@2.24) is thdimgnnumber of the
map

d*(x): 82 — §? (2.26)

of compactified spacg? into the internal two-spher$? parameterized by~, where
it is to be noted that the second homotopy grauypS?) = Z. The corresponding
topological current, which is conserved independenthheffield equations, is

1 ~ ~
@:§@Mﬂmwmﬁmm. (2.27)
Y
This current may alternatively be written in terms of thed'LBif; as:

Jy==—0G,, (2.28)
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where the dual field: , is defined by
Gy = €20, B3. (2.29)

The simplest soliton ha@ = 1 and is called a skyrmion. Due to the Chern-
Simons term, skyrmions acquire fractional sgif2r and statisticg) [@, E’]. The
values = +r found in superfluitHe-a imply that here the skyrmions have séin
and are fermions. The fractional statistics (for an intiduy review, see Refm)S])
imparted by the topological term to the skyrmion can be gasitierstood by rewriting
the Chern-Simons tern (2]18) as

9 3
0Lcs = 5 JuB}, (2.30)

whereJ, is the topological curren7). This shows that the eftddhe Chern-
Simons term is to couple the topological current to the sgingg field B3, with a
charged/2x. In other words, besides carrying flux, skyrmions also cahgrge. Now,
if a skyrmion winds around another skyrmion, its wavefumectwill acquire a phase
exp(i60) through the Aharonov-Bohm effect, thus turning skyrmiamse ianyons with
statistics parameter.

A skyrmion configuration is given by

cos ¢ sinu(r)

d*(x) = ( sin ¢ sin u(r) ) , (2.31)

cos u(r)

where(r, ¢) are circle coordinates in the spatial plane, while) is a function with
u(r) = 0 at the origin of the skyrmiorfr = 0) andu(r) — « for r — co. The
corresponding spin gauge-field configuratl@i\, which can be found by solvinm.l)
for s, reads y ~

Bz =0, + %(1 — cosu)0, 9, (2.32)

wherea is an arbitrary gauge parameter originating from the cirstamce that is
determined byl only up to a phase factexp(iac?). We fix the gauge by demanding
that the “magnetic” flux

@:/GO (2.33)
is regular everywhere. Sineg;0;0;¢ is singular at the origin, we choose= 0. This
leads to 1 d

~ u
Gy = o gy Sm - (2.34)

The corresponding magnetic fld( R) through a disk of radiu® is
®(R) = [l — cosu(R)]. (2.35)

With u(c0) = m, it follows that the flux piercing the planesr. Thatis, each skyrmion
carries one unit of flux. As pointed out by Huang, Koike, andoRygi [@], these
conclusions may be nicely visualized by placing a Dirac npmie with unit magnetic
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Dirac string

skyrmion w

monopole

Figure 2.1: Compactified space represented by a two-sph#teawnonopole at its
origin. The Dirac string pierces the plane at the center @fttyrmion.

charge outside of the system at the origin of a two-sphemesepting the compactified
spatial plane, and letting the Dirac string pierce the phriafinity. Alternatively, one
may extract a unit flux tube so that the Dirac string piercegiane at the origin where
the center of the skyrmion resides (see @ 2.1).

Let us mention that we are working in the ordered phase of {8 @onlinear
sigma model. The (2+1)-dimensional modek= (9,,d*)?/2¢?, with g the coupling
constant, has a phase transition into a disordered, stonglng phase aO]

3
2
Yer _ﬁ )

whereA is an ultraviolet energy cutoff. Since in our case, acccg'cﬂdn),g‘2 =
v(0)/2 = m/4r, withm ~ GeV >> A, we are indeed in the ordered, weak-coupling
phase. The two phases differ in the way the so-called flux sstrymgenerated by
the topological curren{ (2.p8) is realizeld [101]. In the keaupling phase the flux
symmetry is unbroken, while in the strong-coupling phass itealized in the so-
called Kosterlitz-Thouless mode. In the latter phase,eherat least in perturba-
tion theory—algebraic long-range order due to the preseficegapless Kosterlitz-
Thouless boson. It has been pointed out by Huang, Koike, atahip [@], that a
condensation of the Dirac monopoles would invalidate thisupe. If this happens,
they argued, the flux symmetry becomes anomalous and theitzsThouless boson
acquires an energy gap so that the algebraic long-range ofdiee ordered, strong-
coupling phase is lost. These authors found numerical eeelsupporting this sce-
nario, but Bitar and Manousak@OZ] criticized their nuroal analysis and concluded
that the monopoles do not spoil the perturbative picture.

We next study the connection between the microscopic ferimimodel and the
effective theory, i.e., the nonlinear sigma model with a i@h®imons term added. In
particular, we will be interested in how the spin currejftof the original model

s = wize®y

1 . —
A N [ G )
o= sovitet =i, (2:37)

(2.36)

©Amstex



2.1 Skyrmion Lattice 53

with j§ the spin density, are represented in the effective mod@)ﬁi =0;— 51

is the gradient operator acting to the right and left. Sifeeglobal SO (3) spin rota-
tion group is spontaneously broken to ‘§@) in *He-a, the two componengs, with

a = 1,2 are supercurrents, meaning that the corresponding chargesansported by
the spin waves without dissipation. We shall demonstrattttte induced spin currents
are represented by the isospin curreiftof the nonlinear sigma model,

oL 1 =
— aByaBY d7-
@nd) 21/(0)6 d”0,d"; (2.38)

Iﬁ‘ — PP
and that due to the presence of the Chern-Simons term, thecapients acquire an
additional contribution. }

Let us rewrite the spin currents (237) in termsyadind the fieldsB,, = —isfd,s,
wherey andy are related via[(2.2). We find

j§ = RY¥x'30"x
e’ [} 1 o
gt = B o It e (=i o)x = x'Blx |, (2.39)

whereR*? is an orthogonal rotation matrix defined via
sfo®s = RYoP. (2.40)

If we differentiate the Lagrangia@.S) with respect to glaeige fields, we obtain

_L19L e

29By ‘27X

1L 1 o

—— = — |x"i0%(—i 0)x — X' By 241
2987 5 X190 (=1 0)x = X' Bi'x| , (2.41)

where in the last equation with = 3 we neglected the contribution arising from the
interaction term. This is justified becaudg’kr << 1. It follows from (2.39) and

(2.47) that

i = _lRaﬁa_E’ §¥ = lRaﬁa_ﬁ
2 BBg 2 BBf
If we now wish to calculatg;; in the effective theory, we have to replatén this equa-
tion with the effective Lagrangian. Omitting the Chern-8ms term for the moment,

we obtain in this way

‘o

(2.42)

jo=-v(0)R*B),  (b=1,2). (2.43)

We proceed to show that the right-hand side of this equatiathe isospin current
(£-38). To this end we write:

iu(O)éudﬁd'Ytr o®aPo?

iv(0)tr sTo®d,s + 1v(0)tr s'o¥so® Bo®, (2.44)

Iy =

ENEIN
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where we used (3.1) and the definition®f. Then, employing[(2.40) and performing
the trace, we see that the induced spin currents are indeel lgy the isospin currents
of the nonlinear sigma mod4T103]

jo =10 (2.45)

We next turn our attention to the anomalous contributioh#osipin currents arising
from the Chern-Simons term:

ﬁ#:—igﬁﬁGw (2.46)
In particular, we are interested in the spin carried by arsikgn. The zero-component
of the dual field describing a skyrmion configuration is giBnEq. ). To find
the spin, we calculate the projection of the spin dengltyonto the spin-quantization
axis. Usually this axis is fixed in spacetime, but for a skynm¢onfiguration the spin-
quantization axigl®(x) varies in space. The spinof a skyrmion is therefore given

by
g:/wﬁo (2.47)

This quantity is most easily evaluated when use is made atitreity
d*R™P = 538, (2.48)

which is readily derived by multiplying the definition of tiematrix, Eq. [2.4), with
d* and using 1). We find in this way that the spin of a skyrm®mdlated to its
topological chargd (2.28) via
=Y (2.49)
27

More precisely, a skyrmion with topological char@e= 1 has a spirf/27 in accord
with its statistics.
This result can also be derived by directly employihg (P wi2h (2.4$):
oo L OL
and replacingC with the Chern-Simons term.
Equation [2.4P) is the anomalous contribution to the tqtd ef the system. Hence,
the difference in the numbeW; | of spin-| and spiny *He atoms is given by the

skyrmion number[[193]
Ny — N, = +Q. (2.51)

It follows that a finite number of skyrmions can be createddirtg Ny # N|. If

the differencé Ny — N, | is large enough the skyrmions, which are fermions due to the
Chern-Simons term, may form a hexagonal lattice (see|F).@halogous to the one
formed by so-called Anderson-Toulouse-Chechetkin vestid 04] in rotating super-
fluid >He-A [fL03]. Experimentally, however, such a skyrmion tztinay be difficult to
realize because an external magnetic field necessary tgelfarize the system locks
the spin-quantization axig* to a plane normal to the field.
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Figure 2.2: Hexagonal spifzq-skyrmion lattice. The arrows denote the direction of the
spin vectord® (x).

2.2 Peierls Instability

In this section we shall discuss a model describing quasidimensional metals. The
effective low-energy, small-momentum continuum theorstiswn to have two phases
both of which possess a rich soliton structure. The two phd#éer in a topological
term which is induced in one phase, but not in the other. Tdisadledd-term is shown
to change the statistics of certain solitons.

One-dimensional metals are frequently discussed in tefrttseoHubbard model
defined by the lattice Hamiltoniah [82]

Hy = —t» (cl,cip1,0 +hec) +U D njiny). (2.52)

J J

It contains two parameter®], andt, representing the Coulomb interaction between a
pair of valence electrons on the same atom, and the matmmegiefor the hopping
of an electron to a neighboring atom, respectiv@lOG].eWU is chosen positive,
the Coulomb interaction is repulsive. @.52), the ormra;ia creates an electron of

spino (=T, |) at the location of thgth atom, and;, = c}t,cj,, is the electron-number
operator at sitg. The sum)_ . is over all lattice sites. It is assumed that the Coulomb
interaction is highly screened, with a screening lengtthefdrder of a lattice spacing
a, So that we can restrict ourselves to the on-site Coulomblsem. In addition, it is
assumed that the electrons are well localized, so thatghéhinding approximation
is valid.

The Hubbard HamiltoniaZ) may be rewritten in the ealgint form

) 2
Hy ==t (cocjine +he) =30 (53)2, (2.53)
J J

where we dropped an irrelevant constant. Hefg, = %c}dog‘chT, with 6 (a =
1,2, 3) the Pauli matrices, is the electron spin operator atsit&he representation
) which explicitly exhibits the spin operator is mostheenient to derive the ef-
fective theory.

In the larget limit, the Hubbard model at half-filling, where the numberebéc-

trons equals the number of sites, can be mapped onto the%sﬁ'neisenberg model
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B2
H=JY S98%,, (2.54)

J

with coupling constant = 4¢2/U > 0. BecauseJ is positive, spins on neighboring
sites favor antiferromagnetic coupling. This model, sdig Bethe, is known to be
gapless?]. In the opposite limit of weak couplitig< < ¢, the Coulomb repulsion
is a small perturbation and we expect the model to behavetatialy the same as
a free-electron gas. These two arguments taken togethez ihakausible that the
one-dimensional Hubbard model at half-filling is gaplegsalbvalues of the coupling
constant, implying that it exhibits metallic behavior.

Although the Hubbard chain is meant to describe a one-dilmeakmetal, it com-
pletely ignores the electron-phonon interaction. Thispdig, particularly in one di-
mension, can however be very important. A famous argumeattdtPeierIsS]
shows that a one-dimensional metal with a partially filleddaction band is unsta-
ble towards a periodic distortion of the linear lattice whapens an energy gap at the
Fermi points. Because of this, Peierls concluded that sumieadimensional system
at the absolute zero of temperature would probably neves haatallic properties and
would instead be an insulator. Frohlich [109] showed thaeeodic lattice distor-
tion is accompanied by a modulation of the electron numbesitie with the same
periodicity—a so-called charge density WaiHllO].

Being a fundamental property of one-dimensional metalsyws to extend the
Hubbard model so as to account for the Peierls instabilityhaf-filling, the periodic
distortion has a period of twice the lattice spacing. The utatibn of the electron-
number density resulting from this instability is given by

Hp =AY (=1)nj,, (2.55)
jo

where A is the so-called Peierls energy gap, it is typical of the pafel00 K. By
adding this term to the Hamiltoniahz:SS) we account foruc@l aspect of the one-
dimensional electron-phonon interaction in the Hubbardeho

We examine the model in the limit of low energy and small momemby going to
the continuum. This is facilitated by introducing the ogieraa., a, with engineering
dimension; via

co; — %7V 2aa0(29)
cojr1 — 9T 2aa,(2j + 1), (2.56)

for even and odd sites, respectively. Here, as well as indhewing, we suppress
spin indices. Summation over these hidden indices is alwagied. The powers of
7in () represent the factekp (ikpx1), with 21 = 2ja for even sites and; =
(2j + 1)a for odd sites, respectively, wheke: = 7/2a is the Fermi momentum at
half-filling. In terms of the new operators, the hopping tesfrthe Hubbard model
becomes

- tZ(c;cj+1 +h.c.)— —2ita Z{ [al(27) — al(2j +2)] ao(2j + 1)
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+a}(2 + 1) [ac(2) +2) — ac(2))]}.

(2.57)

With the derivative of the operatay, defined by
Byag = lim I+ D — a0~ 1) (2.58)

a—0 2a

and a similar definition fob, a., we obtain for this term in the continuum limit

—tY (chejpa+he) — 2ta/ Via(—idy)ip. (2.59)
J o
Here, we introduced the multiplet containing the even-site and odd-site species of
fermions,
e
P = ( a ), (2.60)

with a = 7; the first Pauli matrix which should not be confused with thia spatrices
c®. Inderiving ) we replaced the summation over thedatsites with an integral:
20y, — [dry. The right-hand side of (2.59) is of the form of a masslesa®ir
Hamiltonian. It describes Bloch electrons with a gaplespelision relation that is
linear in the crystal momentui

E(kl) :UF|I€1|, (261)

wherevrp = 2ta is the Fermi velocity. A one-dimensional model describedtoyg
dispersion relation would exhibit metallic properties. é&spected, the ter55)
representing the Peierls instability drastically charthesbehavior. In the continuum
limit, this term becomes a mass term in the Dirac theory

AZ(— Yin; — 2aAZ 1(25)ae(25) — al(2j + 1)ao(25 + 1)]

- A/ T By, (2.62)

with 3 = 73 being the diagonal Pauli matrix. As a result, the gaplesstapa (2.6]1)
changes into a spectrum with an energy gap

F?(k) = vik? + A2, (2.63)

and the metallic properties of the free model are lost.
We treat the Coulomb interaction of the Hubbard moztiya)eplacing it with

2 ) 2 4‘ M ) 2 ] Qo jo
—gUZ(sj) —>§UZMJ» [77 (d%)” = (—1)785de |, (2.64)
J J

where the operator field; satisfies the constraint equation

M;d = (—=1)782 (2.65)
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and(d.‘;‘)2 = 1 at every sitej. In the low-energy, small-momentum limit, the modulus
M; can be taken as a constamt. The factor(—1)7, alternating sign from site to
site, is included in4) because we are interested inrtifeeromagnetic properties
of the model. In the mean-field approximation, the operdfpis considered to be
a classical field. It then describes the staggered magtietizand thus becomes the
order parameter of the Néel state. In this approximatioe,dontinuum limit of the
relevant term of the Coulomb interaction becomes

4 _ .
—EMUZ}4V$@Ma2/¢WW&%, (2.66)
J 1

where we introduced the effective coupling constant —2 M U. The term|(2.66) to-
gether with the two other termfs (2]59) afid (2.62) describéliel state of the extended
Hubbard model in the mean-field approximation. The corredpw Lagrangian reads

L=0ip—A=Td%0), & =1'p, (2.67)
where the Fermi velocityg is set to unity, and
Yo=B=13 M =pa=in (2.68)

are the Dirac matrices. Moreov&,: 5#%. Although mean-field theory should in
general not be trusted in lower dimensions, it in this casenseto capture the essential
physics.

The effective theory we are seeking is obtained by integgatiut the electron
fields. (We tacitly switched here from the operator fornralie the functional-integral
approach.) In our discussion is considered to be a constant. If one is interested in
the dynamics of the charge density wave, which we are Adg assumed to have a
spacetime-dependent phadd;r) = A explip(z)].

Since the Lagrangia?) is quadratic in the electronldiethese are readily
integrated out. The ensuing effective actigyy reads

Ser = —iTr In(p — A — D d*™), (2.69)

which we again evaluate in a derivative expansi@ [26]. Onweay, we encounter
integrals which diverge in the ultraviolet. To handle these use dimensional regular-
ization and generalize the integrals to arbitrary spaatimensiond.

The lowest-order term is of the form(d*)?, wherer is a constant that tends to
infinity when the dimensional-regularization parametet 1 — %D is taken to zero.
This term merely renormalizes the first term at the rightehside of @4). Neglecting
for the moment a possible topological term, we obtain as aeder in derivatives the

contribution [11]1]
1

a2
ﬁcﬁ' == 2—92 ((%d ) 5 (270)
wherel/g? = ¥2/67A2. This is a kinetic term for the staggered magnetization in-
duced by quantum effects. Note thatg? > 0, which is required for stability. The
O(3) nonlinear sigma moddl (2]70) in 1+1 spacetime dimerssisknown to have only
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one phase, viz. the so-called quantum disordered phageaviitite correlation length
[]. Due to strong infrared interactions of the “Goldstanodes”, they acquire an
energy gap for all values of the coupling constantFor this reason one frequently
refers to the (1+1)-dimensional state described by the&fetheory ), with the
constraim(d“)2 = 1, as ashort-ranged\éel state. In higher spacetime dimensions the
model has a phase transition between an ordered, weakioopblasgg < g.,) and

a disordered, strong-couplirig > g..) phase, where. is the critical coupling.

The form ) of the action is not convenient to derive thgotogical term. To
obtain this term we instead follow Jaroszewifs |113] ancbiice, as we have done
in the previous section, the decompositior= sy, with s(x) the spacetime-dependent
SU(2) spin rotation matrix defined i@.l). The effect obthhitary transformation is
to rotate the staggered magnetization in every point ofefpae into a fixed direction.
With the help of this decomposition, the Lagrang.&?’) be cast in the equivalent
form

L=x(i)— A —-%o® —B)x, (2.71)

whereB,, = —is'd,s = Bjio“ is the2 x 2 matrix-valued field we encountered before
in the context of superfluidHe-a. As was the case there, this Lagrangian is invariant
under thdocal spin gauge transformation

x(x) — e*io‘(z)"gx(x), Bi(x) — Bﬁ(:c) + 5#04(17), (2.72)

with spin gauge fieIdBf;. This local gauge freedom derives from the circumstande tha
the transformed rotation matri = s exp(iao?®) also satisfie (1), i.es) o*d*s’ =

o3. That is to sayd® determines the spin rotation matgonly up to a multiplicative
U(1) factorexp(ico®). In terms ofB,,, the kinetic terr'r(aﬂdo‘)2 is given by

(0,d%)* = 4 (B2)?, (2.73)

where the summation over the spin index only involves thepmments: = 1, 2. The

kinetic term is thus seen to be independent of the spin gaelge},. The term(Bf;)z,
which would give the gauge field a mass, is not generated asultdwiolate local spin
gauge symmetry. On the other hand, the topological termhatinciple can arise in
this context depends only dﬁﬁ

0 -
Ly= %GW@BE. (2.74)

It contains, as is frequently the case with topological &rthe antisymmetric Levi-
Civita symbol and it is linear in derivatives. It can altetimaly be written in terms of
the O(3) nonlinear sigma field ds 82]:

6 o s
Lo = ge,weaﬁ”d%“dﬁa,,m, (2.75)
where we recognize the winding number of the map

d*(x) : 82 — 82 (2.76)
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of compactified spacetinfé? into the internal two-spher$? parameterized by?, cf.
)

Since itis independent (B}L ande, these components may, as far as deriving the
topological term is concerned, be neglected in the Lagean@.7]L). This leads us to
consider the following Lagrangian

L= x|l (a+%)-B xe
Yo iD= (A= 2) + 5] xo, 2.77)

where we made explicit the two fermion specjgsand x,, which are seen to have
different masses and to couple to the local spin gauge fietthinpposite way. This
is because the Néel state is characterized by a staggegetization, flipping sign

when we go from an even to an odd site.

To investigate whether the topological ter.74) is iretliby the fermions, we
could proceed as before and apply the derivative expanBigin 1+1 dimensions we
have another tool available, namely that of bosonizatidrnickvwe shall use instead.
Since ) contains only a U(1) symmetry, we can employlidbdosonization. One
could also bosonize the original theo[y (2.67), as was fostedby Wen and Zed [B1],
but this involves the more intricate non-Abelian bosoriaat The Abelian bosoniza-
tion rules—on which we shall comment in the next chapter-e-rea

Xciéxc - %(au‘bC)Q
XeXe — K cos(vVamp,) (2.78)

_ 1 5
XeTuXe — ﬁew&,fbc,

with K a for our purposes irrelevant positive constant apd real Bose field. With
these and similar rules foy,, the Lagrangian?) can be represented in bosonized
form as

1 1 2 =
Lpos = §(au¢+)2 + 5(8H¢,)2 - \/;e#,,gb auBS -V, (2.79)
where we introduced the fields
¢i = (¢e + ¢o)/\/§7 (280)

and where the potenti# is given by
V = 2AK cos(V2mpy) cos(V2rp_) — 25K sin(v2r¢y ) sin(v2rp_).  (2.81)

Note that in [2.7)9) only the field_ couples to the local spin gauge field. The potential
V has a minimum

[ —2AIK for A>3
Vain = { S|K for |A| < |3, (2.82)
at
¢+ =0, |¢¢|=\/§ for A > ¥ > 0; (2.83)
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¢+_¢_%\/§ for 0 <A<, (2.84)

and similar values foA and¥ negative. With these constaptvalues, the third term
in the Lagrangian[(2.}9) takes the form of the topologicaht@.74). We find that the
¢-parameter, which is an angle, is given py [111]

0 = m[sgn(A + X) — sgn(A — )], (2.85)

valid for arbitrary sign ofA andX.

More specific,d = 0(mod27) when|A| > ||, andf = 7 (mod 27) when
|A| < |X]. Thatis, for|A| > |X| the effective theory is simply the O(3) nonlinear
sigma modeIO), with coupling constant squayéd- 6. As we remarked before,
the state it describes is the short-ranged Néel state witk fiorrelation length.

For|A| < |Z|, on the other hand] (2]70) is to be augmented by the topaibigiom
[©.73). In terms of the field*, the effective theory now reads

Lo = 2%2 (8,d*)? + g%eweaﬁwaéﬂdﬁ&,m, (2.86)
with 6 = +7. Thef-term changes the physical content of the O(3) nonlineanaig
model in a dramatic way. This term has been extensively stLidi the context of the
antiferromagnetic Heisenberg spin chain which can also &gpmd onto the nonlinear
sigma model4]. Whereas the half-integer spin chain awmto be gapless, the in-
teger spin chain has a gap in the excitation spectrum—ttoaked Haldane gap. The
two cases differ in the topological term which is inducedwat coefficien) = 27
(mod 27), whereo is the spin. For integer spins the coefficient is zero and #e e
citation spectrum has an energy gap. For half-integer spinghe other hand, the
coefficientis nonzero and it can be shown that as a consegtigaspectrum becomes
gaplessS]. Using these results, we obtain the phaseatadepicted in Fidj.&
The standard Hubbard chain is recovered by setfing 0. It is therefore effectively
described byO), implying that the model has a gaplesstspm and thus metallic
properties for all values of the Coulomb interactiénThe disordered phase of the ef-
fective theory, describing the insulating state of the esteel Hubbard model, becomes
accessible when the Peierls energy dajs taken sufficiently large compared 1
measuring the strength of the Coulomb interaction.

