Chapter 4: Fields of Moving Charges

Lienard-Wiechert potential & field

To determine the field due to a point charge in arbitrary motion, given by a specified trajectory \(y^0(x) \) (we use \(y^0 = x^0 \)), set up an auxiliary point (the argument of \(\Phi \)) and use the retarded Green's function \(\Phi(x,x_0) \). Recall

\[
\Phi(x,x_0) = \frac{G(x,x_0)}{\gamma_{\perp}}
\]

with \(\frac{G(x,x_0)}{\gamma_{\perp}} = \frac{\delta(\vec{r})}{\gamma} \)

so that \(G_{\perp}(x) = \frac{1}{4\pi c_0^2} \delta(x^0 - x_0) \)

And

\[
\hat{A}_\mu(x) = \hat{A}_{\mu}^i(x) + \int_{x^0 - \infty}^{x^0} d\tau^0 \, G_{\perp}(x,x_0) \frac{\partial u^\alpha(x)}{\partial \tau^0}(x_0)
\]

(\(\alpha \)Call \(\partial^2 \hat{A}_\mu = \frac{\mu}{c^2} \) in Lorentz gauge)

Notice that the \(\delta \)-function in \(\Phi \) means

that the field at \((x',x') \) is determined by the charge at the retarded time \(x_r = x_0 + \frac{1}{c} r \), given by \(x_0^0 - x_r^0 = \tau_0 - \frac{1}{c} r \)

where \(r \) is the distance from the charge to \(x' \) at time \(t_0 \).

\(\hat{A}_\mu(x) \) has \(\delta \hat{A}_\mu = 0 \) and has a simple interpretation: if the charge is infinitely far away as \(t - \infty \), then the only contribution to \(\hat{A}_\mu(x) \) is from \(\hat{A}_\mu \) near the "initial" time \(t = \infty \) of \(\hat{A}_\mu(x) \), specified at \(t = \infty \). We set it to zero (can add it back at no cost).

The 4-current of the point charge \(q \) is

\[
\mathcal{J}^\mu(x) = \frac{q}{c} \delta^\mu_0 \delta(x-y)
\]

Trick: multiply by \(\int dx^0 \delta(x^0 - y^0) \frac{d\mathcal{J}}{dx^0} = 1 \) to obtain a covariant expression and, more usefully, a \(\delta \)

\[
\delta(x) = \int \frac{d^4k}{(2\pi)^4} \frac{\delta^\mu_0(\vec{k})}{\omega_k} \delta^0(x - y) \] where \(\omega_k = \frac{d\mathcal{J}}{dx^0} \)

So we have

\[
\hat{A}_\mu(x) = \int \frac{d^4k}{(2\pi)^4} \frac{\delta^\mu_0(\vec{k})}{\omega_k} \frac{d\mathcal{J}}{dx^0} G_{\perp}(x,x_0) \frac{\partial u^\alpha(x)}{\partial \tau^0}(x_0)
\]

Then we have two ways to do the integral. The elegant way involves expressing \(G_{\perp}(x,x_0) \) in a Lorentz invariant form: since \(x^0 = \infty \) is on the future light cone, consider

\[
\delta(x^0 - \infty) = \delta(x^0 - \infty) \Theta(x^0) = \frac{\delta(x^0 - \infty) \Theta(x^0)}{2\tau_0}
\]

So

\[
\hat{A}_\mu(x) = \frac{q}{c} \int \frac{d^4k}{(2\pi)^4} \frac{\delta^\mu_0(\vec{k})}{\omega_k} \frac{d\mathcal{J}}{dx^0} G_{\perp}(x,x_0) \frac{\partial u^\alpha(x)}{\partial \tau^0}(x_0)
\]

\[
\Rightarrow \hat{A}_\mu(x) = \frac{q}{c} \int \frac{d^4k}{(2\pi)^4} \frac{\delta^\mu_0(\vec{k})}{\omega_k} \frac{d\mathcal{J}}{dx^0} G_{\perp}(x,x_0) \frac{\partial u^\alpha(x)}{\partial \tau^0}(x_0)
\]

Lienard-Wiechert potential
Here, evaluated at λ_0 mean, as anticipated, at retarded time: λ_0 is the solution to

$$(x - y(\lambda_0)) = 0 \quad \text{with} \quad x > y(\lambda_0)$$

which of course is just

$$y(\lambda) = x^0 - |x - y(\lambda)|$$

The alternative way is to use $G_{\mu\nu}(x) = \frac{1}{\sqrt{-g}} \delta(x - \hat{x})$ directly:

$$A_\mu(x) = \frac{q}{\sqrt{-g}} \int d^4y \frac{\epsilon_\mu}{\sqrt{-g}} \delta(x - y)$$

where

$$\frac{d}{d\lambda}(y_\mu + x_\lambda) = \frac{\partial y_\mu}{\partial \lambda} + \frac{\partial x_\lambda}{\partial \lambda}$$

This equals the previous expression, since

$$\int d^4y \frac{1}{\sqrt{-g}} \int [\frac{\partial y_\mu}{\partial \lambda} - \frac{\partial x_\mu}{\partial \lambda}] = \frac{1}{\sqrt{-g}} \frac{d}{d\lambda}(y - x) = \frac{d}{d\lambda}(x - y)$$

Let's write the potentials in terms of the velocity $\vec{\beta}$ of the charge and the distance R from retarded charge to x. Using $x = y^0 \frac{dy^0}{dy^0} = (1, \vec{\beta})$. As above,

$$A_\mu(x) = \frac{q}{\sqrt{-g_{\mu\lambda}}} \frac{1}{\sqrt{-g}} \frac{\partial y_\mu - \partial x_\mu}{\partial \lambda} = q \frac{(1, \vec{\beta})}{R(1 - \vec{\beta}^2)}$$

where $\vec{\beta}$ is at λ_0 (retarded).

