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Abstract. These lecture notes give a pedagogical introduction to phase transitions in disordered
quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some
fundamental concepts in the physics of phase transitions. We then derive criteria governing under
what conditions spatial disorder or randomness can change the properties of a phase transition.
After introducing the strong-disorder renormalization group method, we discuss in detail some of
the exotic phenomena arising at phase transitions in disordered quantum systems. These include
infinite-randomness criticality, rare regions and quantum Griffiths singularities, as well as the
smearing of phase transitions. We also present a number of experimental examples.
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OVERVIEW

Phase transitions are fascinating phenomena that arise in a wide variety of physical,
chemical, and biological systems. These range from the never-ending transformations of
water between ice, liquid and vapor to transitions between different steady states in the
dynamics of bio-populations. A particularly interesting class of transitions, the quantum
phase transitions, occur when the quantum ground state of a material abruptly changes
in response to a change in external conditions. Many realistic systems are not perfectly
clean but contain impurities, defects, or other kinds of imperfections. The influence of
such random disorder on phase transitions is therefore of prime interest, both from a
conceptual point of view and for experimental applications.

This article gives an informal introduction into this topic at a level accessible for
graduate students. It is based on the notes of a series of lectures that the author delivered
at the XVII Training Course in the Physics of Strongly Correlated Systems in Vietri sul
Mare, Italy in October 2012. The emphasis of the paper is on a pedagogical exposition of
the fundamental ideas and methods rather than a comprehensive account of the literature.
More details can be found in several recent review articles [1, 2, 3].

To make these lecture notes self-contained, we start with a brief summary of the
fundamental concepts of classical and quantum phase transitions in Sec. 1. In Sec.
2, we consider various types of disorder or randomness, and we derive criteria that
govern under what conditions they can influence a phase transition. The strong-disorder
renormalization group method is introduced in Sec. 3. Sections 4 and 5 are devoted to
exploring some of the exotic phenomena arising at disordered quantum phase transitions,
viz., Griffiths singularities and smeared transitions. Applications to magnetic quantum
phase transitions in metals are discussed in Sec. 6. We conclude in Sec. 7.
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FIGURE 1. Phase diagram of water as a function of pressure p and temperature T . The solid black
lines mark first-order phase transitions. The liquid-gas phase boundary ends in a critical point at which
the phase transition is continuous.

1. PHASE TRANSITIONS AND QUANTUM PHASE
TRANSITIONS

In this section, we briefly collect some basic ideas about classical and quantum phase
transitions to the extent required for the rest of the article. A reader unfamiliar with these
topics will benefit from consulting text books such as Refs. [4, 5].

1.1. Fundamental concepts

What is a phase transition?

Consider, for example, the phase diagram of water reproduced in Figure 1. It shows in
which phase (solid, liquid or gas) water is for given values of pressure p and temperature
T . If we cross one of the phase boundaries (marked by solid black lines), the properties
of water change abruptly in response to a smooth change in pressure and/or temperature.
This is the main characteristic of a phase transition. Formally, we can define a phase
transition as a singularity in the free energy as function of the external parameters such as
temperature, pressure, magnetic field, or chemical composition.1 A singular free energy
also implies singularities in other thermodynamic quantities including internal energy,
entropy, specific heat, and so on.

1 A true singularity can only appear in the thermodynamic limit of infinite system size. For any finite
system, the free energy is an analytic function because the partition function is a finite sum of exponentials.
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FIGURE 2. Schematic phase diagram of iron as a function of magnetic field h and temperature T . The
thick red line marks a first-order phase boundary between the spin-up and spin-down phases. It ends in a
critical point (Curie point) at which the phase transition is continuous.

Phase transitions can be divided into two qualitatively different types or classes. To
understand the difference, consider again the example of water. Imagine we heat up a
piece of ice, starting at a temperature well below the melting point of 0◦C. Initially, the
ice’ temperature will rise smoothly as it absorbs more and more heat. However, after the
temperature reaches 0◦C, the absorbed heat is used to melt the ice while the temperature
is stuck at the melting point. Only after all ice has melted, the temperature resumes its
rise. This means, the solid and liquid phases of water coexist at the phase transition
point, and a nonzero amount of heat, the latent heat, is required to turn the solid phase
of water into the liquid phase. Phase transitions following this scenario, namely phase
coexistence and latent heat, are usually called first-order phase transitions.2

The phase transitions of water shown in Fig. 1 are all of first order, except for one
single isolated point. To understand this, focus on the liquid-gas phase boundary. At
ambient pressure (about 105 Pa), the properties of liquid water and water vapor are very
different (for example, their densities differ by a factor of more than 1000). If we follow
the phase boundary to higher pressures and temperatures, liquid and vapor become more
and more similar until they become indistinguishable at Tc = 647 K and pc = 2.21×107

Pa (374◦C and 217 atm). This point is the so-called critical point. For p > pc, water
features only one fluid phase rather then two separate liquid and gas phases. Phase
transitions occurring at such a critical point are called continuous phase transitions.3

Continuous phase transitions do not display phase coexistence because the two phases
are indistinguishable at the transitions point. This implies that there is no latent heat.

Further prototypical examples of phase transitions can be found in a ferromagnet such
as iron. Its magnetic phase diagram, shown in Fig. 2, is qualitatively very similar to
the liquid-gas phase diagram of water. There is a line of first-order phase transitions

2 The name refers to Ehrenfest’s classification [6] of phase transitions. At a first-order transition, a first
derivative of the free energy is discontinuous.
3 Ehrenfest further subdivided continuous transitions into second order transitions, third order transitions
and so on according to which derivative of the free energy is discontinuous. Today, this subdivision is not
used very much because there are few qualitative differences between the sub-classes.
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FIGURE 3. Critical opalescence near the mixing critical point of hexane and methanol (taken with
permission from Ref. [8]).

at low temperatures and magnetic field h = 0 that separates the spin-up and spin-down
phases which coexist on the phase boundary. If we follow the phase boundary to higher
temperatures, the magnetization decreases, thus the two phases become more similar.
The phase boundary ends at the critical point (Curie point) at which the magnetization
vanishes and the two phases (spin-up and spin-down) thus become indistinguishable.

Critical behavior

Critical points (continuous phase transitions) have many peculiar properties. One of
the earliest and most striking manifestations of criticality was discovered by Andrews
in 1869 [7]. He found that a fluid (carbon dioxide in his case) becomes very milky, i.e.
opalescent, close to its critical point. Figure 3 illustrates this so-called critical opales-
cence on the example of the mixing critical point of hexane and methanol. At high tem-
peratures, hexane and methanol are miscible and form a homogeneous clear fluid. The
mixture phase-separates into a methanol-rich phase (below the meniscus) and a hexane-
rich phase (above the meniscus) at low temperatures. Close to the transition between the
miscible and phase-separated regimes, the mixture becomes very milky.

What is causing the critical opalescence? The fact that the fluid becomes milky means
that it strongly scatters visible light. This implies that it contains structures of a size
comparable to the wavelength of light (about 1 μm), much larger than typical micro-
scopic lengths such as the distance between molecules (a few Å). Critical opalescence
thus demonstrates that a critical point features strong fluctuations on large length scales.

Formally, these fluctuations can be characterized in terms of correlation functions. For
the mixing critical point discussed above, one could define a concentration correlation
function G(x − x′) = 〈Δc(x)Δc(x′)〉. Here Δc(x) is the deviation of the hexane con-
centration c at position x from its average value; and 〈. . .〉 denotes the thermodynamic
average. The appropriate correlation function for a liquid-gas critical point would be the
density-density correlation function 〈Δρ(x)Δρ(x′)〉; and for a magnetic critical point,
it would be the spin-spin correlation function 〈ΔS(x)ΔS(x′)〉. Under normal conditions,
these correlation functions decay exponentially to zero for large distances |x−x′| → ∞,
G(x−x′)∼ exp(−|x−x′|/ξ ) which defines the correlation length ξ . Upon approaching
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TABLE 1. Definitions of the commonly used critical exponents using the
example of a ferromagnetic transition. m is the magnetization and h is an
external magnetic field. r denotes the distance from the critical point and d
is the space dimensionality.

exponent definition conditions

specific heat α c ∝ |r|−α r → 0, h = 0

order parameter β m ∝ (−r)β r → 0−, h = 0

susceptibility γ χ ∝ |r|−γ r → 0, h = 0

critical isotherm δ h ∝ |m|δ sign(m) h → 0, r = 0

correlation length ν ξ ∝ |r|−ν r → 0, h = 0

correlation function η G(x) ∝ |x|−d+2−η r = 0, h = 0

dynamical z ξτ ∝ ξ z r → 0, h = 0

activated dynamical ψ lnξτ ∝ ξ ψ r → 0, h = 0

the critical point, the correlation length diverges as

ξ ∼ |r|−ν = |(T −Tc)/Tc|−ν (1)

where the reduced temperature r = (T − Tc)/Tc is a dimensionless measure of the
distance from criticality and ν is the correlation length critical exponent.

Fluctuations close to criticality are not only large but also slow. One can define a time
scale, the correlation time ξτ in analogy to the correlation length ξ . The correlation time
also diverges at the critical point,

ξτ ∼ ξ z ∼ r−νz (2)

which defines the dynamical critical exponent z. The fact that the fluctuations become
arbitrarily slow is also called the critical slowing down. It does occur not just in real
experimental systems, it also greatly hampers the efficiency of computer simulations of
critical phenomena.4

Power-law singularities in the length and time scales at a critical point generically
lead to power-law singularities in observable quantities. For example, at a ferromagnetic
critical point, the magnetic susceptibility diverges as χ ∼ |T −Tc|−γ , and the magnetiza-

tion vanishes as m ∼ |T −Tc|β . Here, β is the order parameter critical exponent, and γ is
called the susceptibility exponent. Analogously, at a liquid-gas critical point, the com-
pressibility diverges as κ ∼ |T −Tc|−γ , and the density difference between the liquid and

gas phases vanishes as Δρ ∼ |T −Tc|β . Other observables show similar power laws. A
summary of the commonly used critical exponents is given in Table 1, using the exam-
ple of a ferromagnetic transition. The collection of all these power laws characterizes
the critical point and is usually called the critical behavior.

4 In some cases, critical slowing down in computer simulations can be circumvented by clever “cluster”
algorithms [9, 10], in other cases it is unavoidable.
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The values of the critical exponents generally do not depend on the microscopic
details but only on the space dimensionality and the symmetries of the system under
consideration. For instance, all liquid-gas critical points have the same exponents. This
phenomenon, called universality, is very fortunate for theory, because it permits the
determination of the exact critical exponent values from simplified model problems
as long as they have the correct symmetries and dimensionalities. It also permits the
definition of universality classes comprising all critical points that share the same critical
exponents.

Above, we have seen that fluctuations become very strong as one approaches a critical
point. Do they influence the critical behavior? The answer to this question depends on the
space dimensionality d. In general, fluctuations become less important with increasing
dimensionality.5 In sufficiently low dimensions, fluctuations are so strong that they
completely destroy the ordered phase at all (nonzero) temperatures. Consequently, there
is no phase transition. This happens for d ≤ d−

c where d−
c is the so-called lower critical

dimension. Between d−
c and the upper critical dimension d+

c , an ordered phase and thus
a phase transition exist, but the critical exponents are influenced by fluctuations and
depend on d. Finally, for d > d+

c , fluctuations are unimportant for the critical behavior.
The exponents become independent of d and take their mean-field values. For example,
for Ising ferromagnets, the critical dimensions are d−

c = 1 and d+
c = 4, for Heisenberg

ferromagnets they are d−
c = 2 and d+

c = 4.

Scaling

Scaling theory is a phenomenological description of critical points. It is an extremely
powerful tool for the analysis of experimental or numerical data. Scaling theory was first
put forward by Widom [11] as the scaling hypothesis. Within modern renormalization
group theory [12], it can be derived from first principles.

The basic idea of scaling theory is that the correlation length ξ is the only relevant
length scale close to criticality. Right at the critical point, ξ diverges, and the system
is scale-invariant. Rescaling all lengths by a common factor should therefore leave the
system unchanged. A little bit off criticality, ξ is large but finite. Thus, if we rescale all
lengths, we need to adjust the external parameters (temperature, field, etc.) such that ξ
has the same value. After that, the system should again be unchanged.

Let us now apply this idea to the free energy density f = F/V of a system near a
ferromagnetic critical point, written as function of the reduced temperature r and the
external magnetic field h. Rescaling all lengths by an arbitrary common factor b leads to
the homogeneity relation

f (r,h) = b−d f (r b1/ν ,hbyh) (3)

where the exponent yh is related to δ by yh = d δ/(1+ δ ). The factor b−d arises from
the change of volume upon the rescaling, the changes in the arguments of f reflect

5 Intuitively, this happens because the number of neighbors of a given site increases with the dimension-
ality. A large number of neighbors effectively averages out the fluctuations felt by a particular site.
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the adjustments necessary to keep ξ at its old value. Homogeneity relations for other
thermodynamic variables can be obtained simply by taking the appropriate derivatives
of (3). For example, the specific heat is given by a second derivative of the free energy,
c ∼−∂ 2 f /∂ r2. Its scaling form thus reads

c(r,h) = b−d+2/νc(r b1/ν ,hbyh) . (4)

How can homogeneity relations such as (3) and (4) be used to analyze experimental or
numerical data? The key is that the homogeneity relations hold for arbitrary b, implying
that we can set b to whatever value we find useful. For example, if we were interested in
the dependence of c on the reduced temperature at zero field, we could set b = r−ν . This
yields c(r,0) = rdν−2c(1,0) which could be used to determine the exponent α = 2−dν
via a fit of the data.

The scaling form (3) of the free energy density f depends on only two exponents.
Since all thermodynamic observables can be determined from f , this implies that the
various exponents listed in Table 1 are not independent. Instead they are related by
the so-called scaling relations 2− α = 2β + γ and 2− α = β (δ + 1) as well as the
hyperscaling relations 2−α = d ν and γ = (2−η)ν .

We note that scaling in the form discussed here holds only below the upper critical
dimension d+

c . Above d+
c , the situation is more complicated, and we refer the reader to

a textbook about critical phenomena such as Ref. [4].

Landau theory

Landau [13, 14, 15, 16] provided a general framework for the description of phase
transitions. According to Landau, bulk phases can be distinguished according to their
symmetries, and phase transitions involve the (spontaneous) breaking of these symme-
tries.6 As an example, consider the phase transition in an easy-axis (Ising) ferromagnet,
i.e., a ferromagnet in which the spins prefer to be either up or down (parallel or an-
tiparallel to a particular crystallographic direction). In the paramagnetic phase at high
temperatures, the spins point up or down at random, implying that the global up-down
symmetry is not broken. In contrast, in the ferromagnetic low-temperature phase, the
spins spontaneously pick a preferred direction (either up or down). Thus, the up-down
symmetry is spontaneously broken.

A central concept in Landau’s framework is the order parameter, a physical quantity
that characterizes the degree of symmetry breaking. It is zero in one phase (the disor-
dered phase) and nonzero and usually nonunique in the other phase (the ordered phase).
In our example of an Ising ferromagnet, the total magnetization m is an order parameter.
m vanishes in the paramagnetic phase while it is nonzero in the ferromagnetic phase.
Moreover, m is nonunique (positive or negative) as the magnetization can be either up
or down spontaneously.

6 In recent years, there has been an increasing interest in phase transitions that do not follow Landau’s
paradigm. These unconventional transitions often involve topological degrees of freedom (see, e.g., Refs.
[17, 18] for introductory discussions). They are beyond the scope these lectures.
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FIGURE 4. Sketch of the Landau free energy density f as function of the order parameter m.

In addition to providing the general framework for phase transitions discussed above,
Landau also developed an (approximate) quantitative description which is now known
as the Landau theory of phase transitions. It is based on the idea that the free energy
density f close to the transition can be expanded in powers of the order parameter m,

f =−hm+ r m2 + vm3 +um4 + . . . . (5)

In the case of the ferromagnetic transition, the first term represents the external magnetic
field. Moreover, the cubic coefficient v and all higher-order odd terms must vanish
because the free energy must be up-down symmetric in the absence of a field. For
other phase transitions (such as the nematic transition in liquid crystals), odd terms do
occur in the Landau expansion of the free energy. The coefficients r, v, and u depend on
the material as well as the external conditions (temperature, pressure, etc.). The correct
physical state for given values of these coefficients is given by the minimum of f with
respect to the order parameter m.

