Hw 3:

- 1. This is a standard problem and is solved in most textbooks, but it is worth your while doing from scratch. As you know, the electric charge of a stationary charge q at the origin is $E^i = qx^i/r^3$, where $r^2 \equiv \vec{x} \cdot \vec{x}$.
 - (a) Determine the electric and magnetic fields of a charge q moving at constant speed v along a line parallel the x^3 -axis (*i.e.* z-axis), going through the x^1 -axis (x-axis) a distance b away from the origin at time t = 0.
 - (b) Make some graphical representations of your results (plots of magnitudes, sketches of directions of fields).
 - (c) Discuss the super-relativistic limit $v \to c$.
- 2. What is the electrostatic potential and electric field of a uniformly charged straight wire of length 2L for points on the midplane of the wire? (By points on the midplane we mean a plane perpendicular to the wire that bisects it). *Hint:* Solve the Poisson equation using the method of Green's function.
- 3. The world line of a point particle of charge q is $y^{\mu}(\lambda)$. The corresponding charge density is $\rho(x^0, \vec{x}) = q \delta^{(3)}(\vec{x} \vec{y}(\lambda))$. You are free to choose the parameter λ to best suit your needs.
 - (a) Determine the corresponding current density $\vec{j}(x^0, \vec{x})$.
 - (b) For the special case $y^{\mu} = (x^0, \vec{v}x^0)$ with \vec{v} a constant velocity, check explicitly that ρ and \vec{j} transform as components of the 4-vector current j^{μ} under boosts Λ in the x^1 direction, that is, from the explicit form of j^{μ} and of a boost it follows that $j'^{\mu}(x) = \Lambda^{\mu}{}_{\nu} j^{\nu}(\Lambda^{-1}x)$. It should not be difficult for you to extend this exercise to the arbitrary case $y^{\mu} = (x^0, \vec{y}(x^0))$ (although not required, give it a try!).
 - (c) Verify that these satisfy the continuity equation.
- 4. Using the retarded Green function, determine the electric and magnetic fields of a point particle of charge q moving in a straight line at constant speed.
 - (a) To this effect, first compute the 4-vector potential due to this point charge (in Lorentz gauge).
 - (b) Use this result to compute \vec{E} and \vec{B} .
 - (c) Compare your result with that of problem 1