The fermions of the original theory appear in the bosonibewty as solitons to
which we next turn. An example of a soliton in the regithec A < 3, where the
groundstates are given bfy (2.84), is the configurationiz,) = ¢_(z1) = f(z1),
where the functiorf (x;) interpolates between the two different ground states

f(~o0) = %@ f(o0) = -3@ (2.87)

This soliton carries one unit of fermion-number charge This follows because ac-
cording to the bosonization ruIe@.?S), the fermion-nandurrent;,, is represented

as
. 2
G = \/;e#,,aym, (2.88)
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TZ

gapless

disordered X disordered ——>

gapless

Figure 2.3: Phase diagram of the extended Hubbard m)(MereE represents
the on-site Coulomb interaction ardis the Peierls energy gap.

implying that
N = / Jo = —\/g[sf%(oo) — ¢4 (—00)] = 1. (2.89)

Similar solitons of unit fermion-number charge can be cartséd in the other sectors
of the phase diagram.

It can be easily demonstrated that these solitons carryditiad a spin%, so that
they have the same quantum numbers as the original fern@sl{lsing arguments
similar to those of the previous section, one can show tleaspiin current, given by

iy =30 b, (2.90)

is again represented in the effective theory by the isospireat/;; of the O(3) non-

linear sigma model;
oL

9(0,d")”

Iy =e*dl (2.91)

Also Eq. {2.4p) is valid, so that

e loc 1 [2
de jo - ~2357 _—5\/;8@. (2.92)

This gives as spin for the soliton under consideration

1
o= / 4o = . (2.93)
T 2

It may therefore be thought of as representing the fundaamh&mrmion of the origi-
nal theory. Similar conclusions hold for the solitons in tteer sectors of the phase
diagram.
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Up to this point we have only considered the part of the bashiheory involving
the scalar fieldg ... We now turn to the nonlinear sigma fied¢ and will argue that
twists in this field may give certain solitons an anomalous.spor definiteness we
shall assume in the following that the space dimension ispamtified into a circle
—L <y < L,withz; = —L andz; = L labeling the same point. The modEl(2.67)
admits two possible boundary conditions &, namely periodial*(—L) = d*(L)
and antiperiodid®(—L) = —d“(L) ones ]. That is, the two phases split up into an
even and odd sector.

We are interested in the contributigff , to the spin current stemming from the
topological termZy:

o apy OC o -
Jou = € ﬁ’ydﬁ 8((9#27) = EGMVan . (294)

The corresponding chargs is zero in the even sector, and

0 0
Sg = o0 =—[d*(L) —d*(=L)] = —d*(—-L 2.95
P= [ o= D D= LD, @99)
in the odd sector of the theory. It follows thé§ is nonzero only in the gapless phase
wheref = 4+, and with antiperiodic boundary conditions imposedi6nA soliton in
this part of the theory acquires consequently an extra itanion o to the spin given
by
=41 (2.96)
Since the solitons have a canonical spwofthe topological term in the odd sector
of the gapless phase transmutes these fermlons into b@hs‘l‘hls ability of £y to
change statistics it shares with the Chern-Simons termtih)(@imensional theories.
We next consider the critical line& = +X. At these lines, either the component
Xe OF X0 in (R.77) is gapless, and the above analysis does not apptys first focus
on the critical lineA = . The bosonized form of (2.J77) then reads

L= L0000 + 5000 — (A + DK cos(vATo.)
_\/ge,uu(d)c - (bo)éuBga (2.97)

where the gaplessness of the figld is reflected in the absence of a cosine term for
®o. As aresult, the integration over this field is a simple Geusehich can easily be
carried out to give a gauge-invariant mass term for the Ispa gauge field

9,0,
_ 3 . 3
Emass - 27TB'U‘ <gltl/ a ) B (2.98)
This mass generation by gapless fermions in two spacetimerdiions is the famous
Schwinger mechanislG]. The contribution)gf to the effective theory may be
approximated by substituting the valge = 0, or \/7/2 in (2.97), corresponding to
the minimum of the potentidA + X) K cos(v4r¢e) for A =3 < 0,0rA =3 > 0.
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It follows that only in the latter case a topological termtw#t = = is generated.
The Schwinger mechanism operates similarly at the criticel A = —X. Here, the
topological term (withd = ) persists only at the lower half of the line, defined by
A=-YX>0.

2.3 Statistics-Changing Phase Transition

The (1+1)-dimensional mode] (2]71) we discussed in theipusvsection has similar
characteristics in 2+1 dimensio 120]. leMiie Dirac Hamiltonian
naturally appears in (1+1)-dimensional systems wheresitiilees the fermionic exci-
tations around the two Fermi poin82], this is not the das&+1 dimensions. How-
ever, there exist two-dimensional systems—so-calledsetals—that have point-like
Fermi surfaceq[121]. In these materials, the valence andwgiion band intersect in
discrete points. Near such a degeneracy of two energy |gtelglamiltonian describ-
ing the full theory may be approximated by a 2 Dirac Hamiltonian describing just
the two-level subsystem in the vicinity of the diabolic psiffl22,[12B[134]. In this
section, we briefly discuss some of the salient featureseofatil)-dimensional model.

For our purposes, it suffice to consider the simplified, Adreliersion of the model
given by ). We have chosen a two-dimensional repragentof the Dirac algebra

Yo =0=73, M =1im2, Y2 =1iT1, (2.99)
{Vu W} =29, g = diag(l, -1, -1), (2.100)

with 7 the Pauli matrices. With the help of the derivative expamf28], one can easily

compute the induced fermion-number currgntlt is given by ]

%éw (2.101)

ju =
whereG,, is the dual fields,, = €,,,,0, B and
9 = §[sgn(A + X) — sgn(A - ¥)]. (2.102)

The first term here is the contribution from the even-sitespj., while the second
term is the contribution from the odd-site spingy. The relative minus sign reflects
the opposite charge of. andy, with respect to the local spin gauge symmetry. We
encountered the dual fie{aﬂ previously in the context of superfluitHe-a [see9)],
where it was shown that it is proportional to the topologicatrent.J,, of the O(3)
nonlinear sigma model. The corresponding chagges the winding number of the
map (2.26).

We thus arrive at the conclusion that the induced fermiomimer current;, is
proportional to the topological curred, of the effective theory,

G =0J,. (2.103)
The proportionality constanitis nonzero fofX| > |A|, wheresgn(A + %) —sgn(A —
¥) = 2sgn(X), and zero fotX| < |A|.
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Let us first discuss the ca$E| > |A|. The situation of two different conserved
currents which become proportional to each other is tydmwabrdered states where
the residual symmetry links up different groups of the ar&isymmetry. For the
model under considerati003) implies that the femmamber symmetry U(1)
generated by the chargé = fx jo,» and the flux symmetry U(F)generated by the flux

P = / Go. (2.104)
are spontaneously broken in the following manner:
u)N x u)® > )N, (2.105)

To identify the Abelian Goldstone mode associated with fpientaneous symmetry
breakdown, we also calculate the induced “Maxwell” term,
L=-1i1aG;,, (2.106)

with G,, = 9,B3 — 5,,32. To the one-loop order we find for the coefficielit

appearing her9]

1 1 1
I . 2,107
8w(|A+Z|+|A—Z|) (2.107)

If we imagine integrating over the local spin gauge field, pletition function can be
written as

7= / DB? exp [z / (—intw —ﬁe#VAAH&,Bf”\)] , (2.108)

where we omitted a gauge-fixing factor for the spin gauge fiallicoupled the current
Jju to a background fieldd,,. This coupling allows us, by differentiating with respect
to A,,, to compute the induced fermion-number currént (4.103).

To make the Goldstone mode explicit we employ a procedumuéstly used to
derive dual theories and introduce the change of variaBfes- G, in the functional
integral. Since the dual field, fulfills the Bianchi identityd,G,, = 0, we introduce
a Lagrange multipliep in the functional integral to impose this constraint:

7 = /DGHDcpexp {z/ (~41G2 - v4,G, + soé,téu)} . (2.109)

Performing the Gaussian integral over the dual f@;g we obtain an expression for
the partition function in terms of a gapless scalar field:

Z = /Dgo exp {é /(augoﬂmu)?} . (2.110)

This is the Goldstone field we were seeking. It should be nittaein 2+1 dimensions,
both a massless vector field and a real scalar field representiegree of freedom.
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This can be easily understood by noting that a photon hasméytransverse degree
of freedom in two space dimensions. In terms of the Goldsfmhe ¢, the fermion-
number current becomes

, )
Ju = —ﬁ((?,tgo—i-ﬁAM) (2.1112)

as in BCS theory. From this we conclude that the (2+1)-dinogras model 1)
exhibits superconductivity. It should be noted that the Ima@ism leading to this, with
the spin gauge field playing a decisive role, is entirelyatd#ht from that in classic
superconductors.

On comparing the expressidn (2.111) for the fermion-nursbenent with the one
obtained directly from[(2.108), we conclude that the duatifig,, is related to the
Goldstone field via

G, = —%5@. (2.112)

We next turn to the casg| < |A]. When one of the two spinorg. or x, be-
come gapless, i.eA + ¥ = 0or A — ¥ = 0, the induced fermion-number current
discontinuously drops to zero, as was first noticed by Cherdirczek ]. So, for
|2| < |A] the argument that the fermion-number current and the tgpcddcurrent
are proportional, which led to the conclusion that we haeesjontaneous symmetry
breaking 5), is invalid and the symmetries U1gnd U(1)® remain unbroken
here. The discontinuities in the induced charges at the |lie= |A| merely reflect
that these are critical line§ [1]19].

The restoration of symmetry when one passes from the brokasepto the sym-
metric phase should be accompanied by a loss of the gapleds. o see that this is
indeed the case we note that besides the Maxwell term, al$eemcSimons terms is
generated here,
= %EW,\BE(%B?\, (2.113)
with 6 = —2r[sgn(A + %) + sgn(A — X)]. The first and second term here arise from
the even-site and odd-site spinays,andy,, respectively. Observe that in the ordered,
gapless phase whefE| > |A|, the Chern-Simons term is zero. The Euler-Lagrange
equation forBf; in the presence of a Chern-Simons term and with the backgrioeid
A, set to zero yield$),G,,, « G,, orin dual formd, G, — 9,G,, x G,,. Upon
taking the divergence of this last equation and using theipus one as well as the
Bianchi identityd, G, = 0, one finds[[126]

Lo

02G,y x G (2.114)

This equation together wit12) shows thalhas become massive. From this we
conclude that due to the presence of the Chern-Simons tetheisymmetric phase,
the gapless mode of the ordered phase vanishes, as it sheuld b

A last point we like to mention is that the phase transitiorhaee been discussing
here is a statistics-changing phase transition. This ibyaasderstood using the result
[P1] that a Chern-Simons term imparts spin to a skyrmion. pitesence of this term
(2.113) in the unbroken phase turns a skyrmion, which is amnary boson in the
broken phase where no Chern-Simons term is generated, fetm&on. Whence, on
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crossing the phase bounda®| = |A|, skyrmions undergo a spin transmutation and
change their statistics from fermionic to bosoniome versa

2.4 Fluxons

In this section, we examine a gas of electrons confined toreepl/e present a simple
method to calculate the quantum numbers induced by a unifeagnetic background
field [,]. We will in particular focus on the quantumnmbers carried by a
fluxon—a point-like object carrying one unit of magnetic flimat can be pictured as
being obtained by piercing the spatial plane with a magnetitex. It is found that
it carries both the charge and spin of a fermion. Unlike whed expects, the spin of
the fluxon does not originate from a Chern-Simons term, lmrhfa so-called mixed
Chern-Simons term involving two different gauge fields, the electromagnetic gauge
field A,, and spin gauge fielﬁf’; which describes the spin degrees of freedom.
Let us consider the Lagrangian

L=yNid +p—He)yp + byl 50°y, o= ( ZI ) (2.115)
governing the dynamics of the Pauli spinor fieldwith Grassmann components
and+ describing the electrons of spinand | and chemical potentigh ~ ep =
kZ/2m which is well approximated by the Fermi energy. We introdliaa external
sourceb coupled to the spin density, to compute the induced spin.Pehgi Hamilto-
nian )

Hp = —(p— eA)? — gous20®H + eAy, (2.116)

2m

with ug = e/2m the Bohr magneton ang, = 2 the free electrog-factor, contains
a Zeeman term which couples the electron spins to the bagkgnmagnetic fieldd.
Usually this term is omitted. The reason is that in realisgistems thg-factor is much
larger two—the value for a free electron. In strong magniicls relevant to, say,
the QHE, the energy levels of spinelectrons are too high to be occupied so that the
system is spin polarized, and the electron’s spin is irai¢to the problem. Since we
consider a free electron gas, we include the Zeeman term. éakride the uniform
magnetic fieldH by the vector potentialy = A; = 0; A> = Hx,. The energy
eigenvalues of the Pauli Hamiltonian are the famous Lanelazld

)il H
E%W|W@—L%v (2.117)
m m

with o = i% for spin-] and spinj electrons, respectively.
Integrating out the fermionic degrees of freedom, one fihdsane-loop effective
action:

Seff = /Ecﬁ- = —¢Trln (po — Hp +p+ %ba?’) . (2.118)

The key observation to evaluate this expression is thatauitlyauge choice, the theory
is translational invariant. Although a translation by atalieeA; in the z;-direction
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changes the vector potentidd, — As + HA,, this change can be canceled by a
gauge transformatiod,, — A, + 5“0[, with gauge parameter = HA;x2, So that
the theory is invariant under the combined symmetry. As altgbe theory effectively
reduces to a (0+1)-dimensional theory, and each Landalitevdinitely degenerate.
The number of degenerate states per unit area is giveénibly 27 for each level. With
these observations, we can wries as

Lon = il S [ (ko — Euce+ e+ 30)
T =0 /ko

+1n (ko — By -+ p— )] (2.119)

The presence of only an integral over the loop energy and nmentum integrals
reflects that this is effectively a theory in zero space disiars.

The induced fermion number is obtained by differentiatflhg with respect to the
chemical potential, as can be inferred from the originalrhagian 5), and setting
the external sourcketo zero,

8£eﬂ"
o = —(— . 2.120
=30 loso ( )
To evaluate the resulting energy integral, we employ thegira
dko eik“”
L 9 2.121
/ 2mi ko + & —i&n (), ( )

containing, as usual in nonrelativistic caIcuIatio@ [28] additional convergence fac-
tor exp(ikon). The functiord(¢) at the right-hand side is the Heaviside unit step func-
tion. The value for the induced fermion-number density thioisined is

H
jo=1la, 1), (2.122)
2w
wherel,. is the number of filled Landau levels for spjrand spin{ electrons,
—(mpxr 1
Il =2 = 2.123
-zl (2.123)

with Z(z) the integer-part function denoting the largest integes thanz, and

H
fe =+ %ai (2.124)

their effective chemical potentials. Implicit in this framork is the assumption that the
Fermi energies of the spihand the spint electrons lie between two Landau levels,
so that the integer-part function is well defined. We see f@2rh22) that the so-called
filling factor vy, defined as

__Jo  _
V= T = L +1_, (2.125)

takes on integer values only. This was to be expected foreal &ectron gas at zero
temperature; given a value of the Fermi enetgy a Landau level below the Fermi
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surface is filled, while a level above it is empty. (When thenkieenergy and that of a
Landau level coincide, the value of the integer-part fuorcE is ambiguous.)

If, in addition to a magnetic field, there is also an electiddfiE in the plane, a
Hall current is induced perpendicular to the two fields. Theent carried by the filled
Landau levels is obtained by multiplying the induced dgn@@122) with the drift
velocity E/H . In this way one finds:

. sgn(eH)
J2 =
27

where, without loss of generality, the electric field is oo thexr; direction: Ag =
—FEx;. The induced fermion-number densify (2]122) and Hall mird@.12$) corre-
spond to a Chern-Simons term,

Lo = 10e%c0 A0, Ay (2.127)

e(ly +1.)E, (2.126)

in the effective theory, with

sgn(eH)
27

Because of the factegn(eH ), which changes sign under a parity transformation, this
Chern-Simons term is invariant under such transformations

We next turn to the magnetic properties of the two-dimerdietectron gas in a
constant magnetic field. The induced spin density calcdl&tem the effective La-
grangian via

9:

(Iy +12). (2.128)

8£cﬁ'
S =

2.129
b lb=0 ( )
turns out to be independent of the filled Landau levelsviz.
H
s=2 (2.130)
4
This follows from the symmetry in the spectru), , = E;” if eH > 0, andE;" =

E;,, if eH < 0. The spin magnetic moment, or magnetizatigh is obtained from
(@)) by multiplyings with twice the Bohr magnetoms,

e2

M = gouss = H (2.131)
4mm
This leads to the text-book result for the magnetic spinepisiility yp
oM e? 9
Xp = DH ~ dmm 2ug v(0), (2.132)

with ©(0) = m/27 the density of states per spin degree of freedom in two space
dimensions. To see how the spin contributipn (2 132) to themetic susceptibility
compares to the orbital contribution, we evaluate tgeantegral in the Lagrangian

([B-119) withb = 0 to obtain

Lo = IS S (o mou - ). (2.133)
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The summation over the Landau levéls easily carried out with the result for small
fields

47 4m 2 8mm

Lo = = > L@m - (eH)T - G [(20)% - 1], (2.134)
s=+

wheres = 1 andy. is given by [2.134). The first term at the right-hand side of
(2.134), which is independent of the magnetic field, is mithesenergy density of a
free electron gas particle contribution,

2 2 2
wem k k

—— =2 — =)0 p—=—. 2.135
2 /k(2m “) <” 2m> (2139

The factor2 at the right-hand side accounts for the spiand spin} fermions, while
the step function shows that only energy levels below thenFkavel contribute. The
energy density is negative because the levels are measlaéide to the Fermi energy.
The second term irf (2.184) yields the low-field susceptjpili

x = (171243 v(0) [(20)* — 1)], (d=2). (2.136)

We have cast it in a form valid for = 0, 2, 1. The term involving the factof20)? is
the spin contribution which reduces fo (2.132)oe L. Let us compare[(2.1B6) with
the three-dimensional expression

X = (17243 0(0) [(20)* — 1], (d = 3). (2.137)

wherev(0) = mkr /272 now denotes the three-dimensional density of states per spi
degree of freedom at the Fermi sphere. We see that the ratidibél to spin contri-
bution toy is different in the two cases. In addition, whereas a thiiegedsional elec-
tron gas is paramagnetig > 0) because of the dominance of the spin contribution,
the two-dimensional gas is not magndtic= 0) at small fields since the diamagnetic
orbital and paramagnetic spin contributiongtoancel.

The induced currents we just calculated may be used to catiperinduced quan-
tum numbers carried by certain scalar field configuratiom® dase of interest to us is
the fluxon. This is a point-like object carrying one unit ofgnatic flux2w /e which
can be described by a magnetic field

Hy = 2?”5@(). (2.138)

According to ), a single fluxon carries a spin = % and, since for small fields

H
pm |eH]|
27

where the first term at the right-hand side is the two-dimamedifermion-number den-
sity um/m = k2 /2, also one unit of fermion-number charge. That is, in a nenrel
ativistic electron gas, a fluxon carries the quantum numbgesfermion. However,
the close connection between the spin of a fluxon and indubedncSimons term for

jo — (2.139)
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arbitrary large fields that exists in a relativistic contésiost. This can be traced back
to the fact that in nonrelativistic theories, the electrpmds an independent degree
of freedom. Below, we point out that the spin of the fluxon doesderive from the
ordinary Chern-Simons term, but from a so-called mixed @#&mons term. Such a
term is absent in a relativistic context.

It is interesting to note that whereas the spin of an antifiuxehich can be de-

scribed by the magnetic field

s

He = (x), (2.140)

e

is —%, its fermion-number charge is the same as that for a fluxoausecof the abso-
lute values appearing i39). This is what one expedsianrelativistic theory.

Because fluxons carry the quantum numbers of fermions, tbleig®n principle
forbids two fluxons to be in the same state. This is importamenvcalculating, for
example, the orbital angular momentunof a state withVg, fluxons since they have
to be put in successive orbital angular momentum states. \iddi []

Ng
L=205Y ({—1)=0gNg(Ng —1). (2.141)
=1

In this way, the total angular momentum= S + L, with S = o4 Ng the total spin
carried by the fluxons, becomes

J=S+L=0gNZ=3N2. (2.142)

)

We next investigate the origin of the induced spin dengit¢3@) we found in the
nonrelativistic electron gas. To this end we slightly getiee the theory[(2.115) and
consider the Lagrangian

1
L= po—eAo+p— %(P —eA)?| ¥+ gous H YT 3o (2.143)

It differs from (2.11b) in that the spin source term is omdtend the magnetic field in
the Zeeman term is allowed to point in any direction in spiacgplabeled by the index
a = 1,2,3. Itis convenient to consider a magnetic field with fixed magphé, but a
spacetime-dependent orientation

H*(z) = Hd (), (2.144)

whereH is constant, and® is a unit vector in spin space. The gauge figjdappearing
in the extended Lagrangiah (2.143) still gives the magrfiid perpendicular to the
planeV x A = H. As we did various times before, we make the decomposition

P(x) = s(x)x(x), (2.145)

with s(x) the spacetime-dependent SU(2) matrix first introduce@)(ﬂn terms of
these new variables the Lagrangifn (2]143) becomes

1 eH
L=y Po—er—Bo—I—u—%(p—eA—B)2 x+%x703x, (2.146)
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whereB,, = —isTéus is the field ). The theory takes again the form of a gauge
theory with gauge field,,. The spin-density operator

je = ¢ 30, (2.147)
becomes in these new variables [dee (2.42)]

lRaﬁa_E

. 2.148
3 g (2.148)

j6 = R*x 50%x = -

In deriving the first equation we employed the identfty (B,4@lating the SU(2) ma-
trices in thej = % representation,

s = exp (i%@o‘ao‘) , (2.149)
to those in the adjoint representatign= 1),

R =exp (i@o‘ a?dj) . (2.150)
The matrix elements of the generators in the latter reptaten are

(Joy)" = —ie?, (2.151)

The projection of the spin density§' onto the spin-quantization axis, i.e., the di-
rectiond® of the applied magnetic field [see Ef. (3.50)],

1 0L

s=d%0 = 5558

(2.152)

only involves the spin gauge fieIBf;. So, when calculating the induced spin density
we may set the fieIdB} andBﬁ to zero and consider the simpler theory

s

1
L= Z X! [Po —eAy + pe — %(P —eA*)?| xq, (2.153)
==+

where the effective Fermi energies for the spiand spin} electrons are given in
(.124) ancc At = eA, + B3. Both componentg; andy induce a Chern-Simons
term, so that in total we have

Lo = Leeun(01Af0,AT +0_A;9,A5)
(04 + 0-)eunr(e® A0, Ax + B30, BY) (2.154)

+8(9+ — 9,)@1,)\33&,%1)\,

1

2
_ 1
2

where the last term involving two different vector potelstia a mixed Chern-Simons
term. The coefficients are given by, df. (2.].28)

g, — Snle), (2.155)
27
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assuming thae H| > %|eijaiB§?|, so that the sign of H is not changed by spin gauge
contributions. The integers. are the number of filled Landau levels for sgirand
spin-| electrons given by (2.1P3). Sinte—I_ = sgn(eH ), we obtain for the induced
spin densitys precisely the resulf (2.1B0) we found in the preceding eacti

_10Len
2 9B3

_ (2.156)
B3=0 47

S =

The present derivation shows that the induced spin in theetativistic electron gas
originates not from the standard Chern-Simons term i]z,ﬁm)from a mixed Chern-
Simons term involving the electromagnetic and spin gaugenial.