The qualitative behavior of Landau theory can be easily discussed by plotting the free
energy density f (m). Let us assume a vanishing external field, h = 0, as well as v = 0
and u > 0.7 Figure 4 shows f (m) for several values of the quadratic coefficient r. For
r > 0, the free energy has a single minimum at m = 0. Thus, r > 0 corresponds to the
paramagnetic phase. Conversely, the free energy has two degenerate minima at nonzero
m for r < 0, separated by a local maximum at m = 0. This means, the system is in the
ferromagnetic phase for r < 0. The transition between these two phases occurs at r = 0
implying that r is indeed a measure of the distance from the transition, r ∼ T −Tc.

Quantitative results follow from solving (∂ f /∂m) = 0. In zero external field, h = 0,

the magnetization behaves as m ∼ (−r)1/2 for r < 0 while the magnetic susceptibility
diverges as χ = (∂m/∂h) ∼ |r|−1. Thus, Landau theory predicts a continuous phase

7 If u were negative, the theory could not be truncated after the quartic term because it would be unstable
against diverging order parameter m.
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transition, i.e., a critical point.8 On the critical isotherm, r = 0, the magnetization varies

as m ∼ h1/3 with the external field. In summary, Landau theory gives mean-field values
for the critical exponents, viz., β = 1/2, γ = 1, and δ = 3.

How good is Landau theory? Landau theory does not contain any fluctuations because
the order parameter is treated as a constant. Landau theory therefore gives the correct
critical behavior if the dimensionality is above the upper critical dimension d+

c of the
problem. In contrast, Landau theory fails below d+

c . In order to find the critical behavior
for d < d+

c , one needs to generalize Landau theory by making the order parameter a
fluctuating field m(x) that depends on position. The Landau free energy gets replaced by
a functional, the so-called Landau-Ginzburg-Wilson (LGW) functional

F [m(x)] =
∫

ddx
[−hm(x)+ r m2(x)+(∇m(x))2 +um4(x)+ . . .

]
. (6)

The gradient term punishes rapid changes of the magnetization, it thus encodes the
ferromagnetic interaction between neighboring spins. The partition function is now
given by a functional integral

Z =
∫

D[m(x)] exp(−F [m(x)]) . (7)

In contrast to Landau theory, the problem defined by equations (6) and (7) cannot be
solved by elementary means. However, it can be attacked successfully using modern
renormalization group techniques [12].

1.2. Introduction to quantum phase transitions

What is a quantum phase transition?

The phase transitions we have considered so far all occur at nonzero temperatures,
and they are often tuned by changing the temperature. At these transitions, the ordered
phase is destroyed by thermal fluctuations. For instance, ice melts because the thermal
motion of the water molecules destroys the crystal lattice; and a ferromagnetic material
becomes paramagnetic at the Curie point due to the thermal motion of the spins.

A different kind of phase transition occurs at the absolute zero of temperature (in the
quantum ground state) when a (nonthermal) parameter such as pressure, magnetic field,
or chemical composition is varied. Consider, for example, the magnetic phase diagram
of LiHoF4 shown in Fig. 5. LiHoF4 is an easy-axis (Ising) ferromagnet. In the absence
of an external field, the material is in a ferromagnetic phase for temperatures below the
Curie point of about 1.5 K. If the temperature is raised above this value, the thermal
motion of the holmium spins (which carry the magnetism) destroys ferromagnetic long-
range order. This phase transition is a thermal transition of the type discussed in the last

8 If the cubic coefficient in the free energy (5) does not vanish, or if we have a free energy with a negative
quartic coefficient u but a positive 6th-order coefficient, the theory yields a first-order transition.
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FIGURE 5. Magnetic phase diagram of LiHoF4 as function of temperature T and transverse magnetic
field B. The red dots represent experimental data from Ref. [19].

section. However, the figure also shows another way to destroy the ferromagnetism: If
one applies a magnetic field B perpendicular (transverse) to the preferred direction of
the spins, the ferromagnetic order is suppressed. Beyond a critical field of about 5 T,
the ferromagnetic phase vanishes completely, even at zero temperature. Thus LiHoF4

undergoes a zero-temperature ferromagnetic phase transition at this critical magnetic
field.

How does the magnetic field destroy the ferromagnetic phase? A qualitative under-
standing can be gained from considering a toy Hamiltonian, the transverse-field Ising
model.9 It reads

H =−J ∑
〈i j〉

σ z
i σ z

j −B∑
i

σ x
i , (8)

where the Pauli matrices σ z
i and σ x

i represent the z and x components of the spin operator
at site i. The first term implements an attractive interaction between nearest neighbor
sites of a cubic lattice. It prefers ferromagnetic order in the z-direction. The second term
represents the transverse magnetic field (in the x-direction). To understand its effect,
remember that σ x

i can be decomposed into spin-flip operators, σ x
i = σ+

i +σ−
i . Thus, the

transverse field term induces spin flips from up to down and from down to up. If the field
becomes sufficiently strong, these spin flips destroy the ferromagnetic long-range order,
even at zero temperature.

The zero-temperature phase transition between a ferromagnetic ground state for weak
field B and a paramagnetic ground state for strong B is therefore driven by quantum
fluctuations, i.e., quantum zero-point motion, rather than thermal fluctuations. It can be
viewed as a consequence of Heisenberg’s uncertainty principle. For this reason, this type

9 Note that the microscopic physics of LiHoF4 is significantly more complicated than the transverse-field
Ising model. In particular, the Ho spins are not S=1/2 spins, their interaction is of dipolar type, and the
hyperfine coupling between the electronic and nuclear magnetic moments is anomalously large [19].
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FIGURE 6. Examples of quantum phase transitions. Left: Magnetic phase diagram of the alloy
Sr1−xCaxRuO3. This material undergoes a quantum phase transition from a ferromagnetic metal to a
paramagnetic metal as function of the Ca concentration x (after Ref. [20]). Right: Mott superfluid-insulator
transition of an ultracold gas of bosons in an optical lattice produced by standing laser waves. If the optical
lattice is weak, the ground state is a coherent superfluid. For strong lattice potential, the atoms localize
in the wells, resulting in an insulating ground state (see Ref. [21] for an experimental realization of this
idea).

of phase transition is called a quantum phase transition. Quantum phase transitions can
be divided into first-order and continuous just like thermal phase transitions. First order
quantum phase transitions correspond to simple energy level crossings at which two
different ground states are exactly degenerate. Continuous quantum phase transitions,
i.e., quantum critical points, involve diverging length and time scales of the quantum
fluctuations.

Quantum phase transitions have been identified in a wide variety of condensed matter
systems. Examples include ferromagnetic and antiferromagnetic transitions in strongly
correlated electron materials, metal-insulator transitions in doped semiconductors and
metals, as well as superfluid-insulator transitions in ultracold atomic gases (see Fig. 6).

Quantum-to-classical mapping

Can we generalize the concepts for the description of phase transitions introduced in
the last section (such scaling and Landau theory) to the case of quantum phase transi-
tions? An important idea that helps addressing this question is the so-called quantum-
to-classical mapping.

Consider the partition function of a classical many-particle system. It can be written
as a (high-dimensional) phase space integral. If the Hamiltonian is the sum of a kinetic
part the depends only on momenta and a potential part that depends only on positions,
H(p,q) = T (p)+V (q) (as is often the case), the partition function factorizes according
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to

Z =
∫

dpdq exp[−βH(p,q)] =
∫

dp exp[−βT (p)]
∫

dq exp[−βV (q)] (9)

where β = 1/(kBT ) is the inverse temperature. The kinetic part is (usually) a product of
independent Gaussian integrals; it can not produce any singularities. The phase transition
physics must therefore originate in the configuration part of the partition function.
Consequently, only fluctuations in space but not in time need to be considered in the
description of a classical phase transition.10 This explains why models without any
internal dynamics such as the classical Ising model or our classical LGW theory (6)
correctly describe the thermodynamics of classical phase transitions.

In a quantum system, a factorization of the partition function into kinetic and potential
parts analogous to (9) is generally impossible because the operators of the kinetic energy,
T (p), and the potential energy, V (q), do not commute (eA+B 	= eA eB if A and B do
not commute). Thus, statics and dynamics are coupled, and we need to treat them
on equal footing. The problem can be addressed by using the Trotter identity [22]

eA+B = limN→∞[eA/N eB/N ]N , leading to

Z = Trexp[−βH] = Trexp[−β (T +V )] = lim
N→∞

N

∏
n=1

(
exp[−βT/N] exp[−βV/N]

)
.

(10)
The Trotter decomposition effectively cuts the inverse temperature β into many “slices”.
As β plays the role of an imaginary time,11 this introduces an extra coordinate τ , the
imaginary time coordinate that goes from 0 to β in steps of β/N. At zero temperature,
this direction becomes infinitely long. We thus conclude that imaginary time plays the
role of an additional dimension at a quantum phase transition. By inserting appropriate
resolutions of the unit operator between the factors on the r.h.s. of (10), one can rewrite
the partition function as a functional integral12

Z =
∫

D[q(τ)]exp{−S[q(τ)]} . (11)

As a result, we arrive at the famous quantum-to-classical mapping which states: A
quantum phase transition in d space dimensions is equivalent to a classical (thermal)
phase transition in d +1 dimensions.

This mapping is a very powerful tool that we will use repeatedly to understand the
properties of new quantum phase transitions. However, it comes with a number of
caveats. (i) The mapping works for thermodynamic quantities only, as it is based on
an analysis of the partition function. It is not applicable to other properties of quantum
phase transitions such as real-time dynamics and transport properties. (ii) The classical
(d + 1)-dimensional system arising from the mapping can be unusual and anisotropic.
(iii) The mapping only works if the resulting action S[q(τ)] is real such that it can be

10 This argument holds for the thermodynamics which is governed by the partition function but not for
the real-time dynamics at a classical transition.
11 The Boltzmann factor exp(−βH) looks like a time evolution operator exp(−itH/h̄) with imaginary t.
12 This is analogous to deriving Feynman’s path integral for the propagator in quantum mechanics [23].
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TABLE 2. Analogies between important quantities in the quantum-to-classical mapping (after
Ref. [24]).

Quantum System Classical System

d space, 1 time dimensions d +1 space dimensions

quantum coupling constant classical temperature T
inverse physical temperature 1/(kBT ) finite size in the imaginary time direction

spatial correlation length ξ spatial correlation length ξ
inverse energy gap 1/Δ correlation length ξτ in the imaginary time direction

interpreted as a classical free energy functional. As we will see later, this is the case
for some quantum phase transitions while others lead to complex actions, for example
due to Berry phases.13 In some cases, it actually depends on the details of the mapping
procedure [for instance, on which sets of basis states are used in the decomposition of
(10)] whether or not the resulting action is real. A summary of the relations between the
quantum system and its classical counterpart is given in Table 2.

Scaling at a quantum critical point

With the quantum-to-classical mapping in mind, we can generalize Widom’s scaling
hypothesis to quantum phase transitions. To do so, we need to include the imaginary
time variable τ in the scale transformation. In general, space and imaginary time do not
scale in the same way. Thus, if we scale lengths according to L → bL, we need to scale
imaginary time by a different factor, i.e., τ → bzτ . (Remember, the dynamical exponent
z relates the divergencies of length and time scales at a critical point.)

Moreover, even though a quantum phase transition occurs at exactly zero temperature,
experiments are performed at nonzero temperatures. It is therefore useful to include the
temperature as an independent external parameter from the outset.14 As the temperature
is an energy, it scales like an inverse time, i.e., T → b−zT . Consequently, the scaling
form of the free energy density at a quantum critical point reads

f (r,h,T ) = b−(d+z) f (r b1/ν ,hbyh ,T bz) . (12)

Note that r measures the distance from the quantum critical point along the quantum
tuning parameter axis (for example the transverse magnetic field axis in the case of the
transverse-field Ising model), it is not related to the temperature. Scaling forms of ther-
modynamic observables can again be obtained by taking the appropriate derivatives; and
those of other quantities (such as correlation functions) can be constructed analogously.

13 If the action S[q(τ)] is complex, the corresponding Boltzmann factor exp{[−S[q(τ)]}, which acts as
statistical weight in the path integral (11), is not positive definite. This is known as the notorious sign
problem; it strongly hampers quantum Monte-Carlo simulations of such systems.
14 Under the quantum-to-classical mapping, the inverse temperature corresponds to the system size in
imaginary time direction. Temperature scaling at a quantum critical point is thus equivalent to finite size
scaling [25] in the corresponding (mapped) classical system.
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Along the same lines, one can also generalize the Landau-Ginzburg-Wilson (LGW)
order parameter field theory (6) to quantum phase transitions. Since we need to include
fluctuations in space and (imaginary) time, the order parameter m becomes a function of
x and τ . Expanding in powers of m as well as in gradients and time derivatives gives the
LGW action or free energy

S[m(x,τ)] =
∫

ddxdτ
[−hm+ r m2 +(∇m)2 +(1/c2)(∂m/∂τ)2 +um4 + . . .

]
. (13)

Here, c plays the role of a propagation speed for the order parameter fluctuations. It
must be emphasized that (13) is just the simplest example of a quantum LGW theory.
It applies. e.g., to the ferromagnetic transition in the transverse-field Ising model. Many
other quantum phase transitions have more complicated LGW theories. In particular,
if the system contains soft (gapless) excitations other than the order parameter fluctua-
tions, the expansion in powers of time derivatives generally breaks down. The resulting
time/frequency dependence then becomes nonanalytic [26, 27, 28]. We will see exam-
ples of this behavior in later sections (when we discuss the effects of dissipation).

Phase diagram close to a quantum critical point

The phase diagram of a system close to a quantum critical point is very rich; it contains
several qualitatively different regions depending on the presence or absence of long-
range order as well as the character of the fluctuations. In particular, it is important
to distinguish thermal and quantum fluctuations. A fluctuation is of (predominantly)
thermal character if its frequency ωc is below the thermal energy, h̄ωc 
 kBT . In the
opposite case, h̄ωc � kBT , the fluctuation is of quantum character.

Figure 7 shows a schematic of such a phase diagram. The disordered phase consists of
three different regions. In the thermally disordered region, located on the ordered side of
the quantum critical point but at high temperatures, the long-range order is destroyed by
thermal fluctuations. In the quantum disordered region located at the disordered side of
the quantum critical point at low temperatures, quantum fluctuations destroy the long-
range order while thermal effects are unimportant (even the ground state is disordered).
Between these regions is the so-called quantum critical region, located at B ≈ Bc and,
somewhat counter-intuitively, at comparatively high temperatures where the character
of the fluctuations is thermal. In this regime, the system is critical with respect to B, and
the critical singularities are cut-off exclusively by the temperature.

It is important to note that the asymptotic critical behavior at any nonzero temperature
is dominated by thermal fluctuations because the characteristic frequency ωc ∼ ξ−1

τ
vanishes due to critical slowing down. However, the classical critical region around the
phase boundary becomes very narrow at low temperatures. Another way to understand
this result is to compare the correlation time ξτ with the system size β = 1/(kBT )
in imaginary time direction. Upon approaching the phase boundary, ξτ diverges. A
any nonzero temperature, it thus eventually becomes larger than the system size β . At
this point, the imaginary time dimension drops out, and the critical behavior becomes
classical.
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FIGURE 7. Schematic phase diagram in the vicinity of a quantum critical point (QCP). The thick
solid line marks the boundary between the ordered and disordered phases. The dashed lines indicate
the crossover between predominantly quantum or classical character of the fluctuations. In the hatched
classical critical region, quantum mechanics is unimportant, and the leading classical critical singularities
can be observed. Experiments following path (a) and (b) are discussed in the text.

We thus conclude that the asymptotic critical behavior is quantum only at precisely
zero temperature while it is classical for any nonzero temperature. This justifies calling
all finite-temperature phase transitions classical even if the underlying microscopic
physics is quantum. Nonetheless, the quantum critical point controls large portions of
the phase diagram at nonzero temperatures. An experiment along path (a) in figure 7
will see the classical behavior only in an extremely narrow range around the transition.
Moreover, an experiment along path (b) in the quantum critical region explores the
temperature scaling of the quantum critical point.

2. PHASE TRANSITIONS IN DISORDERED SYSTEMS

In this section, we consider various types of disorder or randomness and derive criteria
that govern under what conditions they can influence a phase transition.