We can also compute \vec{E} and \vec{B}. The complication is that in this $\frac{d}{d\lambda}$ we are changing not just x, but also λ_0 (think of $\lambda_0 = \lambda_0(x)$ determined by $\lambda(x(\lambda)) = 0$).

$$(x - y(\lambda)) = 0 \quad \text{and} \quad (x + \delta x - y(\lambda + \delta \lambda)^2 = 0 \quad \text{or} \quad (x + \delta x - y(\lambda + \delta \lambda))^2 = 0$$

For $F_{\mu\nu}$ we need $\frac{d}{d\lambda}$, and for μ's:

$$\frac{\partial y_\mu}{\partial \lambda} = \frac{\partial x_\mu}{\partial \lambda}$$

For E_μ we need:

$$\frac{d}{d\lambda}(x - y) = \frac{d}{d\lambda}(x - y) = 0$$

and

$$\frac{d}{d\lambda} y_\mu = \frac{d}{d\lambda} y_\mu = 0$$

where $a_\mu = \frac{\partial y_\mu}{\partial \lambda} = \frac{\partial y_\mu}{\partial \lambda} = 0$. So finally $y_\mu = (x - y) \frac{dy_\mu}{dy_\mu}$
Then \[F_{\mu \nu} = \partial_{\mu} \left(\frac{e_q \phi(x)}{\sqrt{1 - v^2 \cdot v}} \right) - \mu_{\mu}^{} \nu \]

\[= \frac{q}{\sqrt{(x-y) \cdot v}} \left\{ (x-y)_\mu \nabla_{\nu} \left[\partial_{\mu} \phi(x) - \frac{e_q \phi(x) \cdot v}{\sqrt{(x-y) \cdot v}} \right] \right\} - \mu_{\mu}^{} \nu \]

This gives \(\vec{E} \) and \(B \) in terms of retarded \(\phi(x) \), \(v(x) \), and \(\rho(x) \). Note that \(\vec{E} \) is reparameterization invariant. It is useful to write \(\phi \) more explicitly in terms of \(\vec{B}, \vec{R} \) and \(t \). So the \(\gamma = x^0. \)

Let us separate this into the \(x \)-dependent part \(F_{\mu \nu}^{\text{acc}} \) and \(x \)-invariant \(F_{\mu \nu}^{\text{rel}} \),

\[F_{\mu \nu}^{\text{acc}} = \frac{q}{\sqrt{(x-y) \cdot v}} \left(\alpha_{\mu} - \nu_{\nu} \frac{(x-y)_\mu}{\sqrt{(x-y) \cdot v}} \right) - \mu_{\mu}^{} \nu \]

\[F_{\mu \nu}^{\text{rel}} = \frac{q}{\sqrt{(x-y) \cdot v}} \left(\frac{(x-y)_\mu \nu_{\nu} - (x-y)_\nu \nu_{\mu}}{\sqrt{(x-y) \cdot v}} \right) \]

Then \(\vec{u}^1 = \vec{R} = (1, \vec{0}) \), \((x-y) \cdot v = 15 \cdot \sqrt{v^2} \) \(= (2-v \cdot \vec{0}) \) \(\vec{p} = \vec{R} \) \(= (1, \vec{R}) \)

\[F_{\mu \nu}^{\text{rel}} = \frac{q}{\delta^2} \frac{v^2 (x+y) \cdot v - v^2}{(1-v^2 \vec{R})^2} \Rightarrow \vec{E} \cdot \vec{B} = -\frac{q}{\delta^2} \frac{1}{(1-v^2 \vec{R})^2} \vec{R} \cdot \vec{B} = \frac{q}{\delta^2} \frac{\vec{R} \cdot \vec{B}}{(1-v^2 \vec{R})^2} \]

and \(\vec{B} \cdot \vec{B} = \vec{E} \cdot \vec{E} = \frac{q}{\delta^2} \frac{\vec{R} \cdot \vec{B}}{(1-v^2 \vec{R})^2} \frac{\vec{R} \cdot \vec{E}}{(1-v^2 \vec{R})^2} = \frac{q}{\delta^2} \frac{\vec{R} \cdot \vec{B} \cdot \vec{E}}{(1-v^2 \vec{R})^2} \]

which we recognize as the \(\vec{E} \times \vec{B} \) fields of a moving charge with \(\vec{p} \) constant.

But for \(\vec{B} \) we have additional terms. We need \(\vec{A}^1 = \vec{B} \) to be a solution of the equations of motion, so we need \(\vec{A}^1 = \frac{\partial}{\partial y} \phi(x) = \frac{\partial}{\partial y} \phi(0, 0) = 0, \vec{A} \)

\[\vec{E}^{\text{acc}} = -\frac{q}{\delta^2} \frac{1}{(1-v^2 \vec{R})^2} \left[\vec{R} \left(\vec{a} + \frac{\vec{B} \cdot \vec{a}}{1-v^2 \vec{R}} \right) - \vec{R} \left(\vec{a} + \frac{\vec{E} \cdot \vec{a}}{1-v^2 \vec{R}} \right) \right] \]

\[= -\frac{q}{\delta^2} \frac{1}{(1-v^2 \vec{R})^2} \left[\vec{R} \left(\vec{a} + \frac{\vec{B} \cdot \vec{a}}{1-v^2 \vec{R}} \right) - \vec{R} \left(\vec{a} + \frac{\vec{E} \cdot \vec{a}}{1-v^2 \vec{R}} \right) \right] \]

\[= -\frac{q}{\delta^2} \frac{1}{(1-v^2 \vec{R})^2} \left[\vec{R} \left(\vec{a} + \frac{\vec{B} \cdot \vec{a}}{1-v^2 \vec{R}} \right) - \vec{R} \left(\vec{a} + \frac{\vec{E} \cdot \vec{a}}{1-v^2 \vec{R}} \right) \right] \]

Note that \(\vec{B}^{\text{acc}} = \vec{R} \times \vec{E}^{\text{acc}} \) and \(\left| \vec{E}^{\text{acc}} \right| \approx \frac{1}{R} \). So \(\vec{E} \approx \frac{1}{R} \frac{e}{R} \) as a "radiation field"

\[\vec{B}^{\text{acc}} = \frac{\vec{R}}{R} \times \frac{e}{(1-v^2 \vec{R})^2} \left[\vec{R} \left(\vec{a} + \frac{\vec{B} \cdot \vec{a}}{1-v^2 \vec{R}} \right) - \vec{R} \left(\vec{a} + \frac{\vec{E} \cdot \vec{a}}{1-v^2 \vec{R}} \right) \right] \]

\[= \frac{\vec{R}}{R} \left(\vec{a} + \frac{\vec{B} \cdot \vec{a}}{1-v^2 \vec{R}} \right) \]
At long distances only the radiation field is significant. It has \(\vec{E} \perp \vec{B} \) perpendicular to \(\vec{R} \), the retarded position vector, and are perpendicular to each other.