The first term in [2.184) is the standard Chern-Simons témencombinatior ;. +
0_ precisely reproducesthe re3128) and is relatecetttuced fermion-number

density [2.122).
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Chapter 3

Dual Theories

In this chapter we shall discuss dual theories of a superfidi film and of a BCS
superconductor in two and three space dimensions. The $iesbiia duality transfor-
mation in contemporary physics is generally attributed tarKers and Wannier who
applied such a transformation to the Ising model on a sqadtied ]. The models
we consider in this chapter all possess vortex solutions. stability of these defects,
which appear in the original formulations as singular ofgieis guaranteed by a non-
trivial topology. The surrounding hyper sphere of a vortexaicircle f = 1 in Eq.
)], so that the relevant homotopy group is the funddaaidromotopy group. In
d = 2, avortex is a point objectf = 0), while ind = 3 itis a line defect{; = 1). A
loop circling any of these vortices cannot be deformed toiatpaithout encountering
a singularity.

The duality transformations of the models discussed heraianed at obtaining a
field theoretic description of the vortices they contain.aidas these excitations are of
topological nature in the original formulations, they bexothe elementary excitations
of the dual theory.

3.1 Superfluid *He Film

In this section, we shall derive the dual theory describidgla film. It is well known
that this system undergoes a Kosterlitz-Thouless phassitien at a temperature well
below the bulk transition temperature. The superfluid lewyperature state is char-
acterized by tightly bound vortex-antivortex pairs whidhtlae Kosterlitz-Thouless
temperature unbind and thereby disorder the superfluid.stéhe disordered state,
at temperatures still below the bulk transition tempemtaonsists of a plasma of un-
bound vortices. We shall see in what way the dual theory, lwhiees a field theoretic
description of the vortices, accounts for these phenomena.

The phase transition is an equilibrium transition, we catoedingly ignore any
time dependence. The important fluctuations here, at teatyress below the bulk
transition temperature, are phase fluctuations so that weamssider the London limit
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Figure 3.1: Vortex of unit winding number. The dashed lin@ates the cut in the
spatial plane along whichh makes a jump or.

and take as Hamiltonian
H = 3psve, (3.1)

wherep is the superfluid mass density which we assume to be constentas the
superfluid velocity

Vo= (Vo b (3.2)

Following Kleinert ], we included a vortex gauge figld” to account for possible
vortices in the system. A vortex in two space dimensionsssya mentioned in the
introduction, a point-like object. It is characterized bg winding number of the map

o(x):SL — st (3.3)

of a circle § around the vortex into the internal circlé Barameterized by. When
we circle an elementary vortex oncg,changes by~ (see Fig.l). In itself this
is harmless becauseis a compact field with periodicitgr, i.e., o andy + 27 are
identified. However, the jumps taking place along a cut insiatial plane would turn
the superfluid velocity into a discontinuous field. This iygically unacceptable. The
field " is introduced with the purpose to compensate for these jultgsurl yields
the vortex density:, consisting of delta functions at the vortex positiots

V x pf(x) = =21 ny(x) = —27T2w0‘6(x —x%), (3.4)

leading to the vorticity
V X v = 21, (3.5)
m

The integerw,, is the winding number of the vortex locatedxat. We shall restrict our-
selves to vortices of unit winding number, so that = +1 for a vortex and antivortex,
respectively.

The canonical partition function describing the equilifoni configuration of V.,
vortices andV_ antivortices in a superfluitHe film is given by

ZN:ﬁl;[/xa/Dcpexp<—ﬁ/xH), (3.6)

with H the Hamiltonian [3]1) andv = N, + N_ the total number of vortices and
antivortices. The factord/, ! and N_! arise because the vortices and antivortices are
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indistinguishable, anfl] , fxa denotes the integration over the positions of the vortices.
The functional integral ovep is Gaussian and therefore easily carried out, with the
result

1 Bps X — x7|
ZN = NN 1;[/}(a exp | T s azﬁ:wawﬁ In (T . (3.7)

The constant;, with the dimension of a length, in the argument of the |adani is
included for dimensional reasons. Physically, it represéme vortex core diameter.
Apart from an irrelevant normalization factor, EES.?DHS canonical partition func-
tion of a two-dimensional Coulomb gas with charggs= quw, = +¢, where

q=/2mps/m. (3.8)

Let us rewrite the sum in the exponent appearin@ (3.7) as

> dagsln (@) = Y qags [1n (@) _1n(o)]

o, a,B

2
+1n(0) <Z qa> , (3.9)

where we isolated the self-interaction in the last term atright-hand side. Since
In(0) = —oo, the charges must add up to zero so as to obtain a nonzertqguarti
function. From now on we will therefore assume overall ceargutrality,y " ¢ = 0,

so thatN, = N_ = N/2, where N must be an even integer. To regularize the
remaining divergence, we replabg0) with an undetermined, negative constant
The exponent o@.?) thus becomes

B x* —x"[\ _ 8 x* — %7
Ezﬁqa%ln Y —§%qaqgln — — BecN, (3.10)

wheree. = cq?/2 physically represents the core energy, i.e., the energyinetjto
create a single vortex. In deriving this we used the idedfity,, ; ¢aqs = — >, @ =

— Ng¢? which follows from charge neutrality. Having dealt with thelf-interaction, we
limit the integrationd |, [, .. in @) over the location of the vortices to those regions
where they are more than a distancepart,|x® — x”| > a. The grand-canonical
partition function of the system can now be cast in the form

Z_: WHLa exp EZ%%MUX -x7|)1, (3.11)

Z:
N=0 a#f

wherez = exp(—pe.) is the fugacity. We suppressed an irrelevant dimensioafbf
aN(Be*/2=1) The system is known to undergo a phase transition at theeKibst

Thouless temperaturf [130, 131]

_1 2_zps
TKT— 4q = 5 (312)
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triggered by the unbinding of vortex-antivortex pairs. dtléws from this equation
that the two-dimensional superfluid mass dengit{Z"), which varies from sample
to sample, terminates on a line with universal slop& aapproaches the Kosterlitz-
Thouless temperature from belov [132].
To derive the dual theory we note tHat|x|) is the inverse of the Laplace operator

V2,

1 2

QWV In(|x|) = 0(x). (3.13)

This allows us to represent the exponential functior inJBas a functional integral
over an auxiliary fieldy:

exp [g Z dagpln (|xo‘ — x5|)] =

B

/D¢exp{—/x [ﬁ(w)um]}, (3.14)

wherep(x) = ), ¢o6(x—x) is the charge density. In this way, the partition function
becomes

Z—gmﬁ/ﬂ/ngexp{—/x [ﬁ(v¢)2+ip¢}}. (3.15)

In a mean-field treatment, the functional integral over tivglary field introduced in
(B.19) is approximated by the saddle point determined byi¢ht:equation

iTV?p = —27p. (3.16)

When we introduce the scalar variabibe := iT'¢, this equation becomes formally
Gauss’ law, withd® the electrostatic scalar potential. The auxiliary fieldaduces in
) may therefore be thought of as representing thergoatantial of the equivalent
Coulomb gas[[1]7].

On account of charge neutrality, we have the identity

U (em<x> +eiq¢<x>)r — m ﬂ/ 02 G0t () (3.17)
; 2 12 e

where we recall thadV is an even number. The factdi! /[(N/2)!]? is the number of
charge-neutral terms contained in the binomial expansidheoleft-hand side. The
partition function [3.15) may thus be written s][17]

; Ni’; (2;>!N / Do exp [— / #w] [cos < / q¢)]N

/D¢exp {—/X [ﬁ(w)? -2z Cos(q¢)] } (3.18)
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where in the final form we recognize the sine-Gordon modeik iElthe dual theory we

were seeking. Contrary to the original formulati3.6hi0h contains the vortices
as singular objects, the dual formulation has no singigatifTo see how the vortices
and the Kosterlitz-Thouless phase transition are reptedem the dual theory we note
that the field equation of the auxiliary field now reads

iTV?¢ = 272q ("7 — e 749) . (3.19)

On comparison with the previous field equatipn (B.16), itdiek that the right-hand
side represents the charge density of the Coulomb gas.mstefthe scalar potential
®, Eq. (3.1P) becomes the Poisson-Boltzmann equation

V2P = —2mq (z e PP _ zeﬁqcb) , (3.20)

describing, at least for temperatures above the Kosteérhizuless temperature, a plas-
ma of positive and negative charges with denasity

ny = zetPI® (3.21)

respectively. The fugacity is the density at zero scalar potential. (It is to recallexd th
we suppress factors afdenoting the diameter of the vortex cores.) Equa3’$20)
a self-consistent equation for the scalar poterdtigiving the spatial distribution of the
charges vial). It follows from this argument that thieiiaction ternz cos(q¢)

of the sine-Gordon model represents a plasma of vortices.

The renormalization group applied to the sine-Gordon moeedals that at the
Kosterlitz-Thouless temperatufg = ti there is a phase transition between a low-
temperature phase of tightly bound neutral pairs and a tagiperature plasma phase
of unbound vortices3]. In the low-temperature phase,(tenormalized) fugac-
ity scales to zero in the large-scale limit so that the irttoa term, representing the
plasma of unbound vortices, is suppressed. The long-disthahavior of the low-
temperature phase is therefore well described by the fearyi{V¢)? /473, repre-
senting the gapless Kosterlitz-Thouless mode. This isuperdluid state. The expec-
tation value of a single vortex vanishes because in thissgatate its energy diverges
in the infrared.

An important characteristic of a charged plasma is that & i@ gapless excita-
tions, the photon being transmuted into a massive plasnmmsed this we assume that
q® << T, so thatsinh(8q®P) ~ (¢®. In this approximation, the Poisson-Boltzmann
equation [3.20) can be linearized to give

(V2 —md)® =0, md =4nBz¢>. (3.22)

This shows us that, in contradistinction to the low-tempe®phase, in the high-
temperature phase, the scalar potential describes a mamside—the plasmon. In
other words, the Kosterlitz-Thouless mode acquires anggrgapmyp. Since it pro-
vides the high-temperature phase with an infrared cusdfated vortices have a finite
energy now and accordingly a finite probability to be creafidds Debeye mechanism
of mass generation for the photon should be distinguisted the Higgs mechanism
which operates in superconductors (see below) and alsoaies@ photon mass.
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Another property of a charged plasma is that it screens elsarghis so-called
Debeye screening may be illustrated by adding an exterraafjetto the system. The
linearized Poisson-Boltzmann equatipn (3.22) then besome

(V2 —md)®(x) = —27mqod(x), (3.23)

with ¢¢ the external charge which we have placed at the origin. Thdiso of this
equation is given byp(x) = ¢oKo(mp|x|) with K, a modified Bessel function. The
mass term in3) i2( times) the charge density induced by the external charge,
ie.,

1
Pind(X) = —%qom%Ko(mD Ix]). (3.24)

By integrating this density over the entire system, we sagttte total induced charge
fx pind = —qo completely screens the external charge—at least in tharliagproxi-
mation we are using here. The inverse of the plasmon mass$ethening length—the
so-called Debeye screening length.

To see that the sine-Gordon model gives a dual descriptiatbie film we cast
the field equation[(3.16) in the form

iTV?p = —mqV X v, (3.25)

where we employed EqE:]%.S). On integrating this equatiapttain up to an irrele-
vant integration constant

T = —qes; (D0 — 5. (3.26)

This relation, involving the antisymmetric Levi-Civitamsyol, is a typical one between
dual variables. It also nicely illustrates that althougé thual variables is a regular
field, it nevertheless contains the information about thetiees which in the original
formulation are described via the singular vortex gauge figl.

Given this observation it is straightforward to calculdte turrent-current correla-
tion function(g; (k)g; (—k)), with

g = PsVs (3.27)
the mass current. We find
1 _
(9i(k)g;(=k)) = _Wpseikfjlkkkl (p(k)o(—k)), (3.28)
where the average is to be taken with respect to the parfitioction
— 1 2
%= [Doesy { 5 [ } , (3.29)

which is obtained from8) by setting the interactiomtéo zero. We obtain in this
way the standard expression for a superfluid

ps 1
(9i(k)g;(—k)) = e
The1/k? reflects the gaplessness of thdield in the low-temperature phase, while the

combinationy;;k? — k;k; arises because the current is divergent fkéeg(x) = 0, or
k-g(k)=0.

(6K — kik;) . (3.30)
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3.2 Two-dimensional Superconductor

We now turn to the dual description of a superconducting fikie thereto minimally
couple the model of the preceding section to a magnetic fetdribed by the magnetic
vector potentialA. For the time being we ignore vortices by setting the vortawge
field o to zero. The partition function of the system then reads

Z:/D¢/DAE(A) exp (—5LH), (3.31)

whereZ(A) is a gauge-fixing factor for the gauge fieAd and™ is the Hamiltonian
H=1pvi+1(VxA)? (3.32)

with )
vs = — (Vo — 2eA). (3.33)
m

The double chargee stands for the charge of the Cooper pairs which are formdgkat t
bulk transition temperature. The functional integral oyen () is easily carried
out with the result

7 = (3.34)

/DA Z(A)exp {—g/x [(v x A)? +miA; (@j — %) AJ} } ;

where the last term, witm? = 4e?ps/m?, is a gauge-invariant, albeit nonlocal mass
term for the gauge field generated by the Higgs mechanismniitrder of degrees of
freedom does not change in the process. This can be seenihy thatt a gapless gauge
field in two dimensions represents no physical degrees eflom. (In Minkowski
spacetime, this is easily understood by recognizing that$nl dimensions there is
no transverse direction.) Before the Higgs mechanism témdep the system therefore
contains only a single physical degree of freedom descrilyed. This equals the
number of degrees of freedom contained[in (3.34).

We next introduce an aukxiliary field to linearize the first term irf (3.84),

exp {—g/x(VXA)Q} :/Dﬁexp {—%/xibQ—i—i/xﬁ(VxA)}, (3.35)

and integrate out the gauge-field fluctuations [with a gdixgeg term (1/2a)(V -
A)?]. Theresultis a manifestly gauge-invariant expressiotife partition function in
terms of a massive scalar field representing the single degree of freedom contained
in the theory:
— 7 _i L 712 72

Z—/Dhexp{ % x[mQA(Vh) +h]}. (3.36)
To understand the physical significance of this field, we frota (3.35) that it satisfies
the field equation .

h =18V x A. (3.37)
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Thatis, the fluctuating field represents the local magnetic induction, which is a scalar
in two space dimensions. Equati.36) shows that the etagfield has a finite
penetration depth;, = 1/m4. In contrast to the original description where the func-
tional integral runs over the gauge potential, the intégnavariable in ) is the
physical field.

We next include vortices. The penetration depthprovides the system with an
infrared cutoff so that a single magnetic vortex in the ckdripeory has a finite energy.
Vortices can therefore be thermally activated. This isedédht from the superfluid
phase of the neutral model, where the absence of an infrateff permits only tightly
bound vortex-antivortex pairs to exist. We expect, aceaglyi the superconducting
phase to describe a plasma of vortices, each carrying oneetiaglux quantumtr/e.
The partition function now reads

Z:Néj_o%g/xﬂ /D@/DAE(A) exp (-5/}(7{) (3.38)

wherez is the fugacity, i.e., the Boltzmann factor associated \whth vortex core en-
ergy. The velocity appearing in the Hamiltonign (3.32) noaludes the vortex gauge
field

Vg = %(w —2eA — "), (3.39)

The vortex gauge fielgp™ can be shifted from the first to the second term in the
Hamiltonian ) by applying the transformatidn— A — ¢ /2e. This results in
the shift

VxA—VxA-BF (3.40)

with the plastic field
P = —QOZU}Q d(x —x) (3.41)

representing the magnetic flux density. Hebg, = /e is the elementary flux quan-
tum. Repeating the steps of the previous paragraph we n@indbstead 0f6)

> Ni+N- B
Z_ZN#N'H/XQ/Dh (3.42)

Xexp{ 26/[ (Vh) +h2]+z/BP }

whereh represents the physical local magnetic induction

=iB(V x A — BY) = ijh. (3.43)
The field equation fok obtained from2) yields for the magnetic induction:

— V%h +m%h = m?BF, (3.44)

which is the familiar equation in the presence of magnetitioes.
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The last term in2) shows that the chaggeith which a magnetic vortex cou-
ples to the fluctuating-field is the product of an elementary flux quantum (contained
in the definition of BY') and the inverse penetration depthy = 1/,

g=Poma4. (3.45)

For small fugacities the summation indicks andN_ can be restricted to the values
0,1 and we arrive at the partition function of the massive siree®n model[[134]

Z = /Dhexp (— /x {% {miix(Vh)Q + hQ} — 2z cos ((IJOh) }) . (3.46)
This is the dual formulation of a two-dimensional superagetdr. The magnetic vor-
tices of unit winding numbew,, = £1 turned the otherwise free theofy (3.36) into an
interacting one.

The final form ) demonstrates the rationales for goivey ¢o a dual theory.
First, it is a formulation directly in terms of a physical fletepresenting the local
magnetic induction. There is no redundancy in this dedonnd therefore no gauge
invariance. Second, the magnetic vortices are accountad fononsingular fashion.
This is different from the original formulation of the twandensional superconductor
where the local magnetic induction is the curl of an unplalgiauge potentiaA, and
where the magnetic vortices appear as singular objects.

Up to this point we have discussed a genuine two-dimensgugdrconductor. As
a model to describe superconducting films this is, howewdradequate. The reason
is that the magnetic interaction between the vortices tpkase mostly not through
the film but through free space surrounding the film where thwqn is gapless. This
situation is markedly different from a superfluid film. Thedraction between the
vortices there is mediated by the Kosterlitz-Thouless motieh is confined to the
film. A genuine two-dimensional theory therefore gives @s&attory description of a
superfluid film.

To account for the fact that the magnetic induction is noffioeal to the film and
can roam in outer space, the field equati.44) is modifietthé following way

(L35, [236]

iad(xg)BP (x). (3.47)

1
—0q(x3)h(x1,x3) = 3
1

— VQh(xl, x3) +
AL

Here,1/\, = dm?, with d denoting the thickness of the superconducting film, is
an inverse length scale,; denotes the coordinates in the plaheghe component of
the induction field perpendicular to the film, afig«3) is a smeared delta function of
thicknessl along thers-axis

=0 for |z3|]>d/2
5d(x3){ 20 for |us| <d/2

The reason for including the smeared delta function at tjigt#thand side 07) is
that the vortices are confined to the film. The delta functiothe second-term at the
left-hand side is included because this term is generatestigening currents which
are also confined to the film.

(3.48)
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To be definite, we consider a single magnetic vortex locatetieaorigin. The
induction field found from[(3.47) reads

D [ q
s 0) = 52 [ dag—(abeal) (3.49)

with Jy the Oth Bessel function of the first kind. At small distancesf the vortex
core ;g >>1)

0
h 0) v —— 3.50
(XJ_a ) 47TAL|XL|’ ( )
while far away & g << 1)
P
h(x1,0) ~ L{% (3.51)
x|

This last equation shows that the field does not exponentigitay as would be the
case in a genuine two-dimensional system. The reason fdotigerange is that most
of the magnetic interaction takes place in free space authiel film where the photon
is gapless. If, as is often the case, the length= 1/dm? is much larger than the
sample size, it can be effectively set to infinity. In thisilimhe effect of the mag-
netic interaction, as can be seen frdm (B.50), diminishesthe vortices behave as
in a superfluid film. One therefore expects a supercondufitmgo also undergo a
Kosterlitz-Thouless transition at some temperafiite characterized by an unbinding
of vortex-antivortex pairs. The first experiment to studig thossibility was carried out
in Ref. ]. Because the transition temperatiixg- is well below the bulk temper-
atureT. where the Cooper pairs form, the energy gap of the fermiomsires finite
at the critical point8]. This prediction has been cooalied by experiments per-
formed by Hebard and Palaanen on superconducting f [1B6t temperatures
Txkr < T < T, there is a plasma of magnetic vortices which disorder tipeon-
ducting state. ATkt vortices and antivortices bind into pairs and algebraigioenge
order sets in.

3.3 Bosonization

The two dual modeld (3.86) anfl (346) we encountered in thegaling section de-
scribing a superconducting film without and with vorticeslied are reminiscent
of the bosonized massless and massive Schwinger modetctasly. The massless
Schwinger mode6] describes gapless fermions intierguetith an electromagnetic
field in one space and one time dimension. It is defined by tlyedrayian

L =0~ ef)y — 3Fp,, (352)

whered = A,,~,, with ,, the Dirac matrices[(2.58); is a two-component Grassmann
field describing the fermions, and = 3. Since the theory is bilinear i, the
functional integral over the Grassmann fields in the partifunction

7= /D@sz/DANE(AH) exp (2/11:) (3.53)
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with =(A,,) a gauge-fixing factor, can be easily carried out. It yieldsiacfional
determinant

/D1/_)D1/Jexp {i/zu?(ié_ eA)z/)] = Det ( — ed) (3.54)

which can be evaluated in closed form using, for example dérévative expansion

[L4Q]. One finds

ie? (’j)té,j
Det (p — ed) = exp l% /m A, <g,w — 52 ) Al (3.55)

The partition function[(3.33) can now be written in a form,
7 = / DA,Z(A,) (3.56)

1 1 9,0,
P2+ SmAA, (g,w - 5—2> A,

which is the Minkowski analog of the partition functi)&iescribing a supercon-
ducting film without vortices. Equati056) shows us tihat photon has acquired a
massm 4, given bym? = e?/x, where it should be borne in mind that in one spatial
dimension the electric chargehas mass dimension one. This mass generation due to
gapless fermions is called the Schwinger mechanism.

We have seen that the partition functi.34) could beedemtly represented
by the massive scalar field theom.%). The same holdshfoiSchwinger model.
Rather than linearizing the Maxwell term .56), whichukdbe the analog of what
we did in (3.35), we represent the term 0btaineo|E3.55)fasuetional integral over
a Bose field [14[1]:

[pivsen [ [t~ eAw] -

Doexp i [ |2(0.6)? — ~=eA,d,0| L. (3.57)
Jooefs [ [s0r - 72

We recognize here two of the bosonization ru2.78) weleyeap before, viz.:
iy = 5(0.9)°
. 1 =
Ju = ﬁewa,,qs, (3.58)
wherej,, = ¢, is the electromagnetic current. The integral over the gdietpecan

now be easily carried out, say in the Lorentz gaégﬂ,t = 0, to yield the bosonized
form of the massless Schwinger model

7= D¢>exp{§ | (@07 —mm}. (3.59)
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This shows that the model is equivalent to a massive scaaryhlt is the Minkowski
analog of the dual theor36) of a superconducting filnhauit taking into account
vortices.