2.1. Types of disorder

Quenched vs. annealed disorder

Disorder15 or randomness in a physical system can have many different origins includ-
ing vacancies or impurity atoms in a crystal as well as extended defects of the crystal

15 Unfortunately, the word “disorder” is used in two different meanings in the field of phase transitions.
First, it is used to characterize a phase without long-range order in the Landau sense. In the case of the
ferromagnetic transition, for example, we call the paramagnetic phase a disordered phase. Second, the
word “disorder” denotes imperfections or randomness of the underlying system. This is the meaning here.
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lattice such as dislocations or grain boundaries. The solid could also be amorphous rather
than crystalline. In ultracold atom systems, disorder can be realized, for example, using
speckle laser light.

To understand the physical consequences of such disorder, it is important to distin-
guish quenched and annealed disorder. Quenched or frozen-in disorder is static; this
means that the impurities or defects do not move or change over the relevant experi-
mental time scales. In contrast, annealed disorder fluctuates during the duration of the
experiment. From a conceptually point of view, annealed disorder is easier to deal with.
If the disorder degrees of freedom (for example, the impurity positions) are in thermal
equilibrium over the experimental time scales, they can simply be included in the usual
statistical mechanics description of the system. In other words, the thermodynamics of
a system with annealed disorder is obtained by averaging the partition function over the
impurity degrees of freedom, Zav = [Z]dis where [. . .]dis denotes the disorder average.

In contrast, every sample, i.e., every disorder realization, is different in the case
of quenched disorder. To obtain average thermodynamic quantities one thus needs to
average the free energy or, equivalently, the logarithm of the partition function, lnZav =
[lnZ]dis.

16 Technically, averaging lnZ is much harder than averaging Z itself; and this
makes the physics of quenched disordered systems a difficult research area. One way
to overcome this difficulty is the so-called replica trick [29]. It involves writing lnZ =
limn→0(Zn − 1)/n and averaging Zn before taking the limit n → 0. This method has
met some success, for example, in the theory of spin glasses. However, exchanging the
average and the n → 0 limit is mathematically problematic; and the replica approach is
known to fail in some cases. We will not be using this method.

In the remainder of these lectures, we will not consider annealed disorder but focus
on the more interesting (and complicated) case of quenched disorder.

Random mass, random fields, and all that

In Section 1, we have seen that the qualitative properties of phase transitions depend
on the space dimensionality and on symmetries but not on microscopic details. This
suggests that we should classify the various kinds of quenched disorder according to
their symmetries.

Consider, for example, a clean (three-dimensional) classical ferromagnet described an
Ising Hamiltonian

H = −J ∑
〈i j〉

SiS j (14)

with spins Si =±1. The sum goes over pairs of nearest neighbors on a cubic lattice, and
J > 0 is the exchange interaction. How could disorder change this Hamiltonian? One
possibility is that the exchange interaction becomes nonuniform and varies randomly
from place to place. (In a real system this could be due to nonmagnetic impurity atoms

16 A complete description of a large ensemble of samples strictly requires working out the probability
distributions of observables rather than just the average. This will become an important point later in this
article.
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modulating the distances between the spins.) The disordered Hamiltonian reads

H = −∑
〈i j〉

Ji j SiS j (15)

where the Ji j are random variables. As long as all Ji j remain positive, such randomness
is a weak and rather benign type of disorder. It does not change the two bulk phases: At
sufficiently low temperatures, the system is still a ferromagnet, and at sufficiently high
temperatures it is still a paramagnet. Moreover the up-down spin symmetry is not broken
by the disorder. The disorder just changes the local tendency towards ferromagnetism,
in other words it changes the “local critical temperature.” Consequently, this type of
disorder is often called random-Tc disorder. In a LGW description of the transition, such
disorder would appear as a random variation δ r(x) of the distance from criticality,

F [m(x)] =
∫

ddx
{−hm(x)+ [r +δ r(x)]m2(x)+(∇m(x))2 +um4(x)+ . . .

}
. (16)

The disorder couples to the m2 term in the LGW free energy functional. In quantum field
theory, this term is usually called the mass term. Therefore, random-Tc disorder is also
called random-mass disorder. (In addition to random exchange couplings, random-mass
disorder can also be realized by random dilution of the spins.)

Alternatively, we could imagine disorder that couples linearly to the order parameter
m rather than m2. In our example ferromagnet, this corresponds to a magnetic field that
varies randomly from site to site. The LGW theory of such a system reads

F [m(x)] =
∫

ddx
{−h(x)m(x)+ r m2(x)+(∇m(x))2 +um4(x)+ . . .

}
(17)

where h(x) is the random variable. This type of disorder is called random-field disorder.
It locally breaks the up-down spin symmetry. Whether or not the symmetry is broken
globally depends on the probability distribution of the random fields. A particularly
interesting situation arises if the distribution is even in h such that the up-down symmetry
is globally preserved in the statistical sense. As we will see later in this section, random-
field disorder is generally stronger than random-mass disorder.

Many other types of disorder are possible. For example, in a Heisenberg magnet
where the spin variables are three-dimensional unit vectors, the disorder could break the
rotational symmetry in spin space in a random fashion. This defines random-anisotropy
disorder. In a superconductor or superfluid, the disorder could lead to random phases of
the complex order parameter. If the interactions in a spin system pick up random signs,
the system becomes frustrated which often results in spin-glass behavior [30].

In these lectures, we will mostly consider the cases of random-mass and random-field
disorder.
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FIGURE 8. Derivation of the Harris criterion. The system is divided into blocks of linear size ξ . Due
to the disorder, each block has its own local “critical temperature.”

Important questions

If quenched disorder is added to a clean system undergoing a phase transition, a
hierarchy of important questions arises naturally:

• Are the bulk phases (the phases separated by the transition) qualitatively changed
by the disorder?

• Is the phase transition still sharp, or is it smeared because different parts of the
system undergo the transition independently?

• If the phase transition is still sharp, does its order (first order vs. continuous)
change?

• If the phase transition remains continuous, does the critical behavior, i.e., the values
of the critical exponents, change?

2.2. Random-mass disorder and the Harris criterion

In this section, we consider a clean system undergoing a continuous phase transition
(a critical point) and ask whether or not random-mass disorder changes the properties of
the phase transition. (We already know from the discussion in the last section that the
bulk phases will not change.)

Harris addressed this question in a famous paper [31] published in 1974. Specifically,
he found a powerful criterion for the stability of a clean critical point against random-
mass disorder. To derive this criterion, imagine that we are at a temperature somewhat
above the (global) critical temperature Tc of the system. We can divide the system into
blocks whose linear size is the correlation length ξ (see Fig. 8). The spins within each
block are effectively parallel and fluctuate together as a large superspin. Due to the
disorder, each block i has its own “local critical temperature” Tc(i) which is determined
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by the values of the interactions in this block.17 Harris’ idea consists in comparing the
variations ΔTc of the local critical temperature from block to block with the distance
T −Tc from the global phase transition point. If ΔTc < T −Tc, the blocks are all on the
same side of the phase transition, and the system is more or less uniform. In contrast, for
ΔTc > T −Tc, some blocks are in the disordered (paramagnetic) phase and some are in
the ordered (ferromagnetic) phase, making a uniform transition impossible.

For the clean critical behavior to be stable we thus must have ΔTc < T − Tc as we
approach the transition, i.e., for ξ → ∞. The dependence of ΔTc on ξ can be estimated
using the central limit theorem. As the local Tc(i) is determined by an average of a large
number of random variables in the block [for example, the random Ji j in the Hamiltonian
(15)], its variations decay as the square root of the block volume,

ΔTc ∼ ξ−d/2 . (18)

On the other hand, according to (1), the global distance from criticality is related to ξ
via

T −Tc ∼ ξ−1/ν . (19)

The condition ΔTc < T −Tc for ξ → ∞ therefore leads to the exponent inequality

dν > 2 . (20)

This is the famous Harris criterion for the stability of a clean critical point.
Let us discuss the interpretation of this inequality in more detail. If the Harris criterion

dν > 2 is fulfilled, the ratio ΔTc/(T −Tc) goes to zero as the critical point is approached.
This means, the system looks less and less disordered on larger length scales; and the
effective disorder strength vanishes right at criticality. Consequently, the disordered
system features the same critical behavior as the clean one. This also implies that all
thermodynamic observables are self-averaging, i.e., their values are the same for all
disorder realizations. An example of a transition that fulfills the Harris criterion is the
ferromagnetic transition in a three-dimensional classical Heisenberg model. Its clean
correlation length exponent is ν ≈ 0.69 > 2/d = 2/3.

In contrast, if dν < 2, the ratio ΔTc/(T −Tc) increases upon approaching the phase
transition. This means, the blocks become effectively more different on larger length
scales. Eventually, some blocks will be on one side of the transition while other blocks
are on the other side. This makes a uniform sharp phase transition impossible. The
character of the transition must therefore change, and the clean critical behavior is
unstable. In the marginal case dν = 2, more sophisticated methods are required to decide
the stability of the clean critical point.

What is the fate of the transition if the Harris criterion is violated? The Harris
criterion itself cannot answer this question, but research over the last four decades has
established a number of possible scenarios. In the simplest case, the phase transition

17 It is important to realize that, generally, finite-size blocks cannot undergo a true phase transition at their
respective local critical temperature Tc(i). Instead, Tc(i) marks the point where the spins in the block lock
together to form the superspin.
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remains sharp and continuous but the critical behavior changes. The disordered system
is in a new universality class featuring a correlation length exponent that fulfills the
inequality dν > 2. In this case, the disorder strength remains finite at large length scales,
and observables at the critical point are not self-averaging. Many phase transitions in
classical disordered systems follow this scenario, for example the three-dimensional
classical Ising model. Its clean correlation length exponent is ν ≈ 0.63 which violates the
Harris criterion. In the presence of random-mass disorder, the critical behavior therefore
changes with the disordered correlation length exponent taking a value of about 0.68.

Quantum phase transitions in disordered systems often display more exotic behavior
(more dramatic changes than just different critical exponent values). We will explore
several such phenomena in Sections 3 to 5.

Let us finish this section with a number of important remarks. (i) The Harris criterion
holds in the same form, dν > 2 for both classical (thermal) and quantum phase transi-
tions. Specifically, this means that the dimensionality d should not be replaced by (d+1)
or (d + z) for a quantum phase transition (as one might have guessed from the quantum-
to-classical mapping). The reason is that the d in the Harris criterion stems from av-
eraging the disorder degrees of freedom using the central limit theorem. As quenched
disorder is time-independent, the number of random variables in a block scales as ξ d for
both classical and quantum phase transitions. This insight also implies that the Harris
criterion needs to be modified for disorder that is perfectly correlated in one or more
dimensions such as line or plane defects. In these cases, d needs to be replaced by the
number dr of dimensions in which there actually is randomness, i.e., dr = d −1 for line
defects and dr = d − 2 for plane defects. This greatly enhances the relevance of such
perfectly correlated disorder.

(ii) The Harris criterion dν > 2 applies to uncorrelated or short-range correlated
disorder. If the disorder displays long-range correlations in space, the inequality needs
to be modified because the central-limit theorem estimate of ΔTc changes. Weinrib and
Halperin [32] considered the case of power-law correlations that fall off as |x− x′|−a.
They found that the Harris criterion does not change for a > d. If a < d, the inequality
needs to replaced by aν > 2. Thus, the criterion reads

min(d,a)ν > 2 . (21)

This implies that long-range correlated disorder is more dangerous for a clean critical
point than short-range correlated disorder. In other words, a given clean critical point
may be stable against uncorrelated disorder but unstable against disorder with suffi-
ciently long-ranged correlations.18

(iii) The Harris inequality dν > 2 involves the clean correlation length exponent.
It does not put a bound on the correlation length exponent of the disordered system.
However, Chayes et al. [33] showed (under some mild assumptions) that the correlation
length exponent of a critical point in a disordered system has to fulfill the same inequality
dν ≥ 2. Counter examples to this results are sometimes reported in the literature. In is

18 At first glance, this result may appear counter-intuitive because long-range correlated disorder looks
“less random”. The crucial point is, however, that the long-range correlations favor the appearance of large
fluctuations.
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FIGURE 9. To derive the Imry-Ma criterion, one needs to compare the energy gain of a domain (of size
L) due to aligning with the average random field with the energy loss due to the domain wall.

not always clear whether they are genuine violations of the theorem or whether they
occur due to not fulfilling the underlying assumptions or maybe because the reported
exponents are not in the true asymptotic critical region.

2.3. Random-field disorder and the Imry-Ma argument

In this section, we investigate a system undergoing a phase transition in the presence
of random-field disorder. As an example, consider a (three-dimensional) Ising ferromag-
net in a random magnetic field. Its Hamiltonian reads

H = −J ∑
〈i j〉

SiS j −∑
i

hiSi . (22)

Here, the hi are independent random variables with zero mean, [hi]dis = 0 and variance
[hih j]dis = Wδi j.

As discussed in Sec. 2.1, the random field locally breaks the up-down symmetry of
the model. Spins on sites with positive random field, hi > 0, prefer pointing up (Si = 1)
while spins on sites with negative random field, hi < 0, prefer pointing down (Si =−1).
This raises the question: Does a ferromagnetic phase (in which all spins align in the
same direction) still exist in the presence of the random field? For strong random fields,
this question can be easily answered in the negative. If W � J2, almost all spins gain
more energy from aligning with their local random fields rather than with each other.
Thus, ferromagnetic order is impossible. What about weak random fields, W 
 J2? In
this case almost all spins will prefer to align with their neighbors rather than the field.
One might be tempted to conclude that ferromagnetism survives in this case. However,
this would be premature because long-range ferromagnetic order can be destroyed by
the formation of domains.

Imry and Ma [34] developed a beautiful heuristic argument to test the stability of
the ferromagnetic state against domain formation. Consider a single uniform spin-up
domain of linear size L (located in a region where the random field is mostly positive)
embedded in a spin-down bulk system (see Fig. 9). According to Imry and Ma, we need
to compare the energy gain due to aligning the domain with the average local random
field with the energy loss due to the formation of the domain wall. In d space dimensions,
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discrete continuous

FIGURE 10. For discrete (Ising) symmetry, a domain wall is a “sharp” up-down spin flip. For continu-
ous symmetry, the domain wall consists of a smooth change of the spin orientation over some distance.

the domain wall is a (d − 1)-dimensional surface. Each bond crossing this surface has
antiparallel spins and thus energy +J rather than −J; it therefore contributes 2J to the
domain wall energy. As the number of such bonds is proportional to the domain wall
area, we can estimate the domain wall energy to be

ΔEDW ∼ J Ld−1 . (23)

The energy gain due to aligning the uniform spin-up domain with the random field is
simply given by the sum over all random field values in the domain, ΔERF = −∑′

i hi.
As the hi are independent random variables, the typical value of this sum can again be
estimated by means of the central limit theorem, giving

|ΔERF | ∼W 1/2Ld/2 . (24)

Imry and Ma now observe that the uniform ferromagnetic state will be stable against
the formation of domains if |ΔERF | < ΔEDW for all possible domain sizes L. Inserting

the above estimates, this translates to W 1/2Ld/2 < JLd−1. In the case of weak random
field, W 
 J2, this is certainly fulfilled for small domains containing just a few spins.
Whether or not it also holds for large domains depends on the dimensionality d. If d > 2,
the domain wall energy increases faster with L than the random field energy. Thus,
domain formation is always unfavorable, and the ferromagnetic state is stable against
weak random-field disorder.

In contrast, for d < 2, the random field energy increases faster with L than the domain
wall energy. Even for weak random fields, there will be a critical L beyond which form-
ing domains that align with the local random field becomes favorable. Consequently,
the uniform ferromagnetic state is unstable against domain formation for arbitrary ran-
dom field strength. In other words, in dimensions d < 2. random-field disorder prevents
spontaneous symmetry breaking. Analyzing the marginal case, d = 2, again requires
more sophisticated methods.

Building on this heuristic argument, Aizenman and Wehr [35] proved rigorously
that random fields destroy long-range order (and thus prevent spontaneous symmetry
breaking) in all dimensions d ≤ 2 for discrete (Ising) symmetry and in dimensions d ≤ 4
for continuous (Heisenberg) symmetry. The difference between discrete and continuous
symmetry can be easily understood by comparing the domain walls (see Fig. 10). In
the discrete case, a domain wall consists of a sharp up-down spin flip at the surface
of the domain. As estimated above, its energy is proportional to the surface area. i.e.,
it scales as Ld−1 with the domain size L. In the continuous case, the domain wall can
be spread out over the entire domain, i.e., over a length of order L. The domain wall
energy can be estimated within a LGW theory. The gradient term in (6) contributes
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ΔEDW ∼ Ld(∇m)2 ∼ Ld(1/L)2 ∼ Ld−2. The domain wall energy thus increases less
rapidly with L in the continuous case, making the system more susceptible towards
domain formation. Inserting ΔEDW ∼ Ld−2 into the Imry-Ma argument gives a critical
dimensionality of 4 rather than 2.