Non-relativistic limit: \(E_{\text{acc}} = \frac{\mu}{R} \frac{\vec{R} \times (\vec{R} \times \vec{a})}{c^2 R} = \frac{\mu}{c^2 R} \vec{a} \times (\vec{R} \times \vec{a}) \)

For linear motion, \(\vec{a} = \beta \dot{\vec{a}} = \dot{E}_{\text{acc}} = \frac{\mu}{c^2 R} \frac{\vec{a} \times \beta}{(1 - \beta^2)^{3/2}} \left[\vec{R} \times (\vec{R} \times \vec{a}) \right] \)

Power Radiated

Power flux: energy flux

\[
\vec{S} = \frac{c}{u} \vec{E} \times \vec{B} = \frac{c}{u} |\vec{E}|^2 \hat{R} \quad (u = \frac{c}{\sqrt{1 + \beta^2}}, \, \text{with} \, \beta = \frac{u}{c})
\]

Consider a sphere centered at \(R, \) the retarded charge position \(\vec{x}(R) \).

The energy

\[
\text{d}^3 \rho = \text{power} \quad \text{per unit time} \quad \text{through area} = \left(\vec{S} \cdot \hat{R} \right) \left(\rho \text{d}^2 \Omega \right)
\]

\[
= \frac{c}{u} \frac{\text{d}^3 \rho}{\text{d} S^2} = \frac{c}{u} |\vec{E}|^2 \left(\frac{1}{(1 - \beta^2)^{3/2}} \left| \vec{R} \times (\vec{R} \times \vec{a}) \right| \right)^2
\]

Noting that \(R \to \infty \) the contribution of \(E_{\text{rad}} \) vanishes, here we have neglected it here.

This expression gives us energy per unit time in the inertial frame. We would like to lower radiated as seen in a frame simultaneously at rest with the moving particle, \(\text{d} \rho = \text{d} \rho \times \vec{x} \times \vec{v} \). Now, recall

\[
\frac{\partial x^o}{\partial x^i} = \frac{(x - x^o)}{(x - x^o)_0} \quad \text{so that} \quad \frac{\partial x^o}{\partial x^i} = \frac{1}{1 - \beta}
\]

and we have then

\[
\frac{\text{d} \rho}{\text{d} \Omega} = \frac{c}{u} \frac{1}{(1 - \beta^2)^{3/2}} \left| \vec{R} \times (\vec{R} \times \vec{a}) \right|^2
\]

(The reason for using time as seen by particle \(x^o \) is (i) unit inertial power radiated between particles at \(x^o \) and \(x^o \), and (ii) \(\text{d} \rho \) is then a Lorentz invariant: see below).
The relativistic expression presents some challenges with
by integration:

\[
\frac{d\mathbf{p}}{d\tau} = \frac{e q^2}{4\pi} \frac{1}{(1-\beta^2)^{3/2}} \left[\mathbf{a} \cdot (1-\hat{\mathbf{a}} \cdot \hat{\mathbf{p}}) + \frac{1}{2} \mathbf{a} \cdot (\hat{\mathbf{a}} \cdot (1-\hat{\mathbf{a}} \cdot \hat{\mathbf{p}})) \right]^{2}
\]

To write this in terms of angles we pick a frame (\(\hat{\mathbf{e}} = \hat{x} \hat{z}\) in xz plane)

\[
\mathbf{a} = \alpha (\sin \theta, 0, \cos \theta)
\]

\[
\mathbf{p} = \rho (0, 0, 1)
\]

\[
\hat{\mathbf{a}} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
\]

\[
\mathbf{p} \cdot \hat{\mathbf{a}} = \rho \alpha \sin \theta \cos \phi \sin \theta \sin \phi \cos \theta
\]

\[(\text{and } \mathbf{a} \cdot \mathbf{p} \text{ is independent of } d\Omega)\]

Now \(\int d\Omega\) is trivial, with \(\chi = \alpha \theta\)

\[
P = \frac{e q^2}{2} \int d\lambda \frac{1}{(1-\beta^2)^{3/2}} \left[\mathbf{a} \cdot (1-\hat{\mathbf{a}} \cdot \hat{\mathbf{p}}) + \frac{1}{2} \mathbf{a} \cdot (\hat{\mathbf{a}} \cdot (1-\hat{\mathbf{a}} \cdot \hat{\mathbf{p}})) \right]^{2}
\]

(We used \(\int d\theta \int d\phi (0, \sin \theta, \cos \theta) = 2 \pi (0, 0, 1).\) The remaining integral is straightforward but tedious (and we have Mathematica):

\[
P = \frac{e q^2}{2} \left[\frac{1}{2} \mathbf{a} \cdot \left(1 - \frac{s^2}{(1-\beta^2)^2}\right) \right]
\]

where \(s^2 = \sin^2 \beta = 1 \Gamma \hat{\mathbf{p}}^2\)

\[
\text{or } \quad P = \frac{2}{3} \frac{e q^2}{2} \left[\mathbf{a}^2 - (\mathbf{p} \cdot \mathbf{a})^2 \right]
\]

Lienard (1933)

In the non-relativistic limit, \(\beta \ll 1\), we obtain "Larmor's formula":

\[
P = \frac{2}{3} \frac{e q^2}{2} \mathbf{a}^2
\]

(NE limit, "Larmor's formula").
Comment: It is easy to obtain Larmor's formula from the non-relativistic limit of

\[\frac{d\mathbf{p}'}{dt} = \frac{e}{m} \left[\mathbf{\Omega} \times (\mathbf{R} - \mathbf{p}) \times \mathbf{\dot{a}} \right] \]

Then \(\mathbf{p}' = \mathbf{p} \) and integrating over \(d\Omega \) (recall \(\mathbf{a} = \frac{\mathbf{v}}{c} \))

\[\mathbf{p} = \frac{2}{3} \frac{q^{2}a^{2}}{c^{2}} \]

Many textbooks use the Lighthill's formula as follows: argue that \(\mathbf{p} \) is frame invariant, then find a Lorentz scalar limit reduces to Larmor's formula in the NR limit.

The 1st part of the argument is Huygens' law \(\frac{d\mathbf{p}}{dt} = \frac{\mathbf{F}}{m} \) as measured by comoving oberrer.