To understand the physical origin of the scalar figléind why it is massive, it
should be noted that the massless Schwinger model has bésal®cal U(1) gauge
symmetry ~

U(w) = e @p(a); Ay(x) = Au(2) + Gualx) (3.60)

also a global U(1) chiral symmetry. Under chiral transfotioves
W — e, (3.61)

where )\ is the transformation parameter amgdenotes the matrixs = iv9y:. The
corresponding Noether current is the axial current

o = iWyuys. (3.62)
At the quantum level, the chiral U(1) symmetry is spontarsiobroken by a fermion

condensatd [142]

Y

- (§
(i) = —5—ma, (3.63)
with v ~ 0.577216 Euler’s constant. By virtue of the identity

Z.’YMVS = €u Vv, (364)

the axial and electromagnetic current are related via

J = €uviv- (3.65)
With the bosonization rulg (3.58) we then obtain the comesience
. 1 -
gy — —ﬁam, (3.66)

identifying ¢ as the Goldstone field of the broken U(1) chiral symmetry. sTdan,
however, not be the end of the stomll43]. Goldstone modebydefinition gapless,
but Eq. ) shows that has acquired a mass, meaning that the chiral symmetry
is no longer an exact symmetry of the bosonized theory. Thed edrrent, which is
classically conserved, has an anomaly at the quantum Is\egrabe seen by invoking
the field equation obtained frorh (3]59),

55 M5

aﬂjp, = ﬁ¢ (367)
The destruction of the chiral symmetry at the quantum learladso be seen directly in
the fermionic formulation, where it can be attributed to #ffect of one-loop graphs.
The anomaly?) follows there from integrating out thenfnic degrees of free-
dom. Using, for example, the derivative expansijon 140§ finds

~ . m ~
i = —TﬁeWBMAU. (3.68)
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On comparing the two expressions for the anomaly, we se¢htedose field) repre-
sents the dual field strength:= ¢,,,,0,4,,

¢ = 15 (3.69)
ma
This is the Minkowski analog of the relatio.37) we foundhe context of a super-
conducting film.

We next consider possible vortex contributions. Let us gtklda the functional
determinant appearing i55) and evaluate it in the pieesef a vortex. To this end
we go over to Euclidean spacetime where a vortex becomestanton. There exists
a powerful index theoren'4] relating the zero eigenvalakthe massless Dirac
operaton;?) e/ to the so-called Pontryagin index

e
Q= o / € Fuvs (3.70)

which is the winding number of the vortex. The theorem sttttas the index of the
Dirac operator, defined by the number of zero-modes with positive chirality minus
the number _ of zero-modes with negative chirality, is given by the Pgagjin index,

ny —n_ = Q. (3.71)

In the presence of vorticeQ # 0, so that there are always zero-modes. Since the
determinant of an operator is the product of its eigenvalinesdeterminant appearing
in (8.55) is zero when vortices are included. Hence, in thesieas Schwinger model,
vortices do not contribute to the partition function. Th@pgtession of instanton con-
tributions by gapless fermions is a common feat [77].

The situation is different in the massive model, defined leylthgrangian

L= —m—efyp— 1F2,. (3.72)

First of all, the mass termma/7) in the Lagrangian explicitly breaks the chiral symme-
try. So, even if there were no anomaly, we expect a massivenimed theory. Second,
because the massive Dirac operator contains no zero-mibdesdex theorem is of
no relevance here and vortices should be include@(&'ﬂ% bosonized partition
function then becomes, cf. (3]42),

o Ni+N_
Z = Z ars |H/ /D¢ (3.73)

XeXp{%/z[( 9u0)? —mAﬂé]“/IFP‘b}’

wherez = exp(iS.), with S. the vortex core action. The plastic field® describes the
vortices,

P = —<IDOZwa §(x — %), (3.74)
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where the sum is over all vortex location® andw,, is the winding number of thath
vortex. The elementary flux quantum in the Schwinger mod@ljs= 27 /e, which
is twice the value in a superconductor because the eledidege of a Cooper pair
is twice that of an electron. We shall consider only vortioésinit winding number
w,, = +1. Forz small we can restrict ourselves to configurations having nerone
vortex. The partition function then becomes the Minkowsidlag of )

2= [osew (i [ {5007 - mae] - 22050} ). (379)

with g = ®ym 4 as in (3.4p). From this we see that the inclusion of the mass ite
the Schwinger model resulted in the cosine term in the basdrtheory. That is, we
have the correspondence

mapth — 2z cos (\/E(b) , (3.76)
where we used that
g=®gma = Vir (3.77)

in the Schwinger model. Surprisingl76) is the remanbosonization rule of
). Instanton contributions, which were suppressélddmmassless model, generate
the interaction term in the bosonized form of the massivensizdier model. We note
that even in the absence of the anomaly, implying that thesrteam in ) would
be absent, the bosonized theory would still be massive. foh@vs from noting that
the expansion of the cosine term contains a term quadratic in

3.4 Ginzburg-Landau Model

In this section, we give arguments as to why the Ginzburgdeammodel of a three-
dimensional superconductor is not well suited to estalilighcritical properties of a
type-Il superconductor at zero external field.

The model is defined by the Hamiltonian

1 1
H=|(V - 2ieA)p|* + m3|o[> + Ng|* + 5(v x A)% + %(v ‘A%, (3.78)

where the coefficient8e andm, are the electric charge and mass of the complex
¢-field, while X is a coupling constant. The mass term changes sign at theatrit
temperaturé/.. We have added a gauge-fixing term with parameterTo acquire

a physical understanding of what the Hamiltoni.78):dbes, we bring to the
attention the well-know facmj] that|a|*-theory gives a field theoretic description of
a gas of closed loops with contact repulsion. This equivadés based on Feynman’s
observation[[145] that the Green function

G(x) = / ot (3.79)

k k2 + mi
of the free theory with positive mass term,

Ho = [VoI* + mg|el*, (3.80)
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can be expressed as a path integral. (In contrast to theopieiwo chapters, we in this
and the following chapter denote the free Green functiotrlwithout an index 0.) To
this end, the Schwinger proper-time method is invoked tdentie right-hand side of

(B.79) as an integral over the proper tim@L4€]:

G(X) _ / dTef‘Mn(i/eik-xef‘rk2
0 k
o 2 1 3/2 1,2
o) e en
0 dnr
where we used the identity
2:/0 dre 77 (3.82)

According to the path-integral formulation of quantum meatics ], the right-hand
side of ) can be represented as a sum over all paths tHtwistic particle with
massm,, running fromo0 at imaginary time 0 te at timer:

00 x(7)=x
G(x) :/ dT/ Dx(7")e . (3.83)
0 x(0)=0
The (Euclidean) action
SO_/O dr' [L52(r') + m2] (3.84)

with x(7) = dx(7)/dr, is an elusive representation of.{, times) the lengttL of the
path

m¢L =My dT/\/ X2(T/), (385)

0

with mg now being interpreted as the line tension. To establishdbimection we
consider the canonical momentum obtained frbm {3.85)

which is seen to satisfy the constraint
p = mi (3.87)

To incorporate this constraint we go over to the Hamiltomfalism and write instead
of B23) i
melL — / dr' [p-x — a(p® —m})] (3.88)
0
where the constraint is implemented with the help of the hage multipliera. The

path integral is now over phase space. Because the actioveisant under reparame-
terization, i.e., under the transformatien— 7(7), this multiplier can be given a fixed
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value;a = 1, for example. The integral overis Gaussian and immediately yields the

action (3.8}).
The partition function (with fields and coupling constargsaaled such that no
explicit temperature dependence appears in the Boltzreaantar)

Zo = /D¢*D¢ exp (—/XHO), (3.89)

involves only closed paths:

In(Zy) = —In[Det(p®+m3)] = —Trin(p® +m3) (3.90)

/ ﬁe_”"i/e_Tk2 :/ ﬁ?{DX(T/)e_SOa
o T k o T

with S, the action [(3.84).
The |¢|*-interaction in the Ginzburg-Landau model results in antaatthl term

Sy = _/\/07' dr'dr” 6 [x(7") — x(7"")] (3.91)

in the action, which gives an extra weight each time two leepee parameterized by
7/ and one byr”"—intersect. Physically, it represents a repulsive contgeraction
between loops. Finally, the coupling of the fieldo the magnetic vector potential
via the electric current

jo = —2ei¢” V ¢ — 2(2¢)?A|p] (3.92)

with a chargee, results in the additional term
Se = 2ie/ dr’' x - Ax(7')], (3.93)
0

showing that the loops described by the Ginzburg-Landauveina@ electric current
loops.

On entering the superconducting phase, characterized lBgative mass term
(mi < 0), the electric current loops proliferate aht] develops a vacuum expecta-
tion value. In the London limit, the fluctuations in the maakibf ¢ are neglected and
the field is written as _

P qio(x)
X) = —e"¥\¥), 3.94
$(x) 5 (3.94)
with ¢ a constant. Formally, this corresponds to taking the Iimg( — —oo and
A — oo in the Hamiltonian such that

2
T2 _%
912 = —=; (3.95)

is finite. Physically|¢|? denotes the mass densityof the superconducting electrons.
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Let us first define an order parameter describing the supdumting state. The
field ¢ as it stands can not play this role because it is not gaugeamiaBut it can be
used to construct a gauge-invariant Mandelstam-like apenathe following way

W(L,) = exp {2 [g@(z) + / A(x) -J(x)} } ) (3.96)
wherey is the phase op andJ describes an external current line originatingjn
V- J(x) =2ed(x — z), (3.97)
or
Ji(x) = 26/ dy:d(x —y). (3.98)
L.

Here, L, denotes a path running fromto infinity. The second term i} (3.06) is incor-
porated to render the operator gauge invariant. Indeedgrandauge transformation

A(x) = A(x) + Va(x), ¢(z) — ¢(z) + 2ea(z), (3.99)

the operatoi¥’ (L,) is invariant
W(L,) — W(L,) exp [ia(z) + z/ Va(x) -J(x)} =W(L,), (3.100)

where in the last step we performed an integration by paft® gauge invariance of
W (L,) can be made more explicit by writing it in the equivalent form

W(L,) = exp {_é /x(w —2cA). J] . (3.101)

To show that this operator indeed is the order parametereostiperconducting
state, we calculate the correlation function

(W(L,)W*(Ly)) = /DAD¢W(LZ)W*(L2) exp (—/XH>, (3.102)

obtained by introducing besides an external current lingirating inz also one ter-
minating atz. The Hamiltoniar?+{ is the Ginzburg-Landau Hamiltonia78) in the
London limit. Since both integrations are Gaussian, theyeasily carried out with the

result [143]
(W(L)W*(Lz)) = (3.103)

o5 [ ) |0 Gl =) p(y) + 550 Gl ) )}

2 m45

wherep(x) = 2e[d(x — z) — §(x — z)] denotes the electric current source and sink,

and " o
etkx 1 e—malx

— = 3.104

G(x) /k kZ2+m? Ar x| ( )
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is the scalar Green function, with
ma = 2e|d| (3.105)

the photon mass.

In the superconducting phase, the electric current lineferate and carry no en-
ergy; they are of no physical significance, only the endpaané. The external current
J can then be written as a gradient of a poteritial

J=-vuU, (3.106)

with V2U (x) = —p(x). In this way, the correlation function becomes

W(2)W* (2)) = exp [—Qﬂlﬁ [ pxcax - vio)] (3.107)

whereGy(x — y) is the gapless scalar Green function obtained from the neassie
(B.10%) by taking the limitn4 — 0. Forx = y we have a diverging self-interaction
which is irrelevant and can be eliminated by defining a reradizad operatofV; via

Wi(z) = W (2) exp {ﬁG(O)] . (3.108)

We then find for this operator

. 11
(W7 @) = e () (3109)
whereL,; is a path connecting the sourcezawith the sink at, and| Lz| is the length
of the path. For large separation this correlation functends to one, implying that
the operatoiV, (z) develops an expectation value in the superconducting phase

Itis important to realize that this operator is gauge irsati Frequently, the super-
conducting phase is referred to as a phase of spontaneaaglgrbgauge symmetry
[]. This should, however, not be taken too literally. Aetgated theorem due to
Elitzur ] states that a local gauge symmetry can nevespomtaneously broken.
An operator that by developing a nonzero vacuum expectatdue would sponta-
neously break the gauge symmetry does not exist. To breaythmetry, the operator
must transform under the gauge group, but then it cannolajees expectation value
because only gauge-invariant objects can.

In the normal phase, electric current lines carry energythecdkfore become phys-
ical. The form [3.106) is then no longer applicable and weettavuse Eq.[(3.98) in-
stead. We shall assume that the current lines have a cerigiin of the orden /|m.|,
where the massq,, will be identified later on in this chapter (see p@ 106). ™ p
ventinfrared divergences, we give the magnetic vectomiatieA a small masg. The
correlation function[(3.103) then becomes after renomatitn

. (3.110)

W, (L, )W (L My |L 1 [2e\? e~HlLlal
(Wi (L)W (Lz)) = exp(—Mw|Lyz|) exp E<ﬁ> Ll
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-

Figure 3.2: One-loop mass correction. The straight and hyiljges represent the-
andA-field Green functions, respectively.

where nowL .,z denotes the shortest path connecting the sourgendth the sink atz,
while | L,z| denotes the length andyy the line tension of the current line,

My = @ In (M) . (3.111)
4 I

We see that in the limitL,z| — oo, the expectation value vanishes. Although the
operatorl¥ distinguishes the superconducting phase from the nornsdeqthaving a
zero expectation value in the normal phase and a nonzeradhe superconducting
phase, it is not an order parameter in the strict sense ofdiamdthat it makes no
symmetry statement.

A few remarks are in order. First, the line tensidfyy diverges when the arti-
ficially introduced photon mass is taken to zero. This means that the current line
connecting the source and sink becomes infinitely heavyatisth sources and sinks
can therefore not exist in the normal phase. They are conifineelutral configurations
of tightly bound pairs. In Minkowski spacetime, where arc#iie current line becomes
the worldline of a charged particle, the ener.lll) tehthe infrared-diverging
selfenergyl] of that particle obtained from evaluatimg Feynman graph depicted
in Fig.[3.2. Second, the alert reader might wonder how theltr¢3.109) obtained in
the normal phase is connected with Hq. (3]110) obtainedkistiperconducting phase.
In particular, the line tension/y, of the current line seems not to vanish at the critical
temperature, implying that the first exponential functinr@) would survive the
transition to the superconducting phase, and that the tggdiia would vanish there.
This is in apparent contradiction with previous stateméms in the superconducting
phase, current lines carry no energy and proliferate. Hsisd will be addressed be-
low (see pag6) after we applied a duality transformatiathe Ginzburg-Landau
model.

We continue to investigate the phase transition by takitgaccount fluctuations.
The one-loop effective potential is readily calculatedha London limit ). In the
gaugeV - A = 0, one obtains

4 _
Vet (9) = /k<A1n(k2+m?4) = —3—7Te?’|¢|3. (3.112)

We regularized the integral by introducing an ultravioletatf A. An irrelevant ultra-
violet divergence of the typa? log A is ignored, while a divergence of the typey|?

is absorbed into a renormalization of the mass parametes sd. The effective poten-
tial Ve (¢) has to be added to the tree potentigl= $m2|¢|* + {A|¢|*. It results in
a lst-order phase transition taking place at a temperdiuadovethe temperaturé;
where the mass term of the Ginzburg-Landau model changegsig FigS). The
(positive) value ofmz5 at the 1st-order transition point, obtained by equatingsia
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YA 4

Figure 3.3: Effective potential up to one-loop order.

of the tree and the one-loop potential and also its first dévie with respect t@ to

zero, is given by[[1§2]
32 €b
2 _
At small values of the so-called Ginzburg-Landau parameter, which is defined as
the ratio of the two mass scales in the theory,

_Imel _ M A (3.114)

K
GL ma 6 o2’

the reliability of this perturbative result has been vedfrimmerically]. It has been
argued by Kleinert4] that for larger values this ressitfiowever, not meaningful
anymore. At some critical value of the Ginzburg-Landau peter«<qr, the 1st-order
transition goes over into a 2nd-order transition.

Let us investigate the superconducting-to-normal traosifurther by applying
renormalization-group analysis to the Ginzburg-Landauleho This was first done
by Halperin, Lubensky, and M5] in af= 4 — d)-expansion around the upper
critical dimensiond = 4. We shall instead use the fixed-dimension approach of Parisi
[L56,[15F]. The model(3.¥8) involves only a single compledfi However, for rea-
sons that will become clear when we proceed, it is often gaized to contair2n real
components:

) $1 + i
b — = % L : (3.115)
Gan—1 + iP2n

The quantities appearing i78) should be given an ifidexindicate that they are
bare quantities which will change in the process of renoimatibn. The renormalized
fields and parameters are related to the bare ones via

A=ZA° e=Z ey, ¢=2,""¢° N=2'Z3x.  (3.116)

We shall work at criticality and to that end set the masggto zero. To avoid infrared
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divergences, diagrams are evaluated at finite external mwme:. The renormaliza-
tion factors can be used to define the following renormabtzagroup functions

YA = nﬂ In(Za) (3.117)

Ok

3

0

0
y Vo =Hgo In(Zy)

0

where the subscript O is to indicate that the bare couplingzmts:, A\, are kept fixed.
The dimensional parameterplays the role of renormalization group scale parameter.
The critical points? and )\, are determined by the zeros of the renormalization-group

beta functions,
b =r & Br=rld
oK

3.118
0 o (3.118)

)

0

whereé? = ¢2x9* and\ = \x?~* are the dimensionless coupling constants. When
evaluated at the critical point, the renormalization-gréunctionsy4 andv, yield the
anomalous dimensiomy andn, of the A- andg-field, respectively.

The various renormalization factors are readily evaluatedrbitrary dimension
2 < d < 4, using the fixed-dimension approach of Paffisi [156] 157]tHEoone-loop
order we find

o =1- ndc(_d)l &2 (3.119)
Zy = 1+ c(d)[(d—1) — a(d — 3)]é* (3.120)
Zy = 1+ c(d) [(2n +8)A— 2a(d — 3)é? + Ld(d — 1)@4/@ . (3.121)
wherec(d) stands for the one-loop integral
B 1 _ I(2-4d/2)T%(d/2—-1)
o(d) = /k Kk+a?|._,  (@mi2rd-2) (3.122)

In deriving this we used analytic regularization to handtile tiltraviolet divergences.
With the one-loop expressions for the renormalizationdesstwe obtain for the beta
functions

Bz = (d—4) {éQ - ndc(_d)l é‘ﬂ (3.123)
By = (d—4) {x — e(d) [(2n +8)A2 = 2(d — 1A + Ld(d — 1)@4} } .
(3.124)

Note that whileZ, and Z, depend on the gauge-fixing parameteithe functions,
extracted from them is independent thereof. We expect thigelation of gauge-
dependence i) to persist in all orders of perturbation theory. Althougle teta
functions are gauge independent, the locations of the fixd#tpare not universal.
They depend on the regularization chosen as well as on tleematization prescrip-
tion. In the limitd — 4 — ¢ our formulas reduce to the know forfn [155, 158].
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Figure 3.4: Schematic representation of the-function.

Remarkablyg,: is independent of the self-coupling By itself it gives rise to two
fixed points (see Fid. 3.4):

.2 0

e = { (d = 1)/ne(d). (3.125)
The neutral fixed point is ultraviolet stable, while the et fixed point is infrared
stable in the=2-direction. Since als& 4 as given in Eq.9) and thyg are inde-
pendent of\, the anomalous dimensiap, of the gauge field can be calculated with-
out any knowledge of the location of the fixed points along Xkdirection. For the
infrared-stable (IR) fixed point one finds at the one-loopeo]

na =74l =4-d (3.126)

It was pointed out by Herbut and TeSanoWi€ [[159] that teigu exact result which
follows directly from the definition of thg,--function in terms of the renormalization
factorZ 4

o =E(d—4) +7a]. (3.127)

That is to say, there are no higher-order corrections to tigeloop result6). We
have checked this explicitly to the two-loop order in #fe- 4 — d)-expansion. The
anomalous dimension is such that the dimendigmf the gauge field, which by naive
power counting equal§(d — 2), is exactly unity,

da=1 for 2<d<4. (3.128)

Itis as if we were in the upper critical dimensidn= 4.

Since the result is independent of the numbeof field components contained in
the theory, this conclusion can be confirmed in1lie-expansion. To leading order in
1/n, the inverse gauge field propagator reads in the g&uge = 0 and for2 < d < 4

c(d)

— P d=2 3.129
T (@)l ( )

i(q) = —

with P;;(q) the transverse projection operator

qi4q;
Pyla) = by — (3.130)
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The exponent — 2 of the momentum i (3.129) equals- 2d 4, so that we again arrive
at the conclusionthaiy =1in2 < d < 4.

It implies that near the charged fixed point, the electricgb@cales with the cor-
relation lengthe in a way one expects from naive power counting

e? = Zel ~ gt (3.131)

sinceZ 4 scales ag—"4.

The exact resuli 4 = 1 has far reaching consequences as it implies that the term
(V x A)? in the Hamiltonian, which by naive power counting is margjinas dimen-
sion 4. Itis therefore an irrelevant operator forébielow the upper critical dimension
and can be omitted. Formally, this corresponds to takinglithe e — oo in the
Ginzburg-Landau model as can be seen after a rescaling gbilnge fieldA — A /e.
Without the termV x A )2, the Ginzburg-Landau model resembles thé& CPmodel,

Lop =|(V —iA)o|, (3.132)
which has the additional constraint
lp)? = 1. (3.133)

As regards to critical exponents this difference is howévelevant. Indeed, the well-
studied Of) ¢*-model and its nonlinear version, the Q) (nonlinear sigma model
where the fields satisfy a condition Iik33), are gelheeccepted to be in the
same universality cIas#ﬂGO]. Whereas the linear modesislly investigated in an
e-expansion around the upper critical dimensidnH 4), the nonlinear model is often
treated in an expansion around the lower critical dimen&ioa 2), so a direct com-
parison is not possible. But thg/n-expansion, being the same for both theories and
applicable in arbitrary dimensidh< d < 4, can be used to bridge these two regions.
The results obtained in this way fdrclose to the upper and lower critical dimension
are identical to those obtained in the respectiexpansions for large.

The 1/n-expansion has also been employed to argue that the Gintlaundau
model with 2n-components and the CP! model, too, are in the same universality
class [16/1] 162]. Our conclusion that below the upper @iitdtimension, the term
(V x A)? in the Ginzburg-Landau model is irrelevant gives additl@ugport to this
conjecture.

For a superconductor, having one complex field € 1), this implies that the
relevant model is the CAmodel. Although the (= d — 2)-expansion1] predicts a
nontrivial 2nd-order transition, this model has no degidseedom. Physically, this
means that the charged degrees of freedom are irrelevdre phase transitio3].
Initself this is no reason to reject the Ginzburg-Landauetad a basis for studying the
phase transition—the “unphysical” limit — 0 of the Of:) model describes the long-
distance behavior of a flexible polymer. But what is more wimg is that vortices,
which we saw to be of paramount importance in two dimensians,not accounted
for in the discussion so far. In addition, there are tecHrpcablems with using the
Ginzburg-Landau model to study the critical propertieshef phase transition.
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Figure 3.5: The critical number of compone#is. as a function of the dimensionality
d below which the one-loop calculation predicts a 1st-orcamgition.