The above results hold for uncorrelated or short-range correlated random fields. Long-
range correlated random fields with correlations that fall off as |x− x′|−a modify the
Imry-Ma argument because the energy gain due to aligning the domain with the local
random field changes, provided a < d [36]. In this case the uniform ferromagnetic state
is stable for a > 2 while domain formation is favored for a < 2. In the opposite case,
a > d, the uncorrelated Imry-Ma argument is unmodified.

As in the case of the Harris criterion, the Imry-Ma argument gives identical results
for classical and quantum phase transitions because the dimensionality enters via the
number of dimensions in which there is randomness. This means only space dimensions
count but not the imaginary time dimension.

2.4. Destruction of first-order phase transitions by disorder

Reasoning very similar to the Imry-Ma argument can be used to attack a different
problem, viz., the fate of a first-order phase transition in the presence of random-mass
disorder.

Remember, a first order phase transition is characterized by macroscopic phase coex-
istence at the transition point.19 For example, at the liquid-gas phase transition of a fluid,
a macroscopic liquid phase coexists with a macroscopic vapor phase. Random-mass dis-
order locally favors one phase over the other. We can thus pose the same question we
asked in the last section: Will the macroscopic phases survive in the presence of the
disorder or will the system form domains (droplets) that follow the local value of the
random-mass term (the “local Tc”)?

This question can be answered by adapting the Imry-Ma argument to the problem at
hand [37, 38, 35]. Consider a single domain or droplet (of linear size L) of one phase
embedded in the other phase. The free energy cost due to forming the surface is

ΔFsur f ∼ σLd−1 (25)

where σ is the surface energy between the two phases.20 The energy gain from the
random-mass disorder can be estimated via the central limit theorem, resulting in a
typical magnitude of

|ΔFdis| ∼W 1/2Ld/2 (26)

where W is the variance of the random-mass disorder.

19 Actually, the random-field problem considered in the last subsection can be viewed in the same way.
Imagine adding an extra uniform field h to the random-field Hamiltonian (22). As h is tuned through zero
at low temperatures, the system undergoes a first-order phase transition from the spin-down phase to the
spin-up phase.
20 The surface term scales as Ld−1 rather than Ld−2 because the two phases are generally not connected
by a continuous transformation.
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The macroscopic phases are stable if |ΔFdis| < ΔFsur f . Using the same reasoning as
in the last subsection, this means that macroscopic phase coexistence is impossible in
dimensions d ≤ 2 no matter how weak the disorder is. In dimensions d > 2, phase
coexistence is possible for weak disorder but will be destabilized for sufficiently strong
disorder.

We thus conclude that random-mass disorder destroys first-order phase transitions in
dimensions d ≤ 2. As before, this result holds for both classical (thermal) and quantum
phase transitions [39] as long as the disorder is uncorrelated or short-range correlated in
space. Long-range interactions can be taken into account as in the random-field case in
the last section.

What is the ultimate fate of the phase transition if the first-order character is destroyed
by the disorder? The Imry-Ma argument cannot answer this question. In many examples,
the first-order transition is replaced by (“rounded to”) a continuous one, but more
complicated scenarios cannot be excluded.

3. STRONG-DISORDER RENORMALIZATION GROUP

After the introductory sections 1 and 2, we now turn to the main topic of this article,
quantum phase transitions in disordered systems, taking the transverse-field Ising model
as a paradigmatic example. We introduce a very powerful technique to attack this prob-
lem, the strong-disorder renormalization group (SDRG) which has become a standard
tool in this field.

3.1. Random transverse-field Ising chain

We have already encountered the transverse-field Ising Hamiltonian (8) in Sec. 1.2 as
a toy model for the quantum phase transition in LiHoF4. Here, we will be considering
a one-dimensional disordered version of this model, the random transverse-field Ising
chain. It is given by

H = −∑
i

Jiσ z
i σ z

i+1 −∑
i

Biσ x
i , (27)

The interactions Ji and the transverse fields Bi are independent random variables with
probability distributions PI(J) and RI(B), respectively. Both the Ji and the Bi are re-
stricted to positive values.21

The qualitative features of the zero-temperature (ground state) phase diagram of the
transverse-field Ising chain are easily discussed. If the typical interactions are much
larger than the typical transverse fields, J � B, the ground state displays ferromagnetic
long-range order in the z direction. In the opposite limit, J 
 B, the ground state is a
(field-polarized) quantum paramagnet. These two phases are separated by a quantum

21 We denote the transverse field by B to distinguish it from a possible longitudinal (conjugate to the order
parameter) field h. However, in the literature on the random transverse-field Ising model, h is often used
for the transverse field.
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phase transition at J ∼ B. In fact, it has been shown rigorously [40] that the transition
occurs when ∏i Ji = ∏i Bi.

22

Traditional approaches to investigating the quantum phase transition in the random
transverse-field Ising chain would start by solving the clean problem, Ji ≡ J, Bi ≡ B.
The randomness would then be treated in a perturbative fashion, maybe using the
replica trick to carry out the disorder average. Such approaches have been successful
for classical (thermal) phase transitions in disordered systems. However, they work very
poorly for the quantum phase transition in the random-transverse field Ising model and
many other quantum phase transitions.23 Later, we will understand the deeper reasons for
this; basically, disorder effects turn out to be much stronger at quantum phase transitions
than at classical ones.

In the next subsection we therefore introduce an alternative method that makes use
of the disorder from the outset rather than treating it as a small perturbation of a clean
system.

3.2. Renormalizing the random transverse-field Ising chain

Basic idea

The strong-disorder renormalization group was proposed in 1979 by Ma, Dasgupta,
and Hu [43] to study random antiferromagnetic spin chains. It was greatly developed by
D.S. Fisher in the mid 1990’s [44, 45, 46] who pioneered its application to quantum
phase transitions. Since then, the method has been employed in a broad variety of
problems ranging from disordered quantum systems to classical nonequilibrium phase
transitions (for a review, see, e.g., Ref. [3]).

The basic idea of the strong-disorder renormalization group consists in identifying
the largest local energy scale in the entire system, i.e., the highest local excited state.
As this excited state does not contribute to the low-energy physics important for the
phase transition, it is integrated out, treating the neighboring energies (couplings) as
perturbations. This works well if the disorder is strong [the distributions PI(J) and RI(B)
are broad] because in this case, the largest local energy will be much larger than the
neighboring ones. The method thus becomes controlled in the limit of strong disorder
which gives the strong-disorder renormalization group its name.

The process of eliminating the largest local energy is now iterated; this gradually
reduces the maximum energy in the system until the desired low-energy description of
the phase transition physics is achieved.

22 The location of the quantum phase transition point in the random transverse-field Ising chain is fixed
by the self-duality of the model: The form of the Hamiltonian is invariant under the duality transformation
σ x

i = μz
i μz

i+1 σ z
i = ∏( j≤i) μx

j , (where μx and μz are the dual Pauli matrices). However, interactions and

fields exchange their meaning, Ji � Bi, under this transformation
23 Sometimes, perturbative methods show the disorder strength diverging and thus signal their own
breakdown [41, 42].
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FIGURE 11. Strong disorder renormalization group steps. Left: strong transverse field (here B3). The
spin σ3 is integrated out in second-order perturbation theory, generating an effective interaction J̃ between
the neighboring spins σ2 and σ3. Right: strong interaction (here J2). The spins σ2 and σ3 are parallel to
each other. They can be represented by a single effective spin σ̃ in the transverse field B̃.

Renormalization group recursions

Let us implement the strong-disorder renormalization group for the random
transverse-field Ising chain. The competing local energies in the Hamiltonian (27)
are the interactions Ji and the transverse fields Bi. We thus identify the largest local
energy scale as Ω = max(Ji,Bi). To integrate out the corresponding excited states, we
need to distinguish Ω being an interaction and Ω being a field.

(i) If the largest local energy is a field, say B3, the spin σ3 is pinned in the positive x
direction (in the σ x eigenstate | →〉 with eigenvalue +1). It does therefore not contribute
to the z magnetization and can be decimated (eliminated) from the system. However,
virtual excitations of σ3 from | →〉 to | ←〉 generate an effective coupling J̃ between
the neighboring spins σ2 and σ4.24 To calculate J̃, we can consider the three-site system
consisting of spins σ2, σ3, and σ4 with Hamiltonian

H = H0 +H1 with H0 = −B3σ x
3 , H1 = −J2σ z

2σ z
3 − J3σ z

3σ z
4 . (28)

Because B3 > J2,J3, we can treat H1 in perturbation theory. In second order, we obtain

J̃ = J2J3/B3 . (29)

The new interaction J̃ is always smaller than either of the old ones. Thus, this renormal-
ization step eliminates one degree of freedom (the spin σ3) and reduces the maximum
energy scale Ω.

(ii) If the largest local energy is an interaction, say J2, the spins σ2 and σ3 prefer to
be parallel. The cluster consisting of σ2 and σ3 can thus be treated as a “superspin” σ̃
whose magnetic moment

μ̃ = μ2 + μ3 (30)

is the sum of the moments associated with σ2 and σ3. This means that out of the four
basis states of the cluster we keep the low-energy states | ↑↑〉 and | ↓↓〉 but not the high-

24 If we simply eliminate σ3 without taking the virtual excitations into account, the chain would be cut
into two independent pieces because spins the σ2 and σ4 would not be coupled at all. Ferromagnetic
long-range order would thus be impossible. This is clearly too rough an approximation.
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energy states | ↑↓〉 and | ↓↑〉. Virtual excitations to these high-energy states need to be
taken into account to evaluate the influence of the transverse fields B2 and B3 on the
effective spin σ̃ . The effective transverse field can be calculated in perturbation theory
for the two-site cluster consisting of σ2 and σ3 with

H = H0 +H1 with H0 =−J2σ z
2σ z

3 , H1 = −B2σ x
2 −B3σ x

3 . (31)

In second order in the transverse fields, we obtain

B̃ = B2B3/J2 . (32)

The new transverse field B̃ is always smaller than either of the old ones.
The entire renormalization group step is summarized in Fig. 11. In both possible cases,

decimation of a site or decimation of an interaction, one degree of freedom is eliminated
and the maximum energy scale Ω is reduced. Otherwise, the structure of the Hamiltonian
(27) is exactly preserved. Notice the symmetry between the recursion (29) for the
interactions and the recursion (32) for the transverse fields. It reflects the self-duality of
the Hamiltonian. We also note that the recursion (30) for the moments is additive while
the recursion (32) for the fields is multiplicative, suggesting an exponential relation,
B ∼ exp(−cμ) between the energy and the size of a cluster. This is an important
observation that we will return to repeatedly in the coming sections.

Flow equations

The strong-disorder renormalization group method proceeds by iterating the above
renormalization group steps, thus gradually decreasing the maximum energy Ω to zero.
How do the interactions Ji and transverse fields Bi behave under this procedure? As the
Ji and Bi are random quantities, we need to analyze the evolution of their probability
distributions P(J;Ω) and R(B;Ω) with Ω, starting from the initial (bare) distributions
PI(J) and RI(B).

To derive the renormalization group flow equations for P(J;Ω) and R(B;Ω), assume
that we reduce the maximum energy from Ω to Ω− dΩ by decimating all interactions
and fields in the energy interval [Ω−dΩ,Ω]. As a result, the distribution P(J;Ω) changes
as

−dP(J;Ω) = dΩR(Ω;Ω)

[
−2P(J;Ω)+

∫
dJ1dJ2 P(J1;Ω)P(J2;Ω) δ (J− J1J2/Ω)

]

+ dΩ[R(Ω;Ω)+P(Ω;Ω)]P(J;Ω) . (33)

The terms in the first line are due to the decimation of strong transverse fields. The
probability for such a decimation is given by the probability for finding a field within
dΩ of the upper cutoff Ω; it is identical to dΩR(Ω;Ω). Each such decimation removes
two interactions from the system and introduces one new renormalized interaction given
by the recursion (29). This is encoded in the terms inside the large bracket. As every
decimation (of an interaction or field) reduces the number of remaining interactions by
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one, the normalization of the distribution P(J;Ω) would change. The terms in the second
line of (33) compensate for that and keep P(J;Ω) normalized.25

The change of the field distribution R(B;Ω) can be found along the same lines. We
thus arrive at the renormalization group flow equations

− ∂P
∂Ω

= [PΩ −RΩ]P+RΩ

∫
dJ1dJ2 P(J1;Ω)P(J2;Ω) δ (J− J1J2/Ω) , (34)

− ∂R
∂Ω

= [RΩ −PΩ]R+PΩ

∫
dB1Bh2 R(B1;Ω)R(B2;Ω) δ (B−B1B2/Ω) (35)

where P and R stand for P(J;Ω) and R(B;Ω) while PΩ and RΩ stand for P(Ω;Ω) and
R(Ω;Ω), respectively. The solutions of these integro-differential equations in the limit
Ω → 0 govern the low-energy physics of our system.

Before we start looking for solutions of the flow equations (34) and (35), let us change
to more suitable variables. The multiplicative structure of the recursions for J and B
suggests using logarithmic variables. We therefore introduce a logarithmic measure of
the cutoff energy scale,

Γ = ln(ΩI/Ω) (36)

where ΩI is the initial (bare) value of the cutoff. We also define logarithmic variables
for the interactions and fields by means of

ζ = ln(Ω/J) , β = ln(Ω/B) . (37)

The probability distributions P̄(ζ ;Γ) and R̄(β ;Γ) of these logarithmic variables are
related to the distributions of J and h via the transformations P(J;Ω) = P̄(ζ ;Γ)/J and
R(B;Ω) = R̄(β ;Γ)/B. In the following, we are going to drop the bar over the new
distributions as long as it is clear which distribution is meant.

By inserting the definitions (36) and (37) into (34) and (35), we can rewrite the flow
equations in terms of the logarithmic variables. This gives

∂P
∂Γ

=
∂P
∂ζ

+[P0 −R0]P+R0

∫ ζ

0
dζ1 P(ζ1;Γ) P(ζ −ζ1;Γ) , (38)

∂R
∂Γ

=
∂R
∂β

+[R0 −P0]R+P0

∫ β

0
dβ1 R(β1;Γ) R(β −β1;Γ) . (39)

Here, P and R stand for P(ζ ;Γ) and R(β ;Γ) while P0 and R0 denote P(0;Γ) and R(0;Γ).
How can one solve these flow equations? D. S. Fisher provided an essentially com-

plete analysis in two long papers [45, 46]. It requires significant mathematical effort and
is beyond the scope of these lectures. Instead, we are going to use an ansatz for the dis-
tributions P and R that will lead us to the correct fixed point solutions.26 Specifically, let

25 The overall minus sign in front of dP(J;Ω) stems from the fact that dΩ changes the cutoff Ω down-
wards.
26 This approach does not guarantee, of course, that there are no other solutions that are important for the
physics of our problem. To address this question one needs to consult the complete solution.
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us assume that both distributions are simple exponentials,

P(ζ ;Γ) = P0(Γ) exp[−P0(Γ)ζ ] , R(β ;Γ) = R0(Γ) exp[−R0(Γ)β ] (40)

with cutoff-dependent inverse widths P0 and R0. Inserting this ansatz into (38) and
(39), we find that the distributions indeed fulfill the flow equations provided that the
coefficients P0 and R0 are solutions of the coupled differential equations

dP0

dΓ
= −R0 P0 , (41)

dR0

dΓ
= −R0 P0 . (42)

We thus have turned the flow equations for the probability distributions P(ζ ;Γ) and
R(β ;Γ) into flow equations for the coefficients P0 and R0 which can be solved much
more easily.

In the following subsection, we will look for solutions of these flow equations and
analyze their behavior in the low-energy limit Γ → ∞.