2nd part: substitute \(\dot{\mathbf{a}} = \frac{1}{m} \frac{d\mathbf{F}}{dt} \) in Larmor's:

\[\mathbf{a} \times = \frac{1}{m} \frac{d\mathbf{F}}{dt} \times \mathbf{a} = \frac{1}{m} \frac{d}{dt} \left[\mathbf{a} \frac{d\mathbf{p}}{ds} \frac{d\mathbf{F}}{ds} \right] \]

where the last step is valid in the NR limit (we'll verify below).

\[\frac{d^{2}\mathbf{F}}{ds^{2}} \frac{d\mathbf{p}}{ds} = -\frac{c^{2}}{m^{2}} \frac{d}{dt} \left[\left(\frac{d\mathbf{p}}{dt} \right)^{2} - \left(\frac{d\mathbf{m}}{dt} \mathbf{\dot{\mathbf{p}}} \right)^{2} \right] \]

\[= -c^{2}\gamma^{2} \left[\left(\gamma^{2} \mathbf{\dot{p}} \right) \left(\gamma^{2} \mathbf{\dot{p}} \right) - \left(\gamma^{2} \mathbf{\dot{p}} \right) \left(\gamma^{2} \mathbf{\dot{p}} \right) \right] \]

\[= -c^{2}\gamma^{2} \left[\gamma^{4} \left(\mathbf{\dot{p}} \right)^{2} - 2 \gamma^{4} \mathbf{\dot{p}} \mathbf{\dot{p}} \right] \]

\[= c^{2}\gamma^{2} \left[\mathbf{\dot{p}}^{2} \left(\mathbf{\dot{p}} \right) + \left(\mathbf{\dot{p}} \right)^{2} \right] \]

\[= c^{2}\gamma^{2} \left[\mathbf{\dot{p}}^{2} - \left(\mathbf{\dot{p}} \mathbf{\dot{p}} \right) \right] = c^{2}\gamma^{2} \left[\mathbf{\dot{p}}^{2} - \left(\mathbf{\dot{p}} \mathbf{\dot{p}} \right) \right] \]

\[\mathbf{p} = \frac{2}{3} \frac{q^{2}a^{2}}{c^{2}} \] as before.
Angular Distribution

We already have the basic equation for this in
\[
\frac{d\Phi}{d\Omega} \quad \text{given in terms of } \theta \times \phi \text{ angles in } p \leq q \text{ above.}
\]

We look at special cases:

1. Linear motion: \(\vec{p} \parallel \vec{\alpha} \).

\(\frac{d\Phi}{d\Omega} \) is independent of \(\alpha \) (symmetric under rotations about an axis defined by \(\vec{p} \)).

Explicitly
\[
\frac{d\Phi}{d\Omega} = \frac{c q^2}{4 \pi} \left(\frac{1}{1-\beta^2} \right)^5 \left| \frac{\hat{\alpha} \times (\hat{\alpha} \times \vec{p})}{\vec{p}} \right|^2 \\
= \frac{c q^2}{4 \pi} \frac{\alpha^2 \sin^2 \theta}{(1-\beta \cos \theta)^5}
\]

The direction of maximum radiation can be found analytically, but can also be quickly approximated by noting that for \(\beta \gg 1 \), it is at small \(\theta \) and the denominator is small for
\[
1-\beta \cos \theta \approx 1-\beta + \frac{1}{2} \cos^2 \theta = \text{small}, \quad \text{for } \frac{1}{\beta} = \frac{1-\beta}{1+\beta} \approx \frac{2}{1+\beta}
\]

\(\Rightarrow \theta^2 \approx \frac{1}{\beta^2} \Rightarrow \frac{d\Phi}{d\Omega} \) is peaked at \(\theta = \frac{1}{\beta} < 1 \), but \(\Phi \) vanishes at \(\theta = 0 \)

\[
\frac{d\Phi}{d\Omega} \approx \frac{c q^2}{4 \pi} \left(\frac{1}{1-\beta} \right)^5 \frac{\beta}{(1+\beta)^5}
\]

or
\[
\frac{d\Phi}{d\Omega} \approx \frac{c q^2}{4 \pi} \frac{\beta^2}{(1+\beta)^5}
\]

In the opposite limit, \(\beta < 1 \)
\[
\frac{d\Phi}{d\Omega} \approx \frac{c q^2}{4 \pi} \sin^2 \theta \quad \text{(Larmor), so } \phi_{\text{max}} = \frac{\pi}{2}
\]

Radiation pattern

(\(\text{The distance from origin represents } \frac{d\Phi}{d\Omega} \))
Another case of interest is when \(\vec{\beta} \perp \vec{\alpha} \), as in circular motion. Then, from previous lecture

\[
\frac{d\mathcal{P}}{d\Omega} = \frac{ca^2}{\mathcal{A}} \frac{\alpha^4}{(1 - \vec{\alpha} \cdot \vec{\beta})^5} \left[\left(-\vec{\alpha} \cdot \vec{\beta} \right)^2 - (\vec{\alpha} \cdot \vec{\beta}) (1 - \vec{\alpha} \cdot \vec{\beta}) + 2 \vec{\alpha} \cdot \vec{\beta} \vec{\hat{\alpha}} \cdot \vec{\hat{\beta}} (1 - \vec{\alpha} \cdot \vec{\beta}) \right]
\]

\[
= \frac{ca^2}{\mathcal{A}} \frac{\alpha^4}{(1 - \vec{\alpha} \cdot \vec{\beta})^5} \left[(1 - \vec{\alpha} \cdot \vec{\beta})^3 - (\vec{\alpha} \cdot \vec{\beta})^3 (1 - \vec{\alpha} \cdot \vec{\beta}) \right]
\]

In the coordinate system we used earlier (\(\vec{\beta} = \hat{z}, \vec{\alpha} = x \) plane), we have now \(\hat{\alpha} = \hat{x} \), and \(\hat{\beta} = \cos \theta \hat{x} \). \(\hat{\alpha} = \sin \theta \cos \phi \)

\(\hat{\alpha} \), \(\hat{\beta} \), and \(\hat{\alpha} \cdot \hat{\beta} \) are given in the figure.

\[
\frac{d\mathcal{P}}{d\Omega} = \frac{ca^2}{\mathcal{A}} \frac{\alpha^4}{(1 - \vec{\alpha} \cdot \vec{\beta})^5} \left[\frac{1}{(1 - \rho \cos \theta)^3} - \frac{(1 - \rho \cos \theta)^3}{(1 - \rho \cos \theta)^5} \right]
\]

Using \(1 - \rho \cos \theta \approx \frac{1}{2} (1 - \rho \cos \theta)^2 \) for \(\rho \approx 1 \), we have

\[
\frac{d\mathcal{P}}{d\Omega} \approx \frac{2ca^2}{\mathcal{A}} \frac{\alpha^4}{\rho} \left[1 - \frac{4 \rho \cos \theta \rho \sin \phi}{\rho^2 + (\rho \cos \theta)^2} \right] \frac{\rho}{\rho^2 + (\rho \cos \theta)^2} \frac{d\Omega}{d\Omega}
\]