Namely, the two beta functions yield no IR fixed point unldss number of field
components is taken large enough. Below a critical numbét), determined by the
condition that

Ag=2y/n?—2(d—2)(d—1)2(d+ 1)n —4(d—1)3(d + 1) (3.134)

be real, the system has no IR fixed point and the one-loop ledilon predicts a 1st-
order transition. In Fig.5 this number is plotted as fiorcof the dimensionalityi.
We see that the number decreases when the dimensionaéjuised. More precisely,

Ine(4) = 12(15+4V15) ~ 365.9 (3.135)
2nc(3) = 16(2+V6) ~71.2 (3.136)
M.(2) = 4V3~6.9, (3.137)

where thed = 4-result is due to Halperin, Lubensky, and NIE[IlSS]. The figals®
shows that for a fixed number of field components, 2nd-ordeabier is favored when
d — 2, while in the opposite limitd — 4, 1st-order behavior is favored. However,
even close to the lower critical dimension, where the*CPmodel predicts a 2nd-
order phase transition all the way dowmto= 1 [@], the Ginzburg-Landau model
still requires more thag\/3 ~ 3.5 complex fields in order to have an IR fixed point.
The status of the results obtained from the Ginzburg-Lamdadel in low-order per-
turbation theory is therefore not clear.

Given the two-dimensional results, showing the importasfa@rtices, it is natural
to consider the dual theory of the three-dimensional Ginguandau model as an
alternative to study the phase transition. As before, thed thrmulation focuses on
the vortices in the system, which in three dimensions am diefects. It will again
turn out that the dual formulation is one directly in termspbf/sical variables and for
that reason involves only a global, not a local, symmetry. Wilesee that the phase
transition of a type-1l superconductor at zero externatiftedcomes more tractable in
the dual formulation than in the original Ginzburg-Landarnfiulation.
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3.5 Dual Ginzburg-Landau Model

In this section, we apply a duality transformation to the Zburg-Landau model. The
basic idea of this approach originates from three-dimevadi@ttice studies carried out
two decades agq [1pf, 165, 166,1167]. These studies weigdtesd by the success of
the Kosterlitz-Thouless theory of the phase transition guperfluid film [13p]131],
which we discussed in Sec. B.1. The three-dimensionatdagtiudies of the neutral
[@] and charged:y-model ,6] were aimed at obtaining a dual description
in terms of vortices. Following a suggestion by Helfrich avidller [], Dasgupta
and Halperin 9] carried out a lattice simulation of thepatconductor-to-normal
phase transition in the dual formulation. Their study résedhat for small values of
the electric charge, which implies large values for the Ginzburg-Landau parame
(B.11%), the transition was 2nd-order witl-exponents. A detailed account of these
Etters as well as an extensive list of references to thaditee can be found in Ref.
(2.

Another development underscoring the importance of thd dpproach to the
Ginzburg-Landau model was initiated in Rdf. [[L70]. The bastservation was that
since a local gauge symmetry can never be bro@ [150], &decaye description of
a phase transition is not feasible. It was argued that theetblimensional Ginzburg-
Landau theory contains, in addition to the local gauge sytnmanotherglobal U(1)
symmetry. When considered - 1 space-time dimensions with a Minkowski metric,
this symmetry is generated by the magnetic flux operatorat demonstrated that this
symmetry is broken in the normal phase, while it is unbrokethe superconducting
phase. A genuine order parameter in the sense of Landau wes ghd it was shown
that the massless photon of the normal phase is the Goldstode associated with
the broken flux symmetry.

To see in which regime magnetic vortices or Abrikosov fluxesilare important,
we introduce a magnetic monopole at some pgiimtside the system. A monopole is
a source of magnetic flux. Due to the Meissner effect, the fhieslemanating from
the monopole are squeezed into a flux tube. In this way we haater] a magnetic
vortex at zero external field. Electrodynamics in the presesf a monopole was first
described by Dirad[171] who argued that the combination

V x A(x) — BP(x) (3.138)

is the physical local magnetic inductidn The subtracted plastic field

By (x) =0 | dy;d(x—y), (3.139)
L,

with &y = 7/e the magnetic flux quantum, removes the field of the so-calledcD
string running along some patfh, from the locationz of the monopole to infinity. On
account of Stokes’ theorem, the plastic field satisfies thagon

V-BP(x) = &0 d(x — z). (3.140)

In the presence of the monopole, the Ginzburg-Landau Hanih becomes in the
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London limit and after integrating out the phase field
1 1 0;0; 1
P P (]
" =5(VxA-B )? + §m?4AZ- (5@- - v—;) Aj+ (V- A2 (3.141)

where we gavé{ the superscripP to indicate the presence of the monopole. Let us
first verify Dirac’s assertion that the combinatign (3]188¥cribes a point monopole
with its Dirac string removed and consider the field equatosrihe gauge field,

Ai(x) = / Gij(x—y) [V x BP(y)L. . (3.142)

The gauge-field Green functi@r;; appearing here is

g 0ij — (kikj) /K*  kik;\ .
= e, 3.143
Gij(x) /k< o +a ) e ( )

The local magnetic induction corresponding to the classiclution given in [3.142)
is

V x A(x) — BP(x) = ®VG(x — z) — mi/ G(x—y)BY(y), (3.144)

whereG is the Green functior] (3.1p4). The first term at the rightehside corresponds
to a screened Coulomb force generated by the monopole. Bhéeelan, which is

only present in the superconducting phase where the Meiséieet is operating and
ma # 0, describes the magnetic vortex. If we calculate from thatrltand side of

(B.14%) the magnetic flux through a plane perpendicular éoDhac string, we find

that precisely one flux quantum pierces the surface in thativegdirection

/ d*x; {CI)O&-G(X —z) —m} /y G(x —y)BF (y)} = —®. (3.145)

Here, dz; denotes an element of the surface orthogonal to the DirangstEquation
) confirms Dirac’s assertion that the magnetic flux matiag from a monopole
must be supplied by an infinitesimally thin string of magoeipoles and that in order
to obtain the true local magnetic induction of a genuine poinnopole, this string
has to be subtracted. Whence, BB-term at the left-hand side of (3.344). While the
Dirac string is immaterial in the normal phase, the last tatrthe right-hand side of
(B.14%) shows that it acquires physical relevance in themgmducting phase where
it serves as the core of the Abrikosov flux tupe [172].

The energyFy of this configuration is obtained by substituting the salot(3.14p)
back into the Hamiltonian[(3.141). It is divergent in theralfolet because in the
London limit, where the massn,| of the ¢-field is taken to be infinite, the vortices
are considered to be ideal lines. For a finite mass, a vortexiwas a typical width of
the order of the coherence length= 1/|my|. This mass therefore provides a natural
ultraviolet cutoff to the theory. Omitting the (divergingionopole self-interaction, one

finds [172]
1 2
By =5¢° | du | dyGlx—y) = My|Ldl. (3.146)
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with ¢ = ®ym 4 a combination we also encountered in the two-dimensioraiged
models,|L,| the (infinite) length of the flux tube, anf [79]

2
My = %92 In <|7%| ) = ng In(rqr) (3.147)
the line tension. The valuegr, = 1/+/2 for the Ginzburg-Landau paramet114)
separates the type-ll reginfecr, > 1/4/2), where isolated vortices can exist, from
the type-l regimgrar, < 1/4/2), where a partial penetration of an external field is
impossible. Remembering that, was the Dirac string, we see frofn (3.]146) that it
indeed becomes the core of a vortex in the superconductiasgph
To identify the regime where vortices are important, we eshthe line tension

My, into a magnetic field via

M
He, = =%, (3.148)
Dq
and compare it with the critical field
1
HC = — m y 3.149
2\/§7T9| ¢l ( )
obtained by equating the tree potential
Vo = sm3|8|> + 1A4|* (3.150)

to —%HCQ The critical fieldH., physically denotes the smallest value of an external
field needed to excite vortices. The fielfl., on the other hand, is a measure of the
condensation energy which in turn sets the energy scalby#ipally denotes the value
of an external field at which a type-I superconductor can ngéo resist the magnetic
pressure and reverts to the normal phase characterized éfexippenetration of the
field. The ratio of the two fields

Hc1 _ iln(’iGL) (3'151)

He 2 kaL
shows that for increasinggy,, vortices become easier to excite. In other words, the
deeper one enters the type-Il regime, the more importanéxaxcitations become.
Since these have been ignored in the calculation of theteféegotential 2), the
prediction of a 1st-order transition is only reliable at #ma;;, and breaks down at
larger values of the Ginzburg-Landau parameter.

The above construct of inserting a monopole into the systambe used to define a
so-called disorder parametgr][17]. In contrast to the opaeameter[(3.96), a disorder
parameter should develop an expectation value in the nprmagin the superconduct-
ing phase. The operatdf(L,) describing the monopole with its emerging flux tube is
easily obtained by noting that in the functional-integigbeoach, a given field config-
uration is weighted with a Boltzmann factexp (— [, H"), where the Hamiltonian is
given by ‘1). From this we infer that the explicit formtbé operator is

V(L,) = exp {/x [(v x A)-BP -1 (BP)Q] } . (3.152)
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We are interested in the correlation functidn(L,)V*(L3)), whereV*(L;) describes
an additional antimonopole brought into the systen,atith L; being the accom-
panying Dirac string running from infinity ta. Since all the integrals involved are
Gaussian, this expectation value can be evaluated dirétbhyever, we proceed in an
indirect way to reveal some aspects of the nature of the thealy and first linearize
the functional integral over the gauge field by introducinggaixiliary fieldh. In the
gaugeV - A = 0, which corresponds to settirg= 0, we find

(V(L,)V*(Lz)) = (3.153)

~ - ~ 2
/DADhexp{/ [—%h2+ih- (VxA-BF) - %AZ’”,

where nowV - BY (x) = ®¢[0(x —z) — §(x — z)]. To appreciate the physical relevance
of the auxiliary field, let us consider its field equation

h=i(VxA—-B") =ih. (3.154)

It tells us that apart from a factat h can be thought of as representing the local
magnetic inductiorh.
The integral over the vector potential is easily carriedmusubstituting the field
equation forA,
A=—-Vxh, (3.155)
my

back into [3.1593), with the result
(V(L)V™(Lz)) = (3.156)

/Dﬁexp{—%/x[mii(vXﬁ)Mﬁ?] —z'/xfl-BP}.

This shows that magnetic vortices described by a plastid B&l couple to the fluctu-
ating massive vector field, with a coupling constant given by= ®gm 4 = 27| ¢| as
in two dimensions. As the temperature approaches thealriimperature from below,
¢ tends to zero, so that the vortices decouple fienThe finite penetration depth in
the superconducting phase is reflected by the mass term hffieéd (3.156).

After carrying out the integral ovérin (8.156), we obtain for the correlation func-
tion

1

V(La)V*(Ly)) = exp{—5 | [onGx=3) puy) (3.157)

m?, B (x) G(x — y) BP (y)] }

wherepy, (x) = ®o[d(x — z) — d(x — z)] is the monopole density. The first term in the
argument of the exponential function contains a divergingapole self-interaction for
x = y. This divergence is irrelevant and can be eliminated by defia renormalized
operator

Vi(Lz) = V(Lg) exp [395G(0)] . (3.158)
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Figure 3.6: Biot-Savart interaction (wiggly line) betwevo line elements ¢, and
dy; of a magnetic vortex (straight line).

The second term in the argument is the most important oneufioparposes. It repre-
sents a Biot-Savart interaction between two line elementadd d;; of the magnetic
vortex (see Fi6). For the renormalized operators we find

(1)2 efmA\in\
WLV, (L) = expl(-My L)oo (L), @as9)
4.7T |Lz2|
whereL,; is the flux tube connecting the monopolezatith the antimonopole at,
and|L,z| is its length. Initially, the two Dirac strings may run to apgint at infinity.
Due to the string tension, however, they join on the shopesh ,; between the
monopoles.

The result [3.139) is central to our line of arguments. Iltvehdhat the correla-
tion function (V;(L,)V,*(Lz)) behaves differently in the two phasds [[170,]173]. In
the superconducting phase, where because of the Higgs nischa 4 # 0, the first
factor, which amounts to a confining linear potential betw#® monopole and an-
timonopole, dominates. As a result, the correlation fumrctiecays exponentially for
distances larger thary My :

(Vie(L2)Vi" (Lz)) — 0. (3.160)

r

This behavior is typical for an operator in a phase withouilgss excitations. On
the other hand, in the high-temperature phase, whexe= 0, the confinement fac-
tor in the correlation function[ (3.1p9) disappears, while argument of the second
exponential turns into a pure Coulomb potential. The cati@h function remains,
consequently, finite for large distances:

<Vr(Lz)V*(Lz)> — 1. (3.161)

r

By the cluster property of correlation functions this ingglithat the operator describ-
ing the finite vortex develops a vacuum expectation values Signals a proliferation
of magnetic vortices. Indeed, according 147) the teresion My of a vortex
vanishes at the transition point, whefe— 0. It should be noted that it is the high-
temperature phase and not the superconducting phase Whérg develops an ex-
pectation value. Hence, it is indeed a disorder parameter.

Itis interesting to consider the limit.4 — 0 in [.15), where the magnetic vortex
decouples from the massive vector field. This limit yields tonstrain x h = 0
which can be solved by settitg= V~. The correlation function then takes the simple

form
W@V @) = [orew |5 [0+ [

X

’ypm] . (3.162)
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In the absence of monopoles, the theory reduces to that ekagfipless mode that
may be thought of as representing the magnetic scalar paltefthis follows from
combining the physical interpretation of the vector fihld) with the equation
h = V7. Specifically,

Vy=i(V x A —BF). (3.163)

Inserting the explicit form for the monopole density, whishgiven by p,,(x) =
Dy[d(x — z) — 0(x — z)], we see that in terms of the fielg the correlation func-
tion reads

r

(Ve(z)V;' (2) = (o™= (3.164)

This demonstrates that the operal@(L,) describing the finite vortex, which was
introduced in [[3.152) via the singular plastic fidd¥ (3.139), is now represented as
an ordinary field. Since we are in the normal phase, wh&rdevelops a nonzero
expectation value, the presence of the phadedicates that this expectation value
breaks a global U(1) symmetry, withthe ensuing Goldstone field. This point will be
further clarified below.

We note that Eq.4) reveals also that in the normal phthseDirac string
looses its physical relevance, the right-hand side depgmaily on the end points
andz, not on the path.,; connecting these points. The notion of a magnetic vortex is
of no relevance in this phase because the vortices prakfaral carry no energy. There
is also no nontrivial topology to assure their stability.if'ts the reason for omitting
any reference to vortex lines in the argumentoih Egs. [3.16R) and (3.1p4).

We are now in a position to write down the dual theory of a thigeensional
superconductor. It features a grand-canonical ensemlfligadfiating closed magnetic
vortices of arbitrary shape and length having a repulsiveagi interaction. The loop
gas can be described by a complex disotdét-theory. In addition, as our study of a
single external vortex revealed, the magnetic vorticeploto the fluctuating vector
field h with a coupling constanj. Hence, the dual theory is given dy [} 14, 173, 17,

163, [148]
Z= / DhDv*De) exp (— / Hw) (3.165)

with the Hamiltonian

Hy

1 U o
= 57 (Vxh)? 4 Sh? 4+ [(V = i®eh)y[* + mg[4* + uly[!,  (3.166)
A

where the field) is minimally coupled to the massive vector fidid Equation 6)
is a description of the superconducting state in terms osjglayvariables: the fiele
describes the local magnetic induction, whergaaccounts for the loop gas of mag-
netic vortices. There are no other physical entities preisea superconductor. The
dual theory has no local gauge symmetry because the vedtbhfise massive.

Although (3.165) was derived starting from the London liritiis also relevant near
the phase transition. The point is that integrating out the Buctuations of the scalar
field ¢ would only generate higher-order interaction terms. Baséhmodifications do
not alter the critical behavior of the theory.
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The line tension\{y, () appears in the dual theory as a one-loop on-she#l mas
correction to the mass:,, stemming from the graph depicted in F|E|3.6, which we
now interpret as a Feynman graph. The straight and wiggésliepresent the- and
h-field correlation functions, respectively. We have useshed lines to distinguish
the Feynman graphs of the dual theory from those in the Giigzbandau model.

A measure for the interaction strength of a massive vectarifiehree dimensions
is given by the dimensionless parameter equal to the sqdidhe @oupling constant
multiplied by the range of the interaction. For the dual tlyethis factor isg? /m a4 ~
ma/e?, which is the inverse of the strength of the electromagmgztige fieldA in the
superconducting phase. This is a common feature of thewtigsh are dual to each
other.

Another notable property of the dual theory is that in theitlim— 0 it changes
into a local gauge theorﬂll?],

Hy — %(v x )2+ |(V = igh)y > + m ol + ul|*, (3.167)
as can be checked by rescaling the dual flelth the Hamiltonian 6). By tak-
ing the limite — 0 in the Ginzburg-Landau model, we obtairj¢d*-theory, which
describes a superfluid, with a decoupled gauge field.

We next investigate what happens with the dual theory as wepaph the critical
temperature. Remember thatand thereforen 4 tends to zero ag approaches the
critical temperature from below. From the first term in thewiléonian (3.16p) it again

follows thatV x h — 0 in this limit, so that we can write once mote= V~, and

(B.166) becomes
Hy = 5(V7)* + [(V = i®o V)Y + mi o> + uly*. (3.168)

This equation shows that, representing the magnetic scalar potential, cannot be dis
tinguished from the phase of the disorder field. Indeedd|gt be this phase. Then,
the canonical transformatich— 6 + ~ absorbs the scalar potential into the phase of
; the first term in 8) decouples from the theory and wedrivial contribution

to the partition function. In this way, the dual theory redsito a puréz|*-theory

Hy = [V + mi o + uly]*. (3.169)

At the transition temperature, the magnetic vortices ferdie and the fielg) develops
an expectation value. The transition is triggered by a changsign ofmfp. In the
London limit, the Hamiltonian|(3.169) then takes the sintpien

Hy = S[YR5(V7)?, (3.170)

with |¢| the expectation value of the disorder figld}/v/2 = (|+/|), and where we now
represented the phasewfby &~ to bring out the fact thay describes the magnetic
scalar potential. From a symmetry point of vie@?ﬁ)]is the Goldstone mode of
the spontaneously broken global U(1) symmetry of [thg-theory. Whereas in the
Ginzburg-Landau formulation a magnetic vortex is descrimea singular plastic field
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BPF, in the dual formulation it is represented by the Noetherentrassociated with the
global U(1) symmetry,

jg = —igy* V ¢ + 2¢%h[y[%. (3.171)

This follows from comparing the terms coupling linearly ketfluctuatingh field. In
the normal phase, whetg develops a vacuum expectation value, the Noether current
becomes in the London limjt= V~. This is the usual relation between the current of
a spontaneously broken symmetry and the ensuing Goldstdde fi

As we will demonstrate next; has the valugy| = 1/, [[L79] of an inverse flux
quantum, so that with our normalization choice of the phdiskex)-field, Eq. (3.17/0)
takes the canonical form. Let us introduce a closed vattexthe dual theory|(3.170)
by minimally coupling the magnetic scalar potential to atemrgauge fieldp” and
consider the expectation value of this configuration

() = [oyesn | ~5108 [ @0vy - )’ (3.172)

We linearize the theory by introducing an auxiliary vectetdib via

exp [—%lez/ (<I>0V7—<pp)2} = (3.173)

/Dbexp{—/x Bb2+i|1ﬁ|b~ (<I>OV7—50P)]}.

This amounts to a duality transformation again. The integvar v now yields the
constraintV - b = 0, demanding to be the rotation of a vector fielth = V x A.
This gives

(W(L)) = /DAexp{—/x B(v x A)? —iA-J]}, (3.174)

where J;(x) = 2n|¢| §, dy;0(x — y) describes the closed vortex. It is natural to
interpret the fluctuating gapless gauge fidldas the magnetic vector potential, and
the closed vortex as an electric current loop. This justifiesuse of the symbdi

in (.17%) which was first introduced ifi (3]96). (The analdmyween vortices and
electric currents was first pointed out by von Helmholtz.}His way, we get back the
Ginzburg-Landau model with just one external electric enrdoop. The full model
) is recovered when we consider a loop gas of thesetdedad describe it by a
|p|*-theory, provided we make the identificatidn [[L70]

27|¢| = 2e, (3.175)

or || = 1/®q. It links the expectation value of the disorder field) describing
the magnetic vortex loops to the coupling constanof the Ginzburg-Landau model.
It is the exact analog of the relation between the expectataue ¢ of the ¢-field
describing the electric current loops and the coupling taontg = ®¢m 4 of the dual
theory:

21| 9| = g. (3.176)
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Since) vanishes ag” approaches the critical temperature from above, the cou-
pling constane goes to zero at the critical point and the electric curreaptode-
couple fromA. Moreover, Eq.l), giving the tension of electric emtrlines in
the normal phase, shows that indeed these lines carry ngyeimethe superconduct-
ing phase where they proliferate. This solves the appameritadiction we mentioned
on page@Z. Precisely the same things happened with the ti@gosices: the cou-
pling constany of the dual theory vanishes as the critical temperature sagthed
from below, so that the magnetic vortices decouple from dcallmagnetic induction
and proliferate. We thus have a complete duality here betwesgnetic vortices and
electric current loops in complementary phases.

At this stage we can also clarify the physical relevanceetitraviolet cutoffm.|
introduced in the calculation of the tensidn (3]111) of aenrloop. This calculation
was performed in the London limit where current lines aresidered to be infinitely
thin. Outside the London limit, vortices of the dual theoayé a typical width of the
order of the coherence length{|m.,|, which therefore provides a natural ultraviolet
cutoff.

Theline tensionl) we previously calculated in theneavork of the Ginzburg-
Landau model can also be obtained in the dual theory diréaity (8.17%). The in-
tegration overy can be carried out by substituting the field equation of th&l&one

field
1

1) = 55 / Go(x — ¥)V - 5 (y), (3.177)

whereG, is the Green functior] (3.1p4) witl 4 = 0. This yields an expression

w(L) —exp{—%{)g [ [19 %" olGax - ) (7 x ¢P<y>h}, (3.178)

very similar to the expression for the disorder parametéaiobd in Eq. 7) with
the monopole density set to zero since

[V x @ (x)]; = 27T/Ldyi5(x -y). (3.179)

This immediately gives
(W(L)) = e~ MwlLl, (3.180)

with |L| the vortex length and/y; the line tension[(3.111).
The field equation we derive fror (3.174),

V xh=iJ (3.181)

is one of the two basic equations of magnetostatics. It shbalnoted, however, that

an additional factor of shows up here. As a result, the Biot-Savart law yields opposi
signs from what is usually the case. Two parallel currerglrnstead of attract each

other so that a single current loop prefers to crumple. lofod that a state where

these current loops proliferate has zero magnetizationshasld be the case in the
superconducting phase of the Ginzburg-Landau model.
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O

Figure 3.7: Two different surfacesand.S’ spanning the loof.. The flux through the
surfaces differ by a factofr.