3.3. Infinite-randomness scenario

Critical point

According to Pfeuty’s exact result [40], the random transverse-field Ising model
is critical when ∏i Ji = ∏i Bi. At the critical point, the coefficients P0(Γ) and R0(Γ)
must therefore be identical. This also follows from the self-duality of the Hamiltonian
discussed in Sec. 3.1. The two flow equations (41) and (42) now coincide and read

dP0

dΓ
=−P2

0 (43)

This differential equation can be easily integrated, giving P0 = 1/(Γ−Γ0). The inte-
gration constant Γ0 can be dropped as it just amounts to a redefinition of the reference
energy scale ΩI . We thus arrive at the “fixed point” solution27

P(ζ ;Γ) =
1

Γ
e−ζ/Γ , R(β ;Γ) =

1

Γ
e−β/Γ . (44)

In the low-energy limit, Γ → ∞, these distributions become arbitrarily broad implying
that the randomness in the system becomes arbitrarily strong. For this reason, the
resulting critical point is called an infinite-randomness critical point. In terms of the

27 This solution is a fixed point in the sense that its functional form does not change with Γ → ∞. If
we rescale ζ and β by Γ, the resulting distributions become true stationary points of the renormalization
group flow.
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original variables J and B, the distributions are highly singular,

P(J;Ω) =
1

ΓJ

(
J
Ω

)1/Γ
, R(B;Ω) =

1

ΓB

(
B
Ω

)1/Γ
. (45)

Let us discuss some of the key properties of the critical fixed point solution (44)
in more detail. We start by analyzing the number nΩ of sites (clusters) that survive in
the renormalized random transverse-field Ising chain at some energy scale Ω. Every
renormalization group step reduces the number of clusters by one, either because a
cluster is decimated (for a large transverse field) or because two clusters are combined
(for a large interaction). The number of clusters thus changes by dnΩ = −nΩ(PΩ +
RΩ)dΩ as the cutoff is reduced from Ω to Ω−dΩ. Transforming to logarithmic variables
leads to

dnΓ
dΓ

= −(P0 +R0)nΓ =− 2

Γ
nΓ . (46)

Integrating this differential equation shows that the number of clusters decreases as

nΓ ∼ Γ−2 or nΩ ∼ [ln(ΩI/Ω)]−2 . (47)

The typical distance �(Ω) between the surviving clusters is inversely proportional to
their number, yielding

ln(ΩI/Ω) ∼ [�(Ω)]ψ with ψ = 1/2 . (48)

The self-duality of the critical solution implies that �(Ω) gives not just the typical
distance between clusters but also the typical length of a cluster.

We note that the dependence of the energy scale on the length scale established by
(48) is exponential and so is the dependence of the time scale on the length scale.
This differs from the power-law dependence (2) found at conventional (clean) critical
points. An exponential relation between lengths and times is called activated or tunneling
dynamical scaling (as opposed to the usual power-law dynamical scaling) and ψ is called
the tunneling exponent. It also means that the dynamical exponent z is formally infinite.

In addition to the number of surviving clusters, one can also calculate their magnetic
moment μΩ (i.e., the number of original sites represented by an effective spin). The
calculation is rather lengthy [46]; we therefore simply quote the result

μΩ ∼ [ln(ΩI/Ω)]φ (49)

where the exponent φ = (
√

5 + 1)/2 is given by the golden mean.28 These are highly
unusual properties that are reflected in unusual behaviors of observables at the infinite-
randomness critical point.

28 The fact that the exponent φ which governs the magnetic moment is smaller than the exponent 2 which
governs the length of a cluster suggests that the surviving clusters have a fractal structure with lots of
holes.
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The fact the probability distributions of the fields and interactions become infinitely
broad as the critical fixed point is approached implies that the method becomes asymp-
totically exact because the perturbative treatment of the recursion steps becomes better
and better. This also means that the above critical exponent values are exact which is re-
markable because exact exponent values are known for very few phase transitions only.
Moreover, the infinite-randomness character of the critical point explains why pertur-
bative methods fail to capture the physics of this problem. Even if the bare disorder
strength is a small, the disorder becomes arbitrarily strong on large length scales.

Off-critical solutions

Right at the critical point, the two decimation processes (eliminating clusters with
strong transverse fields and building larger clusters by decimating a strong interaction)
balance each other out such that P0 = R0 in the low-energy limit. In contrast, off
criticality, one of the processes wins.

On the paramagnetic side of the transition defined by ∏i Bi > ∏i Ji or, equivalently,
[lnB]dis > [lnJ]dis, the building of clusters essentially stops at some value of the cut-
off Ω because most B are larger than most J. From then on, only transverse fields are
decimated, producing smaller and smaller interactions. Thus, we expect the field distri-
bution R(β ) to become stationary with Ω → 0 while P(ζ ) should rapidly shift to small
interactions (large ζ ). On the ferromagnetic side, we expect the opposite behavior, i.e.,
the elimination of clusters stops below some value of the cutoff Ω. Here, P(ζ ) should
become stationary and R(β ) should rapidly move to large β .

In the following, we focus on the paramagnetic side. Off criticality, P0 	= R0, thus the
two flow equations (41) and (42) need to be solved together. By subtracting them from
each other, we obtain (d/dΓ)[R0 −P0] = 0 which yields

R0(Γ) = P0(Γ)+2δ (50)

where δ is an energy-independent constant. What is the physical meaning of δ?
Note that [ln(h/Ω)]dis = [−β ]dis = −1/R0 and [ln(J/Ω)]dis = [−ζ ]dis = −1/P0. Thus
[lnh]dis − [lnJ]dis = 1/P0 − 1/R0 ∼ R0 −P0 = 2δ for small δ . We conclude that δ is a
measure of the distance from criticality.

After inserting (50), the flow equations (41) and (42) can be easily solved. We find

P0 = 2δ/[exp(2δΓ)−1] . (51)

In the low-energy limit, Γ → ∞, this results in the fixed-point distributions

R(β ) = 2δ exp[−2δβ ] (52)

P(ζ ) = 2δe−2δΓ exp[−2δe−2δΓβ ] . (53)

As expected from our qualitative discussion above, the field-distribution R(β ) is indeed
independent of Γ while the interaction distribution P(ζ ) rapidly becomes extremely
broad. This means, almost all interactions J are extremely small, and the surviving
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clusters decouple. Transforming (52) to the original transverse fields B yields a power-
law distribution

R(B;Ω) =
2δ
B

(
B
Ω

)2δ
(54)

characterized by a nonuniversal exponent that changes with distance δ from the critical
point.

The number of clusters surviving at energy scale Γ can be determined from the
differential equation (dnΓ)/(dΓ) = −(R0 + P0)nΓ, as at the critical point. This gives

nΓ = n0 exp(−2δΓ) or, equivalently, nΩ ∼ (Ω/ΩI)
2δ . The typical distance �(Ω) between

clusters surviving at energy scale Ω therefore behaves as

�(Ω)∼ 1/nΩ ∼ (Ω/ΩI)
−2δ . (55)

In contrast to the activated dynamical scaling (48) at the critical point, this is a power-law
relation characterized by a nonuniversal dynamical exponent z′ = 1/(2δ ).

To find the correlation length and time at a given distance δ from criticality we
can calculate the crossover energy scale Γx, beyond which the off-critical flow (51)
appreciably deviates from the critical flow P0 = 1/Γ. This gives Γx ∼ 1/(2δ ). According
to (47), the characteristic length is �(Γx) ∼ Γ2

x ∼ 1/(2δ )2 at this energy scale. We
conclude that the correlation length exponent takes the value ν = 2. Interestingly, this
means that it exactly saturates the inequality dν ≥ 2 derived by Chayes et al. [33].

Thermodynamic observables

The general strategy for finding the temperature dependencies of observables within
the strong-disorder renormalization group approach consists in running the renormal-
ization group until the cutoff reaches the value Ω = kBT . Close to criticality and at low
energies Ω, the probability distributions of J and B become very broad. This means, all
degrees of freedom eliminated during this process have energies much larger than kBT
and do not contribute to the thermodynamics. In contrast, all the remaining interactions
and transverse fields are much smaller than kBT . The remaining degrees of freedom can
thus be considered as free. Consequently, observables are simply the sums over inde-
pendent contributions from the surviving clusters.

Let us apply this strategy to the thermodynamics right at criticality. According to
(47) and (49), the number of surviving clusters at energy scale Ω behaves as nΩ ∼
[ln(ΩI/Ω]−1/ψ with ψ = 1/2 while the typical moment of such a cluster scales as

μΩ ∼ [ln(ΩI/Ω]φ with φ = (
√

5−1)/2. Each cluster (being effectively free) contributes
a Curie term μ2/T to the magnetic susceptibility. The total susceptibility thus reads

χ(T ) =
1

T
nT μ2

T ∼ 1

T
[ln(ΩI/kBT )]2φ−1/ψ . (56)

To estimate the entropy, we note that each surviving cluster is equivalent to a two-level
system and contributes kB ln(2) to the entropy. The total entropy is thus given by

S(T ) = kB ln(2) nT ∼ kB [ln(ΩI/kBT )]−1/ψ . (57)
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The specific heat can be calculated by taking the appropriate temperature derivative of
the entropy. This yields

CV (T ) = T (∂S/∂T ) = (∂S/∂ ln(T ))∼ kB [ln(ΩI/kBT )]−1/ψ−1 . (58)

All these quantities display unusual logarithmic temperature dependencies which stem
from the activated dynamical scaling (48).

The same strategy for determining observables can also be applied off criticality.
According to (55), the number of surviving clusters on the paramagnetic side of the

transition scales as nΩ ∼ Ω2δ = Ω1/z′ with the energy cutoff Ω. This results in a total
entropy of

S(T ) = kB ln(2) nT ∼ T 1/z′ . (59)

and a specific heat of

CV (T ) = T (∂S/∂T )∼ T 1/z′ . (60)

The magnetic susceptibility can be found along the same lines, yielding

χ(T ) =
1

T
nT μ2

T ∼ T 1/z′−1 . (61)

Note that the magnetic moment of a surviving cluster on the paramagnetic side of the
transition increases only very slowly (logarithmically) with decreasing energy cutoff Ω
because almost all decimations are eliminations of sites [46]. Therefore, μT does not
contribute to the leading temperature dependence of the susceptibility.

Equations (59) to (61) show that the thermodynamic behavior of the random
transverse-field Ising chain is highly singular not just right at the critical point but also
in its vicinity. These off-critical singularities are examples of the celebrated Griffiths
singularities that we will study from a more general perspective in Sec. 4.

4. GRIFFITHS SINGULARITIES AND THE GRIFFITHS PHASE

When a clean system undergoes a phase transition, thermodynamic quantities are singu-
lar right at the transition point. Away from the transition point, they are generally nonsin-
gular. However, at the end of the last section, we have seen that the random transverse-
field Ising model features singular thermodynamics not just at the critical point but also
in its vicinity. It turns out that such off-critical singularities generically occur at phase
transitions in disordered systems. They are called the Griffiths singularities after R. B.
Griffiths who first proved their existence in 1969 [47].

In this section, we will develop a general qualitative understanding of the physics
leading to the Griffiths singularities; and we will discuss their consequences for classical
and quantum phase transitions.

4.1. Rare regions

Let us start from a clean classical ferromagnet given by an Ising model on a cubic
lattice, H =−J ∑〈i j〉 SiS j. It undergoes a continuous phase transition from a paramagnet
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FIGURE 12. Schematic temperature-dilution phase diagram of the site-diluted Ising model (62). With
increasing dilution, the critical temperature Tc(p) is suppressed, it vanishes at the percolation threshold
pc. The Griffiths region (or Griffiths phase) comprises the part of the paramagnetic phase below T 0

c where
locally ordered “clean” clusters can exist.

to a ferromagnet at the clean critical temperature T 0
c . We now introduce quenched

disorder by randomly removing spins from the lattice. The Hamiltonian of the resulting
site-diluted Ising model reads

H =−J ∑
〈i j〉

εiε j SiS j (62)

where the quenched random variables εi can take the values 0 (representing a vacancy)
or 1 (representing a spin) with probabilities p and 1− p, respectively.

As the dilution reduces the overall tendency towards ferromagnetism, the critical
temperature Tc(p) of the diluted system will decrease with increasing p (see Fig. 12). It
vanishes at the percolation threshold pc of the lattice because ferromagnetic long-range
order is impossible if the lattice consists of disconnected finite-size clusters only.

Due to statistical fluctuations in the vacancy distribution, large vacancy-free spatial
regions can exist even for high vacancy concentrations (with a very small but nonzero
probability). As such rare regions are finite-size pieces of the clean system, their spins
align parallel to each other below the clean critical temperature T 0

c . Because they are of
finite size, these regions cannot undergo a true phase transition by themselves, but for
temperatures between T 0

c and the actual transition temperature Tc(p), they act as large
superspins.

The parameter region where such locally ordered rare regions exist, but long-range
ordered has not yet developed is called the Griffiths phase. (More appropriately, it should
be called the Griffiths region as it is part of the paramagnetic phase.) In our example the
Griffiths region comprises the area between T 0

c and Tc(p) in the temperature-dilution
plane.

So far, we have focused on the paramagnetic side of the transition. How can we
generalize the idea of a Griffiths region or Griffiths phase to the ferromagnetic side?
The simplest idea seems to be to consider rare “holes” in the magnetic order, i.e., rare
vacancy-rich regions in a magnetically ordered bulk. However, in contrast to the locally
ordered rare regions considered above whose magnetization can fluctuate between up
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FIGURE 13. Left: The paramagnetic Griffiths phase is due to rare locally ferromagnetic regions embed-
ded in the paramagnetic bulk. Right: The ferromagnetic Griffiths phase is caused by locally ferromagnetic
regions located inside paramagnetic “holes” in the bulk ferromagnet.

and down, holes do not have an associated low-energy degree of freedom. Instead
of simple “holes” one should thus consider locally ordered island inside holes. Such
islands can fluctuate between up and down because they are only very weakly coupled
to the bulk ferromagnet outside the hole (see Fig. 13). This conceptual difference will
be responsible for slight differences in the resulting Griffiths singularities on the two
sides of the transition. In our example of a site-diluted Ising model, the ferromagnetic
Griffiths phase comprises all of the ferromagnetic phase for p > 0.

Note that the precise location and extension of the Griffiths phases depend on the
details of the system at hand. For example, we could study an Ising model with bond
(interaction) randomness instead of the site-diluted Ising model (62). It is given by the
Hamiltonian

H =−∑
〈i j〉

Ji jSiS j (63)

in which the nearest neighbor interactions Ji j can take the values JA and JB > JA with
probability p and 1− p, respectively. In this model, the paramagnetic and ferromagnetic
Griffiths phases are both located between the transition temperature T B

c of a system in
which all bonds have value JB and the transition temperature T A

c of a system with all
bonds having value JA (see Fig. 14).

Why are these rare large locally ordered regions interesting? In the next subsections,
we will see that, despite being rare, they are responsible for the peculiar Griffiths
singularities in the vicinity of a phase transition in a disordered system.

4.2. Classical Griffiths singularities

Thermodynamics of the Griffiths phase

In 1969, Griffiths [47] showed that the free energy is a singular function of the
external control parameters everywhere in the Griffiths phase. The physical origin of the
singular behavior was later identified as being the contribution of the rare regions to the
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FIGURE 14. Phase diagram of the random-bond Ising model (63). The Griffiths phases are located
between the transition temperatures T A

c and T B
c of systems with uniform interactions JA or JB, respectively.

The conventional paramagnetic phase is located above T B
c , and the conventional ferromagnet is below T A

c

thermodynamic behavior. To understand this mechanism, let us estimate the rare region
contribution to the magnetization-field curve m(h) and to the magnetic susceptibility χ .

If a weak magnetic field h is applied to a disordered magnet in the (paramagnetic)
Griffiths phase, the locally ordered rare regions act as large superspins whose magnetic
moment is proportional to their volume, μ(LRR) ∼ μBV ∼ Ld

RR, where LRR is the linear
size of the rare region. The energy gain due to aligning the moment with the external field
can be estimated as ΔE =−hμ ∼ hμBV . If |ΔE| > kBT , the superspin is essentially fully
polarized in field direction. For |ΔE| < kBT , its magnetization is small and governed by
linear response.

The singular contribution of the large rare regions to the magnetization-field curve can
therefore be estimated by summing over all rare regions with |ΔE| > kBT . This gives

mRR(h)≈ ∑
|ΔE|>kBT

w(LRR) μ(LRR) (64)

where w(LRR) is the probability for finding a locally ordered rare region of linear size
LRR. Basic combinatorics yields that the probability for finding a large spatial region
devoid of impurities decays exponentially with its volume,

w(LRR)∼ exp
(
−p̃Ld

RR

)
. (65)

For the diluted ferromagnet (62), the constant p̃ ∼− ln(1− p). To exponential accuracy,
the rare region magnetization can now be estimated as

mRR(h)∼
∫ ∞

Lx

dLRR exp
(
− p̃Ld

RR

)
μBLd

RR (66)

where the integral is over all rare regions larger than a critical size Lx defined by
Ld

x ∼ kBT/(μBh). This results in

mRR(h)∼ exp [− p̃kBT/(μBh)] . (67)
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The rare region magnetization is thus indeed a singular function of the applied field h, as
required by Griffiths’ proof. However, the singularity is an essential singularity leading
to an extremely small contribution.