The radiation is emitted preferentially in the direction of \(\vec{\beta} \), to within a cone of angular size \(\theta \approx \frac{\alpha}{\rho} \). There is slightly more power radiated off the \(\vec{z} - \vec{\beta} \) plane (i.e. \(\phi = \frac{\pi}{2} \)) than on plane (\(\rho = 0 \)), but the difference is order \(\frac{1}{\rho^4} \).
At small β, retaining lowest order in β:

\[
\frac{d\mathbf{p}}{d\Omega} = \frac{e^2}{4\pi} \left[1 - 5\sin^2\theta \cos^2 \phi + 5\cos \theta \left(3 - 5 \sin^2 \theta \cos^2 \phi \right) \right]
\]

\[
\frac{e^2}{4\pi} \begin{cases}
0, & \phi = 0 \\
\frac{\rho}{3\rho \cos \phi}, & \phi = \frac{\pi}{2}
\end{cases}
\]

Patterns:

\[
\begin{array}{c}
\text{\textbf{v}} \\
\text{\textbf{\rho}}
\end{array}
\]

\[
\begin{array}{c}
\text{\textbf{\rho}} \\
\text{\textbf{\rho}}
\end{array}
\]

How about polarization? Recall we first derived (Lienard-Weichert):

\[
\mathbf{E}_{rad} = -\frac{q}{R} \left(\frac{1}{1-\beta^2} \right) \left[\mathbf{k} - \frac{\mathbf{k} \cdot \mathbf{\hat{r}}}{R} \mathbf{\hat{r}} + \frac{\mathbf{\hat{r}}}{R} \right]
\]

For $\phi = 0$, radiation is mostly along $\mathbf{\hat{r}} = \mathbf{\hat{r}}$, so focusing on $\mathbf{\hat{r}}$ direction and noting $\mathbf{\hat{r}} \cdot \mathbf{\hat{r}} = 0$ for circular motion, $\mathbf{E}_{rad} \approx -\frac{q}{R} \frac{1}{1-\beta^2} \mathbf{\hat{r}}$

That is, fully in the plane of the circular motion to good approximation.
Arbitrary motion with \(r \gg 1 \) and into a spectral decomposition

\[
\text{Heuristic discussion of radiation from } \quad \text{Ref: Jackson 14.11}
\]

\[
\text{Arbitrary relativistic motion } (r \gg 1): \quad \text{Radiation in forward cone } \omega \sim \frac{1}{f}
\]

For a fixed observer

as the particle transits a small section of the curved path, there is radiation within the cone \(\omega \sim 1/f \) at observer.

\[
\text{so burst of emission over time } \Delta t = \frac{d}{v} = \frac{r}{c}\beta
\]

Front edge of radiation moves a distance \(l = c\Delta t = \frac{r}{\beta} \) by time the back edge of radiation "plane" is emitted from particle. Note

mored distance \(d \), lost emission

\[
\text{of plane } = l - d = \frac{r}{\beta} - \frac{r}{f} = \frac{r}{f}\left(1 - \beta^2\right) = \frac{r}{f^2}
\]

"Width"

\[
\text{Observed intensity } f^2 \sim \frac{1}{c^2 f^2}
\]

\[
\text{Fourier } \quad \Delta \omega = \frac{1}{\Delta t} = \frac{\Delta f}{c} \frac{f^3}{c^2}
\]

For circular motion \(\frac{\xi}{r} = \omega_f \) angular frequency we observe frequencies

\[
\omega \sim \Delta \omega \sim \frac{\Delta f}{c}\omega_f
\]
The amplification factor \(Y^3 \) is important.

For example, for \(\omega = \text{MHz} \), one can produce 10 keV X-rays \((\omega \sim 10^{19} \text{s}^{-1}) \) with \(\gamma \sim (10^9/10^{11})^2 \sim 10^4 \). For electrons with \(m_c^2 = 1 \text{MeV} \), this requires \(E \sim 10 \text{GeV} \) — see energies of synchrotrons used for X-ray sources!

Spectral Analysis

Clearly of interest to have a more quantitative analysis.

We would like to have an expression for

\[
\frac{dI}{d\Omega dw} = \text{observed intensity of radiation} / \text{solid angle} \cdot \text{frequency}
\]

Now \(\frac{dI}{d\Omega} \) is just \(\frac{d\rho}{dt} \) integrated over time. We use \(\rho' \) which refers to per time of lab frame, i.e., observer's time as is appropriate for this question. The expression is in notes (p.4).

\[
\frac{dI}{d\Omega} = \int_0^\infty dt \frac{d\rho}{dt}
\]
Parserval's theorem
\[f(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \tilde{f}(k) \quad \Rightarrow \quad \int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} \frac{dk}{2\pi} |\tilde{f}(k)|^2 \]

Physical proof:
\[
\int_{-\infty}^{\infty} |f(x)|^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{ikx} \tilde{f}(k) e^{-ikx} \tilde{x}(k) \]
\[
= \int \frac{dk}{2\pi} \int \frac{dk^\prime}{2\pi} \tilde{f}(k) \tilde{x}(k) \tilde{x}(k^\prime) \int_{-\infty}^{\infty} e^{i(k-k^\prime)x} \]
\[
= \frac{2\pi}{2\pi} \delta(k-k^\prime) \]
\[
= \int \frac{dk}{2\pi} |\tilde{f}(k)|^2 \]

Since we had
\[
\frac{dP'}{ds^2} = \frac{e^2}{4\pi} \left(\frac{r|E|^2}{v} \right) = \frac{e^2}{4\pi} \left[\frac{q}{v} \left(\hat{r} \cdot \hat{p} \right) \times \hat{z} \right] \]

we write this as
\[
\frac{dP'}{dt} = \left| \vec{P}(t) \right|^2 \quad \vec{P}(t) = \frac{e^2}{4\pi} \left[\frac{q}{v} \left(\hat{r} \cdot \hat{p} \right) \times \hat{z} \right] \]

Then
\[
\frac{d\vec{P}}{d\Omega} = \int \frac{d\omega}{2\pi} |\vec{P}(\omega)|^2 \quad \text{and} \quad \frac{d\vec{P}}{d\omega} = \frac{1}{2\pi} \left[|\vec{P}(\omega)|^2 + |\vec{P}(-\omega)|^2 \right] \]

where the step 1 is valid, and \(\frac{d\vec{P}}{d\omega} = |\vec{P}(\omega)|^2 \).
Useful approximations:

\[\int_{-\infty}^{\infty} dt e^{iwt} \left(\text{func} \right) \approx e^{i\omega t} \int_{-\infty}^{\infty} dt \left(\text{func} \right) \]

Consider a time \(t - t' = R/c \)

Change integration variable \(dt \to dt' \). Then \(\text{func} = \text{func}(t') \)

\[\int_{-\infty}^{\infty} dt' \left(1 - \hat{r} \cdot \hat{p} \right) e^{i\omega (t' + R/c)} \left(\text{func}(t') \right) \]

Now, if \(\hat{r} \) changes, little so \(\hat{r} \) changes.