Because of the imaginary current, the local magnetic indogenerated by a cur-
rent loopL is also purely imaginary as follows from Ampere’s law,

i xoy _; L
h(x) = 22(1)0 ]{Ldy X X—yP 22(1)0 VQ(x), (3.182)
wheref)(x) is the solid angle that the loop subtendsai he same result can also be

directly derived from the dual theory. Rewriting the fielduatjon for~ obtained from
(B.172), we can relate the Goldstone field to the solid amgtee following way [1]]

ol e x—y)i 1

where dy; is an element of the surfac® spanned by the current lodl Together
with the observation that the local magnetic induction agrart from a factoi, be
identified with the gradient of the phase variable

h=—iVn, (3.184)
[see [3.163)], this yields the previous res 182).

As a side remark we note that the magnetic moment density,agmnetization,
is represented in the dual theory By’. This follows from [3.17R) showing that an
electric current loop couples to the magnetic figldl via oF .

With this physical identification of the Goldstone mode Itdas that, in the normal
state, the disorder parameiérx) essentially measures the solid anglex)

Vi(x) = e'®07(x) — ¢2(x)/2, (3.185)

Since the operatoV (x) was constructed by putting a magnetic monopol&,atve
see that%Q(x) is the magnetic flux emanated by the monopole through thérielec
current loopL. As a last remark we note that one can chose two topologiddfrent
surfaces spanning the lodp (see Fig.?). Both lead, however, to the same phase
factor because differs only by a factor ofir.

Because the dual Ginzburg-Landau model involves only glysiegrees of free-
dom and a global U(1) symmetry, it is ideally suited as bas&tdy the critical prop-
erties of the superconducting-to-normal phase trans]. As has been argued
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above, at the mean-field level the massive induction fiel@dples from the theory as
the critical temperature is approached from below. Theltiegitheory is dv|*-theory
which is known to undergo a 2nd-order phase transition witlexponents. This can
also be seen by integrating out the massive induction figlEhow-temperature phase.
This only leads to changes in the coefficients of|thg-theory. Explicitly ],

4
Moot = Vo + (= *525) ol + (u - J—W) [t (3.186)
In deriving this we used dimensional regularization anct(@vant) higher-order terms
are omitted. We note that all contributions stemming from wictor fieldh vanish
in the limit whereT approacheg. from below, so that{,, .« reduces to a purg)|*-
theory in this limit.

A one-loop renormalization-group analysis of the dual tigezarried out in Ref.
[] also led to the conclusion that the disorder field besas in a purgy|*-theory
with zy-exponents. In addition, the exponents of the magneticdtiolu field where
shown to retain their Gaussian values because it decouplesthe theory. They-
behavior of the heat capacity was established experini}arima[], while experi-
ments on YBaCuO[[1]8] seem to confirm the prediction of thesSim value for the
divergence of the magnetic penetration depth. The confiomatlies, however, on a
delicate finite-size analysis, so that there is still roomaoeinterpretation of the data
and the possibility of suggesting a different critical bébaas has been done by Herbut
[] who concluded that the penetration depth hasg@aexponent. One recent lattice
simulation directly of the Ginzburg-Landau model corradted the Gaussian value for
the divergence of the penetration de180], while anrotbend anzy-exponent

[L83).
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Chapter 4

Quantum Phase Transitions

In this chapter, we discuss various continuous phase tramsiat the absolute zero
of temperature—so-called quantum phase transitions.k&fi their classical coun-
terparts taking place at finite temperature and being arlibquim phenomenon, time
plays an important role in quantum phase transitions. Rigrdntly, whereas the crit-
ical behavior of classical 2nd-order phase transitionsoisegned by thermal fluctu-
ations, that of 2nd-order quantum transitions is contdoldg quantum fluctuations.
These transitions, which have attracted much attentioedant years (for an introduc-
tory review, see Ref2]), are triggered by varying na tamperature, but some
other parameter in the system, like the applied magnetid elthe amount of dis-
order. The natural language to describe these transittogeantum field theory. In
addition to a diverging correlation lengfh quantum phase transitions also have a di-
verging correlation time,. They indicate, respectively, the distance and time period
over which the order parameter characterizing the tramsftuctuates coherently. The
way the diverging correlation time relates to the divergingrelation length,

&~ &7, (4.1)

defines the so-called dynamic exponentt is a measure for the asymmetry between
the time and space directions and tells us how long it takesformation to prop-
agate across a distange The traditional scaling theory of classical 2nd-orderggha
transitions is easily extended to include the time dimen§i83] because relatiof (4.1)
implies the presence of only one independent divergingesddie critical behavior of

a phase transition at finite temperature is still controbgdhe quantum critical point
providedT < 1/¢,. This is what makes quantum phase transitions experimgntal
accessible.

We start in the next section discussing the so-called swpetib-Mott-insulating
phase transition in the pure case, while in S‘,E 4.2 we irc(gdenched) impurities.
In Sec. we discuss the effective theory describing thetifsnal quantized Hall
effect and argue that, in principle, it can be employed tades the quantum phase
transitions in quantum Hall systems. In S 4.4 we thenyamgplormalization-group
analysis to this theory. In SeEl4.5 we discuss scaling apéisgaling theory applied
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to the systems under study and in S@ 4.6 we discuss varpasieents probing
quantum phase transitions.

4.1 Repulsively Interacting Bosons

The first quantum phase transition we wish to investigatééssuperfluid-to-Mott-
insulating transition of repulsively interacting bosom#ie absence of impuritiem84].
The transition is described by the nonrelativigti¢!-theory {1.164), which becomes
critical at the absolute zero of temperature at some (pesitialuep.. of the renor-
malized chemical potential. The Mott insulating phase isteigyed and makes place
for the superfluid phase asincreases. Whereas in the superfluid phase the single-
particle (Bogoliubov) spectrum is gapless and the systempecessible, the single-
particle spectrum of the insulating phase has an energygdtha compressibility:
vanishes here.

The nature of the insulating phase can be best understoodtbygthe theory on
a lattice. The lattice model is defined by the Hamiltonian

Hy=—tY (alaj i1 +he)+ ) (—poh; + Uil), (4.2)
J J

where the sun}_ is over all lattice sites. The operat@} creates a boson at sife

andn; = d}dj is the particle number operator at that sités the hopping parameter,
U the interparticle repulsion, and, is the chemical potential on the lattice. The zero-
temperature phase diagram is as foII0184]. In the limif — 0, each site is
occupied by an integer numberof bosons which minimizes the on-site energy (see
Fig.[4.1)

e(n) = —ppn + Un?. (4.3)

It follows that within the intervan—1 < ur,/U < 2n+1, each site is occupied by ex-
actlyn bosons. When the chemical potential is negative; 0. The intervals become
smaller whert /U increases. Within such an interval, where the particlepemeed to
the lattice sites, the single-particle spectrum has arggrgap, and the systemis in the
insulating phase with zero compressibility= n~29n/du1, = 0. Outside these inter-
vals, the particles delocalize and can hop through theatBeing at zero temperature,
the delocalized bosons condense in a superfluid state. mpkegiarticle spectrum is
gapless here and the system compressiblg ().

Ast/U increases, the gap in the single-particle spectrum as wélleawidth of the
intervals decrease and eventually vanish at some critadakv.. For valueg > ¢. of
the hopping parameter, the superfluid phase is the only gitasent (see FiB.Z). The
continuum model4), with renormalized chemical pt&mn > p. describes the
condensed delocalized lattice bosons which are presemt thkelensity deviates from
integer values (see Fi@.l). Inthe limit— p. from above, the number of delocalized
bosons decreases and eventually becomes zero at the phasabe = u. between
the superfluid and insulating phases.

Various quantum phase transitions belong to the univéysahss defined by the
zero-density transition of repulsively interacting bosoRor example, itinerant quan-
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2 4 6 wu/U

Figure 4.1: Schematic representation of the average numbéparticles per site as
function of the chemical potential;, at some finite value of the hopping parameter

t < t. [L97].

m/U
n=3
5
Mott
insulator superfluid
n=2
3
Mott
insulator
n=1
1 !
te)U t/U

Figure 4.2: Schematic representation of the phase diagf#ime ¢attice modeI2) at
the absolute zero of temperatufe [1184].
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tum antiferromagnetg [IB5, 186, 187] as well as lower-disi@mal (clean) supercon-
ductors belong to this universality class. As we have see%e'm, Cooper pairs
become tightly bound composite particles in the strongpting limit, which are de-
scribed by the nonrelativistig|*-theory with a weak repulsive interaction. For>
I, the fieldy now describes the condensed delocalized Cooper pairs. WWaehemi-
cal potential decreases, the condensate diminishes, asgidstem again becomes insu-
lating for u < pc ]. By continuity, we expect also the superconductemulator
transition of a (clean) weakly interacting BCS superconduto be in this universal-
ity class. The restriction to lower dimensions is neces$arywo different reasons.
First, only ford < 2 the penetration depth is sufficiently large [see, for exampé-
low (B.47)], so that it is appropriate to work in the lim\, — oo with no fluctuating
gauge field 8]. Second, in lower dimensions, the energyvgaich the fermionic
excitations face remains finite at the critical point, sat thé& appropriate to ignore
these degrees of freedom. Moreover, since also the coteelemgth remains finite at
the critical point, the Cooper pairs look like point partiglon the scale of the diverging
correlation length associated with the phase fluctuatiemsn in the weak-coupling
limit [LL3§].

The nonrelativistid¢o|*-theory is also of importance for the description of the frac
tional quantized Hall effect (FQHE) (see S 4.3). As figrcof the applied magnetic
field, this two-dimensional system undergoes a zero-teatpes transition between a
so-called quantum Hall liquid, where the Hall conductarscgquantized in odd frac-
tions ofe? /2, or, reinstalling Planck’s constart /h, and an insulating phase. Here,
the nonrelativistido|*-theory describes—after coupling to a Chern-Simons terhre—t
original electrons contained in the system bound to an odabau of flux quanta. The
Hall liquid corresponds to the phase wijih> 1., while the other phase again describes
the insulating phase. In this picture, the Hall liquid is id@erized by a condensate of
composite particles.

It should be noted however that in most of these applicatidrise nonrelativistic
|#|*-theory mentioned here, impurities play an important rthiés will be the subject
of the succeeding section.

The critical properties of the zero-density transition loé thonrelativistic|¢|*-
theory were first studied by Uzunom89]. To facilitate theadission let us make
use of the fact that in nonrelativistic theories the massds-far as critical phenomena
concerned—an irrelevant parameter which can be transtbaway. This transforma-
tion changes, however, the scaling dimensions of#field and the coupling constant
which is of relevance to the renormalization-group the®ihe engineering dimensions
are

[X] =-1, [t] =-2, [NO] =2, [)\0] =2—d, [(b] = %dv (4.4)

with d the number of space dimensions. In two space dimensionsthming constant

Ao is dimensionless, showing that the*-term is a marginal operator, adgd = 2 the
upper critical space dimension. Uzunov showed that belewfiper critical dimension
there appears a non-Gaussian IR fixed point. He computedthesponding critical
exponents to all orders in perturbation theory and showenhtto have Gaussian val-
ues,v = %, z = 2, n = 0. Here,v characterizes the divergence of the correlation
length, z is the dynamic exponent, andis the correlation-function exponent which
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Figure 4.3: A closed oriented loop.

o 2O OO
- OO0 -
Figure 4.4: Ring diagrams renormalizing the vertex funttbthe neutra)¢|*-theory.

determines the anomalous dimension of the field'he unexpected conclusion that a
non-Gaussian fixed point has nevertheless Gaussian exgsasenoted in the analytic
structure of the nonrelativistic propagator at zero (bah@mical potentialgy = 0):

ku ieikon
T =Gk = (4.5)
ko — 5k? +in

where, as before; is a small positive constant that has to be taken to zero #ieer
loop integrations over the energies have been carried oytseting o = 0, we
are considering the system at criticality. The ritle — ko + in in @) expresses
the fact that in this nonrelativistic theory particles pagpte only forward in time. In
Feynman diagrams involving loops with more than one profmagtne integrals over
the loop energy are convergent and can be evaluated by adntegration with the
contour closed in either the upper or the lower half plane.dfagram contains a loop
which has all its poles in the same half plane, it consequesthishes. Pictorially,
such a loop has all its arrows, representing the Green fumetontained in the loop,
oriented in a clockwise or anticlockwise directidn [L90késFig.[4.B). We will refer
to them as closed oriented loops. Owing to this property mgsgrams are zero.
In particular, all self-energy diagrams vanish. The onlyaing ones are the so-
called ring diagrams which renormalize the vertex (see@). Because this class of
diagrams constitute a geometric series, the one-looptriesalteady exact. The vertex
renormalization leads to a non-Gaussian fixed poidt n 2, while the vanishing of all
the self-energy diagrams asserts that the exponents thidzagy the transition are not
affected by quantum fluctuations and retain their Gaussiiureg ]. These results
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Table 4.1: The upper critical space dimensiQrof a nonrelativistic (NR) and a rela-
tivistic (R) quantum theory with &|2* interaction term.

k d.(NR) de(R)
2 2 3
3 1 2
00 0 1

have been confirmed by numerical simulationsiin= 1 [@] and also by general
scaling argument§ [1B4].

We have seen thal. = 2 is the upper critical dimension of the nonrelativistic
|¢|*-theory. Dimensional analysis shows that for an interacéom of the form

Lins = —golo** (4.6)

the upper critical dimension is
2

de = 1 4.7)
The two important physical cases ate= 2, k = 2 andd. = 1, k£ = 3, whiled. — 0
whenk — co. For space dimensions> 2 only the quadratic termg|?, is relevant
so that here the critical behavior is well described by a Gansheory.

In the corresponding relativistic theory, the scaling disiens oft andx are, of
course, equdt] = [x] = —1 and[¢] = 3(d — 1). This leads to different upper critical
(space) dimensions, viz.,

k+1 2
_k—l_k—1+1’ (4.8)
instead of 7). The two important physical cases are fiere 3, k = 2 andd. = 2,
k = 3, whiled. — 1 whenk — oo. On comparison with the nonrelativistic results, we
see that the nonrelativistic theory has an upper criticatemimension which is one
lower than that of the corresponding relativistic theor@e(é’abll). Heuristically,
this can be understood by noting that in a nonrelativistictext the time dimension
counts double in that it has a scaling dimension twice that sfface dimension [see
Eq. )], thereby increasing tiedfectivespacetime dimensionality by one.

From this analysis it follows that for a given number of spdireensions the crit-
ical properties of a nonrelativistic theory are unrelaiedhiose of the corresponding
relativistic extension.

In closing this section we recall that in a one-dimensiomédtivistic theory—
corresponding to the lowest upper critical dimensidn £ 1)—a continuous sym-
metry cannot be spontaneously broken. However, the theomynevertheless have a
phase transition of the so-called Kosterlitz-Thoules®tyfiven the connection be-
tween the relativistic and nonrelativistic theories dissrd above, it seems interesting
to study the nonrelativistic theory at zero space dimengios 0) to see if a similar

de
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rich phenomenon as the Kosterlitz-Thouless transitioruccin the quantum theory.
This may be of relevance to so-called quantum dots.

4.2 Including Quenched Impurities

In the preceding section, we saw that in the absence of ingsifiepulsively inter-
acting bosons will undergo a 2nd-order quantum phase tramsi As was pointed
out there, this universality class is of relevance to vasioondensed-matter systems.
However, in most of these systems, as weltkie in porous media, impurities play
an essential if not decisive role. For example, the two-disianal superconductor-to-
insulator transition investigated by Hebard and Palaa-][ls driven by impurities.
This means that, e.g., the correlation lengtliverges agA* — A[~" when the param-
eterA characterizing the disorder approaches the critical vAltieHence, a realistic
description of the critical behavior of these systems sthimdlude impurities.

Some years ago, it has been argued that upon including qeenctpurities, the
quantum critical behavior of the nonrelativistig|*-theory becomes unstablm%].
Only after introducing an artificial high-energy cutoff, B fixed point was found by
Weichman and Kim4]. However, as was pointed out by thhast such a cutoff is
difficult to justify as it would imply that time is discrete 0Sit is widely accepted that
the random nonrelativistig|*-theory has no perturbatively accessible IR fixed point,
if any at all ]. The absence of an IR fixed point in the ndatreistic |¢|*-theory
theory would imply that also the quantum critical behavibthe systems mentioned
in the preceding section, is unstable with respect to intpimiluences. Because of
its implications for the description of the critical behawbf these systems we have
revisited the problem. Below, it will be shown that, conyréw general conviction, the
random nonrelativisti¢s|*-theory does have a new IR fixed point. The calculations
are performed without introducing a (physically unnatphédih-energy cutoff.

To account for impurities, we add to the nonrelativisti¢*-theory [1.16}4) a term

[L83]
L= ¢(X) |¢|25 (49)

with ¢(x) a random field. As we have seen in the preceding section, duttbe-

comes critical in the limit where the bare chemical potdidiads to zeroy, — 0. We

shall study the random theory in the symmetrical state wtierehemical potential is

negative and the global U(1) symmetry unbroken. We theesfet., = —rq again,

with ro > 0. We leave the number of space dimensidnmspecified for the moment.
The random field)(x) is assumed to be Gaussian distribu[183]:

P(3)) = exp [ / P2 (x } (4.10)
characterized by the disorder strendgth. The engineering dimension of the random

field is the same as that of the chemical potential which is pfle= 1, while that of
the parameted is [A¢] = 2 — d so that the exponent i10) is dimensionless. The

quantity
Z) = /D¢*D¢ exp (2/ E) , (4.11)
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where£ now stands for the Lagrangiah (1.164) with the tefm] (4.9)aldé the zero-
temperature partition function for a given impurity configtion . In the case of
guenched impurities, the average of an observalfl& , ¢) is obtained as follows

(0(6",8)) = / DUP()(0(6", ), (4.12)

where(O(¢*, ¢)) indicates the grand-canonical average for a given impuotyfig-
uration, i.e., taken with respect @.11). In other wofitst the ensemble average is
taken, and only after that the averaging over the randomiieddrried out.

Since(x) depends only on thé spatial dimensions, the impurities it describes
should be considered as grains randomly distributed inesps#¢hen—as is required
for the study of quantum critical phenomena—time is inclljdbe static grains trace
out straight worldlines. That is to say, the impurities amedlike. It has been shown by
Dorogovtsev@S] that the critical properties of systenithwextended defects must
be studied in a double epsilon expansion, otherwise no IRIfpa@nt is found. The
method differs from the usual epsilon expansion, in thalsib éncludes an expansion
in the defect dimensionality;. To carry out this program in the present context, where
the defect dimensionality is determined by the dimensignaf time, the theory has
to be formulated iry time dimensions. The case of interestis= 1, while in the
opposite limit,eq — 0, the random nonrelativistig|*-theory reduces to the classical
spin model with random (point-like) impurities. Heneg,is a parameter with which
quantum fluctuations can be suppressed. An expansignignia way to perturbatively
include the effect of quantum fluctuations on the criticdidgor. Ultimately, we will
be interested in the casg = 1.

To calculate the quantum critical properties of the randoeoty, which have been
first studied in 3], we will not employ the replica meth@®§], but instead follow
Lubensky ]. In this approach, the averaging over intmsiis carried out for
each Feynman diagram separately. The upshot is that ordg ttiagrams are to be
included which remain connected whAg, the parameter characterizing the Gaussian
distribution of the impurities, is set to zer@.%]. To abtthe relevant Feynman rules
of the random theory we average the interaction t¢rnj (4.6) the distribution|[(4.70):

/DwP(w) exp {z‘fd/dedtddw(x) |¢)(x)|2] -

exp {%iQEdAo/didtdidt’ ddx|¢(t,x)|2|¢(t/,x)|2] . (4.13)

The randomness is seen to result in a quartic interactiomudrich is nonlocal in time.
The factori¢e appearing in3) arises from the presence dime dimensions, each
of which is accompanied by a factor ©fThe Feynman rules of the random theory are
now easily obtained

k _Z'—edei(wl Fwat-Fwey )N
—_— = -
- w1 twa+ - twe, —kZ—19+in
—_—
| = —4i%Xo (4.14)
S
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g = i€d(2ﬂ)6d6€d(wl +w2+"'+w6d)A0,

where we note that the Lagrangianeintime dimensions involves instead of just one
time derivative, a sum of; derivatives:d, — 0, + 0, +- - -+8ted . The integral?)
has an additional convergence factap(iwn) for each of the4 energy integrals. This
factor, which is typical for nonrelativistic quantum thes ], is to be included in
self-energy diagrams containing only ofxg@ropagator.

Following Weichman and Ki4], we evaluate the integmler loop energies
assuming that all energies are either positive or negafiles allows us to employ
Schwinger’s propertime representation of propaga][lWhich is based on the
integral representation of the gamma function,

L L/ d—TTO‘e*”. (4.15)
a® T(a)Jy T

The energy integrals we encounter to the one-loop order earalried out with the

help of the equations

/’ d“w 1 B
(2m)€a w1 +wa + -+ Fwe, — T Ein

I'(l- )
_ E27T):dd) Sgn(fﬂ)lfﬂrdil (e:tzsgn(m)rred + 1) ’ (416)
/ déew ei(w1+w2+---+wed)7]
/ (2m)€a w1 +wa + -+ Fwe, — T +iTn
i oveamt w1 B sgn(z) 417
o e [t - SO @

wheren is again an infinitesimal positive constant which is to beetato zero after
the energy integrals have been carried out. The prime onntlegrials is to remind
the reader that the energy integrals are taken over only tiaths with either all
energies positive or negative. The energy integrals hage barried out by using again
the integral representatio@.lS) of the gamma functiondding so, the integrals
are regularized and—as is always the case with analyticlaggations—irrelevant
divergences suppressed.

By differentiation with respect te, Eq. ) can, for example, be employed to
calculate integrals involving integrands of the fotp{w, +wa+- - - +we, —z+in)2. Is
is easily checked that in the limiy — 1, where the energy integral can be performed
with help of contour integration, Eqs] (4/16) arfd (}.17)rogfuce the right results.
When considering the limit of zero time dimensioas - 0), it should be remembered
that the energy integrals were taken over two separate demaih all energies either
positive or negative. Each of these domains is contractadsingle point in the limit
eq — 0, so that one obtains a result which is twice that obtainedrbply purging any
reference to the time dimensions.

Before studying the random theory, let us briefly return te tépulsively inter-
acting bosons in the absence of impurities. In this casegtiseno need for amg-
expansion and the formalism outlined above should yieldltedor arbitrary time
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dimensiond®) < ¢4 < 1, interpolating between the classical and quantum limiteAf
the energy integrals have been performed with the help of @gk$) and 7), the
standard technique of integrating out a momentum shell eaapiplied to obtain the
renormalization-group equations. For the correlatiomgth exponent we obtain in

this way [201L]

cos?(2meq) | . (4.18)

V= 3

1 +e m+1
2 2(m+4)— (m+3)eq

Here,e = 4 — 2¢q — d is the deviation of theffectivespacetime dimensionality from
4, where it should be noted that in (canonical) nonreldtwitheories, time dimen-
sions have an engineering dimension twice that of spacerdiimies. (This property is
brought out by the Gaussian value= 2 for the dynamic exponent) For compari-
son we have extended the thed ri 1|164) to includeomplex¢ fields instead of just
one field. In the classical limit, Eq} (4|18) gives the wallekvn one-loop result for a
classical spin model witbm real components [1B3],

vk <1+-—>, (4.19)

while in the quantum limit it gives the result— % as required.