The magnetic susceptibility χ can be analyzed similarly. Each locally ordered rare
region makes a Curie contribution μ2(LRR)/T to χ . The total rare region susceptibility
can therefore be estimated as

χRR(T )∼
∫

dLRR w(LRR) μ2
B L2d

RR/T . (68)

This equation shows that the susceptibility of an individual rare regions does not increase
fast enough to overcome the exponential decay of the rare region probability w with
increasing size LRR. Consequently, large rare regions only make an exponentially small
contribution to the susceptibility.

Analogous estimates can also be performed in the ferromagnetic Griffiths phase on
the ordered side of the phase transition. The main difference between the paramagnetic
and ferromagnetic Griffiths phases is in the probability for finding a rare region. On
the paramagnetic side, the rare event is finding a vacancy-free region of linear size LRR
which leads to (65). On the ferromagnetic side, the rare event is finding a large enough
vacancy-rich region around a locally ordered island (see Fig. 13). The required volume

of this “shell” scales as Ld−1
RR ξB where ξB is the bulk correlation length in this vacancy-

rich region. Thus the probability of finding such a “island in a hole” behaves as

wFM(LRR)∼ exp
(
−cLd−1

RR

)
. (69)

The overall conclusion of these considerations is that classical rare region phenomena
are very weak because the singularity in the free energy is only an essential one [48, 49,
50, 51]. To the best of our knowledge, classical Griffiths singularities in thermodynamic
quantities have therefore not been verified in experiment.29

Dynamical Griffiths singularities

In contrast to the thermodynamics discussed above, the long-time dynamics in a
classical Griffiths phase is dominated by the rare regions.

The classical Ising Hamiltonians (62) and (63) do not have any internal dynamics.
However, we can add a heuristic dynamics to these models. The simplest case is a
purely relaxational dynamics which corresponds to the so-called model A in the famous
classification of Hohenberg and Halperin [52]. Microscopically, this type of dynamics
is due to collisions with other degrees of freedom. In computer simulations, it can be
realized via the Glauber [53] or Metropolis [54] algorithms.

29 This conclusion holds for uncorrelated or short-range correlated disorder only. We will see in Sec. 4.3
that long-range disorder correlations in space greatly enhance the rare region effects.
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One of the simplest quantities for studying the real-time dynamics is the spin auto-
correlation function

C(t) =
1

N ∑
i
〈Si(t)Si(0)〉 (70)

where Si(t) is the value of the spin at site i and time t, the sum is over all N sites of
the lattice, and 〈. . .〉 denotes the thermodynamic average. It is related to the Fourier
transform of the local dynamic susceptibility.

The fluctuations associated with the rare regions are much slower than the bulk
fluctuations in the paramagnetic Griffiths phase because they involve a coherent change
of the magnetization in a large volume. As different rare regions are independent of each
other, their contribution to the auto-correlation function can be estimated as

CRR(t) ∼
∫

dLRR w(LRR)Ld
RR exp [−t/ξt(LRR)] (71)

where ξt(LRR) is the correlation time (or life time) of a single rare region, i.e., the
typical time it takes to reverse the rare region magnetization. How can we estimate this
correlation time? The most effective way of reversing the rare region magnetization is to
create a domain wall and then move it across the rare region. The energy cost of creating
such a domain wall is given by σADW where σ is a temperature-dependent constant and

ADW is the domain wall area. Thus, the domain wall energy scales as σLd−1
RR with the

rare region size. The creation of the domain wall is an activated process that happens at
an exponentially small rate, implying

ξt(LRR) ∼ τ0 exp[CσLd−1
RR /(kBT )] (72)

where C is some constant of order unity. After inserting the correlation time into the
autocorrelation function (71), the integral can be estimated by means of the saddle point
method. This yields

CRR(t) ∼ exp
[
−C̃(ln t)d/(d−1)

]
(73)

in the long-time limit (C̃ is another constant). The long-time decay of the rare region
autocorrelation function is much slower than the exponential decay of the bulk system
off criticality. Thus, the long-time dynamics of the disordered Ising model is dominated
by the rare regions [55, 56, 57, 58].

4.3. Quantum Griffiths singularities

Rare region density of states

In the last subsection we have analyzed the Griffiths singularities close to a classical
phase transition and found them to be weak (at least in the case of thermodynamic
quantities). Now, we are going to address the same question for a quantum phase
transition.
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FIGURE 15. Schematic zero-temperature phase diagram of the site-diluted transverse-field Ising model
(74). With increasing dilution, the critical field Bc(p) is suppressed. A multicritical point (MCP) separates
the generic quantum phase transition for p < pc from the percolation transition at pc. Ferromagnetic long-
range order is impossible for dilutions above pc. The Griffiths region (or Griffiths phase) comprises the
part of the paramagnetic phase below B0

c where locally ordered “clean” clusters can exist.

Our example is the three-dimensional transverse-field Ising model, and we introduce
disorder via site-dilution. The Hamiltonian reads

H = −J ∑
〈i j〉

εiε j σ z
i σ z

j −B∑
i

εiσ x
i . (74)

As in the last section, the εi are quenched random variables that take values 0 or 1 with
probabilities p and 1− p, respectively. Note that we again use B for the transverse field
to distinguish it from a longitudinal field h in z-direction.

As was discussed in Sec. 1.2, the undiluted system undergoes a (zero-temperature)
quantum phase transition from a ferromagnet to a paramagnet at a critical value B0

c of
the transverse field. Site dilution reduces the tendency towards ferromagnetism and leads
to a phase diagram similar to the classical case (with the transverse field playing the role
of the temperature). It is shown in Fig. 15. The paramagnetic Griffiths region consists
of the area between B0

c and the ferromagnetic phase boundary while the ferromagnetic
Griffiths phase comprises the entire ordered phase.

In contrast to the classical case, the phase boundary Bc(p) does not drop to zero field at
the percolation threshold pc of the lattice. It rather ends at a multicritical point located at
pc and some nonzero field BMCP. This implies that the site-diluted transverse field Ising
model features two different quantum phase transitions, a generic transition at p < pc,
driven by quantum fluctuations and a quantum percolation transition at p = pc (across
the vertical line in Fig. 15), driven by the lattice geometry. By universality, we expect
the generic transition to show the same critical behavior as a three-dimensional version
of the random transverse-field Ising model studied in Sec. 3. The percolation transition
is in a different universality class which was investigated by Senthil and Sachdev [59].

Why are the classical and quantum phase diagrams (Figs. 12 and 15) different? An
intuitive picture of the difference follows from the quantum-to-classical mapping. In
the classical case, the critical temperature drops to zero at pc because the critical infinite
percolation cluster contains so-called red sites. A red site is a site that joins two otherwise
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FIGURE 16. Schematic energy spectrum of a single rare region in the regime B 
 B0
c . The two low-

lying states are the symmetric and antisymmetric combinations of fully polarized “up” and “down” states.
They are separated by a large gap of order J from the rest of the spectrum.

disconnected subclusters. Forming a domain wall at such a red site costs a finite energy
of 2J. The fluctuations of the relative magnetization orientations on the two subclusters
destroy the long-range order. In the quantum case, the red sites turn into red lines that
are infinitely long along the imaginary time direction. This suppresses the orientation
fluctuations between the two subclusters. Long-range order at pc is therefore possible.
A more detailed discussion is given, for example, in Ref. [60].

We now focus on the paramagnetic Griffiths phase and study the contributions of the
rare regions to various observables. As in the classical case, we do this by combining
the rare region probability w(LRR) with the properties of individual rare regions. The
energy spectrum of a single locally ordered region in the regime B 
 B0

c is sketched
in Fig. 16. For zero transverse field, B = 0, the two fully polarized states | ↑↑ . . . ↑〉
and | ↓↓ . . . ↓〉 (all spins “up” or all “down”) are the degenerate ground states of the
rare region. They are separated from all other states by a large energy gap of order J.
If a small field is switched on, the degeneracy is lifted by forming the symmetric and
antisymmetric superpositions | ↑↑ . . . ↑〉±| ↓↓ . . . ↓〉 but the large gap to the other energy
levels remains.

Since we are interested in the low-energy physics of the system, we can neglect all
these high-energy states and treat the rare region as a two-level system. The value of
the tunnel splitting Δ between the two low-lying states | ↑↑ . . . ↑〉± | ↓↓ . . . ↓〉 can be
estimated using perturbation theory in B. In n-th order in B, this produces terms of
the type 〈↑↑ . . . ↑ |(B∑i σ x

i )
n | ↓↓ . . . ↓〉. If the rare region contains N ∼ Ld

RR spins, the
lowest order that gives a nonzero contribution is n = N because each σ x

i operator in the
matrix element can only flip a single spin. We thus arrive at the important conclusion
that the tunnel splitting (or energy gap) Δ must scale like BN . In other words, the gap is
exponentially small in the volume of the rare region,

Δ ∼ BN ∼ exp
[
−aLd

RR

]
(75)

with a ∼ ln(J/B).
We can calculate a rare-region density of states by combining the size dependence

(75) of the energy gap with the probability (65) for finding a rare region. This gives

ρ(ε) =
∫

dLRR w(LRR)δ [ε −Δ(LRR)]∼ ε p/a−1 = ελ−1 = εd/z′−1 . (76)
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We thus find the (quantum) Griffiths phase to be gapless, featuring a power-law density
of states. The exponent characterizing the singularity changes continuously throughout
the Griffiths phase. It is often parameterized in terms of the Griffiths exponent λ = p/a
or the dynamical exponent z′ = ad/p.30 In contrast to the classical case where the
Griffiths singularities are weak essential singularities, the (quantum) Griffiths singularity
in the density of states of the diluted transverse-field Ising model is a much stronger
power-law singularity. If z′ > d, the density of states even diverges for ε → 0.

In the ferromagnetic Griffiths phase, we can use the rare region probability (69)
instead of (65). The resulting density of states is still gapless and singular but takes
the form

ρ(ε) ∼ exp{−c̃[ln(ε0/ε)]1−1/d} (77)

rather than a power law. Here, ε0 represents a microscopic energy scale, and the constant

c̃ = c/a1−1/d changes continuously throughout the ferromagnetic Griffiths phase.

Observables in the quantum Griffiths phase

Thermodynamic observables in the quantum Griffiths phase are easily calculated with
the help of the rare region densities of state (76) or (77). Rare regions (locally ordered
clusters) having gaps ε < T are essentially free. This means both low-lying states are
accessible. In contrast, clusters having gaps ε > T are in their quantum ground state. The
total number n(T ) of free clusters in the paramagnetic Griffiths phase can be obtained
by integrating the density of states (76) up to energy T ,

n(T ) =
∫ T

0
dε ρ(ε) ∼ T d/z′ . (78)

To determine the rare region entropy, we note that each free cluster contributes kB ln(2)
while the clusters having ε > T do not contribute as they are frozen in their quantum
ground state. We thus find

SRR(T ) = kB ln(2)n(T )∼ T d/z′ . (79)

The rare region contribution to the specific heat can be calculated simply by taking the
appropriate derivative

CRR(T ) = T (∂SRR/∂T )∼ T d/z′ . (80)

Each free cluster makes a Curie contribution μ2/T to the uniform magnetic suscepti-
bility. According to (75), the volume (and thus the moment μ) of a rare region depends
logarithmically on its energy gap. The typical moment μ(T ) of a free cluster at tempera-
ture T thus depends only logarithmically on T . This weak dependence can be neglected

30 To see that z′ plays the role of a dynamical exponent, consider the typical distance rtyp between

excitations with energies below ε . Using (76), it follows that rtyp ∼ ε−1/z′ or, equivalently, ε ∼ r−z′
typ .

Thus z′ indeed governs the relation between the energy and length scales in the quantum Griffiths phase.

228



if we are only interested in the leading power-law behavior. The rare region susceptibil-
ity thus reads

χRR(T ) = n(T )μ2/T ∼ T d/z′−1 . (81)

To find the zero-temperature magnetization in a small longitudinal magnetic field h, we
note that all clusters having ε < μh are almost fully polarized while clusters having ε >
μh have negligible magnetization. The magnetization-field curve can thus be estimated
as

mRR(h) =
∫ μh

0
dε ρ(ε)μ ∼ hd/z′ . (82)

Here, we have again neglected the subleading logarithmic dependence of the moment μ
on the energy ε .

Many more observables can be worked out along the same lines including the non-

linear susceptibility χ(3)(T ) ∼ T d/z′−3, the zero-temperature dynamic susceptibility

Imχ(ω) ∼ ωd/z′−1, and the NMR relaxation rate 1/T1 ∼ ωd/z′−2. All these power laws
constitute the famous quantum Griffiths singularities first discovered31 in the 1990’s
[64, 65, 66, 67]. Recent overviews can be found, for example, in the review articles
Refs. [1, 2]. We emphasize that the power-law quantum Griffiths singularities are much
stronger than the classical Griffiths singularities discussed in Sec. 4.2. The magnetic sus-
ceptibility (81) even diverges (when z′ > d) while the system is still in the paramagnetic
phase.

It is instructive the compare the quantum Griffiths singularities (79) – (81) with the
off-critical behavior (59) – (61) of the random transverse-field Ising chain calculated
within the strong-disorder renormalization group. If we insert the correct dimensionality,
d = 1, the two sets of results agree. We thus conclude that the unusual off-critical
behavior of the random-transverse-field Ising chain is a manifestation of the rare region
physics discussed in the present section.

So far, we have focused on observables in the paramagnetic Griffiths phase. By using
the density of states (77) rather than (76), one can also derive the quantum Griffiths
singularities on the ferromagnetic side of the transition.

4.4. Classification of Griffiths (rare region) effects

In the last two subsections, we have compared the Griffiths singularities occurring at
the thermal phase transition in a classical diluted Ising model with those occurring at the
quantum phase transition in the diluted transverse-field Ising model. We have found the
quantum Griffiths singularities to be much stronger as they are characterized by power
laws rather than weak essential singularities. In recent years, rare regions have been
studied in many other disordered classical, quantum, and nonequilibrium systems. The

31 Some of the unusual behavior was already identified by McCoy and Wu [61, 62, 63] in a classical Ising
model with line defects. The transverse-field Ising chain maps onto this model under the quantum-to-
classical mapping. For this reason, quantum Griffiths singularities are sometimes called Griffiths-McCoy
singularities.
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qualitative features of the resulting Griffiths phenomena can be classified according to
the effective dimensionality of the rare regions as was first suggested in Ref. [68] and
further developed in Ref. [1].

To understand this classification, let us return to our simple estimate of the rare region
susceptibility in the Griffiths phase. In general terms, it can be written as

χRR ≈
∫

dLRR w(LRR)χi(LRR) (83)

where w(LRR) is the probability for finding an individual rare region of size LRR and
χi(LRR) is its contribution to the susceptibility. The basic idea is to compare the decrease
of the probability w(LRR) with the increase of χi(LRR) as LRR is increased.

The functional form of w(LRR) is governed by combinatorics, it always decays expo-

nentially with LRR. More specifically, w(LRR) ∼ exp(− p̃Ldr
RR) where p̃ is a nonuniversal

constant and dr is the number of dimensions in which there is randomness. dr = d for
point defects and other kinds of uncorrelated or short-range correlated randomness, but
for extended (line or plane) defects dr < d. The imaginary time dimension is never in-
cluded in dr because quenched randomness is time-independent.

Depending on the behavior of χi(LRR), three qualitatively different classes can be
distinguished:

(A) χi(LRR) increases slower than exponential with LRR. Therefore, the increase in
χi(LRR) cannot overcome the exponential decay of the probability. The contribution
of large rare regions to the susceptibility integral (83) is thus exponentially small.
This case is realized, for instance, in the classical Ising model of Sec. 4.2 where
each rare region makes a Curie contribution μ2(LRR)/T ∼ L2d

RR to χ .

(B) χi(LRR) increases at least exponentially with LRR (but remains finite for any finite
LRR). In this case, the estimate (83) diverges which means that the susceptibility
is dominated by the largest rare regions. The quantum Griffiths singularities of the
transverse-field Ising model of Sec. 4.3 fall into this class because, according to
(75), the zero-temperature susceptibility of a single rare region behaves as 1/Δ ∼
exp(aLd

RR).