(1) Choose origin somewhere in blob (i.e., particle trajectory).

(2) If observer is \(a + \hat{a} \)

\[R(t') = |\vec{r} - \vec{\gamma}(t')| = \vec{r} - \hat{r} \cdot \vec{\gamma}(t') \]

So (drops primes and \(\epsilon^{\infty} = \text{constant} \)) initial trajectory of \(q \).

\[\vec{p}(\omega) = \left(\frac{\epsilon}{m} \right) \int_{-\infty}^{\infty} dt e^{i\omega (t - \hat{r} \cdot \vec{\gamma}(t))} \frac{\hat{p} x \left[(\hat{r} - \hat{\gamma}) \times \hat{\omega} \right]}{(1 - \hat{r} \cdot \hat{p})^2} \]

and

\[\frac{d^2 T}{d\Omega dw} = \frac{e^4}{4\pi^2} \left(\int_{-\infty}^{\infty} dt e^{i\omega t - \hat{r} \cdot \vec{\gamma}(t)} \frac{\hat{p} x \left[(\hat{r} - \hat{\gamma}) \times \hat{\omega} \right]}{(1 - \hat{r} \cdot \hat{p})^2} \right)^2 \]
This integral is hard. There is a trick that simplifies significantly. Note that

\[
\frac{\hat{r} \times \left((\hat{r} \cdot \hat{p}) \hat{r} \times \hat{p} \right)}{(1 - \hat{r} \cdot \hat{p})^2} = \frac{i}{c} \frac{d}{dt} \left[\frac{\hat{r} \times \left((\hat{r} \cdot \hat{p}) \hat{r} \times \hat{p} \right)}{1 - \hat{r} \cdot \hat{p}} \right]
\]

\[
\text{proof: } \frac{i}{c} \frac{d}{dt} \left[\frac{\hat{r} \times (\hat{r} \cdot \hat{p})}{1 - \hat{r} \cdot \hat{p}} \right] = \frac{\hat{r} \cdot \hat{p}}{(1 - \hat{r} \cdot \hat{p})^2} \hat{r} \times \left(\hat{r} \times \hat{p} \right) + \frac{\hat{r} \times (\hat{r} \cdot \hat{p})}{1 - \hat{r} \cdot \hat{p}}
\]

\[
= \frac{1}{(1 - \hat{r} \cdot \hat{p})^2} \left[\hat{r} \times (\hat{r} \cdot \hat{p} - \hat{p}) - \hat{r} \times (\hat{r} \cdot \hat{p}) - \hat{r} \cdot \hat{p} \left(\hat{r} \times \hat{p} \right) \right]
\]

\[
= \frac{1}{(1 - \hat{r} \cdot \hat{p})^2} \left[(\hat{r} \cdot \hat{p}) \hat{p} - (\hat{r} \cdot \hat{p}) \hat{p} + \hat{r} \times (\hat{r} \cdot \hat{p}) \hat{p} \right]
\]

\[
= \frac{1}{(1 - \hat{r} \cdot \hat{p})^2} \left[-\hat{r} \times (\hat{r} \cdot \hat{p}) + \hat{r} \times (\hat{r} \cdot \hat{p}) \right]
\]

Now, we willy-nilly integrate by parts

\[\tilde{\Phi}(\omega) = \frac{\sqrt{\frac{\omega}{4\pi}}}{c} \int_0^\infty dt \ e^{i\omega (t - \hat{r} \cdot \hat{p} t / c)} \frac{1}{c} \frac{d}{dt} \left[\frac{\hat{r} \times \left((\hat{r} \cdot \hat{p}) \hat{r} \times \hat{p} \right)}{1 - \hat{r} \cdot \hat{p}} \right] \]

\[= -i \frac{\sqrt{\frac{\omega}{4\pi}}}{c} \int_0^\infty dt \ dt \ e^{i\omega (t - \hat{r} \cdot \hat{p} t / c)} \frac{\hat{r} \times \left((\hat{r} \cdot \hat{p}) \hat{r} \times \hat{p} \right)}{1 - \hat{r} \cdot \hat{p}} \]

and noting that \(\frac{d}{dt} \left[t - \hat{r} \cdot \hat{p} t / c \right] = t - \hat{r} \cdot \hat{p} \), we have

\[\tilde{\Phi}(\omega) = -i \omega \sqrt{\frac{\omega}{4\pi}} \frac{\hat{r} \times \left((\hat{r} \cdot \hat{p}) \hat{r} \times \hat{p} \right)}{c} \]

This is much simpler. Now

\[\frac{d^2}{d\sigma d\omega} = \frac{2 \omega^2}{4\pi^2c} \left| \int_0^\infty dt \ e^{i\omega (t - \hat{r} \cdot \hat{p} t / c)} \hat{r} \times \left(\hat{r} \cdot \hat{p} \right) \right|^2 \]
Spectrum of circular motion
(Synchrotron radiation)

Note: I use θ for angle with x-axis (not ϑ).

\[\vec{y}(t) = \rho \left(\sin \left(\frac{vt}{p} \right), -\cos \left(\frac{vt}{p} \right), 0 \right) \]

(putting \(\gamma(0) = \rho \left(0, 1, 0 \right) \))

and no argument of exp in \(\beta \) i,

\[\omega \left(t - \frac{\vec{y}(t)}{c} \right) = \omega \left(t - \frac{\rho \sin \left(\frac{vt}{p} \right)}{c} \cos \theta \right) \]

\[= \frac{c}{\gamma} \left(\left(\frac{\gamma - 1}{\beta^2} \right) t + \frac{c^2}{\beta^2} \gamma^2 \right) \]

where we used our previous heuristic discussion that for \(\gamma \gg 1 \)

The radiation is in a cone \(\theta = \frac{v}{c} \) around \(\beta \), and since the observer is in the xz plane, the burst of radiation that reaches him/her is from when \(\beta = \frac{v}{c} \), i.e., from a small time interval around

\[\vec{y}(t) \approx \rho \left(\frac{vt}{p}, 0, 0 \right) \Rightarrow \text{expand about } \sin \left(\frac{vt}{p} \right) = 0; \text{ and of course, } \]

expand about \(\theta = 0 \).

The higher order terms are suppressed by either \(\theta \gg 1 \) or

by \(\left(\frac{vt}{p} \right)^2 \sim \left(\frac{vt}{p} \right)^4 \) with \(\gamma t \sim \frac{p}{\beta} \) from our previous arguments.