The exponent8), and also the location of the fixed paingrges when the
number of time dimensions becomes — (m + 4)/(m + 3). Since this value is
always larger than one, the singularity is outside the gaysiomaird) < ¢4 < 1. This
simple example illustrates the viability of the formalisravéloped here to generate
results interpolating between the classical and quantonit li

We continue with the random theory. After the energy integinave been carried
out, it is again straightforward to derive the renormal@matgroup equations by inte-
grating out a momentum shell/b < k < A, whereA is a high-momentum cutoff and
b = exp(l), with [ infinitesimal. Defining the dimensionless variables

(QI;;d MG A = KyANT 7 =rA2, (4.20)

whereK ; given in (1.24D) is the area of a unit spherelispatial dimensions divided
by (27)¢, we find [201]

X:

d) . e
d—;\ = eAN—28 [F(l — Ed) + (m + 3)F(2 — Ed)] COS(%?‘rEd)/\2 + 6AN
dA e L kA
i (€ +2eq)A +4A% — 16(m + 1)I'(2 — €q) cos(5meq)AA
dr m+1cos?(imeq) o &
— = 2744 2 A—A. 4.21
dl T [(eq) sin(imeq) ( )

These results are to be trusted only for small values oFor illustrative purposes we
have, however, kept the full; dependence. The set of equations yields the fixed point
. 1 € + 6eq

S 4.22
16 cos(%wed)l"(l —€) 2m(l —eq) — 1 ( )
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A 1m(1 —eq)(2eq — €) + 2e4(4 — 3eq) + €(2 — €q)

AY = -
4 2m(l —eq) — 1 ’
and the critical exponent
V:1+e+2ed+m—l—l(ﬁed—i—e)[ed—l—cos(wed)]. (4.23)
2 16 16 2m(l —eq) — 1

The dynamic exponent is given by= 2 + A*. We see that both* andA* diverge
whenegy — 1—1/2m. Atthis point, the fixed point becomes unphysical. The siagu
ity separates the quantum regime< 1 from the classical regime; < 0 about which
perturbation theory is to be carried out. When the equatiwesxpanded to first or-
der ineq, we recover the IR fixed point found by Weichman and K19$|}1g an
high-energy cutoff:

. 1 A 1(2— 2 4
oo Letbea jo  1@=m)et2(m+d)ea (4.24)
162m —1 4 2m —1
with the critical exponent
1 1 2)2
y—L]qy L3met Omt2)2a) (4.25)
2 8 2m —1

We thereby provide support for the existence of this fixedpoi
The value of the critical exponert (4]25) should be compuititithat of the classi-
cal spin model witt2m components in the presence of random impurities of dimensio

ea [L95]:

1 [1 l3me+(5m+2)ed]. (4.26)

Y75 8 om — 1

Taking into account that in a nonrelativistic quantum tlyedime dimensions count
double as compared to space dimensions, we see that bolfs m®guequivalent. As
to the dynamic exponent, we mention that a remarkable sisgalkng argument (see
Sec.[4.p) using the quadratic terms in the effective thepry7) predicts the exact
valuez = dforeq =1 []. The perturbative resutt = 2 + A*, with A* given by
®.23), is seen to be far away from this.

The limit of interest to us, correspondingdg = 1, is probably difficult to reach
by low-order perturbation theory for the quantum regimeeisasated by a singularity
from the classical regime where perturbation theory apphdthough this might be an
artifact of the one-loop calculation, it is unlikely that mcluding a few more loops,
the quantum regime becomes accessible via the classidaleeg/Ve note that the
singularity moves towards; = 1 when the number of field components increases.

If the IR fixed point is to be of relevance to the systems meretibin Secl,
the impurities have to lead to localization in the superfipiichse. For the model at
hand, albeit ind = 3, this connection has been established by Huang and [199
They showed that in this phase, the impurities give rise tadudlitional depletion of
the condensate as well as of the superfluid mass density.|¢ftbeis defined, as we
discussed in SeB.?, by the response of the system to ama@ktemposed velocity
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field as specified by the expression for the momentum derwitynass curreng.)
They found that the depletion of the superfluid mass densitgrger than that of the
condensate, indicating that part of the zero-momenturesta¢longs to the normal
fluid rather than to the condensate. They interpreted thisiplying that these states
are trapped by impurities.

This situation should be contrasted to the one in the absahniogpurities, where
the condensate is depleted only due to the interparticlelsem. Despite the deple-
tion, all the particles were nevertheless seen in El: 1.7 to paticip the superflow
motion at zero temperature. In other words, the normal flsiidragged along by the
condensate. This conclusion was based on the observasibththmomentum density
was given byg = mnvg, wheren is thetotal particle number density and, the ve-
locity with which the condensate moves, i.e., the superfieidcity. (For clarity, we
have reintroduced the mass parameiedrere.)

In terms of the shifted field (1.166), the random te[m](4.9pe

La =)0 + 8> + 6" + ¢ ). (4.27)

The first two terms lead to an irrelevant change in the chdrpoential, so that we
only have to consider the last two terms, which we can castdridrm

La=1(x) 0T, &= ( Z; > (4.28)

The integral over is Gaussian in the Bogoliubov approximation and therefasily
performed to yield an additional term to the effective attio

Sa = —%/ P(x)®7 Go(z — y)2Y(y), (4.29)

where the propagataf, is the inverse of the matrix/, introduced in O) with the
field U (x) set to zero. Let us first Fourier transform the fields,

Golo—9) = [ e Go(h) (4.30)
k

v = [ ) (4.31)
The contribution to the effective action then appears irfone
Sp = _%/ 105 (k)21 G(0, k). (4.32)
k

Since the random field is Gaussian distributed [fee4.1tB]average over this field
representing quenched impurities yields,

(lW(K)[*) = $V A, (4.33)

The remaining integral over the loop momentun{in (4.32)éslily carried out to yield
in arbitrary space dimensions

(£a) = 500 —d/2) ()" 1660 [6 — p)* Do (434)
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Because this is a one-loop result, we may to this order reflacbare parameters with
the (one-loop) renormalized ones.

In Sec. we saw that due to the interparticle repulsiohalhthe particles reside
in the condensate. We expect that the random field causesd#ioadl depletion of
the condensate. To obtain this, we differenti4.34b1 wétspect to the chemical

potential. This gives[204, 2P1]
ILa)  2%/275D(2—d/2)
o - d/2

= m2 N2 A2 A (4.35)
wheren, denotes the number density of particles residing in the eosate. The
divergence in the limiin — 0 for d < 4 signals the collapse of the system when the
interparticle repulsion is removed.

We next calculate the mass currgntio determine superfluid mass density, i.e., the
mass density flowing with the superfluid velocity. As we have seen in the preceding
section, in the absence of impurities and at zero temperatlthe particles participate
in the superflow and move on the average with the velogjtyWe expect this no longer
to hold in the presence of impurities. To determine the ckandhe superfluid mass
density due to impurities, we replagg with u.s as defined in6) and, with
idp— (u—vy)-(—iV) in the contribution[(4.32) to the effective action, andeliéintiate
it with respect to the externally imposed velocityu. We find to linear order in the
differenceu — vy:

g = psVs + puu, (4.36)

with the superfluid and normal mass densjty [201]
Ps =M (n — %nA) ,  pn= %mﬁA. (4.37)

We see that the normal density is a factgid larger than the mass densitynia
knocked out of the condensate by the impurities. (ot 3 this gives the facto%
first found in Ref. ].) Apparently, part of the zero-mamam states belongs for
d < 4 not to the condensate, but to the normal fluid. Being trappethé impuri-
ties, this fraction of the zero-momentum states are loedlid his shows that the phe-
nomenon of localization can be accounted for in the Bogohtheory of superfluidity
by including a random field.

An other realistic modification of the nonrelativistig/*-theory is to include a /r
Coulomb repulsion. Using very general scaling argumeets 895) in the context
of the effective theory, Fisher, Grinstein, and Gir@ﬁﬁedicted that in the presence
of impurities the inclusion of this interaction changes taéie of the dynamic expo-
nenttoz = 1, which is exact again. This prediction has been confirmedpegments
on the superconductor-to-insulator transition in two-elirsional fiImsZ]. The same
valuez = 1 has also been found in the quantum Hall transitions, and-ememently—
in metal-to-insulating transitions observed in dilute tdimensional electron systems
in silicon MOSFETS[[2G2, 203, 2p#, 205]. This suggests that fr Coulomb interac-
tion plays an important role in these systems too. Howegtud at this stage mention
the renormalization-group results obtained by Giamaroldi &chulz 6] who stud-
ied fermions withshort-rangeinteractions in a random one-dimensional system. They
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found first of all that the superconductor-to-insulatonsiion these fermions undergo
is indeed in the universality class of repulsively inteiragtosons in the presence of
impurities. Moreover, their result for the conductivitycisnsistent with the value = 1
[], implying that already a local repulsive interact@sused in the nonrelativistic
|¢|*-theory can lead to this value for the dynamic exponent.

4.3 CSGL Theory

We now turn to the fractional quantized Hall effect (FQHE)iethis the hallmark of
a new, intrinsically two-dimensional condensed-mattatest-the quantum Hall lig-
uid. Many aspects of this state are well understood in thadwork of the quantum-
mechanical picture developed by Laugh07]. Consibleraffort has nevertheless
been invested in formulating an effective field theory whialptures the essential low-
energy, small-momentum features of the liquid. A similapmyach in the context
of superconductors has proven most successful. Initiafiy the phenomenological
model proposed by Ginzburg and Land@ [75] in 1950 was knasva.hMost of the
fundamental properties of the superconducting state sscduperconductivity—the
property that gave this condensed-matter state its namissht effect, magnetic flux
guantization, Abrikosov flux lattice, and Josephson effean be explained by the
model. The microscopic theory was given almost a decadebgt8ardeen, Cooper,
and Schrieffer@]. Shortly here after, Gork[76] made tonnection between the
two approaches by deriving the Ginzburg-Landau model froenricroscopic BCS
theory, thus giving the phenomenological model the statas @ffective field theory.

A first step towards an effective field theory of the quantuntl kguid was taken
by Girvin and MacDonaId8] and has been developed futtyezhang, Hansson
and Kivelson ], who also gave an explicit constructitamting from a microscopic
Hamiltonian. Their formulation incorporates time depemziewhich is important for
the study of quantum phase transitions. This approach raseprvery successful
(for a review see RefO]). In this and the following senti we shall argue that
the effective theory—the so-called Chern-Simons-GingHiandau (CSGL) theory—
can also be employed to describe the quantum phase transttich a quantum Hall
system undergoes as the applied magnetic field changes.

We shall in this section first recall some basic propertiethefCSGL theory and
show how it can be used to describe the field-induced Haliidigo-insulator transition
of a Hall liquid. In Sec4 we then apply renormalizationgp theory to the CSGL
theory and study its critical properties.

An important ingredient for obtaining an effective theorytbe FQHE was the
identification by Girvin and MacDonaI8] of a bosonic oger ¢ which exhibits
(algebraic) off-diagonal long-range order. The long-mongder was found to be of a
type known to exist in two-dimensional bosonic superfluidisey argued that this field
should be viewed as an order parameter in terms of which fieetek field theory
should be formulated. To account for the incompressibiftthe quantum Hall liquid
they suggested to coupteto a statistical gauge field,. The gapless spectrum of
the neutral system then changes into one with an energy@@, fhus rendering the
charged system incompressible.
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Girvin and MacDonald assumed that the statistical gauge ifsefjoverned solely
by a Chern-Simons term

0
Lcs = §8Oa x a—0agV X a, (4.38)

with V x a the statistical magnetic field arfda constant. Because of the absence of
a kinetic term (the usual Maxwell term), the statistical gadield does not represent
a physical degree of freedom. In a relativistic setting, acMell term is usually gen-
erated by quantum corrections so that the statistical géialgebecomes dynamical
at the quantum level. The quantum theory then differs catalély from the classical
theory. On the other hand, as we shall see below, this nedakeribe case in a nonrel-
ativistic setting. That is to say, tinsatzof the absence of a Maxwell term is here not
necessarily obstructed by quantum corrections.

The CSGL theory is described by the LagrangZOQ]

L 1
L =i¢*Dop — %|D¢|2 + pold® = Xold|* + Les. (4.39)

The covariant derivative®, = 0y + icAg + icag andD = V — ieA — jea give
a minimal coupling to the applied magnetic and electric faddcribed by the gauge
field A,, and also to the statistical gauge field. For definiteness Wesgiume that our
two-dimensional sample is perpendicular to the appliedmetig field, defining the-
direction, and we choose the electric field to point inithdirection. The charged field
¢ represents the Girvin-MacDonald order parameter desgyithie original electrons
bound to an odd number of flux quanta. To see that it indeed dktass consider the
field equation fom:

|p|> = —efV x a. (4.40)

The simplest solution of the CSGL Lagrangian is the uniforeamfield solution
o> =n, a=-A, a=-4=0, (4.41)

wheren indicates the constant fermion number density. The stlsgjauge field is
seen to precisely cancel the applied field. The constraimtimn ) then becomes

7= efH, (4.42)

with H the applied magnetic field. Now, if we choage! = 27 (2 + 1), it follows on
integrating this equation that, as required, with evergtete there is associat@d+ 1

flux quanta:
1

20+ 1
whereNg = ®/®,, with ® = [ H the magnetic flux, indicates the number of flux
quanta. Equatior] (4.42) implies an odd-denominator filfagor vz which is defined
by

N = Ng, (4.43)

n 1

VH
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The coupling constant, (> 0) in ) is the strength of the repulsive contact
interaction between the composite particles, apés a chemical potential introduced
to account for a finite number density of composite particles

It is well known from anyon physics that the inclusion of theetn-Simons term
changes the statistics of the fieddo which the statistical gauge field is couplll].
If one composite particle circles another, it picks up anitiattel Aharonov-Bohm fac-
tor, representing the change in statistics. The bindingvadad number of flux quanta
changes the fermionic character of the electrons into arbosme for the composite
particles, allowing them to Bose condense. The algebré&idiagonal long-range or-
der of a quantum Hall liquid can in this picture be understasdesulting from this
condensation. Conversely, a flux quantum cartig2! + 1)th of an electron’s charge
[R07], and alsd /(2 + 1)th of an electron’s statistic [2/12].

The defining phenomenological properties of a quantum Higllid are easily
shown to be described by the CSGL thedry [209] 210]. From diaest-order ex-
pression for the induced electromagnetic current one finds

GL 0Ly OLos
= SA T ba; | da

with E the applied electric field and where the Lagrang4.39~)ritten as a sum
L = L4 + Lcs. It follows that the Hall conductanee;, is quantized in odd fractions
of €2 /2, or, reinstalling Planck’s constart /. This result can also be understand in
an intuitive way as follows. Since the composite particlesyca charge, the applied
electric field gives rise to an electric current
dN
I=e— 4.46

& (4.46)
in the direction ofE, i.e., thez-direction. This is not the end of the story because the
composite objects carry in addition to electric charge alsp1 flux quanta. When the
Goldstone fieldp encircle2/ + 1 flux quanta, it picks up a fact@r for each of them

= —62961']' ((%aj — ajao) = 626‘€ijEj, (445)

7{ Vp=2m(20+1). (4.47)
T

Now, consider two points across the sample from each othetrtHe phase of these
points initially be equal. As a composite particle moves dstream, and crosses the
line connecting the two points, the relative phasebetween them changes by (2(+
1). This phase slippagﬂ[Q] leads to a voltage drop across thpleajiven by

1 dN

e dt
where the first equation can be understood by recalling thattd minimal coupling
Oop — Oup + eAy. For the Hall resistance we thus obtain the expected value

Wi 2w
Pay = TH =@2+1). (4.49)

If the CSGL theory is to describe an incompressible liquitk spectrum of the
single-particle excitations must have a gap. Without thepling to the statistical gauge
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field, the spectrum is given by the gapless Bogoliubov spetL.17}). To obtain the
single-particle spectrum of the coupled theory, we integraut the statistical gauge
field. The integration ovetio was shown to yield the constrai.40) which in the
Coulomb gaugé&’ - a = 0 is solved by

L 9,0
a; = Eﬂjﬁw . (4.50)
The integration over the remaining components of the sitzdisgauge field is now
simply performed by substitutinSO) back into the Lamyian. The only nonzero
contribution arises from the terme?|¢|?a%/2m. The spectrum of the charged system
acquires as a result an energy gap

E(k) = /w2 + €2(k) + 2uoe(k), (4.51)

with w. = pe/260mAg. To lowest order, the gap equals the cyclotron frequency of a
free charge in a magnetic field?

_n _eH

We = om  m

(4.52)

The presence of this energy gap results in dissipationlewssith o, = 0.

These facts show that the CSGL theory captures the esseatialquantum Hall
liquid. Given this success, it is tempting to investigatéhié theory can also be em-
ployed to describe the field-induced Hall-liquid-to-irestalr transitions. It should how-
ever be borne in mind that both the/|x|-Coulomb potential as well as impurities
should be incorporated into the theory in order to obtainadisec description of the
FQHE. The repulsive Coulomb potential is believed to playeisive role in the for-
mation of the the composite particles, while the impuritiessresponsible for the width
of the Hall plateaus. As the magnetic field moves away fromrmtlagic filling factor,
magnetic vortices will materialize in the system to make i difference between
the applied field and the magic field value. In the presencenplirities, these de-
fects get pinned and do not contribute to the resistiviseshat bottv,., ando,, are
unchanged. Only if the difference becomes too large, thesyseverts to an other
quantum Hall state with a different filling factor.

For positive bare chemical potentjaj > 0 the Girvin-MacDonald order parame-
ter ¢ has a nonvanishing expectation value givendsy = 1.0/2\o, implying that the
composite particles are condensed. Wpgn— 0, the condensate is drained of com-
posite particles, and @ = 0, it vanishes altogether. The system becomes critical here
and reverts to the insulating phase characterized by aiaedpstre chemical potential.

In the spirit of Landau, we take a phenomenological appraaefards the field-
induced phase transition of the CSGL theory. And assumenthan the applied mag-
netic field H is close to the upper critical fielef !, at which the quantum Hall liquid
with filling factor vy is destroyed, the chemical potential of the composite @a#i
depends linearly o, i.e., o ~ eH,\ — eH. This state can of course also be de-
stroyed by lowering the applied field. If the system is nearthwer critical fieldH,, ,
we assume that the chemical potential is instead givemby e — eH,, . Thisis
the basic postulate of our approach.
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In the CSGL Lagrangiar (4.B9) we have again transformed thgsm of the non-
relativistic |¢|*-theory away. In addition to the engineering dimensic@)@/ve have
for the Chern-Simons field

lea;] =1, [eag) =2, [0]=0. (4.53)

In two space dimensions the coupling constantvas seen to be dimensionless, im-
plying that the/¢|*-term is a marginal operator. We see fr.53) that als€trern-
Simons term is a marginal operator. Hence, the CSGL theariaats precisely those
terms relevant to the description of the Hall-liquid-tatator transition in a quantized
Hall system.

4.4 Renormalization Group

We now turn our attention to the critical properties of theGLSheory. A remaining
open problem in this context is the nature of the Hall-ligtoeinsulating transitions
in the theory. Taking place at the absolute zero of tempezathese transitions are
a pure quantum phenomenon. They are driven either by inpsiré periodic poten-
tial, or by the applied magnetic field. The impurity-drivelngse transition has been
considered in R, while the transition driven by aipeic potential has been
studied in Refs.[[214, 2[15]. The latter problem was mapped arelativistic CSGL
theory and it was concludem15] that the transition induog a periodic potential is
1st-order. We in this section shall discuss the transitimluced by the magnetic field
in the absence of both impurities and a periodic potenti& v be working with the
standard nonrelativistic CSGL theory. As has been eludethtwe, there are essential
differences between relativistic and nonrelativistic £h8imons theories. There are
features special to the nonrelativistic theory which inwaew are important for under-
standing the field-induced transition, and which cannobhig@émented in a relativistic
formulation.

Experimentally, if the external field is changed so that thiedj factor vy moves
away from an odd-denominator value, the system eventualipimes critical and un-
dergoes a transition to an insulating phase. We will argaetttis feature is encoded
in the CSGL theory. We shall show that the theory has an IR faadt, implying that
the phase transition is 2nd-order, and determine the @riéikponents. They turn out
to be universal and independent of the filling fraction.

We will be working in the Coulomb gauge. To this end we add aygdfixing term
(V - a)% /20 to the Lagrangian{ (4.39), and take the limj — 0. In this gauge, the
propagator of the statistical gauge field is purely off-diag|

ki
RN ey 2
0 ; = Goz(k) = —Gio(k) = 20461']'@, (454)

with o = 1/6. The two propagator$ (4.5) anfd (4.54) of the CSGL theory ausiag
infrared divergences. We regularize these by introducmigfrared cutoff via the sub-
stitutionk? — k2 + 2r( in both propagators. In the scalar propagator, this amdants
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Figure 4.5: Feynman rules of the CSGL theory.

Figure 4.6: A closed oriented loop containing in additioreaige field propagator.

taking a negative chemical potential, = —r(, so that we are in the symmetrical state
of the theory. Because we consider the theory in its uppgcairdimension and at crit-
icality, the parameter, is the only dimensional parameter present. It is necessary t
introduce a dimensional parameter in a theory not havingrastyjust to avoid infrared
divergences, but also to be able to carry out the renornt@izgroup program—this
parameter playing the role of renormalization-group spalameter. There are various
ways to do so, our proposal is one possibility. Another wdaddo take the renormal-
ization point at nonzero external momenta, as has been dofe lexample, Bergman
and Lozan06]. The critical properties are, of coursdependent of the particular
choice.

We evaluate Feynman diagrams according to the followingpmdational scheme.
First, we carry out the discrete sums over repeated indieegedl as the integrations
over loop energies. Then, to handle ultraviolet divergenite resulting momentumin-
tegrals are analytically continued to arbitrary space disiensd. It is to be noted that
this step is taken after the discrete sums have been cautehd the antisymmetric
tensore;;—which makes sense only ih= 2—has disappeared from the expressions.
Finally, the counter terms and the critical exponents aterdened by employing the
minimal subtraction scheme in which only those parts of thenter terms are consid-
ered which diverge in the limid — 2. The Feynman rules for the vertices are given in
Fig.[4.3.

The reason we have chosen the Coulomb gauge is that in thie gle statistical
gauge field propagator does not depend on the energy vakiafdee Eq.4)]. This
means that the analytic structure of a given diagram is oétexd solely by its scalar
propagators. As a result, the rule that closed orientedslagmish is not corrupted
if a loop contains in addition gauge field propagators. (Sge@ for an example.)
Hence, also in the coupled theory most diagrams vanish,mgake quantum critical
behavior of the CSGL theory tractable.
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WOmW@m

Figure 4.7: A one-loop and a two-loop example of vanishiragdams which would
otherwise renormalize the charge

In particular, all the diagrams which would renormalize tiargee vanish. (A
one-loop and a two-loop example of this class of diagramdeypécted in Fig?.) Put
differently, no Maxwell term for the statistical gauge figddyenerated at the quantum
level so that the statistical gauge field propag4.6|4)ains purely off-diagonal.
This is an important characteristic of the nonrelativi€8GL theory not shared by
the corresponding relativistic extension where a Maxveglitis automatically gener-
ated at the quantum level. Since the Chern-Simons termasnalsrenormalized, the
statistical gauge field propagat.54) is not effectealldty quantum corrections.