(C) In this class, χi(LRR) increases and diverges at some finite LRR. This means that
the cluster undergoes a true phase transition independently of the bulk system. As
different rare regions generally undergo this transition at different values of the
control parameter, this implies that the global phase transition is smeared. We will
discuss this exotic possibility in Sec. 5.

Which of the three classes a system falls into is determined by the relation between
the effective dimensionality dRR of the rare regions and the lower critical dimension d−

c
of the problem. In the case of a quantum phase transition, the imaginary time dimension
needs to be included in dRR. If dRR > d−

c , the rare region can undergo a phase transition
by itself, independently of the bulk. The system is therefore in class C. In the case
dRR < d−

c , an isolated rare region cannot undergo the transition independently, and its
contributions to observables grow like powers of LRR. This transition is therefore in class
A. In the marginal case when the rare regions are right at the lower critical dimension,
dRR = d−

c , they still cannot undergo a transition by themselves, but they “almost can.”
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TABLE 3. Classification of rare region effects at classical, quantum, and non-equilibrium phase
transitions (after Ref. [68]). The first example in each case is a classical transition, the second one is a
quantum phase transition, and the third one, if any, is a nonequilibrium transition. A detailed discussion
of the classification and these examples is given in the reviews, Refs. [1, 2].

Class Rare region Griffiths Global phase Examples
dimension singularities transition classical PT, QPT, non-eq. PT

A dRR < d−
c weak exponential conventional 3D dilute Ising model [69]

dilute bilayer Heisenberg model [70]

B dRR = d−
c strong power-law infinite Ising model with linear defects [61]

randomness random transv.-field Ising model [44]

disordered directed percolation [71]

C dRR > d−
c RRs frozen transition Ising model with planar defects [72]

(undergo PT) smeared itinerant quantum Ising magnet [73]

DP with extended defects [74]

Therefore, the rare region susceptibility (and other observables) increases exponentially
with its volume, putting the system into class B.

The result of these ideas is the classification shown in Table 3. It is expected to hold
for transitions between conventional phases in the presence of random mass disorder
and short-range interactions (such that interactions between the rare regions can be
neglected).

5. SMEARED PHASE TRANSITIONS

In all examples so far, the phase transition (if any) remained sharp in the presence of
disorder. This means that a nonzero order parameter appears via a collective effect of
the entire system; and this onset is associated with a singularity in the free energy. The
reason for the transition remaining sharp is that a finite-size region usually does not
undergo a true phase transition by itself.

However, the arguments in Sec. 4.4 suggest, that the global phase transition would be
smeared rather than sharp if rare regions could develop true static order independently of
the bulk system. In this case, the order parameter (e.g., the magnetization) would develop
gradually when the external control parameter is varied because one spatial region after
the other would undergo the phase transition.

How can an individual rare region undergo a true phase transition? One of the basic
results of statistical physics is that the partition function of a finite-size system is
analytic, and singularities develop only in the thermodynamic limit. This implies that
either (i) the rare regions themselves must be infinitely large or (ii) they must at least be
coupled to infinite baths. The first case is realized, for example, in a three-dimensional
classical Ising model with plane defects [72]. It will be discussed in Sec. 5.1. The second
mechanism can be found in dissipative quantum magnets [73] and will be analyzed in
Sec. 5.2.
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FIGURE 17. Schematic of the layered magnet: layers of two different ferromagnetic materials are
arranged in a random sequence.

5.1. Smearing of a classical phase transition

Randomly layered classical Ising model

Imagine a material composed of a random sequence of layers of two different ferro-
magnetic materials, as sketched in Fig. 17. Nowadays, such structures can be created
using modern nano-technology; magnetic multilayers with systematic variations of the
critical temperature from layer to layer have already been produced [75].

The randomly layered magnet can be modeled by a three-dimensional classical Ising
model

H = −∑
r

J‖z (SrSr+x̂ +SrSr+ŷ)−∑
r

J⊥z SrSr+ẑ (84)

where Sr is the spin at site r, and x̂, ŷ, ẑ are the unit vectors in the coordinate directions.

The interactions J‖z within the layers and J⊥z between the layers are random but depend

on the z coordinate only. For definiteness, let us assume all J⊥z are identical to J while

the J‖z are drawn from a binary probability distribution

J‖i =

{
J (with probability 1− p)
aJ (with probability p) . (85)

Here, 0 < a ≤ 1 parameterizes the values of the weak interactions. p is the probability
for a weak layer while 1− p is the probability for a strong layer.

In the clean limit, p = 0, the Hamiltonian (84) is identical to the usual three-
dimensional Ising model. It undergoes a sharp continuous phase transition at a critical
temperature T 0

c ≈ 4.511J. For nonzero p, the overall tendency towards ferromagnetism
is weakened. However, a large sample contains rare regions consisting of thick slabs of
consecutive strong layers. In contrast to the rare regions considered in the earlier sec-
tions of this article, these slabs are infinite in the x and y directions. Each such region is
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FIGURE 18. Left: Schematic behavior of the magnetization m as a function of the temperature T in the
randomly layered Ising model (84). As the temperature is lowered below the clean critical temperature
T 0

c , the magnetization increases gradually because one slab after the other undergoes the phase transition.
The global transition is thus smeared. Right: Magnetization profile m(z) of a single ferromagnetic rare
region embedded in a paramagnetic bulk.

thus equivalent to a quasi two-dimensional Ising model. As the two-dimensional Ising
model is known to have a ferromagnetic phase, each rare region in our layered magnet
can undergo the phase transition independently of the bulk system.

The thickest slabs (rare regions) will undergo this transition very close to the three-
dimensional bulk critical temperature T 0

c . Thinner slabs order at lower temperatures.
The ferromagnetic slabs are weakly coupled via fluctuations of the paramagnetic bulk,
their magnetizations thus align. As a result, the global magnetization develops gradually
when the temperature is lowered below T 0

c , as is sketched in Fig. 18. This means that the
global phase transition is smeared over a range of temperatures below T 0

c . We emphasize
that even though there is a singular onset of a nonzero magnetization at T 0

c , this point
is not a critical point. Importantly, the initial onset of the global magnetization is not
via a collective effect of the entire system but rather due to the phase transition of one,
particularly thick “strong” slab. This also implies that the correlation length in z direction
remains finite for all T . The resulting magnetization in the tail of the smeared transition
is extremely inhomogeneous in space.

Optimal fluctuation theory

We now use optimal fluctuation theory to determine the behavior in the tail of the
smeared transition [72]. The approach is similar to the calculation by Lifshitz and others
[76, 77, 78] of the electronic density of states in the band tails of doped semiconductors.

As pointed out above, a thick slab of LRR strong layers (i.e., layers with J‖ = J)
undergoes a ferromagnetic phase transition at some temperature Tc(LRR) below the clean
three-dimensional bulk critical temperature T 0

c . We can use the LGW free energy (6) to
determine how Tc(LRR) depends on the slab thickness LRR. If we assume that the slab has
undergone the transition and is embedded in a nonmagnetic bulk, its local magnetization
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profile m(z) must roughly look like the right panel of Fig. 18. The (Gaussian part of the)
free energy density due to this rare region can be estimated as Δ fRR ∼ tm2 +(∇m)2 ≈
tm2+m2/L2

RR. In mean-field theory, the transition of the slab occurs when the coefficient

of m2 vanishes, yielding tc(LRR)∼ Tc(LRR)−T 0
c ∼−1/L2

RR. The mean-field estimate can
be refined using finite-size scaling [25] at the three-dimensional bulk critical point. This
results in

T 0
c −Tc(LRR) ∼ L−φ

RR (86)

where φ is the finite-size scaling shift exponent of the three-dimensional bulk critical
point. It takes the value φ = 1/ν because the three-dimensional Ising model is below its
upper critical dimension of d+

c = 4.
At a given temperature T < T 0

c , all slabs thicker than a critical thickness Lc(T ) ∼
(T 0

c − T )−ν are in the ferromagnetic phase while the rest of the system is still in the
paramagnetic phase. Close to T 0

c , the density of ferromagnetic slabs is very small, thus
they can be considered independent. The total magnetization in the tail of the smeared
transition is therefore simply the sum over all ferromagnetic slabs,

m ∼
∫ ∞

Lc

dLRR w(LRR)m(LRR) . (87)

Here m(LRR) is the magnetization of a single ferromagnetic slab, and w(LRR) is the
probability of finding LRR consecutive strong slabs. This probability is given by the
previous result (65), but with the dimension d replaced by dr = 1 because our layered
Ising model has randomness in one dimension (the z direction) only. Thus, w(LRR) ∼
exp(− p̃LRR) with p̃ =− ln(1− p). While the probability w(LRR) depends exponentially
on the slab thickness, the dependence of the slab magnetization m(LRR) on LRR is at best
a power law. It thus provides a subleading correction to the integral (87). To exponential
accuracy, we find

m ∼ exp(− p̃Lc) ∼ exp[−A(T 0
c −T )−ν ] (88)

with A being a nonuniversal constant.
The magnetization thus decays exponentially in the tail of the smeared transition and

vanishes with an essential singularity at the clean bulk critical temperature T 0
c . It is

important to keep in mind that this total (average) magnetization stems from a very
inhomogeneous spatial distribution. This can be seen in the results of large-scale Monte
Carlo simulations [79] of the layered Ising model that are shown in Fig. 19. Other
observables can be worked out in a similar fashion [72, 79].

We emphasize that the functional form (88) of the magnetization as well as those
of other observables in the tail of the smeared transition are not universal. In contrast
to the behavior at critical points, these functional forms do depend on the details of
the disorder distributions and on how the phase transition is tuned. If one uses, for
example, a Gaussian interaction distribution instead of the binary distribution (85),
the magnetization tail stretches all the way to T = ∞ [72]. Moreover, if one tunes the
phase transition by varying the concentration p of the weak interactions at fixed T , the
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FIGURE 19. Monte-Carlo simulations of a randomly layered Ising model. Left: Total magnetization
m in the tail of the smeared transition for several values of the weak bond probability p. Right: Local
magnetization mi of layer i for one disorder realization at T = 4.425 very close to T 0

c = 4.511. Only one
slab has developed ferromagnetic order, and two or three more seem to be at the verge of ordering while
the bulk magnetization vanishes within the Monte-Carlo noise. The interaction Ji at the corresponding
position is indicated in the lower panel (after Ref. [79]).

magnetization tail behaves exponentially at intermediate p but vanishes as a power-law
for p → 1 [80, 81]. 32

5.2. Smearing of a quantum phase transition

Dissipative transverse-field Ising chain

We now discuss the second possible route to smeared phase transitions in which
individual rare regions undergo their transitions independently because they are coupled
to infinite (dissipative) baths.

We start from the random transverse-field Ising chain (27) that we discussed in
detail in Sec. 3. Imagine that we now couple the z component of each spin to an
independent (infinite) bath of quantum harmonic oscillators. The resulting Hamiltonian,
the dissipative random transverse-field Ising chain, can be written as H = HI +HB +HC.
The Ising model part,

HI =−∑
i

Jiσ z
i σ z

i+1 −∑
i

Biσ x
i , (89)

32 See also the article by Nozadze et al. in this proceedings volume.
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is identical to (27), the bath Hamiltonian takes the form

HB = ∑
k,i

h̄ωk,i

(
a†

k,iak,i +1/2
)

, (90)

and the coupling between the spins and the dissipative baths is given by

HC = ∑
i

σ z
i ∑

k
λk,i

(
a†

k,i +ak,i

)
. (91)

Here, a†
k,i and ak,i are the creation and destruction operators of oscillator k coupled

to spin i, and ωk,i is its frequency. The λk,i parameterize the strength of the coupling
between spins and oscillator baths. The character of the baths depends crucially on the
low-frequency behavior of their spectral densities

Ei(ω) = π ∑
k

λ 2
k,iδ

(
ω −ωk,i

)
. (92)

The most important case is, arguably, Ohmic 33 dissipation for which the spectral density
vanishes linearly with ω in the low frequency limit, Ei = (π/2)αi ω for frequencies
below a cutoff ωc.

The dissipative random transverse-field Ising chain can be attacked by a generaliza-
tion of the strong-disorder renormalization group technique of Sec. 3. This was first done
by implementing the recursion relations (which now also include the renormalizations
of the oscillators) numerically [82, 83]. Later, a complete analytical solution was found
[84, 85]. The renormalization group analysis is mathematically rather involved and thus
beyond the scope of these introductory lectures. Here, we instead develop a heuristic
picture of the rare region properties in the presence of Ohmic dissipation.

Consider again a rare locally ferromagnetic region of length LRR embedded in a para-
magnetic bulk. (This could be a region in which a number of consecutive interactions Ji
are atypically strong or in which a few consecutive transverse fields are atypically weak.)
As discussed in Sec. 4.3, the low-energy spectrum of such a region is identical to that
of a quantum two-level system. When coupled to Ohmic dissipative baths, each rare re-
gion is thus equivalent to a dissipative two-level system which is a famous, paradigmatic
model in quantum physics [86, 87, 88].

Importantly, the dissipative two-level system undergoes a (zero-temperature) quantum
phase transition from a fluctuating ground state (a symmetric superposition of | ↑〉 and
| ↓〉) to a localized ground state (which prefers either | ↑〉 or | ↓〉) as the dissipation
strength α is increased beyond a critical value αc. In our case, the effective dissipation
strength of a rare region is simply the sum over the αi of all baths that couple to the rare
region, it is thus proportional to its size, αeff = ∑i αi ∼ LRR. Consequently, sufficiently
large rare regions have effective dissipation strengths αeff > αc even if the initial (bare)
dissipation strengths αi are weak. Large rare regions therefore localize, i.e., they undergo

33 An Ohmic dissipative bath leads to a friction force that is proportional to the velocity and thus to Ohm’s
law when applied to the motion of charge carriers in a conductor.
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FIGURE 20. Schematic zero-temperature phase diagrams of diluted transverse-field Ising magnets
without (a) and with (b) Ohmic dissipation. In the classical super-paramagnetic phase (CSPM), large
rare regions are frozen and act as classical superspins. The dashed line in (b) marks the crossover between
homogeneous and inhomogeneous order in the smeared transition scenario (after Ref. [89]).

the ferromagnetic quantum phase transition independently of the bulk system. This
implies that the global quantum phase transition is smeared. This conclusion agrees
with the explicit strong-disorder renormalization group calculations [82, 83, 84, 85].
The behavior of observables can be determined either by means of the renormalization
group or by employing an optimal fluctuation approach similar to that of Sec. 5.1.

Higher dimensions

Similar phenomena also arise if we couple Ohmic dissipative oscillator baths to the
two-dimensional or three-dimensional site-diluted transverse-field Ising model (74).
This problem was studied in Ref. [89]. Sufficiently large percolation clusters are on
the localized side of the dissipative two-level system quantum phase transition because
their effective dissipation strength αeff is larger than αc. This implies that their quantum
dynamics is frozen.

Consequently, the phase diagram of the model changes qualitatively compared to
the dissipationless case, as is demonstrated in Fig. 20. For dilutions p < pc, the lattice
remains connected. The large ferromagnetic rare regions thus align with each other. This
leads to a smeared phase transition as B is varied at fixed p [transition (i) in Fig. 20(b)].
The tail of the ferromagnetic phase stretches all the way to the clean critical field Bc,α .
For dilutions p > pc, in contrast, the lattice consists of disconnected clusters. Long-range
ferromagnetic order is thus impossible. The large ferromagnetic rare regions therefore
act as independent superspins. Because their quantum dynamics is frozen, their behavior
is purely classical.

We conclude that the Ohmic dissipation completely destroys the quantum Griffiths
phase. For p < pc, it is replaced by the tail of the smeared ferromagnetic phase transition,
and for p > pc, it is supplanted by a classical super-paramagnetic phase. In contrast to the
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field-driven transition (i), the percolation transition (ii) between the ferromagnetic phase
and the classical super-paramagnet remains sharp because it is driven by the geometry
of the underlying lattice.

We emphasize that all these conclusions hold at zero temperature. At nonzero temper-
atures, the static order of the rare regions is destroyed, and Griffiths singularities may be
present in a transient temperature and energy range. We will come back to this point in
the next subsection.