So \(\left(\frac{vt}{p} \right)^2 \sim \frac{1}{\beta^2} \).

Note that this makes sense if we only integrate over one cycle of the circular motion. If we really integrate over all
times, we get infinitely many equal contributions $\to \infty$.

The reason is clear: it is periodic motion, with fixed

frequency = angular frequency = $\omega_0 = \frac{\nu}{\rho}$

The proper mathematical analysis is then to do a Fourier
series rather than an integral:

$\vec{\rho}(t) = \sum_{n=-\infty}^{\infty} e^{i n \omega_0 t} \vec{\rho}_n$

with

$\vec{\rho}_n = \frac{1}{2 \pi} \int_0^{2 \pi} dt \ e^{i n \omega_0 t} \vec{\rho}(t)$

Physically we expect $n \omega \approx \omega_0$, the number of modes

that contribute is huge, the approximation above of just retaining

one pulse replaces the large (but exact) number of discrete modes by

a continuum:

and

$\frac{1}{2 \pi} \sum_n |\vec{\rho}_n|^2 \to \frac{1}{2 \pi} \int d\omega |\vec{\rho}(\omega)|^2$.
The approximation to $\vec{\Phi}'$ is $\vec{\Phi}' \propto \vec{r} \times (\vec{r} \cdot \hat{p}) \hat{x}.$

is \perp to \vec{r}: physically the EM wave at the observer has \vec{E} (and \vec{B}) \perp to line of sight. We can decompose \vec{E} into 2 polarizations in the plane \perp to \vec{r}:

- $\vec{E}_\|$: in the xy plane
- \vec{E}_\perp: in direction, $\vec{E}_\perp = \hat{r} \times \vec{E}_\|$.

Since radiation is from $\hat{p} = \hat{x}$ ($t \vec{x} + \hat{r} \cdot \vec{r} = 0$)

Recall

Then $\vec{E}_\perp = \hat{r} \times \vec{E}_\| = (\sin \theta, \cos \theta, 0) \times (0, 1, 0) = (\sin \theta, 0, \cos \theta)$

Decompose

Then $\hat{r} \times (\hat{r} \times \hat{p}) = \hat{p}_\perp \vec{E}_\| + \hat{p}_\| \vec{E}_\perp$

$\hat{p}_\| = \vec{E}_\| \cdot (\hat{r} \times (\hat{r} \times \hat{p})) = (\vec{E}_\| \times \hat{r}) \cdot (\hat{r} \times \hat{p}) = -\vec{E}_\| \cdot (\hat{r} \times \hat{p})$

$= -(\vec{E}_\| \times \hat{r}) \cdot \hat{p} = -\vec{E}_\| \cdot \hat{p} = -\sin (\frac{v}{c} \tau) \hat{z}$

$\hat{p}_\perp = \vec{E}_\perp \cdot (\hat{r} \times (\hat{r} \times \hat{p})) = (\vec{E}_\perp \times \hat{r}) \cdot (\hat{r} \times \hat{p}) = \vec{E}_\perp \cdot (\hat{r} \times \hat{p})$

$= (\vec{E}_\perp \times \hat{r}) \cdot \hat{p} = -\vec{E}_\perp \cdot \hat{p} = \rho \cos (\frac{v}{c} \tau) \sin \theta = \Theta$

Then

$$\int_{0}^{\infty} \frac{d^3 \Omega}{d\Omega d\omega} = \frac{q^2 \omega^2}{4 \pi^2} \int_{0}^{\infty} dt = e^{-\omega t} \left\{ \left[\frac{1}{2} \epsilon^{*} \rho \left(\frac{v}{c} t - \frac{1}{2} \frac{v^2}{c^2} t^2 \right) \right]^2 \left[\frac{c^2 t - \epsilon \rho \epsilon_\| + \Theta \epsilon_\|}{\epsilon_\|} \right]^2 \right\}$$
The integral can be expressed in terms of the Airy function

\[\text{Ai}(x) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} dt e^{i(xt - \frac{1}{3} t^3)} = \frac{1}{\pi} \int_{0}^{\infty} dt \cos(xt + \frac{1}{3} t^3) \]

and its derivative

\[\text{Ai}'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt t e^{i(xt - \frac{1}{3} t^3)} \]

Our integral is of the form \[\int_{-\infty}^{\infty} dt e^{i(at - \frac{1}{3} b t^3)} \]

So rescale \(t = \frac{1}{b^{1/3}} T \), \(T = \frac{1}{b^{1/3}} \int_{-\infty}^{\infty} dt e^{i(aT - \frac{1}{3} b T^3)} = \frac{2\pi}{b^{1/3}} \text{Ai}(\frac{a}{b^{1/3}}) \]

And \(\int_{-\infty}^{\infty} dt t e^{i(at - \frac{1}{3} b t^3)} = \frac{2\pi}{b^{1/3}} \text{Ai}'(\frac{a}{b^{1/3}}) \)

In our case \(a = \frac{\omega^2}{\rho^2} \left(\frac{1}{d^2} + \theta^2 \right) \) and \(b = \frac{\omega^2}{\rho^2} \frac{c^2}{d^2} \). Let \(z = \frac{\omega^2}{\rho^2} \frac{c^2}{d^2} \left(\frac{1}{d^2} + \theta^2 \right) \)

or \(z = \left(\frac{\omega^2}{\rho^2} \right)^{1/2} \left[\frac{1}{d^2} + \theta^2 \right] \)

With this

\[
\frac{d^2 I}{d\Omega d\omega} = \frac{g^2 \omega^2}{4 \rho^2 c^2} \left| -\frac{\omega^2}{\rho^2} \frac{c^2}{d^2} \frac{1}{2} \text{Ai}'(z) \overline{E}_x + \theta \frac{2\pi}{(\omega^2/c^2)^{1/3}} \text{Ai}(z) \overline{E}_y \right|^2
\]

\[
= \frac{g^2}{c^2} \left[(\omega^2/c^2)^{7/2} [\text{Ai}'(z)]^2 + \theta^2 (\omega^2/c^2)^{4/3} [\text{Ai}(z)]^2 \right]
\]

Note that the angular frequency of the circular motion is \(\omega_0 = \frac{c}{\rho} \)

so the result is given in terms of the ratio \(\frac{\omega}{\omega_0} = \frac{\omega}{\omega_0} \).
Now

\[A_1(t) = \frac{1}{\pi} \text{Re} \int_0^\infty e^{i\frac{1}{3} t^2} dt \quad \text{Change variable } u = \frac{1}{3} t^3 \]