As in the neutral case, the boson self-eneérgaiso vanishes at every loop order in
the charged theory, and the only object that renormalizib®iself-coupling parameter
Ao. Consequently, if an IR fixed pointis found in the CSGL theting 2nd-order phase
transition described by it has Gaussian exponents.

In order to examine the presence of an IR fixed point, we coat beta function
using the scheme outlined imﬂ]. To this end we evaluaelthgrams:

k —ko—%kQ—’l"i‘in ko—lk2—7’+l’f]

2

1
= 8i\? / o 8iN\2 I, (4.55)
k

with A andr denoting the renormalized parameters,

7, 1 —d/2) 1
d = (4m)d/2 (2r)1—d/2’

(4.56)

and

5

ki 1 K
ozge-le-
T ) K242 kg — k2 —r +in K24 2r

1, 2/ k2
PN S
Rl P ETE

= —Lia®Qq {I‘ <1 - g) -T (2 - g)] , (4.57)

where we introduced the abbreviation

1 1

Qg = .
47 (4m)d/2 (2r)1-d/2

(4.58)
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Figure 4.8: The relevant two-loop diagrams.

There are three other diagrams of the fo.57), one hahiagight external legs
crossed and two having the triangle turned upside-down. cBount for these, the
result (4.5F) must be included with an additional factor of Bhe diagramsS)
and ) are found to diverge in the lindit— 2. The divergences are cancelled by
including the one-loop counter term

Q)
= —i4Qy % (4X* = o?), (4.59)

with e = 2 — d the deviation from the upper critical dimension &ng = 1/4x. This
leads in the usual way to the one-loop beta function in thesupgtical dimension
(d = 2 in our case)

BN) = — (1 — /\(% — a(%) a; = % (4X* — a?), (4.60)
wherea; is (i times) the residue of the simple pole in the counter te@.ﬂ'he
result is in accordance with previous studies by Lozano asrgjfdan @6] who used
a momentum cutoff to regularize the ultraviolet divergence

We continue with the two-loop calculation. The relevangdéms are given in Fig.
@. The factor 4 in the second diagram is to account for ttede@ diagram having
the 4-vertex to the right rather than to the left and for thegdams having the triangles
turned upside-down. The factor 2 in the last diagram aceoiantthe fact that there
are two vertices which can be replaced with the counter tQ. The first diagram

is readily shown to yield
>C)O< = —16iN3]2 (4.61)

whereas the second gives

. 11 (k=D
_ 2
=2 /1(71 12+ 2r 2o (k-1 + 2 (462)

To evaluate the remaining integrals, we employ the identity

k 1 1
/k (@ +2n)[(k—12+2] 2 /k (2 + 2r) [(k — 1)2 + 2] (4.63)
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which can be proven by introducing a new integration vagadl = —k + 1 in the
left-hand side. In this way, we obtain for the second diagram

=ixa® (1] — Ja), (4.64)
whereJy is the integral
1 1 1
=92 4.65
Ja T/k,lk2+2r12+27’(k—1)2—|—2r (4.65)

which remains finite in the limitl — 2. Finally, the last diagram in Fiﬂ.S is given
by (&.5%) with—iX replaced with the counter terth (4]59).

When the results are added, the sum of the three diagramg.i is shown to
diverge again when the space dimension is given its phy&daé(d = 2). The theory
can be rendered finite to this order by introducing the twaploounter term

(2)
>< — 16102 Elzx (4X? — a?). (4.66)

Surprisingly, the counter term does not contain a simple pole. Since the beta
function is determined by the residue of the simple poleplibfvs that the one-loop
result (4.6D) is unchanged at the two-loop level.

The calculation of the beta function was extended to thiideoin the loop ex-
pansion by Freedman, Lozano, and R218] using diffe@akrggularization, and to
fourth order by this auth09] applying the more convendil methods explained in
this section. We found that the third and fourth order diaggaliverge likel /¢ and
1/€*, respectively. In particular, the simple poles-idropped out so that the one-loop
beta function is unaffected by three- and four-loop cofoast It is tempting to con-
jecture that this feature persists to all orders in pertimbaheory, implying that—just
as in the neutral system which corresponds to taking the imi co— the one-loop
beta function[(4.40) is exact.

The beta function is schematically represented in E 4tYields an IR fixed
point)\*2 = ioﬂ determined by = o1, or, equivalently, by the filling factor. More
precisely, the strength of the repulsive coupling at thedfigeint \* = 7(2] + 1) in-
creases with the numbeét + 1 (= 1,3,5,...) of flux quanta bound to the electron.
The presence of the fixed point shows that the CSGL theoryrgnds a 2nd-order
phase transition when the chemical potential of the con@gqsirticles tends to zero.
Since the self-energ¥ is identically zero, the nontrivial fixed point has neveltiss
Gaussian exponents,— %, z =2, n = 0. It should be noted that only the location of
the fixed point depends dah the critical exponents—which in contrast to the strength
of the coupling at the fixed point are independent of the @ugdtion and renormal-
ization scheme—are universal and independent of the fitatpr. This “triviality” is
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Figure 4.9: Schematic representation of fhfunction.

in accord with the experimentally observed universalityhef FQHE. A dependence
of the critical exponents of could from the theoretical point of view hardly be made
compatible with the hierarchy constructi20] which imep a cascade of phase
transitions. From this viewpoint the present results arstraatisfying: the CSGL the-
ory is shown to encode a new type of field-induced 2nd-ordantium phase transition
that is simple enough not to obscure the observed universdlihe FQHE.

Most of the properties found in the nonrelativistic theorg aot shared by the
relativistic version of the CSGL theory. On the contrary, dalculating the effec-
tive potential, Pryadko and Zhan15] argued that thetivegéic theory undergoes a
fluctuation-induced 1st-order transition—similar to tlreedn massless scalar electro-
dynamics in 3+1 spacetime dimensions first studied by Cateamal Weinbergl].
From the standpoint of dimensional analysis the discrepencritical behavior is not
surprising. Because the effective spacetime dimensigrialihe nonrelativistic theory
is increased by one, the scaling dimension of a given opegatrerally differs in both
theories.

As a side remark we mention that the thedry (#.39) with zerndbal potential
has also been successfully applied to the problem of anyattesing ]. From it,
the two-particle scattering amplitude, which was knownrfrihe work of Aharonov
and Bohm [22]] 271] on the scattering of a charged partiolafa magnetic flux tube,
could be calculated. The result of Aharonov-Bohm could Ipga@uced provided the
coupling constant was given the specific valie= %a corresponding to the IR fixed
point. It is sometimes presented as if taking this value isseenchoice. However, the
scattering amplitudes considered here pertain to lowegnamall-momentum phe-
nomena, and these are governed by the IR fixed point. In otbedsyin describ-
ing these processes, there is no arbitrariness at all; oisé fimuhe value of the self-
coupling to correspond to the IR fixed point.

Because of the necessity to introduce a dimensional paearteetivoid infrared
divergences and to be able to carry out the renormalizajionp program, the scale
invariance of the classical theory (4.39) wjth= 0, first discussed in Ref[[2p3], is
broken at nonfixed points. Only at the fixed point the theorscigle invariant. From
the discussion above, it follows that the low-energy, smaimentum behavior of the
system is also scale invariant since it is governed by thel fdcent.

The same remarks apply to the thermodynamic properties ahgan gas which
can also be computed from the Lagrangihn (4.39), as was doRefi [224]. These,
too, are low-energy, small-momentum properties goveryetdIR fixed point so that
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one must seh* = %a when calculating them.

The results obtained so far are gratifying. The CSGL the@njch captures the es-
sential properties of a quantum Hall liquid, was shown todggable of also describing
the Hall-liquid-to-insulator transitions—at least in thlessence of impurities. However,
impurities plays an essential part in the FQHE, so a realisscription of the critical
behavior of a quantum Hall liquid should account for imgest Including (quenched)
impurities in the superfluid state of repulsively interagtbosons was shown to lead to
the phenomenon of localization which is of paramount impuaee to the FQHE. Since
upon invoking a statistical gauge field this superfluid stafgresents a quantum Hall
liquid, this is in principle a good starting point to studgthuantum critical behavior of
the CSGL model in the presence of impurities. There is, hewevtechnical problem.
We have worked in a double epsilon expansion thereby legpinygical spacetime.
Unfortunately, the Chern-Simons term governing the stasisgauge field of the the-
ory is defined only ir2 4+ 1 dimensions. This makes a study of the critical behavior
of the random CSGL theory in a double epsilon expansion isiptes and a different
method, possibly nonperturbative in character, is require

Luckily, using general scaling arguments and informatiomtained in the effective
theories considered in this report one is able to acquireesadditional understanding
of the behavior of various quantum phase transitions stlidiexperiment, although
precise estimates for critical exponents other than theuwynone cannot be made on
this basis.

4.5 Scaling Theory

The traditional scaling theory of classical 2nd-order ghaansitions, first put for-
ward by Widom [225], is easily extended to include the timmelsion [18B] be-
cause relatior@.l) implies the presence of only one inadéget diverging scale. Let
0 = K — K., with K the parameter that drives the phase transition, measudishe
tance from the critical couplindg{.. A physical observable at the absolute zero of
temperatur® ko, |k|, K) can in the critical region close to the transition be writhsn

O(ko, k, K) = €90 O(ko&:, |K|E), (T =0), (4.67)

wheredy is the dimension of the observalile The right-hand side does not depend
explicitly on K; only implicitly throughé andé,. The closer one approaches the critical
coupling K, the larger the correlation length and time become.

Since a physical system is always at some finite temperatgrbave to investigate
how the scaling Ia7) changes when the temperaturetiexoonzero. The easi-
estway to include temperature in a quantum field theory itov@r to imaginary time
T = it, with 7 restricted to the intervdl < < 8. The temporal dimension becomes
thus of finite extend. The critical behavior of a phase trt@ovsiat finite temperature is,
as we remarked before, still controlled by the quantumaaitpoint provided; < 5.

If this condition is fulfilled, the system does not see thetdiraxtend of the time di-
mension. Instead of the zero-temperature sca(4.6é(),1®w have the finite-size
scaling

O(ko, k|, K,T) = p4/20(ko3, [k| 3%, B/&1), (T #0). (4.68)
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The distance to the quantum critical point is measured byatie3/¢; ~ |5]*/T.

Let us continue to derive hyperscaling relations. To thid,@ve consider the two
terms in the effective theor77) guadratic in the Gulds fieldy with m effec-
tively set to 1 and write it in the most general forfn [P26]:

LG = —15:(V)? + 1a%k(Bop)?. (4.69)

The coefficienps is the superfluid mass density which in the presence of, famgte,
impurities does not equahn—even at the absolute zero of temperature. The other
coefficient,

n’k = on _ lim TTgo(0, k) (4.70)

O |k|—0 N

with TIy, the (0 0)-component of the full polarization tensl'm\)olves the full
compressibility and particle number density. This is beeathe chemical potential is
represented in the effective theory by= —dy and

Lo
am‘ﬁ = k. (4.71)

Equation 9) leads to the general expression of the seelodity

2= P (4.72)

n2K

at the absolute zero of temperature.

Let us next assume that the chemical potential is the copa@meter, so that
0 o p — u. denotes the distance from the phase transitiongandd|~". Now, on the
one hand, the singular part of the free energy denfity arises from the low-energy,
long-wavelength fluctuations of the Goldstone field. (Heve,adopted the common
practice of using the symbdgl for the density2/V and of referring to it as the free
energy density.) The ensemble averages give

(V) ~ €72, {(Bop)*) ~ &7 ~ 7% (4.73)

On the other hand, dimensional analysis shows that thelsingart of the free energy
density scales near the transition as

fsing ~ 5_(d+2)' (474)
Combining these hyperscaling arguments, we arrive at th@fimg conclusions:
ps ~ é-f(dJrzfQ)7 771,211 ~ gf(dfz) ~ |5|(dfz)1/. (475)

The first conclusion is consistent with the universal ju predicted by Nelson
and Kosterlitz 2] which corresponds to taking= 0 andd = 2. Since¢ ~ |6|77,
fsing Can also be directly differentiated with respect to the dieahpotential to yield
for the the singular part of the compressibility

712 Kiging ~ 0]+ =2, (4.76)
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Fisher and Fishef [2P6] continued to argue that there areatteonatives. Either ~
Ksing, IMplying zv = 1; or the full compressibilitys is constant, implying = d. The
former is consistent with the Gaussian values: %, z = 2 found by Uzunov9]
for the pure case id < 2. The latter is believed to apply to repulsively interacting
bosons in a random media. These remarkable simple arguthestpredict the exact
valuez = d for the dynamic exponent in this case.
The above hyperscaling arguments have been extended bgr F&tinstein, and

Girvin [[L8g] to include thel /|x|-Coulomb potential. The quadratic terms in the effec-

tive theory 1.2@1) may be cast in the general form

5(2) _ l K2 _ |k|d71 k2 ko k)2 4.77
eff — 5 Ps &2 O|(p(0’ )|7 ( )

whereé is the renormalized charge. Frofn (1.p01) we find that to |oweer:
¢? =207 17(@=D2p [L(d - 1)] €3. (4.78)

The renormalized charge is connected to the (0 0)-comparie¢he full polarization

tensor [1.107) via
d—1
o oy |K
et = lim ———.
|k|—0 HOQ(O, k)
A simple hyperscaling argument like the ones given in theg@ang paragraph shows
that near the transition, the renormalized charge scales as

(4.79)

é? ~ gmE, (4.80)

They then argued that in the presence of random impuritisxtiarge is expected to
be finite at the transition so that= 1. This again is an exact results which replaces
the valuez = d of the neutral system.

The quantum phase transitions we are considering take plad®arged systems
and are mainly probed by conductivityor resistivity p measurements. To see how
the conductivityo relates to the superfluid mass dengity we minimally couple the
effective theory9) to an electromagnetic gauge fielde @nly relevant term for
this purpose is the first one i69) withy replaced by — eA, where we allow
the superfluid mass density to vary in space and time. Theitetine action quadratic
in A then becomes in the Fourier representation

Sy =—2€” A(—ko, —K)ps(ko, k) A(ko, k). (4.81)
ko.k

The electromagnetic current,

054

j(ko, k) = ———M——— 4.82
.]( 05 ) (SA(—kO,—k) ( )

obtained from this action can be written as
j(ko, k) = o (ko, k)E(ko, k) (4.83)
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with the conductivity

(k) = —ie2P2) (4.84)
ko
essentially given by the superfluid mass density dividedchiywhere it should be
remembered that the mass is effectively set to 1 here. By virtue of the scaling

relation {4.7p), it follows that scales aq[237]
o~ 72 (4.85)

In other words, the scaling dimension of the conductivitg dinerefore that of the
resistivity is zero in two space dimensions.

Let us now consider a quantum phase transition triggeredhbpging the applied
magnetic field, i.e.§ o H — H.. The critical field scales witl§ as H. ~ ®¢/£2. In
fact, this expresses a more fundamental result, namelyttbatcaling dimensioda
of A is one,

da =1, (4.86)

so that|A| ~ ¢~1. From this it in turn follows thafs ~ & '¢~! ~ ¢~ (*+1 and that
the scaling dimensiod,, of Ay is z,

da, = 2, (4.87)

so thatdy ~ &' ~ £%. For the DC conductivities in the presence of an external
electric field we have on account of the general finite-sizdisg form (4.6B) with
ko = |k| =0:

o(H,T,E) = ¢(6*/T,6"*V /E). (4.88)

This equation shows that conductivity measurements ctotbestquantum critical point

collapse onto a single curve when plotted as function of iheedsionless combina-
tions§¥# /T ands”**+1) / E. The best collapse of the data determines the values of
andv(z + 1). In other words, the temperature and electric-field depeceldetermine

the critical exponents andz independently.

4.6 Experiments

4.6.1 Superconductor-To-Insulator Transition

The first experiments we wish to discuss are those performétebard and Paalanen
on superconducting films in the presence of random impasrifli62,[13p]. It has been
predicted by Fisher8] that with increasing applied magnfield such systems
undergo a zero-temperature transition into an insulatiaig s (For a critical review of
the experimental data available in 1993, see [229].)

Let us restrict ourselves for the moment to fhA-plane of the phase diagram by
setting the applied magnetic field to zero. For given disorder strength the system
then undergoes a Kosterlitz-Thouless transition indugeithé unbinding of magnetic
vortex pairs at a temperatuigr well below the bulk transition temperature (see Sec.
@). The Kosterlitz-Thouless temperature is graduallypsessed to zero when the
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disorder strength approaches criticality — A.. The transition temperature scales
with the correlation length ~ |A. — A|~* asTkr ~ £ =

In the HA-plane, i.e., afl" = 0, the situation is as follows. For given disorder
strength, there is now at some critical vallg of the applied magnetic field a phase
transition from a superconducting state of pinned vortaoescondensed Cooper pairs
to an insulating state of pinned Cooper pairs and condensgides. The condensa-
tion of vortices disorder the ordered state as happens ssich, finite temperature
superfluid- and superconductor-to-normal phase transit]. When the disorder
strength approaches criticality agaid, is gradually suppressed to zero. The critical
field scales witht asH,. ~ ®(/£2. Together, the scaling results fog and H.. imply
that [228]

He ~ T2 (4.89)

This relation, linking the critical field to the KosterlifEhouless temperature, provides
a direct way to measure the dynamic exponemt the H = 0, 7" = 0 transition.
This has been done first by Hebard and Paalaher [192, 139]r &tperimental de-
termination of’'xt and H.. for five different films with varying amounts of impurities
confirmed the relatior] (4.B9) with/> = 2.04 + 0.09. The zero-temperature critical
fields were obtained by plottingod,. /dT’ |y versusH at the lowest accessible tem-
perature and interpolating to the the field where the slogerie. The resulting value
z = 0.98 & .04 is in accordance with Fisher’s predictidn [228]~ 1, for a random
system with al /|x|-Coulomb potential.

Hebard and Paalanem92] also investigated the field-mdlzero-temperature
transition. The control parameter is herec H — H.. When plotted as function of
|H — H.|/T'/vu#1 they saw their resistivity data collapsing onto two brarschen
upper branch tending to infinity for the insulating stated anlower branch bending
down for the superconducting state. The unknown producty is experimentally
determined by looking for which value the best scaling béras obtained. Further
experiments carried out by Yazdani and Kapitulr|TE|230]d§diug the electric-field
dependence of the resistivity also determined the produtty + 1). The two inde-
pendent measurements together fix the critical expongntndz separately. From
their best data, Yazdani and Kapitulnik extracted the \&[@8]

2y =10+0.1, vy =1.36%0.05. (4.90)

4.6.2 Quantum-Hall Systems

We continue to discuss the field-induced quantum phaseiticarssin quantum Hall
systems. Since an excellent discussion recently appelarmdailiteratureZ], we
shall be brief, referring the reader to that review for a mtwaough discussion and
additional references.

One can image transitions from one Hall liquid to another Hauid with a dif-
ferent (integer or fractional) filling factor, or to the irlating state. Experiments seem
to suggest that all the quantum-Hall transitions are in #mesuniversality class. The
transitions are probed by measuring the conductivitigsands,,,. The scaling of the
width of the transition regime with temperature as predidig Eq. ) has been
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corroborated by DC experiments on various transitions eetwnteger quantum-Hall
states which were all found to yield the valugrz = 0.42 £+ 0.04 []. Also the
scalingd ~ E'/*(>+1) has been corroborated by experiment which yielded the value
v(z+1) ~ 4.6 []. Together with the previous result obtained from graperature
scaling this gives

zx=1, v=23. (4.91)

The value of the dynamic exponent strongly suggests thatitresult of the presence
of the1/|x|-Coulomb potential. The correlation length exponerd seen to be large.

4.6.3 2d Electron Systems

Recently, silicon MOSFET’s at extremely low electron numtbensities has been stud-
ied [202[20B[ 244, 205]. Earlier experiments at higher tiessseemed to confirm the
general believe, based on the work by Abrahatra. [], that such two-dimensional
electron systems do not undergo a quantum phase tranditia¢hat influential paper,
it was demonstrated that even weak disorder is sufficiemdalize the electrons at the
absolute zero of temperature thus excluding conductinghieh Electron-electron
interactions were however not included. As we saw in Belthef /|x|-Coulomb in-
teraction becomes important at low densities and the aisaly&brahamst al. []
no longer applies.

The recent experiments have revealed a zero-temperatadaicior-to-insulator
transition triggered by a change in the charge carrier thensiThat is, the distance to
the critical point is in these systems measured by n — 7ni.. Like in the quantum-
Hall systems, these transitions are probed by measuringetligtivity. It scales with
temperature near the transition according to the scaling ) withH set to zero.
Forn < n., where the Coulomb interaction is dominant and fluctuatiorike charge
carrier density are suppressed, the electron system itatimgy On increasing the
density, these fluctuations intensify and at the criticdll®&., the system reverts to a
conducting phase. By plotting their conductivity data asction of 7'/§** with vz =
1.6 &+ 0.1, Popovic, Fowler, and Washbu@OS] saw it collapse omm branches;
the upper branch for the conducting side of the transitiow, the lower one for the
insulating side. A similar collapse with a slightly differtevaluel /vz = 0.83 & 0.08
was foundin Ref.3], where also the collapse of the da@nyhotted as function of
§/EY/(=+1)v was obtained. The best collapse resultedlft: + 1)v = 0.37 + 0.01,
leading to

z2=08+0.1, v=15=+0.1. (4.92)

The value for the dynamic exponent is close to the expectie@ wa= 1 for a charged
system with al /|x|-Coulomb interaction, while that of is surprisingly close to the
value (4.9D) found for the superconductor-to-insulatmsition.

A further experimental result for these two-dimensionaicelon systems worth
mentioning is the suppression of the conducting phase bypphea magnetic field
found by Simonian, Kravchenko, and Sarac204]. Theiedphe fieldparallel
to the plane of the electrons instead of perpendicular asris th quantum-Hall mea-
surements. In this way, the field presumably couples onlyéospin of the electrons
and the complications arising from orbital effects do nigearAt a fixed temperature,
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a rapid initial raise in the resistivity was found with inaesing field. Above a value of
about 20 kOe, the resistivity saturates. It was pointed loatt both the behavior in a
magnetic filed, as well as in zero field strongly resembletrtbar the superconductor-
to-insulator transition discussed above, suggestingttteatonducting phase might in
fact be superconducting.

4.6.4 Conclusions

We have seen that general scaling arguments combined gigffidctive theories, can
be employed to understand the scaling behavior observedrious quantum phase
transitions. Most of the experiments seem to confirm the ebgplevaluez = 1 for a
random system with &/|x|-Coulomb interaction. The number of different universalit
classes presentis yet not known. Even if the conductondatator transition observed
in silicon MOSFET’s at low electron number densities turng @ be in the same
universality class as the superconductor-to-insulagmsition, there are still the field-
induced transitions in quantum-Hall systems, which havargelr correlation-length
exponent.

The paradigm provided by a repulsively interacting Bose gasms to be a good
starting point to describe the various systems. Howevgh-precision estimates cal-
culated from this theory with impurities andld|x|-Coulomb interaction included are
presently lacking.
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