6. MAGNETIC QUANTUM PHASE TRANSITIONS IN METALS

6.1. Landau-Ginzburg-Wilson theory

A particularly important application of the ideas developed in the last sections are
magnetic quantum phase transitions in metallic materials. The standard theory of quan-
tum phase transitions in (clean) Fermi liquids is the Hertz-Millis theory [90, 91]. It can
be derived by starting from a microscopic Hamiltonian of interacting electrons and inte-
grating out all fermionic degrees of freedom; only the order parameter (magnetization)
fluctuations m(x,τ) are kept in the partition function. The result is a quantum LGW free
energy (or action) of the form

S[m(x,τ)] =
∫

ddx1dτ1

∫
ddx2dτ2 m(x1,τ1)Γ(x1,τ1,x2,τ2)m(x1,τ1)

+u
∫

ddxdτ m4(x,τ)+O(m6) . (93)

The order-parameter m is a scalar for easy-axis (Ising) magnets but a two-component
or three-component vector for the cases of XY or Heisenberg symmetries, respectively.
The two-point vertex Γ(x1,τ1,x2,τ2) is given by its Fourier transform

Γ(q,ωn) = r +q2 + γ(q) |ωn| . (94)

Here, q is the wave number of the order parameter fluctuations, and ωn is a Matsubara
frequency.

In contrast to the example LGW theory (13), the dynamic term γ(q) |ωn| is nonan-
alytic in the frequency. This is an example of the nonanalyticities that generally occur
whenever gapless (soft) modes are integrated out in the derivation of the LGW theory
[28]. Physically, this term accounts for the so-called Landau damping of the order pa-
rameter fluctuations by the excitation of fermionic particle-hole pairs. The wave number
dependence of the prefactor γ(q) depends on the type of quantum phase transition. For a
ferromagnetic transition γ(q) behaves as 1/|q| for q → 0, reflecting the order parameter
conservation in a metallic ferromagnet. For a generic antiferromagnetic transition (as
well as the pair-breaking superconducting transition), γ(q) = γ0 = const for q → 0.34

34 The Hertz-Millis theory does not apply to all quantum phase transitions in metals, and at least two
scenarios leading to its breakdown have been identified. (i) The coupling of the order parameter to other
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To find the LGW theory for the case of a disordered metal, one can repeat the deriva-
tion starting from a model of electrons in the presence a random potential or some other
kind of disorder. Hertz [90] found that the structure of the action remains essentially un-
changed.35 However, the distance from criticality becomes a random function of spatial
position, r → r +δ r(x). This means, the action contains random-mass disorder.

It is instructive to compare the Hertz-Millis action to the LGW theory of the dis-
sipative random-transverse-field Ising model considered in Sec. 5.2. This LGW theory,
which can be obtained by integrating out the Ohmic oscillator baths in the partition func-
tion, turns out to be identical to the Hertz-Millis action with a scalar order parameter and
γ(q) = const. The nonanalytic frequency dependence |ωn| is a reflection of the Ohmic
character of the dissipative baths.

In following, we discuss the properties of quantum phase transitions occurring in
the Hertz-Millis LGW theory with random mass disorder. We first focus on the case
γ(q) = const, valid for antiferromagnetic transitions (and pair-breaking superconducting
transitions). The more complicated ferromagnetic case, γ(q) ∼ 1/q2 will be addressed
later.

Ising symmetry: smeared quantum phase transition

The character of the transition depends crucially on the order-parameter symmetry.
For Ising symmetry, each locally ordered rare region can undergo the quantum phase
transition independently of the bulk system. This follows from the equivalence pointed
out above of the Hertz-Millis theory and the dissipative transverse-field Ising model.
The same conclusion can also be drawn directly from the LGW theory (93,94). After
quantum-to-classical mapping, a rare region is equivalent to a quasi one-dimensional
rod with finite size in the space dimensions, but infinitely long in the imaginary time
direction (see left panel of Fig. 21). As the nonanalytic |ωn| frequency dependence
corresponds to a long-range |τ1 − τ2|−2 interaction in the imaginary time direction,
each individual rare region is equivalent to a one-dimensional Ising model with a 1/τ2

interaction. This model in known to have a phase transition [94, 95] implying that each
rod can order independently. This result was also reached by Millis, Morr, and Schmalian
via an instanton analysis of the Hertz-Millis action [96, 97]. The conclusion of all these
considerations is that the global (zero-temperature) quantum phase transition is smeared
[73]. Observables can be calculated, for instance, by adapting the optimal fluctuation
theory of Sec. 5.1.

As all experiments are performed at finite temperatures, it is important to ask: What
happens to the smeared quantum phase transition as the temperature is raised? In the

(generic) soft modes present in the system can invalidate the entire expansion in powers of the order
parameter [28]. (ii) Additional degrees of freedom other than the order parameter fluctuations become
critical at the transition point. This mechanism seems to play a role at magnetic transitions in some heavy-
fermion compounds [92, 93].
35 In a ferromagnet, γ(q) now behaves as 1/q2 because the electron motion is diffusive rather than
ballistic.
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FIGURE 21. Left: A rare region in the LGW theory (93,94) is finite in space but infinitely long in the
imaginary time direction. Right: Schematic finite-temperature phase diagram near the smeared quantum
phase transition. p stands for the quantum tuning parameter, and CG denotes the cluster glass expected
due to the RKKY interaction between the rare regions in a realistic metal. T ∗ marks the crossover between
fluctuating and frozen rare regions, and the behavior above the microscopic cutoff T0 is nonuniversal.

tail of the smeared transition, the locally ordered rare regions are far apart and thus
only weakly coupled. Their relative alignment is therefore destroyed at a very low
temperature. This leads to an exponential dependence of the critical temperature on the
quantum tuning parameter, as shown in the right panel of Fig. 21. Above the critical
temperature, the rare regions act as independent classical moments.

The behavior at higher temperatures depends on the strength of the damping, i.e., on
the strength (prefactor) of the leading |ωn| frequency dependence compared to the regu-
lar (but subleading) ω2

n term that is always present in the LGW expansion. If the damping
is weak, it becomes important only below a crossover temperature T ∗. Above this tem-
perature, the quantum dynamics of the rare regions is effectively undamped, leading to
the quantum Griffiths singularities of Sec. 4.3 in a wide temperature window [98, 99].
In contrast, if the damping is strong, this window becomes very narrow or completely
unobservable. The actual strength of the damping in realistic metallic magnets has been
discussed controversially in the literature.

As is the case for smeared classical transitions, the properties of smeared quantum
phase transitions are nonuniversal. They depend on the details of the disorder distribu-
tions as well as on how the transition is tuned. The experimentally important case of
tuning by chemical composition is addressed in Refs. [80, 81].

Continuous symmetry: quantum Griffiths singularities

In the case of continuous O(N) order parameter symmetry (which includes XY and
Heisenberg symmetry), the behavior of locally ordered rare regions is qualitatively
different. After the quantum-to-classical mapping, each rare region now corresponds to
a quasi one-dimensional O(N) model with 1/τ2 interactions. These models are known
not to have a phase transition, but they are exactly at their lower critical dimension d−

c
[100, 101, 102]. For this reason, an isolated rare region cannot independently undergo
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the quantum phase transition. However, its characteristic energy depends exponentially
on its volume. According to the classification of rare region effects discussed in Sec. 4.4,
the problem is thus in class B.

This prediction was confirmed by an explicit analysis of the rare region effects in the
LGW theory (93) with O(N) order parameter symmetry [68]. This work established
power-law quantum Griffiths singularities very similar to that of the transverse-field
Ising model discussed in Sec. 4.3.36 Later, Hoyos et al. [104, 105] applied a strong-
disorder renormalization group to this problem. Somewhat surprisingly, they found an
infinite-randomness quantum critical point in the same universality class as the random-
transverse field Ising model.

This result points to an unusual kind of super-universality that is not fully understood.
Normally, critical points are in the same universality class (i.e., they share the same
exponent values) if the symmetries of the problems are the same. However, the random
transverse-field Ising model has discrete Ising order parameter symmetry and undamped
dynamics while the disordered O(N) Hertz-Millis theory has a continuous symmetry
order parameter and Ohmic damping. Nonetheless, the critical points are in the same
universality class.

We emphasize that all these studies assume that the interactions between different
rare regions are weak. Dobrosavljevic and Miranda [106] studied the effects of the long-
range RKKY interaction between magnetic moments. It is not contained in the Hertz-
Millis theory but does exist in realistic metals. They found that this interaction leads to
a spin-glass like freezing of the rare regions at the lowest temperatures (well below the
energy scale of the single rare-region effects) even in the continuous-symmetry case.

6.2. Experiments

Clear-cut experimental verifications of the strong-disorder effects discussed in these
lectures were lacking for a long time. In the last five years, however, a number of
promising experiments have appeared.

Guo et al. [107, 108, 109] studied the ferromagnetic quantum phase transition oc-
curring in the magnetic semiconductor Fe1−xCoxS2 at a concentration xc of about
0.007± 0.002. Close to the critical concentration, the authors found fluctuating mag-
netic moments with sizes significantly larger than the expected spin-1/2 moments of
individual Co atoms in an FeS2 host. This suggests that locally ordered magnetic clus-
ters are forming. The unusual transport, magnetic, and thermodynamic properties in this
concentration range can be described in terms of the quantum Griffiths power laws listed
in section 4.3.

The f -electron Kondo lattice system CePd1−xRhx undergoes a ferromagnetic quantum
phase transition as a function of the rhodium concentration x [110]. CePd is a ferromag-
net with a critical temperature of Tc = 6.6 K while CeRh has a non-magnetic ground
state. The ferromagnetic phase develops a pronounced tail from about x = 0.7 to 0.9.

36 Griffiths singularities appear not just in the thermodynamics but also in transport properties [103].
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FIGURE 22. Temperature-concentration phase diagram of Ni1−xVx showing ferromagnetic (FM), para-
magnetic (PM), quantum Griffiths (GP), and cluster glass (CG) phases. Inset: saturation magnetization
μsat versus x (after Ref. [112]).

Above this tail (at temperatures above Tc), the behavior of the magnetic susceptibility,
the specific heat, and other observables is characterized by nonuniversal power laws in
T whose exponents vary systematically with x [111]. Moreover, at the lowest tempera-
tures, indications of a “cluster glass” are found. All these observations can be attributed
to the scenario outlined in Sec. 6.1 (see Fig. 21).

One of the most convincing verifications of quantum Griffiths behavior in a metallic
Heisenberg magnet can be found in the transition metal alloy Ni1−xVx. Nickel is a
ferromagnetic metal with a high Curie temperature of about Tc = 630 K. Vanadium
substitution quickly suppresses the ferromagnetic order, leading to the phase diagram
shown in Fig. 22. Ubaid-Kassis et al. [112, 113] performed magnetization and a.c.
susceptibility measurements of several samples located just on the paramagnetic side
of the quantum phase transition (samples with vanadium concentrations x between the
critical concentration of about 11% and 15%). The results are summarized in Fig. 23.
The figure shows that the data (for T > 10 K and H > 3000 G) can be well described
by nonuniversal power laws, as predicted in Sec. 4.3 for quantum Griffiths singularities.
The Griffiths exponent λ = d/z′ can be determined from fits of the data to (81) and
(82). As expected in the quantum Griffiths scenario, the values extracted from the
susceptibility and from the magnetization-field curve agree. Moreover, λ vanishes (and
z′ diverges) at the critical point xc ≈ 11.4%, as predicted. We note in passing that the
measurements show indications of a cluster glass at concentrations close to xc and very
low temperatures (below about 1 K), in agreement with the scenario of Ref. [106].

Our final example is the ferromagnetic quantum phase transition that occurs in
Sr1−xCaxRuO3 as a function of composition x. The group of Kézsmarki studied this
transition using a highly sensitive magneto-optical technique [20]. The resulting phase
diagram, which was already presented in Fig. 6, shows a pronounced tail of the fer-
romagnetic phase boundary. The magnetization-concentration curve features a similar
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FIGURE 23. (a) Low-field susceptibility χm versus temperature T for several Ni1−xVx samples with
concentrations x = 11− 15% and (b) low-temperature magnetization Mm vs magnetic field H. Dotted
lines indicate power-law fits for T > 10 K and H > 3000 G in (a) and (b), respectively (after Ref. [112]).

tail. Both tails can be fitted well with the theory of composition-tuned smeared quantum
phase transitions developed in Refs. [80, 81].

The attentive reader may have noticed that all the above examples involve ferromag-
netic quantum phase transitions in metals while the theoretical analysis of Sec. 6.1 fo-
cused on the antiferromagnetic transition. This is not an accident. Somewhat ironically,
all good experimental examples of quantum Griffiths physics appear to be found at ferro-
magnetic transitions while the theory of rare region effects in metals is better developed
for antiferromagnetic transitions. The reason that quantum Griffiths singularities in fer-
romagnetic metals remained unexplored by theory for a long time is the nonlocal charac-
ter |ω |/q2 of the damping term which complicates the theoretical analysis. This problem
was solved very recently in Ref. [114]. The resulting rare region density of states is not

a pure power law but rather takes the form ρ(ε)∼ (1/ε) exp[−λ̃ ln3/5(1/ε)]. The func-
tional forms of observables are changed accordingly. It turns out that these ferromagnetic
Griffiths singularities actually lead to improved fits [114] of the Ni1−xVx data shown in
Fig. 23.

7. CONCLUSIONS AND OUTLOOK

These lectures notes have given an introduction into the effects of random disorder on
phase transitions in quantum systems and into the exotic Griffiths phases occurring in
the vicinity of such transitions.

We have seen that zero-temperature quantum phase transitions generically display
stronger disorder effects than thermal (classical) phase transitions. The reason is that
quenched disorder is perfectly correlated in the imaginary time direction which needs to
be taken into account at a quantum phase transition. At zero temperature, the defects are
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effectively infinite in this direction, enhancing their effects.
This implies that similarly strong disorder effects should occur at thermal transitions

in the presence of extended defects. This has indeed been observed not just in the famous
McCoy-Wu model [61, 62, 63] or in the layered classical Ising model [79] discussed in
Sec. 5.1, but also in randomly layered Heisenberg [115, 116] and XY [117] models.
The latter problem is particularly interesting because it applies to the superfluid phase
transition of ultracold bosons [118].

Two different classifications of disorder effects have emerged from our discussion.
First, one can classify critical points according to the behavior of the average disorder
strength in the limit of large length scales [119]. Three cases can be distinguished. (i)
If the Harris criterion is fulfilled, the disorder strength goes to zero, and the critical
behavior is identical to that of the clean system. The other two cases occur if the Harris
criterion is violated. (ii) If the effective disorder strength remains nonzero and finite
in the large-length scale limit, the clean critical behavior is unstable. The disordered
critical point still features conventional power-law scaling, but with exponents that differ
from the clean ones. (iii) If the effective disorder strength diverges, the resulting exotic
infinite-randomness critical point features activated (exponential) dynamical scaling
rather than the usual power-law scaling. Smeared phase transitions do not fit very well
into this classification scheme because qualitatively new physics (namely, the freezing
of the locally ordered rare regions) happens at a finite length scale, destroying the critical
point.

The second classification [68, 1] focuses on the properties of the rare regions and
was discussed in Sec. 4.4. Depending on the effective dimensionality dRR of the rare
regions, the following classes can be distinguished. (A) The rare regions are below the
lower critical dimension d−

c of the problem. This leads to (exponentially) weak Griffiths
singularities and critical points with conventional scaling. (B) If the rare regions are
right at the lower critical dimension (but still cannot order independently) the Griffiths
singularities are of power-law type and the critical point is an exotic infinite-randomness
critical point. (C) If the rare regions are above the lower critical dimension, they can
undergo the phase transition independently of the bulk system. The global transition is
thus smeared. These two classifications are not independent of each other, as can be seen
in Table 3. Together, they form the basis of our current understanding of quantum phase
transitions in the presence of random-mass disorder.

The scenarios developed in these lectures apply to quantum phase transitions that can
be described by Landau-Ginzburg-Wilson order parameter field theories with real ac-
tions (such that the quantum-to-classical mapping is valid). The effects of disorder on
other, unconventional quantum phase transitions is less well understood. This includes
transitions in Fermi liquids not described by the Hertz-Millis theory, Kondo lattice sys-
tems, quantum magnets in which the Berry phases are important, or other systems with
topological excitations. Some such transitions have already been studied and revealed
novel, exotic types of phase transitions. For example, Fernandes and Schmalian studied
the quantum phase transition in a diluted Josephson junction array [120]. They found
that a topological Berry phase in this problem renders the critical exponents complex, a
striking deviation from the Landau paradigm.

A systematic investigation of disorder effects at unconventional (non-Landau) transi-
tions remains a task for the future.
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