\((du = \frac{1}{3} dt \Rightarrow dt = \frac{du}{(3u)^{1/3}})\)

Then

\[\int_0^\infty e^{i\frac{1}{3} t^2} dt = \int_0^\infty e^{iuv} \frac{du}{3u^{1/3}} \]

Then change \(u = \sqrt[3]{v}\) (formally consider \(\lim\) \(dt e^{it} = 0\))

\[\frac{1}{3} \int_0^\infty e^{-\frac{1}{3} v} \frac{i}{3v^{1/3}} dv = \frac{i}{3^{1/3}} \int_0^\infty e^{-\frac{1}{3} v^{3/2}} dv = \frac{\pi}{3^{1/3}} \Gamma \left(\frac{1}{3}\right) \]

\[s_n A_1(t) = \frac{1}{\pi} \frac{\Gamma(n/3)}{3^{n/3}} \Gamma \left(\frac{1}{3}\right), \quad \text{or using } \Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{1}{3}\right) = \frac{n}{3^{1/3}} \Gamma(n/3) \]

\[A_1(t) = \frac{1}{3^{1/3}} \approx 0.355 \]

Similarly we find \(A_1(t) = -\frac{1}{3^{1/3}} \Gamma(1/3) \approx -0.259 \)

The large \(x\) behavior can be obtained by stationary phase:

\[\frac{d}{dt} (x + \frac{1}{3} t^2) = 0 \Rightarrow t^2 = -x \quad \frac{d^2}{dt^2} (x + \frac{1}{3} t^2) = 2t \]

\[S_0 \quad x + \frac{1}{3} t^2 = x \sqrt[3]{-x} + \frac{1}{3} \left(-x \right)^{2/3} + \frac{1}{2} \sqrt[3]{x} (t - \sqrt[3]{x})^2 + \ldots \]

So we have

\[\int_0^\infty dt e^{i(x + \frac{1}{3} t^2)} = \int_0^\infty dt e^{i \left(\frac{3}{2} x \sqrt[3]{-x} + \sqrt[3]{x} (t - \sqrt[3]{x}) \right)} \]
Use $F(x) = i x$ (the other solution blows up (steepest ascent)),

\[
S = e^{-\frac{2}{3} x^{3/2}} \int_{-\infty}^{\infty} dt \ e^{-\sqrt{x}(t-i\xi)}
\]

\[
e^{-\frac{2}{3} x^{3/2}} \int_{-\infty}^{\infty} dv \ e^{\sqrt{x} v^2} = \frac{e^{-\frac{2}{3} x^{3/2}}}{\sqrt{x^{1/4}}} 2 \int_{0}^{\infty} du \ e^{-u^2}
\]

\[
S = \frac{1}{\sqrt{x^{1/4}}} \int_{0}^{\infty} d\xi \ \frac{df}{d\xi} \ e^{\xi} = \frac{e^{-\frac{2}{3} x^{3/2}}}{\sqrt{x^{1/4}}} \Gamma(1/2) = \sqrt{\pi} \ \frac{e^{-\frac{2}{3} x^{3/2}}}{\sqrt{x^{1/4}}}
\]

And $Ai(x) \sim \frac{e^{-\frac{2}{3} x^{3/2}}}{\sqrt{2\pi x^{1/4}}} \quad \text{as} \quad x \to +\infty$

For $Ai'(x)$, $Ai'(x) \sim -\frac{x^{1/4}}{2^{1/2}} \ e^{\frac{2}{3} x^{3/2}}$.

For $x \to -\infty$ and relation to K_v see Garg.
We can now analyze the behavior of \(\frac{d^2 I}{d \Omega \, d\omega} \).

Recall

\[
\frac{d^2 I}{d \Omega \, d\omega} = q \, \frac{1}{\varepsilon} \left[\left(\frac{\omega}{\omega_0} \right)^{7/8} \left\{ A_i(\theta) \right\}^2 + \Theta^2 \left(\frac{\omega_0}{\omega} \right)^{7/3} \left\{ A_i(\theta) \right\}^2 \right]
\]

where \(\theta = \left(\frac{\omega}{\omega_0} \right)^{1/8} \left(\frac{1}{\theta'} + \theta' \right) \).

For fixed \(\theta' \), we have at small \(\omega \)

\[
\frac{d^2 I}{d \Omega \, d\omega} \approx q \, \frac{1}{\varepsilon} \left[\left(\frac{\omega}{\omega_0} \right)^{7/8} \left\{ A_i(\theta) \right\}^2 + \Theta^2 \left(\frac{\omega_0}{\omega} \right)^{7/3} \left\{ A_i(\theta) \right\}^2 \right] = q \, \frac{1}{\varepsilon} \left[A_i(\theta)^2 \left(\frac{\omega}{\omega_0} \right)^{7/3} \right]
\]

and for large \(\omega \)

\[
\frac{d^2 I}{d \Omega \, d\omega} \approx q \, \frac{1}{\varepsilon} \left[\left(\frac{\omega}{\omega_0} \right)^{7/8} \left\{ A_i(\theta) \right\}^2 + \Theta^2 \left(\frac{\omega_0}{\omega} \right)^{7/3} \left\{ A_i(\theta) \right\}^2 \right]
\]

\[
\approx q \, \frac{1}{\varepsilon} \left[\left(\frac{\omega}{\omega_0} \right)^{7/8} \left\{ A_i(\theta) \right\}^2 + \Theta^2 \left(\frac{\omega_0}{\omega} \right)^{7/3} \left\{ A_i(\theta) \right\}^2 \right]
\]

\[
= q \, \frac{1}{\varepsilon} \left[\left(\frac{\omega}{\omega_0} \right)^{7/8} \left\{ A_i(\theta) \right\}^2 + \Theta^2 \left(\frac{\omega_0}{\omega} \right)^{7/3} \left\{ A_i(\theta) \right\}^2 \right]
\]

The exponential gives a rapid roll-off \(e^{-2(1+\theta')^{3/4}/\sqrt{\omega}} \).

where the critical frequency \(\omega_c = 3 \beta^2 \omega_0 \) characterizes the frequency beyond which \((\omega > \omega_c) \) radiation is negligible even for \(\theta = 0 \).

Note also that for small \(\omega \) the polarization is largely \(\parallel \). Likewise, at \(\theta = 0 \) only \(\parallel \) contributes.
Jackson has a nice plot:

\[\frac{dI}{d\omega} \]

where \(\omega_c = 3 \gamma^3 \omega_0 \) is defined by \(\gamma = 1 \) at \(\theta = 0 \), the critical frequency beyond which there is negligible radiation for any angle.